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Abstract—In this paper, we introduce a Monte-Carlo tree
search (MCTS) approach for the game “Hearthstone: Heroes
of Warcraft”. We argue that, in light of the challenges posed by
the game (such as uncertainty and hidden information), Monte
Carlo tree search offers an appealing alternative to existing AI
players. Additionally, by enriching MCTS with a properly con-
structed heuristic, it is possible to introduce significant gains in
performance. We illustrate through extensive empirical validation
the superior performance of our approach against vanilla MCTS
and the current state-of-the art AI for Hearthstone.

Index Terms—Monte Carlo Tree Search, Artificial intelligence
for games, Hearthstone.

I. INTRODUCTION

Collectible card games (CCGs) are one of the most popular
forms of contemporary game play. Since the inception of
“Magic, the Gathering”—back in the 90s—several such games
emerged as popular forms of entertainment (both physical and
electronic) and even training and education [1], [2].

The often intricate gameplay allied with aspects of hidden
information and chance also make collectible card games
appealing testbeds for artificial intelligence (AI) research. For
example, several works have explored both machine learning
[3] and planning approaches in CCG games such as “Magic,
the Gathering” [4], [5].

In this paper, we develop an AI system for the card game
“Hearthstone: Heroes of Warcraft”, the most popular online
CCG game, with 50 million players as of April 2016 [6].
Hearthstone is a turn-based CCG between two opponents, and
can be played both in multiplayer and single player modes.
In Hearthstone, players must deal with hidden information
regarding the cards of the opponent, chance, and a complex
gameplay, which often requires sophisticated strategy. Several
works in the literature have tackled different aspects of the
game, such as deck building [7], card generation [3] and
general game-play [8]. The former work, in particular, uses
a supervised learning approach to predict a (discrete) value
for each action and each state. The result of such classifier is
then used for action selection.

We propose the use of Monte Carlo Tree Search (MCTS), as
it is becoming a de facto standard in game AI and is particu-
larly suited to address the chance elements in Hearthstone [4],
[5], [9], [10]. In particular, we propose a modified version of
MCTS which integrates expert knowledge in the algorithm’s
search process. Such integration is done, on one hand, through
a database of decks that the algorithm uses to cope with the
imperfect information; and, on the other hand, through the

inclusion of a heuristic that guides the MCTS rollout phase
and which effectively circumvents the large search space of
the game. The heuristic represents a particular game strategy,
and aims at supporting the selection and simulation process.
We compare the performance of our proposed approach to that
of the state-of-the-art AI for the game; by using an adequate
heuristic, we are able to attain a competitive performance.

Summarizing, the contributions of this paper are as follows:
• The first contribution consists in using a deck database to

address the problem of hidden information in the game;
• The second and main contribution is the integration of a

heuristic to handle the large search space of the game.
The rest of the paper is organized as follows. Section II pro-

vides a general overview of the game and the simulator used.
Section III describes the details of the proposed approach.
Section IV describes the methodology used to fine-tune our
approach, while Section V discusses the results achieved with
our approach. Section VI concludes.

II. HEARTHSTONE

We start by presenting an overview of the game and the
main challenges it poses in terms of AI.

A. Hearthstone: Heroes of Warcraft

“Hearthstone" is a turn-by-turn online CCG with matches
played between two opponents. Before a match, each player
can build a 30 card deck using one of nine heroes available.
Each hero has a special power and base cards that the player
can choose, together with “common" cards that can be chosen
for any hero. Having selected her or his hero and deck, the
player can then enter a match with an opponent. Each player
starts with 30 life points and the main goal of the game is
to reduce the life points of the opponent’s hero to zero. To
do so, players can summon minions or apply damage to the
minions that the opponent currently holds on the battlefield,
besides directly damaging the opponent’s hero. In each turn,
each player receives a random card and one mana crystal.
Mana crystals are the resource used to play cards and use
hero powers. The match evolves as each player receives and
uses mana crystals to play new cards.

The collectible Hearthstone cards are at the core of its
gameplay and are one of its most appealing features, as
powerful cards may provide the player with a significant
advantage. Cards can be grouped into three main types: Spells,
Minions and Weapons. Spells activate a one-time ability or



effect. Minions are persistent creatures that remain in the
battlefield (until they are destroyed). Weapons are special cards
used by the hero to attack.

Each card is associated to a mana cost, a description and
effects or abilities. Card effects range from situational and
local (e.g. a target minion gains life points) to changing the
rules of the game (e.g. players draw more cards). The changing
rules creates an additional challenge to artificial players.

B. Hearthstone strategies

Because players select the deck of 30 cards with which
they play, the deck governs the player’s strategy, and it is not
unusual to associate “standard decks” with common strategies
in the game. Common decks/strategies include:
• Aggro (meaning “aggression”): It is a deck comprising

cheap cards, with the main purpose of finishing the game
as quickly as possible. These decks consume a significant
amount of cards, as they seek to inflict the maximum
damage, and exhaust themselves if are not able to quickly
kill the opponent.

• Mid-range: It is a flexible deck, primarily designed for
responding to the opponent’s moves. Its objective is to
gain power in the mid-game turns, where the player can
access powerful finishers (something that, for example,
aggro players cannot afford).

• Control: It is a strategy that prioritizes survival in the
first turns. Control decks usually pose huge threats with
just few minions, but without a careful early game, any
aggro or mid-range strategy can defeat it. Control decks
are designed to gain control in the last stages of the game.

C. Metastone

Metastone [11] is an open-source simulator available for the
Hearthstone community. The simulator includes all the main
gameplay mechanisms. Additionally, it includes functionalities
allowing the simulation of a large number of games between
different heroes, decks and AI systems, providing summarized
statistics after the matches. The simulator already includes
some AI systems against which other artificial Hearthstone
players can be tested. The systems included in the simulator
are
• A random player that selects the actions at random and

provides a naive baseline for comparison.
• A “no aggression” player, corresponding to a player that

does not attack the opponent. The AI randomizes between
playing cards or simply performing the “end-turn” action.

• A “greedy” player, corresponding to a myopic player
whose actions are driven by a heuristic built on several
game metrics and whose weights were tuned using an
evolutionary approach (see Section III).

• The Game state Value (GSV), a recursive alpha-beta
algorithm driven by the aforementioned heuristic. To
the extent of our knowledge, this is the state-of-the-
art, and several existing players report disappointing
performances against it.

Given the functionalities it provides, we adopt Metastone as
the testbed in which we evaluate our AI system.

III. PROPOSED APPROACH

Our approach builds on the well known Monte Carlo tree
search family of methods. Therefore, before discussing our
proposed enhancements to MCTS, we provide an overview of
this class of methods.

A. Monte Carlo tree search

Monte Carlo tree search is a family of search methods
designed to address sequential decision problems. MCTS
methods rely on sampling to handle both large branching
factors (as observed in games such as Go [12], [13]) and the
randomness (as observed in games such as Hearthstone).

MCTS iteratively builds a search tree from the current state
of the game. The 4 main steps in MCTS are (see Fig. 1):

1) Selection: Starting at the root node, a selection function
is recursively applied to determine the next node to
expand. Selection is mostly based in the information
stored in each node, and continues until a leaf node is
reached.

2) Expansion: As soon as the algorithm reaches a leaf node,
one or more child nodes are added to the game tree,
according to the available actions.

3) Simulation: From each of the nodes expanded in the
previous stage, one or more simulations (rollouts) is
run until a terminal state is reached. The simulations
are obtained using a predefined default policy, which
can be as simple as random selection. The value of the
terminal state provides a (noisy) estimate of the value
of the previous states.

4) Back-propagation. Once the simulation ends, the result
is back-propagated up to the root node, allowing all the
node values being constantly updated. Backpropagation
is the final step of an MCTS iteration.

Let us consider each of these stages in more detail. The goal
of MCTS is to quickly estimate the value of the current state
(root node) and potential subsequent states, so that the tree
can be used to guide the action selection of the agent. For this
reason, each node contains information regarding:
• The number of times that the node was visited in all

simulations;
• The number of simulations from that node that resulted

in victories.
The tree policy uses this information to guide the selection of
the next node to visit/expand. It does so by means of the tree
policy that balances exploration—i.e., experimenting actions
and situations seldom experienced before—and exploitation—
i.e., taking advantage of the knowledge built so far.

A commonly used tree policy relies on the so-called upper
confidence bound, or UCB [14], and selects at each node v
the successor node v∗ such that

v∗ = argmax
w

Q(w)

N(w)
+ c

√
2 lnN(v)

N(w)
, (1)
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Fig. 1: Diagram representing the 4 steps of MCTS. In the first two steps, the tree is traversed using the Tree Policy, until a
leaf node is reached and marked for expansion. The expanded node is selected again using the tree policy. The algorithm then
simulates trajectories of the system, using some default policy, until a terminal state is reached. The value of that state is then
backpropagated to its parents. Diagram adapted from [9].

Fig. 2: High-level overview of the interaction between our
MCTS agent and the Metastone game engine.

where c is a constant, N(w) is the number of visits to node w
and Q(w) is the number of victories. These values are updated
during the back-propagation stage by increasing both N and
Q as necessary.

Using the UCB, MCTS is guaranteed to converge to the
minimax tree as the number of simulations from each node
grows to infinity [15]. However, MCTS is an anytime al-
gorithm: it continues to run until a computational budget is
reached, at which time it provides the best answer so far.

�

While the simplest instances of MCTS can run without any
specific domain knowledge, it has been shown in practice that
the performance of MCTS can be improved significantly by
providing the algorithm with additional knowledge.

In our approach, we propose the integration of expert
knowledge regarding the game of Hearthstone. In particular,
we propose the use of (i) a heuristic that guides the selection
and simulation steps of MCTS; and (ii) a deck database that
allows the algorithm to reason about possible cards that the
opponents may hold.

Fig. 3: Detail of the MCTS block from Fig. 2.

Our approach is summarized in Figs. 2 and 3. We discuss
the details in the continuation.

B. Adding expert knowledge to the selection step

We use progressive bias [16] as a mean to integrate expert
knowledge in the selection step of MCTS. Progressive bias
takes the form of an additional term included in (1):

v∗ = argmax
w

Q(w)

N(w)
+ c

√
2 lnN(v)

N(w)
+

H(w)

1 +N(w)
, (2)

where H is a heuristic function representing the domain
knowledge. In other words, we enrich the UCB selection rule
with an extra term that accounts for the domain-specific expert
knowledge.

C. Using a database of decks

“Hearthstone” features more then 1, 000 playable cards,
from which the players can build their 30 card deck. For
competitive play it is crucial to predict what cards can be
played by the opponent, which creates an added difficulty for
the selection and simulation steps of the MCTS algorithm,
when simulating the opponent’s moves.



Fortunately, the choice of hero is known from the beginning,
and the efficiency of a deck strategy implies a more limited
choice of cards. For example, in [17], a statistical learning
algorithm was used to predict the most probable future card
between turns three and five of a match. The algorithm was
able to achieve an accuracy above 95% after analyzing 50, 000
game replays, indicating that, in fact, the number of effective
decks that the players choose from can be significantly nar-
rowed down.

In the lack of game data from which probable decks can be
estimated, we instead adopt a simpler alternative that relies on
community-build decks as representatives of the most common
game strategies (Aggro, Mid-Range and Control). In particular,
we use a set of decks built from those used by professional
players in recent tournaments.

The use of a deck database effectively reduces the search
space that MCTS needs to consider. Intuitively, it can be
understood as the artificial counterpart to the knowledge of
a master player, who is aware of common decks types and is
thus able to (approximately) infer the opponent’s deck type
and most likely cards from its hero and the cards played in
the early stages of the game.

In our approach, we use the cards played by the opponent
so far to select/sample one deck from the deck database that
is compatible therewith. In other words, our approach counts
the common references present in both the cards played by
the opponent so far, and each deck at the database. The
deck selected is the one with most common references, which
will be the one that most accurately translates the opponent’s
strategy and which has, therefore, the best predictive ability.
After removing from the selected deck the cards already
played, we obtain a collection of the likely cards to be played,
that MCTS then uses in its search.

D. Sampling in simulation

Given the large branching factor in Hearthstone, the simu-
lation process of MCTS will generally require a large number
of iterations before each node is properly explored and an
accurate estimate of each action’s value can be obtained. Such
extensive simulation is time-consuming, which is inconvenient
given the limited time to play imposed by the game.

To circumvent this difficulty, we adopt the tournament se-
lection approach commonly used in evolutionary computation
[18], [19]. In particular, at each step of the simulation, k
actions are sampled at random from the set of allowed actions.
Each of these k actions is then “scored” according to a
pre-defined heuristic function that evaluates the game state
resulting from executing such action.1 It is the value of k and
the heuristic function that, in our approach, define the default
policy used for simulation. For example, if k = 1, the resulting
default policy reduces to standard random sampling. On the
other hand, if k = NA (where NA is the number of currently
admissible actions), the resulting default policy is greedy with
respect to the heuristic.

1It is worth emphasizing that the heuristic used in the simulation stage need
not be the one used in the selection stage.

E. Tree and default policies heuristic

Both the tree and the default policies used in the selection
and simulation stages of MCTS rely on a heuristic function
that evaluates subsequent states and informs action selection.
In order to assess the impact of such heuristic in the perfor-
mance of the method, we considered two distinct heuristics.
Both heuristics were constructed as linear combinations of a
small number of features extracted from the state s, taking the
general form

H(s) =

N∑
n=1

αnφn(s), (3)

where φn(s) is the value of feature n at the state s. The
difference between the two heuristics lies on the features used.

1) Heuristic 1: The first heuristic included a small number
of hand-picked features that reflect a game control strategy,
reproducing the process of gaining board control and prevent-
ing the opponents victory. In particular, it uses the following
features:
• Minion advantage (MA): number of minions the player

controls over her opponent.
• Tough Minion advantage (TMA): number of powerful

minions the player controls over her opponent.
• Hand advantage (HA): number of hand cards the player

has minus her opponent’s hand cards.
• Trade advantage (TrA): factor that represents how good

the minions on the board are to lead to advantageous
trades.

• Board mana advantage (BM): the difference between the
sum of mana for the player’s cards and opponent’s ones.

Several of the features above were already used in the liter-
ature, although in a different setting (see, for example, [8]).
The resulting heuristic becomes:

H(s) = αMAφMA(s) + αTMAφTMA(s)

+ αHAφHA(s) + αTrAφTrA(s) + αBMφBM (s). (4)

The value of the weights was optimized using genetic pro-
gramming, by having a myopic greedy agent driven only
by the heuristic play numerous games against the greedy
Metastone player.2 As expected, the weights depend greatly on
both decks. However, since the opponent’s deck is unknown,
we optimized our weights against different decks, selecting the
configuration that performs best against all decks in average.

2) Heuristic 2: As second heuristic, we use the one driving
the greedy and GSV Metastone players. The heuristic also
takes the form in (3), but includes a number of additional
features that account, for example, for the number of life points
that the hero still has.

F. Action return

Being an anytime algorithm, when the computational budget
is exhausted, MCTS returns the best candidate action at the

2In fact, our myopic greedy agent is similar to Metastone’s, although using
a different heuristic.



root node, vroot. We compared four selection methods used in
the literature [9]:
• Max-child: returns the (action) child node v at the root

with the highest number victories, i.e.,

vvic = argmax
v∈C(vroot)

Q(v),

where we write C(v) to denote the set of children of v.
• Robust-child: returns the child node v at the root with the

highest number of visits, i.e.,

vvis = argmax
v∈C(vroot)

N(v).

• Max-robust-child: returns the child node v at the root with
the highest combined number of victories and visits, i.e.,

vrob = argmax
v∈C(vroot)

(Q(v) +N(v)).

• Secure-child: returns the child node v at the root that
maximizes the lower confidence bound, i.e.,

vlcb = argmax
v∈C(vroot)

Q(w)

N(w)
− c

√
2 lnN(v)

N(w)
.

G. Search tree reuse

Traditionally, being an online planning algorithm, MCTS is
restarted at every step t of the execution, bearing as root node
the state st of the system. In other words, at each execution
step t, the agent builds a MCTS tree from state st for as long
as it is allowed to plan; when the computation time is up,
MCTS prescribes an action at and the system moves to a new
state, st+1. The process then repeats, constructing a new tree
rooted at st+1. This means that the tree constructed in one
iteration (and the outcome of the corresponding simulations)
are discarded between execution steps.

In order to maximize the use of information from one
execution step to the next, we explore the possibility of reusing
the tree from the previous iteration in growing the new tree.
Such reuse is reminiscent of search seeding, wherein the
values at each node are not started at 0.

IV. PARAMETER SELECTION METHODOLOGY

As seen in the previous section, our proposed MCTS ap-
proach to Hearthstone includes a number of adaptations whose
impact should be tested. We thus conducted an extensive
validation process aimed at establishing the impact, in our
approach’s performance, of the:
• number of iterations vs. the number of rollouts per

iteration;
• value of the parameter k in the simulation;
• heuristic used in the tree and default policies;
• action selection criterion;
• search tree reuse.

In particular, we investigated the impact of each of the above
components by varying one while keeping the other fixed (the
exact parameters and full results are described in the appendix
of the extended version of this paper). For each of the free

(a) Performance vs. number of MCTS iterations.

(b) Time vs. number of MCTS iterations.

Fig. 4: Game and computational performance of our proposed
approach as a function of the number of MCTS iterations.
Results correspond to averages of 250 independent runs.

parameters (such as k) we conducted a simple grid search
across the space of possible values. For each configuration we
measure both the performance against Metastone’s GSV AI
(see Section II) and the computational time.3 Computational
times were measured on a 2.6GHz Intel Core i7 processor with
16GB of RAM memory.

The base configuration for the validation process is:
• Player 0 (our approach):

– Hero: Warlock hero;
– Deck: Tarei’s warlock zoo deck.

• Player 1 (Metastone’s Game State Value):
– Hero: Warlock hero;
– Deck: Tarei’s warlock zoo deck.

A. Number of iterations

In a first test, we evaluated the impact of the number of
iterations allowed to MCTS both in terms of time and game
performance, using each of the two simulation heuristics. The
results are summarized in Fig. 4, and correspond to averages
over 250 independent runs. We report as performance the
percentage of games won against Player 1 (Metastone’s GSV
player), and as time the average time-per-play.

Several observations are in order. First, both heuristics
perform similarly in terms of computation time. This is
not surprising, since they both involve a small number of

3As mentioned before, the computational time is an important performance
measure to consider, since Hearthstone players have a limited amount of time
to play.



(a) Performance vs. number of rollouts during simulation.

(b) Time vs. number of rollouts during simulation.

Fig. 5: Game and computational performance of our proposed
approach as a function of the number of rollouts performed
during the simulation stage. The results correspond to averages
of 250 independent runs.

operations. There is a slight overhead in Heuristic 2, since
it requires the computation of a larger number of features, but
the difference is not significant.

In terms of performance, however, Heuristic 2 does seem to
offer an advantage, that tends to increases with the number of
iterations. This is also not surprising, since Heuristic 2 includes
more information than Heuristic 1. Also unsurprisingly, this
effect is negligible when the number of iterations of MCTS
is small (i.e., the tree is shallow), but increases with more
interactions.

Finally, we note in Fig. 4a that there is some variability in
the observed performance. Such variability can be explained
by the chance aspects of the game, since two games played
exactly with the same decks may turn out to be very different.

B. Number of rollouts

A second parameter that influences the performance of our
approach is the number of rollouts performed per iteration in
the simulation stage of the game. The results are summarized
in Fig. 5, and correspond to averages over 250 independent
runs. We again report as performance the percentage of games
won against Player 1 (Metastone’s GSV player), and as
time the average time-per-play. The results are qualitatively
similar to those observed in Section IV-A, with both heuristics
performing equivalently in terms of computation time, while
Heuristic 2 showing a small advantage in terms of perfor-
mance. A curious observation is that both heuristics seem to
drop somewhat in performance as the number of simulations

(a) Performance vs. k.

(b) Computation time vs. k.

Fig. 6: Game and computational performance of our approach
as k varies between 0% and 100% of the admissible actions.
The results correspond to averages of 250 independent runs.

grows beyond 20. While this may simply be due to the inherent
stochasticity of the game, it may also be the case that the large
number of simulations makes the UCB heuristic too greedy too
soon, preventing sufficient exploration.

C. The parameter k

We also investigated the impact of parameter k (which
is combined with the heuristic to control the default policy
during simulation) on the algorithm—again both in terms
of performance and computation time. We varied k between
0% and 100% of the admissible actions, both in the nodes
of Player 0 (where the action is selected to maximize the
heuristic) and in those of Player 1 (where the actions are
selected to minimize the heuristic). The corresponding results
are reported in Fig. 6 for Heuristic 2 (results for Heuristic 1
are similar and can be found in the in the appendix of the
extended version of this paper).

Regarding performance, two observations are in order. First,
the performance of our agent does not change significantly
with k. A second observation is that the best results are
achieved with different values of k for the Player 0 nodes and
the Player 1 nodes, namely when k0 = 75% and k1 = 50%.4

We also note that extreme values of k (for example, k0 =
k1 = 0% or k0 = k1 = 100%) lead to poorer performance—
in one case because the heuristic is not used and MCTS is,
therefore, unable to properly handle the large branching factor

4We write ki to denote the value of k for player i.



Fig. 7: Performance of our proposed approach with the differ-
ent action selection criteria. The results correspond to averages
of 250 independent runs.

of the game, while in the other the simulation is bound to the
heuristic and unable to properly handle the differences between
the predicted and actual behaviors of the opponent.

We conclude by noting, from Fig. 6b, that the amount of
computational time required grows with k since, for larger
values of k, the algorithm must go over a larger number of
alternatives and select the best, according to the heuristic.

D. Action return

We also compared the performance of the different action
selection alternatives discussed in Section III. The results are
summarized in Fig 7. The results indicate that:
• Max-child selects the action with most victories, and is

the best-performing action-selection criterion.
• Robust-child selects the most visited action. However,

since the correlation between the number of visits and
its impact towards victory is a less direct indicator of
the quality of an action, the resulting performance is,
expectedly, worse.

• Max-robust-child selects the action that jointly maximizes
the number of visits and victories. Interestingly, its per-
formance lies exactly in the middle between the Max-
and Robust-child players.

• Finally, the secure-child is far too conservative and is
unable to ever lead to a winning state.

E. Search tree reuse

Finally, we investigated the impact of tree reuse in the
performance of the algorithm. In particular, we compared a
first policy obtained when the tree is reused between execution
steps and a second policy obtained when the search tree is
rebuilt at each execution step. The results are depicted in
Fig. 8, and clearly show that tree reuse does, in fact, lead
to improved performance.

V. EMPIRICAL EVALUATION

In order to perform a comparative analysis between our
approaches, we paired them against the different AIs existing
in Metastone:
• Random Player;
• No Aggression Player;

Fig. 8: Impact in performance of tree reuse. Policy 1 cor-
responds to the policy obtained when the search tree is
maintained between execution steps. Conversely, Policy 2 is
obtained by rebuilding the tree at each execution step.

• Greedy;
• GSV Player.
which represent different competitive levels of difficulty.

In addition, we also studied how our approach adapted in
different gaming scenarios. To do so, we used 3 different
decks, that represented a wide variety of gaming strategies:
• Tarei’s Warlock Zoo: A moderate aggro-based deck that

aims to control the board while damaging the opponent.
• JasonZhou’s N’Zoth Control Warrior: control-based deck,

one of the most consistent in Hearthstone. It aims to
exhaust the opponent’s resources, dominating in late-
game turns.

• Che0nsu’s Yogg Tempo Mage: Mid-range based deck,
consisting of heavy minions with a higher curve com-
pared to Aggro ones.

For each deck, we run a total of 250 games and record
the percentage of victories. Both approaches used the deck
database to handle hidden information and used the same
parameters5 throughout (the exact parameters and full results
are described in the extended version of this paper). Each
MCTS version played into a round-robin, being used all the
possible combinations of decks between them.

Against the Random and the No Aggression players our
approaches attained a win-rate near of 100% in every scenario.
This is not surprising, since the complexity of the game
prevents those players from meaningful play. The Greedy
player was more even-matched, the “vanilla" MCTS version
on average presenting a win-rate close to 40% while the full
approach presented win-rates of 54% to 60%.

Finally, we tested the performance of both approaches
against the actual-state-of-the-art of Metastone’s AI, the GSV.
The results are summarized in Fig. 9, where Approach 1 is
our approach and Approach 2 is the “vanilla” MCTS player.
In average, our adaptation to MCTS performed a win-rate
close to 42%, while the MCTS “vanilla" version presented
an win-rate close to 21%. Some decks are better matched
than others, which explains the variation across the different

5MCTS was run for 60 iterations per play, 20 simulations per node. Both
approaches used sampling in simulation with k0 = 75% and k1 = 50%,
Max-child output selection and tree reuse.



(a) Che0nsu’s deck (b) JasonZhou’s deck (c) Tarei’s deck

Fig. 9: Performance of MCTS players against Metastone’s Game State Value player with different decks.

decks. Another important observation is that the fact that the
heuristic parameters are optimized to perform well against all
decks, what eventually hampers the performance of the agent
(as seen, for example, with the JasonZhou’s deck).

In any case our results show that the MCTS approach with
expert knowledge clearly outperformed the “vanilla” approach
in all situations, often by a large margin, proving that MCTS
with the integration of expert knowledge is able to attain more
competitive results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we develop an MCTS-based approach for
Hearthstone. Our approach boosts MCTS with domain specific
knowledge of 2 types: a database of decks that mitigates the
impact of imperfect information, and a heuristic that guides
the tree construction. Our results show that our approach is
superior to “vanilla” MCTS and are able to attain competitive
results with state of the art AI for Hearthstone.

Our results also open venues for future research. In our
approach, the heuristic governing the tree construction uses
a single set of weights that is deck-independent. We observe
that an improvement in performance could be achieved by
considering specialized weights in the deck used by the player.

Also, we would like to develop our own heuristic, with
a dynamic approach for targeting a specific game strategy.
Hopefully, this would allow to optimize MCTS for a more
specific behavior, instead a specific deck. Also, we desire to
develop a new method for selecting the candidate root action
in MCTS. In our experiments, we only develop approaches
that returns a single action. The idea would be to optimize the
MCTS turn, by selecting the best moves, from the root node
to the end turn, that maximizes the number of victories.
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APPENDIX A
PARAMETERS USED IN EXPERIMENTERS

In this appendix, we specify the parameters used in the
different experiments reported in the paper. Player 0 is always
held fixed and is described in Section IV.

A. Number of iterations

• Algorithm: Monte Carlo tree search
• Heuristic: Both 1 and 2;
• Hero: Warlock hero;
• Deck: Tarei’s warlock zoo deck;
• N. iterations: every 10 between 10 and 100;
• N. simulations: 20;
• Parameter k: 75% for player 0; 50% for player 1;
• Action selection criterion: Max-child;
• Tree reuse: yes.

B. Number of rollouts

• Algorithm: Monte Carlo tree search
• Heuristic: Both 1 and 2;
• Hero: Warlock hero;
• Deck: Tarei’s warlock zoo deck;
• N. iterations: 30;
• N. simulations: 1 through 35;
• Parameter k: 75% for player 0; 50% for player 1;
• Action selection criterion: Max-child;
• Tree reuse: yes.

C. Action selection

• Algorithm: Monte Carlo tree search
• Heuristic: Both 1 and 2;
• Hero: Warlock hero;
• Deck: Tarei’s warlock zoo deck;
• N. iterations: 60;
• N. simulations: 20;
• Parameter k: 75% for player 0; 50% for player 1;
• Action selection criterion: {Max-child, Robust-child,

Max-robust-child, Secure-child};
• Tree reuse: yes.

D. Search tree reuse

• Algorithm: Monte Carlo tree search
• Heuristic: Both 1 and 2;
• Hero: Warlock hero;
• Deck: Tarei’s warlock zoo deck;
• N. iterations: 60;
• N. simulations: 20;
• Parameter k: 75% for player 0; 50% for player 1;
• Action selection criterion: Max-child;
• Tree reuse: {yes, no}.

E. Parameter k

• Algorithm: Monte Carlo tree search
• Heuristic: Both 1 and 2;
• Hero: Warlock hero;
• Deck: Tarei’s warlock zoo deck;

• N. iterations: 60;
• N. simulations: 20;
• Parameter k: {0%, 25%, 50%, 75%, 100%} for player 0;

{0%, 25%, 50%, 75%, 100%} for player 1;
• Action selection criterion: {Max-child, Robust-child,

Max-robust-child, Secure-child};
• Tree reuse: yes.

F. Final parameters

• Algorithm: Monte Carlo tree search
• Heuristic: 2;
• Hero: target hero;
• Deck: target deck;
• N. iterations: 60;
• N. simulations: 20;
• Parameter k: 75% for player 0; 50% for player 1;
• Action selection criterion: Max-child;
• Tree reuse: yes.

APPENDIX B
GENETIC ALGORITHM PARAMETERS

We now describe the parameters of the genetic algorithm
used to optimize the weights in the heuristic (4). In the
optimization process, the player always used “Tarei’s warlock
zoo deck”, and played against all decks in the deck database.
• Population size: 50;
• Population restarts: 10;
• N. games used to compute fitness: 30;
• Selection methods: {Random, Rank, Roulette, Tourna-

ment};
• Crossover probability: 0.7;
• Mutation probability: 0.01;
The resulting weights were

α =
[
1.0457 0.2058 9.6557 0.9407 5.2249

]
.

APPENDIX C
ADDITIONAL RESULTS

We leave five additional plots, depicting how the perfor-
mance and computational time change for different values of
k (heuristic 1) and the results obtained versus the Greedy AI
Metastone’s player.

Fig. 10: Performance vs. k for Heuristic 1.



(a) Che0nsu’s deck (b) JasonZhou’s deck

(c) Tarei’s deck

Fig. 11: Performance of MCTS players against Metastone’s Greedy with different decks.

Fig. 12: Time vs. k for Heuristic 1.


