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Abstract

The subsurface water movement is an important step of the water cycle which

fully understanding is not yet achieved. Indeed, groundwater flow strongly depends

on encountered geological underground formations and it is difficult to reproduce

not being directly observable. Many tests and models are applied to determine

formation properties averages. Usually they are time-consuming and assume a ho-

mogeneous field, or only vertically heterogeneous. This way they do not consider

the possible presence of fast pathways which considerably influence contaminant

movement. Therefore, this paper proposes to use the steady-periodic model for

oscillatory pumping test in order to characterize hydrogeological formations eval-

uating local properties: conductivity and storativity. The test stimulates aquifers

with several periodic signals of different frequencies, the model elaborates data by a

modified Bayesian inversion and the pilot point approach in which governing equa-

tions of subsurface movement are used in the Fourier space. Different typology of

results and simulations are carried out in order to assess capability to infer hydraulic

properties variations with limited prior information. In conclusion, the average of

Monte Carlo simulations is able to infer the heterogeneity pattern of both proper-

ties but it does not correctly evaluates extreme values. While, the best simulation

captures local properties values and their statistics with acceptable but variable

accuracy. Regarding contaminant transport, connectivity results approximatively

simulated. The most important observation is the higher sensibility of the model to

storativity than to conductivity. Models currently used usually focus on conductiv-

ity and storativity is not accurately reproduced. While this work provides a sensible

measurement for this lacking property of the field.





Sommario

Il movimento dell’acqua nel sottosuolo é un passaggio importante del ciclo della

acqua, é anche uno dei passaggi piú difficili da modellare dato che il flusso acquifero

varia fortemente a seconda delle formazioni geologiche incontrate. Visto la sua varia-

bilitá e l’impossibilitá di osservare direttamente lo scorrimento, l’acqua sotterranea

risulta difficile da simulare correttamente. Attualmente vi sono molti test e model-

li finalizzati alla determinazione delle proprietá medie dellaquifero, ma solitamente

sono costruiti sull’assunzione di assoluta omogeneitá del campo, escludendo quindi

la possibile presenza di percorsi veloci che sono estremamente importanti nel tra-

sporto di contaminanti. Questa tesi quindi vuole caratterizzare l’eterogeneitá delle

formazioni usando il modello steady-periodic per un test di pompaggio alternato. Il

pompaggio stimola laquifero con segnali periodici di diverse frequenze ed il modello

elabora le osservazioni. Tale elaborazione consiste nell’usare le equazioni del moto

nello spazio di Fourier, un’inversione simile alla Bayesiana, i metodi dei punti pilo-

ta e Monte Carlo. Il modello é stato provato con diversi test e molte tipologie di

risultati sono riportate per una comparazione che facilita la completa comprensione

dell’efficacia del modello nel riprodurre sia conduttivitá e storativitá locali che il

trasporto di contaminanti. I test riportati in questo studio dimostrano che la media

delle simulazioni Monte Carlo riesce ad individuare il pattern di eterogeneitá ma

non riconosce i valori massimi, mentre la migliore simulazione vi riesce individuan-

do quindi migliori statistiche. Il trasporto di inquinante non riesce invece ad essere

riprodotto, solo la funzione di connettivitá viene approssimativamente individuata.

Infine, l’aspetto piú importante del modello proposto é la sua sensibilitá alla stora-

tivitá. Considerato che i modelli solitamente si concentrano nella conduttivitá del

campo, questo modello puó essere efficientemente utilizzato per la riproduzione della

proprietá usualmente meno accurata.





Resumo

O deslocamento da água subterrâenea é uma fase importante do ciclo da água e

sua compreensão plena ainda não foi alcançada. De facto, o fluxo das águas sub-

terrâneas depende fortemente da formação geológica do aquifero e é dificil a sua re-

produção não sendo directamente observável. Muitos testes e modelos são aplicados

para determinar as propriedades médias de formação. Normalmente, assumem-se

um campo homogéneo ou heterogéneo apenas na vertical. Dessa forma, eles não con-

sideram a possivel presença de caminhos mais rápidos que influenciam consideravel-

mente o movimento de contaminantes. Portanto, este trabalho propõe a utilização

do modelo estacionário periódico para teste de bombeamento oscilatório de modo

a caracterizar formações hidrogeológicas avaliando propriedades locais: condutivi-

dade e capacidade de armazenamento. Os testes estimulam aquiferos com vários

sinais periódicos de diferentes frequências, o modelo de dados elaborado para uma

inversão semelhante ao Bayesiana e a abordagem do ponto piloto em que as equações

que governam o movimento do subsolo são usadas no espaço de Fourier. Diferentes

tipologias de resultados e simulações são realizadas a fim de avaliar a capacidade de

inferir nas variações das propriedades hidráulicas com informação prévia limitada.

Em conclusão, tem-se que a média das simulações de Monte Carlo é capaz de de-

duzir o padrão de heterogeneidade de ambas as propriedades, mas ela não avalia

correctamente os valores extremos. Embora a melhor simulação capte valores das

propriedades locais de estatisticas com precisão aceitável, ela é variável. Em relação

ao transporte de contaminantes, a conectividade é aproximadamente simulada. A

observação mais importante é a maior sensibilidade do modelo para capacidade de

armazenamento do que a condutividade. Modelos atualmente usados geralmente

concentram-se em condutividade mas capacidade de armazenamento não é repro-

duzido com precisão. Enquanto que este trabalho fornece uma medida sensivel para

esta proprietade de campo.





Introduction

It is generally known how water continuously moves following the water cycle:

evaporating, raining, moving on the soil and through it. It is also commonly under-

stood how much water and its cycle balance is important in our life for both humans,

flora, fauna and the whole Earth. Water importance and vulnerability is amply dis-

cussed across fields. Society is moving with actions and precaution to a high respect

of this life resource. However, in order to make these efforts more effective it is

essential that science fully comprehends the hydrological cycle in its entirety. Up

to this point, hydrologists can describe quite in detail all steps of the water cycle

that are visible and directly experienced. Mainly two points remain uncertain: the

transpiration step and the subsurface water movement. The former is the process of

water movement through a plant and its evaporation from aerial parts, the latter is

the flow of water beneath earth’s surface. These are indeed steps difficult to observe

and model: the first because it is a micro-scale cellular process, the latter because

takes place completely underground. Groundwater is defined as water contained in

soil pores and in the fractures of rocks. It is not stopped, it slowly moves down-

wards recharging rivers, sustaining ecosystems and yielding water to wells. Indeed,

subsurface water is often preferred as water source for human uses because it is usu-

ally cheaper to make drinkable and less vulnerable to pollution than surface water.

On the other hand, when it is polluted, it is difficult to timely notice and to clean up.

These are some reasons for which groundwater is the topic of this work. And,

specifically, this paper proposes to use the steady-periodic model for oscillatory
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pumping test in order to characterize hydrogeological formations, mainly defining

their heterogeneity. A deep and precise comprehension of underground heterogeneity

can be very useful in several situations, such as to better understand the water re-

source extraction’s effect or the pollution plume dynamic and extension. Indeed, it is

well-known that infiltration process, groundwater storage and contaminant spread-

ing are controlled by natural heterogeneity and the by large spatial variability of

hydraulic parameters. However, heterogeneity is great and can often have multiple

spatial scales of variability, leading to different levels of characterization depending

on the hydrogeological objectives. The model proposed in this paper provides a

deep understanding of the spatial distribution of hydraulic properties that is gener-

ally needed, for example, in contaminant transport studies at the local scale.

Many models exist and are applied in order to determine the properties’ averages

and, therefore, the average response of the field to water movement. The traditional

way to proceed is by assuming that hydraulic properties are spatially constant; when

this assumption does not lead to fit hydrological data, only the vertical heterogeneity

is examined. Unfortunately, when this approach is taken, heterogeneity gets char-

acterized very approximatively. In the field, pumping tests analyze large areas with

low precision, while other tests are able to produce detailed results for the closer

area but inaccurate estimations are given for areas only few tens meters away. Oscil-

latory pumping tests seem to have the potential to overcome these limitations. The

presented model elaborates observational data of this test and achieves an improved

characterization in the area. Comparing to other existing post-processing codes, the

major contribution is the use of governing equations of groundwater movement in

the Fourier space. Thus, computational time is considerably reduced and hetero-

geneity information is fully used.

Aim of the study is to assess capability of oscillatory pumping tests to infer hy-

draulic properties variations. This is done in three stages. First, the study presents

and describes the pumping test and the model. Then a preliminary sensitivity anal-

ysis is carried out to determine best parameters to use in the following simulations.

Finally the model is tested and validated by the mean of simulations, starting from

a simple one and concluding with a random field characterized by high variances.
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1
Hydrogeological formations characterization

Underground formations are difficult to study and fully comprehend because we

cannot directly see them. Anyway, there are some tests useful to determine some

important characteristics of hydrological formations. These properties, expressed by

certain parameters, help us to better understand the groundwater behavior.

This chapter aims to give the basic knowledge to understand all the following pas-

sages. In the first section, the general underground structure is described, the types

of aquifers and important concepts are explained. In the second one, parameters use-

ful to describe groundwater movement are listed and explained in detail. Following,

the most applied tests to determine these parameters are reported and described,

the general scope is to understand their applicability, advantages and disadvan-

tages. In the last section, the test coded in PhasONE, the oscillatory pumping test,

is specifically described.

1.1 General structure

Underground there is water coming from infiltration processes of surface streams

and runoff. This water infiltrates and, depending on the geological structures it runs

into, it moves downwards following different paths. Indeed, geological formations

have a broad range of permeability to water: they can be completely saturated with

water and groundwater can flow easily or they can be completely impermeable and

water cannot flow through them.
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1.1.1 Hydrogeological formations

As just mentioned, subsurface water flows where there are geological structures

able to transmit it, therefore water tends to channel into permeable formations.

However, between these formations there are several grades of permeability to water

and it is possible to classify them in several hydrogeological formations:

- Aquifer: single or group of geologic saturated formations able to transmit and

yield significant quantities of water. They consist of materials at high perme-

ability, such as sands and porous sandstones. This high value is attributed to

connected pores between sand grains or fractures in rocks. They are econom-

ically suitable to extract water from wells or springs.

- Aquitard: confining bed that retards the flow of water but it does not stop

it. They transmit small amounts of water that are significant for the regional

groundwater flow but they are not convenient to supply water. Materials with

low permeability are present, such as siltstone or mudstone.

- Aquiclude: hydrogeologic unit not able to transmit water at a valuable rate,

although porous and capable of storing water. It usually acts as a barrier to

the regional groundwater flow. They are characterized by rocks such as clays,

shales and metamorphic rocks.

- Aquifuge: hydrogeologic unit completely isolated from any aquifer or infiltra-

tion, hence it cannot store or transmit water.

1.1.2 Aquifers

In order to extract water for any supply, technicians look for aquifers because they

are the right kind of formations to store and release water to wells. Moreover, if

there is underground pollution, usually it dissolves in the nearest aquifer and moves

with it reaching also far distances with the necessary time. Focusing therefore on

aquifers, there are many types of them depending mainly on boundaries: uncon-

fined, perched, confined, leaky and multiple aquifers.

Unconfined aquifers are also called water-table or phreatic aquifers. They are char-

acterized by an impermeable layer or an aquitard on the bottom and by a free

surface on the upper boundary. This means that the aquifer thickness is simply
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the whole saturated area and the free surface of the aquifer is under atmospheric

pressure. Usually a capillary fringe is present above the water table. In this upper

zone, groundwater fills pores above the water table seeping up by capillary action.

The lower part of this fringe is completely saturated as below the water table, but

there the relative pressure is negative, that means it is lower than the atmospheric

one. It is important to underline that normally the water under capillarity actions is

not extracted through the well and that usually the hydraulic effects of this zone are

neglected in studies. Generally, a way to recognize an unconfined aquifer is looking

at the water level in a well: the level is equal to the water-table elevation at the

same location. Moreover, the well is defined a water-table well.

Perched aquifers are a particular type of the unconfined typology. They are still

under the water table conditions but they locate above the main water-table. It

happens if a relatively small aquitard is present between the main water-table and

the ground surface.

Confined aquifers are also called pressure or artesian aquifers. They are bounded

both on the bottom and on the top by impermeable or slightly permeable layers.

Also this type can be recognized looking at the water level in a well: it is above the

upper boundary. This water level is called potentiometric or piezometric surface, it

represents an imaginary surface defining the level to which water would rise were it

completely pierced with wells. If this piezometric surface in the well is higher than

the ground, the well is defined as a flowing well. Otherwise, it is called an artesian

well.

Leaky aquifers are those that lose or gain water through confining aquitards. The

term nonleaky is also used in opposite conditions.

Generally, aquifers are part of a more complex hydrogeologic system where aquifers

and separating confining layers are present. The whole system is called a system of

multiple aquifers.
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Figure 1.1.1: Types of aquifers. Source: Hartman et al. (1969)

1.2 Main parameters

The groundwater movement is mainly driven by variable hydraulic head and influ-

enced by the permeability of the aquifer and its ability to yield water. For a steady-

state flow condition, the hydraulic conductivity is the parameter that describes the

fluid mobility and quantitatively relates pressure gradients to its velocity. While,

for transient flow conditions, the formation capacity to store or to release fluid be-

comes also relevant. There are some hydraulic properties both of soil and fluid that

determine the behavior of the fluid passing through the soil system under certain

conditions.

1.2.1 Hydraulic head and drawdown

In the previous section, the piezometric surface was already anticipated classifying

aquifers. Here, it is explained more in detail its basic concept: the hydraulic head,

piezometric head or simply head. It is a combined measure of elevation and water

pressure at a certain point in an aquifer, as shown in figures 1.2.1 and 1.2.2. It is a

measure of the total energy of the water. The head in a certain point is simply the

water level in a piezometer, which is a small tube with the bottom located in the

aquifer. In an unconfined aquifer, the level is the same as the water table elevation;
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Figure 1.2.1: Work done in moving a
unit mass of fluid from the
standard state to a point P.
Source: Hiscock and Bense
(2014)

Figure 1.2.2: Relation between hy-
draulic head h, pressure
head Ψ and elevation z
at point P in a porous
material. Source: His-
cock and Bense (2014)

while in a confined aquifer, the water level is higher than the upper boundary and

it is equal to the piezometric surface elevation. The piezometric head can be easily

calculated as:

H = z +
P (x, y, z, t)

γ
= z +

P (x, y, z, t)

ρg
(1.2.1)

where H is the hydraulic head [L], z is the elevation at the piezometer bottom [L],

P (x, y, z, t) is the gauge pressure in that specific point and instant [M/(LT 2)] and γ

is the liquid unit weight [M/(L2T 2)]. The term P (x, y, z, t)/γ is called the pressure

head and it is the elevation of the water column in the piezometer. This relationship

is valid in both saturated and unsaturated zones of porous material, though it is

necessary to underline that the pressure head is positive in saturated zones while

it is negative in unsaturated ones due to the assumption of zero value atmospheric

pressure.

The trend of hydraulic head through an aquifer is essential to understand how

groundwater flows. Indeed, the head is the main flow driver. If it is constant, there

is no flow in the formation; while if it varies, the water moves in direction of the

lower head (toward lower energy). Therefore, actually the main driver is the head

difference, the hydraulic gradient. It is also possible to conclude that groundwater

can move uphill if the hydraulic gradient drives this way.
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Another important concept, linked to the hydraulic head, that is important to

know is the drawdown, s [L]. Indeed, the piezometric head varies under water

extraction or injection conditions and the vertical distance between the initial head

and the final head in a certain point is called drawdown. In unconfined aquifers, it

is the drop of the water table; in confined aquifers, it is the drop of the piezomtric

surface. Drawdown is indissolubly linked with the presence of an operating well

extracting or injecting water or of natural phenomena, such as tides and other

seasonal variations. Moreover, in extraction or injection conditions it is possible

to define the area of influence as the nearby zone affected by a drawdown. For

example, a pumping well in a homogeneous formation will have a perfectly circular

area of influence, which radius depends on the discharge extracted or injected. The

following figure shows the drawdown of a well, namely its cone of depression.

Figure 1.2.3: Section of a pumping well showing drawdown, cone of depression and
radius of influence

1.2.2 Hydraulic conductivity and transmissivity

The main and most indicative parameter to characterize an aquifer is the hydraulic

conductivity K, one of the hydraulic properties of both soil and fluid: it measures
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the soil’s capacity to transmit water in presence of an hydraulic gradient, that is the

ease of movement of water through a porous material. This parameter is defined as

a constant of proportionality relating the specific discharge under a unit gradient in

Darcy’s law:

qi = −KdH

dxi
(1.2.2)

where qi is the specific discharge in the porous medium in the i-th direction, also

called Darcy’s velocity, and dxi is the distance in the analyzed direction. Basing on

the equation 1.2.1, the hydraulic conductivity is the ratio of the Darcy’s velocity to

the hydraulic gradient applied. Therefore, K has the same dimension of the velocity

[L/T ]. This parameter depends obviously on the soil characteristics: such as the

grain size, the structure of the soil matrix, the type of fluid and the saturation of

the matrix. The most relevant properties of the soil matrix are porosity, pore size

distribution, pore shape, specific surface and tortuosity; while the most relevant

ones of the fluid are its density and viscosity. Indeed, the hydraulic conductivity for

a subsurface saturated system can be expressed also as (Hiscock and Bense, 2014):

K =
kρg

µ
(1.2.3)

where k is the intrinsic permeability of the soil [L2], g is the gravitational accelera-

tion [L/T 2], ρ and µ are respectively the density [M/L3] and the viscosity [M/(LT )]

of the fluid. The saturated hydraulic conductivity can largely varies in soils, its

potential range expands for several orders of magnitude, depending on the soil ma-

terial (10−12m/s for tight clays to 10−1m/s for coarse gravels) and its variability has

many different spatial scales, from less than m3 to greater than km3. Following, in

table 1.2.2 are reported the representative values for different soil textures.

Another property of the aquifer, related to the hydraulic conductivity, is the

transmissivity T . It is the rate of water under a unit hydraulic gradient through a

unit width of aquifer of given saturated thickness. This aquifer’s property is linked

to the aquifer’s hydraulic conductivity as shown following:

T = Kb (1.2.4)

where b is the aquifer thickness [L], therefore the transmissivity dimension is [L2/T ].

It is here necessary to specify that usually this parameter refer to a confined aquifer
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Table 1.1: Representative values of saturated hydraulic conductivity of different soil
textures. Source: Clapp and Hornberger (1978).

Texture
Saturated Hydraulic Conductivity
[m/yr] [m/s]

sand 5.50 103 1.74 10−4

loamy sand 4.93 103 1.56 10−4

sandy loam 1.09 103 3.46 10−5

silty loam 2.27 102 7.20 10−6

loamy sand 2.19 102 6.94 10−6

sandy clay loam 1.99 102 6.31 10−6

silty clay loam 5.36 101 1.70 10−6

clay loam 7.73 101 2.45 10−6

sandy clay 6.84 101 2.17 10−6

silty clay 3.21 101 1.02 10−6

clay 4.05 101 1.28 10−6

of thickness b, however it can be also used for unconfined aquifers where b is the

saturated thickness or, equivalently, it is the height of the water table above the low

permeable or impermeable bottom.

1.2.3 Specific storage, specific yield and storativity

Regarding the aquifer capacity to store or release water, it is strongly linked to

the formation compressibility and elasticity. Indeed, aquifers are compressible and

elastic as all other solid mediums, however they are composed by solid grains and

water filled pores. Therefore, when compressed, an aquifer yields water. There

are many parameters to describe this release: the specific storage Ss, the specific

yield Sy and the storativity S. Whereas the last refers to water stored in the entire

thickness of an aquifer, others refer to the storage in a specified small volume.

First of all, it is here important to define exactly the porosity n. It is the fraction

of void space in the formation:

n =
Vv
Vt

(1.2.5)

where Vv is void volume [L3] and Vt is total volume [L3]. However, the water cannot

move through all these pores, it can move only through the connected pores. In

order to take this into consideration, the effective porosity ne is defined as the ratio
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of the connected void volume to the whole volume of the formation.

The specific storage [L−1] takes into consideration the compressibility of soil and

water as follows:

Ss = ρg(α + neβ) (1.2.6)

where α is formation compressibility [T 2L/M ], ne is effective porosity [−] and β is

water compressibility (4.410−10ms2/kg) [T 2L/M ]. Usual ranges are reported in the

following table for some soil textures.

The specific yield, sometimes called effective porosity, is defined only for unconfined

Table 1.2: Representative values of Specific Storage of different soil textures. Source
Batu (1998)

Material SS[m−1]
Plartic clay 2.56 10−3 to 2.03 10−2

Stiff clay 1.28 10−3 to 2.56 10−3

Medium hard clay 9.19 10−4 to 1.28 10−3

Loose sand 4.92 10−4 to 1.02 10−3

Dense sand 1.28 10−4 to 2.03 10−4

Sdense sandy gravel 4.92 10−5 to 1.02 10−4

Fissured rock 3.28 10−6 to 6.89 10−5

Sound rock < 3.28 10−6

aquifers. It is the volume of water released from storage per unit surface area and

per unit decline of the water table. It is dimensionless and ranges in value from 0.01

to 0.30. It can be expressed as:

n = Sy + Sr (1.2.7)

where n is the total porosity [−] and Sr is the specific retention [−]. The latter is

the amount of water retained against the gravity force by capillarity forces.

The storativity S is differently defined for confined and unconfined aquifers. In

confined aquifers, the storativity is equal to:

S = Ssb (1.2.8)
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where b is the aquifer thickness [L]. The usual range of this parameter is from 0.005

to 0.00005. While in unconfined aquifers, the storativity is equal to:

S = Sy + Ssb (1.2.9)

However, usually Ssb is much smaller than the specific yield, therefore, in this case,

the storativity is simply equated with specific yield.

1.2.4 Diffusivity

Diffusivity, D [L2/T ], is a measure of the rapidity with which a pressure dis-

turbance disseminates through the formation. Although not commonly used, it is

significant because aquifers characterized by a large hydraulic diffusivity respond

quickly to changed hydraulic conditions at one location, transmitting to nearby re-

gions. Diffusivity is a combination of previous ones: the formation transmissivity

and storage as follows:

D =
T

S
=
K

Ss
(1.2.10)

1.2.5 Homogeneity and isotropy

All aquifer properties just described usually do not conform to the idealized uni-

form porous material. Homogeneity, heterogeneity, isotropy and anisotropy are con-

cepts used to describe spatial variations and directional trends in aquifer properties.

A hydrogeological formation is defined homogeneous for a property if this is indepen-

dent on the position within the formation, while it is heterogeneous if the property

value changes from place to place. Heterogeneity can characterize the horizontal

plan as the vertical section depending on the environment of formation of the de-

posit or the rock type. For example, layered heterogeneity is common in sedimentary

formations where each stratum has its own properties, while trending heterogeneity

is usually present where there was a sorting and grading of the deposit, such as in

alluvial fans and glacial outwash plains.

A hydrogeological formation is defined isotropic for a specific property if the charac-

teristic is independent on the direction of measurement at a point. If the property

value in a point varies with the direction, the formation is defined as anisotropic in

12



that point. In the latter case, two principal directions of anisotropy can be identified

in correspondence to the maximum and minimum values and are usually at right

angles to each other. Anisotropy could characterize the formation both at small

scale with the particles orientation and at large scale, for example, with fractures.

Considering an anisotropic formation and talking about the saturated hydraulic

conductivity, usually the vertical component is smaller of one to two orders of mag-

nitude than the horizontal component.

To make these concepts clearer, figure 1.2.4 shows the four possible combinations of

homogeneity and isotropy in a formation.

Figure 1.2.4: Four possible combinations of homogeneity and isotropy for hydraulic
conductivity of a porous material. Source: Freeze and Cherry (1979)

Usually aquifers are heterogeneous formations with variable parameters in space,

specifically strata are near-isotropic in the horizontal plane and very anisotropic in

the vertical direction. Talking mainly about hydraulic conductivity, it is not possible

to map exactly its spatial distribution because of the huge effort in data acquisition

and a probable alteration for too much testing. Moreover, this detail is not required

for all applications. Sometimes the average response is enough for management and

decision making.

In order to determine this average response described by the effective hydraulic

conductivity Kef , the Darcy’s law 1.2.2 is averaged by the expected value operator.

< qi >= −Kef <
dH

dxi
> (1.2.11)

Effective hydraulic conductivity provides primary statistic information. It can be
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estimated by forms of averaging of measured hydraulic conductivities, depending

on the flow dimensionality. If the flow is one-dimensional, it corresponds to the

harmonic mean: KH = (< K−1 >)−1; while if it is two-dimensional (or lognormal

distribution), it corresponds to the geometric mean: KG, so that ln(KG) =< lnK >.

1.2.6 Connectivity

The last important property of an aquifer is its connectivity. This parameter

is essential for solute transport in heterogeneous formations because it describes

the ease with which water can move between geological formations. Indeed, if the

average hydraulic conductivity is relatively low, it is expected a long travel time

of a pollutant to move from one point to another. Anyway, the heterogeneity can

involve the presence of connected areas at high conductivity that channel water and

pollutant speeding its movement. Moreover, this acceleration implicates not only a

early solute arrival, therefore a higher risk in the destination point, but also a lower

grade of degradation of the pollutant, if organic, due to the time and the usual

higher oxygenation in these pathways.

Following Bianchi et al. (2011), there are several useful indicators to quantify the

connectivity in field and they are divided mainly in two groups depending on the

set of parameter used. The first class takes into considerations parameters of the

spatial characteristics of formations, the second one considers flow and transport

parameters. Below, the indicator CI of this second group is reported and used in

simulation later on.

CI =
tav
t5%

(1.2.12)

that is the ratio between average arrival time and arrival time of the faster 5% of

particles. A high value indicates that water is channeling and therefore the presence

of preferential paths.

An alternative and more precise approach to evaluate this parameter in a field is to

determine the connectivity function τ(d). Following the approach used in Western

et al. (2001), the connectivity of the spatial pattern G is evaluated thresholding the

original pattern (pixels above the threshold belong to A) and considering two pixel

connected if there is a continuous path between them of neighboring pixels above

the threshold. The function τ(d) is the lag-dependent probability that a pixel above
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the threshold in x is connected to another pixel in x+ d. It is expressed as

τ(d) = P (x↔ x+ d|x ∈ A, x+ d ∈ G) (1.2.13)

The connectivity function is calculated in the following simulations chapter 4 fol-

lowing the same general steps applied in the Western et al. (2001) work, where the

algorithm used is described more in detail. Firstly, the data is thresholded into

HIGH or LOW basing on the desired percentile value (50%, 75% and 90%). Then,

each continuous cluster is labeled by looping through all pixels and whenever an un-

labeled HIGH pixel is encountered, it and its HIGH neighbors are uniquely labeled.

Finally, the omnidirectional connectivity function is determined for each separation

bin as the ratio between the number of connected pairs and the number of pairs.

1.3 Tests used

As just said, many properties of hydrogeological formations influence the subsur-

face water movement. Given their heterogeneity in space and their multiple spatial

scales of variability, depending on the objective to estimate different levels of char-

acterization are needed and therefore different investigation methods.

1.3.1 Measurement acquisition approaches

Methods can be roughly classified in various measurement acquisition approaches

depending on the investigation scale at which they are performed: laboratory scale

(∼ 10−4 to 1 m), local scale (∼ 10−1 to 102 m) and regional scale (∼ 101 to 105 m).

As it can be seen in figure 1.3.1, typically there is a trade-off between the method

scale and its resolution. For instance, benchtop measurements, that are for example

core, column and tank measurements, provide information at a very high resolution

but for a really small volume of soil, on the contrary well tests provide informations

at a lower resolution but over larger areas.

More than the objective to characterize, the spatial scale and the resolution, many

factors have to be taken into consideration, such as: conditions at the site, availabil-

ity of other data, technicians experience, time funds and computational resources.

Usually, firstly a reconnaissance investigation is carried out with low-resolution ap-

proaches, then a more detailed one with a higher-resolution approach.
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Figure 1.3.1: Chart showing trade-off between the relative resolution of the infor-
mation obtained using different geophysical(G) and hydrological (H)
measurement acquisition approaches and the relative scale of the in-
vestigations for which those acquisition geometries are typically used.
Source: Rubin and Hubbard (2005)

In this work, the objectives are hydrological parameters, first of all the hydraulic

conductivity, and they are mainly investigated thanks to hydrological methods, such

as: hydraulic tests, hydraulic tomography and sieves. These methods are summa-

rized in table 1.3 and following described in more detail.

Generally, it is possible to divide these methods into laboratory and fields tests.

First ones analyze small samples of soil collected during core-drilling programs.

Given the small sample size, results are usually considered only as a point repre-

sentation of soil properties for a specific direction. On the contrary, field methods

involve a relatively large region of the soil. Therefore, results should represent the

averaged response of the whole area considering both vertical and horizontal direc-

tions.
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Table 1.3: Common hydrological characterization methods used for hydrogeological
investigations. Source: Rubin and Hubbard (2005)

Acquisition
approaches

Characterization
methods

Attributes typically
obtained

Examples of hydro-
geological objectives

Well tests pumping test drawdown hydraulic conductivity
slug tests specific storage
single wellbore hydraulic
test

Crosshole hydraulic tracer test tracer concentration hydraulic conductivity
dispersivity
fast flow paths

hydraulic tomography drawdown hydraulic conductivity
Wellbore flowmeter test water flow hydraulic conductivity

neutron probes back-scattered neutron
counts

water content

Benchtop permeameters hydraulic head hydraulic conductivity
sieves grain size distribution hydraulic conductivity
time domain reflectome-
ter

dielectric constant water content

1.3.2 Laboratory tests

Describing first laboratory tests, saturated hydraulic conductivity can be esti-

mated using permeameter methods or particle-size analyses. In the first category,

water flows through the core sample under either constant or variable hydraulic

gradient. First type is preferred for moderate or high conductivities, otherwise the

second type is more effective. These tests are usually carried out in vertical position

to evaluate the vertical component of the conductivity and they have to be carried

out carefully because they are largely dependent on some experimental procedures

errors, such as entrapped air and non-Darcian flow. Moreover, it is stated in cite-

Hydrogeophisics that also estimates of original samples and repacked cores differ:

usually latter estimates are higher and that this one is lower than other field tests.

This is probably due to heterogeneity, imperfect laboratory and recovery procedures.

The second category bases on the relationship between hydraulic conductivity and

sample’s physical properties, such as particle-size statistics linked to pore-size dis-

tribution. Many empirical and theoretical relationships exist but it is difficult to

determine their appropriateness for a specific site.
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1.3.3 Field tests

Starting with field tests, pumping tests are the most commonly used methods to

have information about transmission capability of an aquifer. They are mainly used

for water-supply purposes. It consists of a central well pumping at a constant rate

and the drawdown is measured at that well and other surrounding wells. These

collected data are then analyzed with different models to obtain an estimated hy-

draulic conductivity and specific storage over a relatively large volume. As pointed

out in citeHydrogeophysics, main limitations are lacking information about conduc-

tivity variations in space and the movement of significant quantities of water. This

is undesiderable in contaminated sites because of costs of treatment of the pumped

water and the risk of altering contaminant distripution.

Slug tests consist of an instantaneous change in head in a well and then of measuring

the recovering head in that well. Later on, collected data is analyzed with various

models and conductivity is estimated with a large influence of the closer material.

They are quite easy to apply in practice and they are used both in water-supply and

water-quality investigations. If wells network is extensive in the site, this method

can be very useful on describing the spatial variation of hydraulic conductivity, po-

tentially identifying preferential pathways or barriers. However, quality of results

are strongly dependent on the well-development process, it has to be done with par-

ticular care.

A better estimation of vertical variations are obtained by multilevel slug tests which

goal is to characterize vertical variations of hydraulic conductivity. The only differ-

ence is that slug tests are performed at different depths. Results can be altered by a

packer circumnavigation happening in certain conditions, but these are known and

some mitigation measures are present.

Geophysical logging are useful to determine hydraulic conductivity variations in

unconsolidated formations by looking at variation in clay content. However, given

that averaging volume is relatively large, it is difficult to characterize small variation

within a single unit. The two most common types use natural gamma and electrical

conductivity. Natural-gamma logs record radiation versus depth: a high reading is

usually indicative of a clay-rich layer, while a low reading indicates sand and gravel.

Electrical-conductivity logs detect variations in clay content, filled porosity and wa-

ter chemistry. Unlike natural-gamma logs, logging speed does not affect results.

The dipole-flow test is a hydraulic test with an elaborated mechanism in the single-
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well and it allows to estimate the radial component of hydraulic conductivity. It is

evaluated from the head change in chambers in steady state thanks to an empir-

ical equation valid in most field applications. Anyway, this equation includes the

anisotropy ratio that is rarely known a priori and it is generally considered equal

to 1. Rubin and Hubbard (2005) underlines as some errors in the estimation can

be due to the insufficient testing and to the assumption of homogeneous formation

and well-development. On the contrary, some important advantages are no water is

injected or extracted, possibility to define the spatial scale of the test and reducing

well losses in high-conductivity media by using low flow rates.

The borehole-flowmeter test is considered the most efficient in estimating spatial

variations in conductivity. It consists of a well pumping at a constant rate while a

downhole flawmeter measures the vertical flow from bottom to top. The cumulative

vertical flow is then processed to obtain the vertical profile of hydraulic conductivity.

The main limitatios are flow bypassing the flowmeter mainly in high-conductivity

formations and the necessity of a long-screened well.

Most of previous tests are performed in permanent wells and this limits their ca-

pability to detect spatial variability, in unconsolidated formations an alternative is

direct-push methods. Many methods have been developed but the approximation

is relatively poor, most promising methods are hydraulic tests in direct-push equip-

ment, such as direct-push slug test and direct-push permeameter. The first consists

of a slug test performed in a small-diameter pipe and at multiple levels in a single

probehole. Many slightly different procedures exist but all are limited by the time to

steady state and other logistical issues, moreover estimates are critically dependent

on well-development procedures. On the contrary, the direct-push permeameter is

not dependent on development phases. Conductivity estimates are acquired at the

desired depth by injecting water through a screen, monitoring pressure changes,

then the spherical form of Darcy’s law in steady state is applied. This method is

fast and efficient particularly for low conductivities, but with adequate equipment

it can be more efficient in a broad range.

Except for the pumping test, all described tests give information about properties

very close to well or probehole. Though, this is restrictive for solute transport that

strongly depends on the connectivity. Multiwell tracer tests are able to provide in-

formations about the changes of hydraulic conductivity between wells by injecting in

a well a tracer of a specific type at certain concentration and by checking its presence
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in surrounding wells. An ideal tracer should be non-toxic and easily measurable at

low concentrations, it should not be naturally present in the studied groundwater

system, or at really low concentrations, it should not react or be absorbed and it

should follow same pathways as the investigated substance. There is not a tracer

with such characteristics. Moreover, they are time consuming in intergranular ma-

terials, expensive and demand a big effort for routine procedures.

Another option is the hydraulic tomography. This method consists of a series of

short-term pumping tests in which the stressed interval varies between tests. This

stress is read by nearby observation wells. Then, the collected drawdown data is

analyzed by inverting these data with several procedures. This method potentially

can provide detailed information about properties between wells, not only in the

immediate vicinity of the pumping well. However, Cardiff et al. (2013a) states that

tomographic analysis for traditional pumping tests requires either a long test time

because the steady state has to be reached or high computational costs for the

analysis of the collected transient data. Moreover, for Bohling and Butler (2010),

a unique solution to the inverse problem cannot be obtained without introducing

some form of regularization which in effect biases or constrains the solution.

Thanks to new techniques and modern instrumentation, borehole and surface geo-

physical techniques are used in the last time. Usually surface techniques are used

for a preliminary investigation while borehole ones are used for more detailed in-

formation. Some examples of these new methods are acoustic televiewer, electrical

resistance, thermal techniques, electromagnetic induction and seismic profiling.

Another modern technique is the remote sensing. These methods are very useful

to collect data on a regional scale and to assess groundwater resources’ state. Of

course they are not detailed, but they have a global coverage and a huge amount

of data is available, moreover they can provide error statistics and meaningful spa-

tial avarages. For example, aerial thermal infrared imaging is increasingly used to

map groundwater discharges, while altimetry measurements in long time can de-

tect subsidence occurrence and high-precision satellite gravimetry detects changes

in gravity that are mainly caused by changes in total water storage in atmosphere,

at and below the ground surface.
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1.3.4 Oscillatory pumping test

Oscillatory or periodic pumping test is a pumping test in which fluid is extracted

during half a period and then reinjected. This is generally used to estimate effective

aquifer properties, reducing the amount of water moved by a classical pumping test,

no net water extraction, and robust signal measurements. Moreover, intuitively they

cause less contaminant plume movement and, given that the frequencies are known,

it is possible to separate responses from other hydrologic processes or noises. Thus,

pros of this test are the possibility to use it for long-term monitoring without any

alteration for water extraction and injection and the short test time, given that

multiple stimulations at several locations and frequencies can be done at once and

following separated through frequency-domain decomposition.

Depending on the period used, the response of the aquifer is different. Knowing

that, Cardiff et al. (2013a) uses several signals of different periods to stress the

aquifer, response are analyzed through inverse modeling. This procedure is called

multifrequency oscillatory hydraulic imaging (M-OHI). This way computational cost

is drastically reduced and heterogeneity information obtained from responses to the

different frequencies is fully used.
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2
Code approach

All tests listed in the previous chapter have pros and cons: some of them are

useful for a general characterization objective, some for a more local one and others

are useful for a broad characterization of the heterogeneity. For most of previously

described field tests is necessary to process the collected data in order to obtain

the values of conductivity and storativity. The code here described and analyzed is

specific to obtain local values from an oscillatory pumping test. This chapter aims

mainly to describe applied theory and followed logic, moreover the last section lists

all important conditions assumed in the code.

2.1 Innovative approach

Usually for periodic pumping test analysis, responses to the several stimulations of

different frequencies are analyzed through a fully transient numerical model but it is

a very long computational time user. Therefore, the idea is to use a steady-periodic

model formulation, used previously by Cardiff et al. (2013a) in a simple field case.

This strategy is named Multifrequency Oscillatory Hydraulic Imaging (M-OHI) and

its main advantages are reducing computational cost and fully utilizing heterogene-

ity information provided by responses at different frequencies. The equivalence on

results for fully transient and steady-periodic numerical models as well as the dif-

ferent heterogeneity sampled by oscillatory signals at several frequencies are already

showed in Cardiff et al. (2013a).

In the present thesis we followed the approach suggested by Castagna and Bellin

(2009) and Castagna et al. (2011), by which a large number of spatial random fields,
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representing the hydraulic conductivity and the storage coefficient, are created, all

respecting the overall statistics dictating the type of spatial variability of the site

and conditional to the information provided by the pumping test. With the term

conditional we mean here that only the random fields providing a good reproduc-

tion of the pumping tests are accepted, the remaining are removed. For example in

a contamination study, this approach could be very useful because results include

several fields leading to different plume’s shapes and extensions. This way, with a

post-processing, it is possible to determine minimum and maximum extension of

the contaminant plume, the average plume and the most probable plume. It can

reduce the uncertainty in this kind of studies and it can help to consider all possible

realizations.

An important note has to be made about the contribution of the Hydrology group

of Trento University who implemented the code. The present study builds on the

existing code in two ways: understand how much the code’s inference is able to

correctly reproduce the real field and make few small adjustments to the code to

enable a more efficient estimation and post-processing.

2.2 Basic Theory

The topic of this section is to explain the basic theory and logic of the model

implemented. The steady-periodic model uses governing equations of groundwater,

written in the Fourier space. In order to understand the model, firstly the fully

transient model is described too. Then, the methodology itself is described. It

starts by generating random fields that are then conditioned by the observation

data, conditioned fields are following inverted and optimized in order to converge

versus a field that optimally respect statistics. Furthermore, in order to have a range

of possible fields, many simulations are done to follow the Monte Carlo framework.

2.2.1 Mathematical model

Transient model

In order to understand the steady-periodic model, firstly is described the most

common transient model in which the mass conservation law requires equivalence
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between the net rate of fluid mass flow into the control volume and the time rate of

change of fluid mass storage within the volume. Taking into consideration a confined

aquifer or unconfined, assuming standard linearized water table approximation, it

is possible to write the following governing equations:

Ss
∂h

∂t
= ∇ · (K∇h) + q ∀x ∈ Ω, t ≥ 0

h = 0 ∀t ≥ 0,x ∈ Γd

∇h · n = 0 ∀t ≥ 0,x ∈ Γn

K∇h · n = Sy
∂h

∂t
∀t ≥ 0,x ∈ Γw

(2.2.1)

where x is the vector with the spatial coordinates [L], t is time [T ], n is the outward

normal of a certain boundary, Ss(x) is the specific storage [1/L], Sy(x) is the specific

yield [−], K(x) is the isotropic hydraulic conductivity [L/T ], h(x, t) is the change

in head from an initial steady condition [L], Ω is the domain of interest, Γd, Γn and

Γw are respectively Dirichlet, Neumann and linearized water table boundaries and

q(x) is volumetric water source [(L3/T )/L3].

Same equations can be written for aquifers with horizontal confining layers, consid-

ering it as a 2D aquifer averaged in depth. In this case, transmissivity T [L2/T ] and

storativity S[−] are used as shown in equation 2.2.2:

S
∂h

∂t
= ∇ · (T∇h) + q ∀x ∈ Ω, t ≥ 0

h = 0 ∀t ≥ 0,x ∈ Γd

∇h · n = 0 ∀t ≥ 0,x ∈ Γn

(2.2.2)

Moreover, in order to consider a periodic pumping, q is assumed to cary in time as

follows:

q = Q(x)cos(ωt) (2.2.3)

where Q(x) is the peak flow rate in [(L3/T )/L3] and ω is the frequency in [rad/T ].
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Steady-periodic model

After some time in which aquifer response still depends on initial conditions, it

is expected that domain responds at the same input frequency, even if phase offset

and magnitude of oscillations vary. Cardiff et al. (2013a) passes to a steady-periodic

model considering the oscillator and head changes as real parts of complex values.

q = Re[Q(x)exp(iωt)]

h(x, t) = Re[Φω(x)exp(iωt)]
(2.2.4)

where Φω(x) is the phasor, a complex-valued field variable that include both ampli-

tude and phase offset of the signal wave at each location. The subscript ω remem-

bers that different phasor solutions are obtained depending on the input frequency.

Following, governing equations 2.2.5 are obtained by applying definitions 2.2.4 into

equations of the transient model 2.2.1 and dividing by exp(iωt) given that equations

must apply for all times.

iωSsΦω = ∇ · (K∇Φω) +Q ∀x ∈ Ω

Φω = 0 ∀x ∈ Γd

∇Φω · n = 0 ∀x ∈ Γn

K∇Φω · n = iωSyΦω ∀x ∈ Γw

(2.2.5)

Solving previous equations, Φω is calculated and then the real part of Φωexp(iωt) is

the solution of h for the steady-periodic response.

Dimensionless steady-periodic model

Considering the first equation of 2.2.5, it is possible to re-write it dimensionless.

The result will be later used for the frequency sensitive analysis. Let’s start from

rewriting the equation explicitly 3D where symbol ∗ marks dimensional parameters.

iω∗S∗sΦ
∗
ω =

∂

∂x∗1

[
K∗

∂Φ∗ω
∂x∗1

]
+

∂

∂x∗2

[
K∗

∂Φ∗ω
∂x∗2

]
+

∂

∂x∗3

[
K∗

∂Φ∗ω
∂x∗3

]
+Q∗ (2.2.6)
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In order to obtain a dimensionless equation, some parameters are divided by spatial

scales of two directions IY h and IY v and the conductivity is rewritten.

x1,2 =
x∗1,2
IY h

x3 =
x∗3
IY v

Φω =
Φ∗ω
IY h

K∗ = e<Y >+Y ′ = e<Y >eY
′
= KGe

Y ′

(2.2.7)

Therefore, it is possible now to write:

iω∗S∗sΦωIY h =
1

IY h

∂

∂x1

[
KGe

Y ′ ∂Φω

∂x1

]
+

1

IY h

∂

∂x2

[
KGe

Y ′ ∂Φω

∂x2

]
+

1

IY v

∂

∂x3

[
KGe

Y ′ IY h
IY v

∂Φω

∂x3

]
+Q∗

(2.2.8)

iω∗S∗sΦωIY h =
KG

IY h

{
∂

∂x1

[
eY
′ ∂Φω

∂x1

]
+

∂

∂x2

[
eY
′ ∂Φω

∂x2

]
+

(
IY h
IY v

)2
∂

∂x3

[
eY
′ ∂Φω

∂x3

]}
+Q∗

KG

IY h

IY h
KG

(2.2.9)

i
ω∗S∗sI

2
Y h

KG

Φω =
∂

∂x1

[
eY
′ ∂Φω

∂x1

]
+

∂

∂x2

[
eY
′ ∂Φω

∂x2

]
+

1

e2
∂

∂x3

[
eY
′ ∂Φω

∂x3

]
+Q∗

IY h
KG

(2.2.10)

where e is the anisotropy ratio IY h/IY v. It is easily possible to see how Q∗ and ω∗

can be written dimensionless as:

ω =
ω∗S∗sI

2
Y h

KG

=
ω∗I2Y h
D

Q = Q∗
IY h
KG

(2.2.11)

Finally the completely dimensionless equation is:

iωΦω =
∂

∂x1

[
eY
′ ∂Φω

∂x1

]
+

∂

∂x2

[
eY
′ ∂Φω

∂x2

]
+

1

e2
∂

∂x3

[
eY
′ ∂Φω

∂x3

]
+Q (2.2.12)

2.2.2 COCR solver

In order to solve the governing equation 2.2.5 of the steady-periodic model, a

solver for complex symmetric linear systems is necessary. The method used is the

Conjugate A-Orthogonal Conjugate Residual (COCR), a variation of the first-order
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optimization algorithm ’gradient descent’. It is chosen because in Sogabe and Zhang

(2007) it is showed as usually this method gives smoother convergence behavior

than other methods, such as Conjugate Orthogonal Conjugate Gradient (COCG).

Moreover, it sometimes reach convergence sooner than the Quasi-Minimal Residual

method (QMR) in terms of number of iterations.

Following the algorithm is reported to solve a linear system of the form Ax = b,

more details can be found in Sogabe and Zhang (2007).

x0 is the initial guess

r0 = b− Ax0

set p−1 = 0, β−1 = 0

for n=0,1,.... until ||rn|| ≤ ε||b|| do:

pn = rn + βn−1pn−1

αn =
(rn, Arn)

(Apn, Apn)

xn+1 = xn + αnpn

rn+1 = rn − αnApn

βn =
(rn+1, Arn+1)

(rn, Arn)

(2.2.13)

where A is a non-Hermitian symmetric matrix (A 6= A
T

and A = AT ), xn is the

n-th approximate solution, rn is the residual vector (:= b− Axn), pn is the search

direction, α and β are two parameters determined by two orthogonality conditions

(rn⊥W and Apn⊥W ).

This method is applied considering all mesh nodes and it calculates approximate

solutions that assign a value to each node. This assignation is done by using a linear

basic function or a parabolic one to interpolate, depending on the wanted resolution

order. Indeed, a first order solver linearly interpolates values on nodes. While the

second order solver locates another imaginary node between considered nodes and

it creates parabolic elements for the interpolation. The second order is usually more

precise but it considerably increases the computational time because it doubles the

nodes to evaluate.
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2.2.3 Inversion

In order to evaluate spatial variability of conductivity and storativity in a multi-

ple well periodic pumping test, collected transient head signals have to be inverted.

This way a realization of hydraulic parameters, compatible with all observations, is

inferred. Inversion is particularly suitable for multiple well pumping tests because

redundant measurements facilitate it. Redundancy helps to separate noise from sig-

nal.

Usually, inversion process needs to assume a priori the model of spatial variability of

conductivity in order to avoid the extraction of the scale of spatial variability from

data. However, this leads to neglect connectivity aspects.

In this model the Bayesian approach is used for inversion, it provides a robust

framework to sort out admissible solutions and retain only those compatible with

observations. Castagna and Bellin (2009) already demonstrates its effectiveness in

synthetic experiments for constant pumping rates. Furthermore, transmissivity and

storativity are here both spatially variable and jointly inverted.

Basic assumption is Y and Z as independent normally distributed Random Space

Functions (RSFs) and they are defined respectively as natural logarithms of trans-

missivity and storativity.

Y = ln(T )

Z = ln(S)
(2.2.14)

They have constant means (mY , mZ) and variances (σ2
Y , σ2

Z) and the following

axisymmetric exponential covariance function:

CY (r1, r2, r3) = σ2
Y exp

[
−

√
r21 + r22
I2Y h

+
r23
I2Y v

]
(2.2.15)

where r is the distance vector between two points. This approach is particularly in-

teresting because it does not assumes statistics of the field and it considers structural

parameters, such as mean, variance and integral scales, as unknown in addition to

local values of the properties. In the Bayesian approach, their spatial distribution is

determined minimizing a fitness function 2.2.16, more details are given in Castagna
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and Bellin (2009).

L(a, θ) = [z−=(a, θ)]T C−1v [z−=(a, θ)] + [a− a]T C−1a [a− a] (2.2.16)

where a is the vector containing the unknown K and SY values, θ is the vector of

unknown structural parameters of the geostatistical model of spatial variability, a are

prior estimates, z contains head measurements, = is the forward nonlinear operator.

Cv and Ca are covariances functions where v is the vector of the measurement errors.

In this work, the fitness function is slightly different because it is not included the

penalization factor. This factor that is considered by the second block in 2.2.16

counts for values that are particularly far from a prior estimation. However, in this

case we are not considering any prior notion, therefore this factor is not considered.

Consequently, the fitness function to minimize counts for the first block in equation

2.2.16, as shows 2.2.17.

L(a, θ) = [z−=(a, θ)]T C−1v [z−=(a, θ)] (2.2.17)

Equivalently it is here used and maximized the modified Nash-Sutcliffe coefficient, a

variation of the Nash-Sutcliffe efficiency that is very appropriate for periodic signals.

It is defined as:

NSEE =
1−

∑ntime
t=1 |Hsim−Hobs|∑ntime
t=1 |Hobs−Hobs|

nsample
(2.2.18)

where ntime is the number of time steps, Hsim are head variations in observing

wells locations for tested frequencies, Hobs are corresponding observed head varia-

tions, Hobs is the mean of observed values, nsample is the number of observations. The

efficiency ranges from minus infinity to plus one. It reaches the maximum of one if

time series are identical, while it assumes negative values if the model is worse than

the constant model reproducing the average of observations. This error function

provides a balanced evaluation of different characteristics and it well fits periodic

signals.

To minimize the fitness function 2.2.17, the equation is usually linearized with differ-

ent approaches, but they all require the computation of the sensitivity matrix that

is the most computational demanding step. In order to avoid this linearization, in

this work a different approach is applied that is an efficient genetic algorithm based

on particle swarming.
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2.2.4 Pilot Point Method

There is a delicate balance between model complexity and robustness of the inver-

sion technique. Indeed, unknown parameters in a have not to be too much otherwise

the inversion problem becomes ill posed.

If it would be necessary to include all values of hydraulic properties for each grid

cell in the unknown vector a, the inverse problem would be surely ill-posed due to

the large number of unknowns. A solution could be to coarse grid reducing con-

siderably the unknowns number, anyway this leads to a less precise and detailed

spatial heterogeneity. Another way, here applied, is to consider as unknown only

hydraulic properties in specific strategic locations, the so called pilot points (Certes

and de Marsily (1991)), and generate several alternative realizations, all conditional

to pilot points values.

The objective of the inversion is therefore to optimally evaluate properties values

at pilot points locations (Npp unknowns) and, obviously, estimate the structural

statistic parameters (means, variances and integral scales) that identify geostatisti-

cal models of spatial variability.

In order to do that, firstly two unconditional Y and Z fields are randomly gener-

ated, they are then perturbed in pilot point locations in such a way to minimize the

fitness function 2.2.17 (see the work by Castagna and Bellin (2009)). Given that

fields are spatially correlated, this local perturbation causes changes in surrounding

locations with respect to the unconditional field. Modifications are more significant

close to the pilot point location and it decreases moving far away. Therefore, the

perturbation propagation generates conditioned fields.

Castagna and Bellin (2009) already showed that there is an optimal number of pilot

points and that it depends on the amount of information present as observational

data. Specifically, the number of pilot points is proportional to observations: if there

are too many pilot points, the number of unknowns increases and the inversion pro-

cedure becomes problematic; on the contrary, if they are too few, realizations are

less conditioned and therefore less realistic.

2.2.5 Particle Swarm Optimizer

As just mentioned perturbations at pilot points propagate on fields, but it is nec-

essary to optimize these perturbations in order to have conditioned fields compatible
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with observations. The problem of the analyzed parameter space is that it has many

local minima and the initial conditions are completely random, therefore they should

not be too conditioning and relevant in the optimization process.

For these reasons, Particle Swarm Optimizer is applied to obtain the minimize of

the objective function 2.2.17. This optimization technique, inspired by animal social

behaviour, is based on an iterative procedure. It is applied in the PhasONE code

because it is self-adaptive, it well performs in a space with many local minima, it is

quite insensitive to initial conditions and also to the objective function’s shape.

This optimization procedure considers a set of candidate solutions, called particles,

and moves them around in the parameter space according to a formula (equation

2.2.19), function of particle’s position and velocity. The movement of the particle

depends on three main components: a spatially constant drift vki (where the index

i refer to the particle and k to the iteration), a random movement whose amplitude

is related to the distance between the particle and the best position it identified

during its wandering (the partial best position pkbest,i) and another random move-

ment similarly dependent on the distance between the particle and the best position

explored by all particles (the global best position gkbest). Both best positions and

the particle position (xki ) are updated at each iteration. This way, it is expected a

general movement toward best solutions.vki = ωinertiav
k
i + c1r

k
1(pkbest,i − xki ) + c2r

k
2(gkbest − xki )

xki = xk−1i + vki

(2.2.19)

where ωinertia is an inertia weight whose value decreases moving forward on itera-

tions (from 0.9 to 0.4), c1 is called the constant cognitive learning factor and c2 is the

social one (both equal to 2), rk1 and rk2 are arrays of uniformly distributed random

numbers bounded between 0 and 1. Furthermore, if a particle hits the boundary of

the search space, its velocity component which is normal to that boundary is set to

zero, applying so the absorbing wall boundary condition.

Particle Swarm Optimizer is an effective algorithm because it does not assume any-

thing about the problem and it can search in a very large space of admissible solu-

tions.

In this specific work, the dimension of the search-space n, therefore the dimension

of vectors x, v, r1, r2, p and g, is equal to 2Npp + Nθ, where Npp is the number
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of pilot points and Nθ is the number of parameters of the geostatistical model of

spatial variability. Therefore, the coordinates of a solution particle are obtained by

merging vectors of unknowns, a and θ.

Figure 2.2.1: Velocity’s components of particle at time t of the PSO process: partial
best, global best and inertia influences.

Figure 2.2.2: Representation of PSO precess: starting from random locations and
moving towards the global best.

2.2.6 Monte Carlo framework

PSO is used in order to find a realization compatible with observations, but it is

not ensured its veracity. Indeed, there could be many realizations compatible with

observation data. In order to consider a broad range of possible realizations, the

Monte Carlo framework is applied.
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The solution with higher efficiency is the one that better fits observation data and

it is called the best solution. However, thanks to the several realizations multiple

optimal values for each parameter are identified, from which it is possible to define

a posteriori their statistics: the pdf, the mean value and its variance. With such

approach, it is not obtain a certain solution but an idea of realization with its un-

certainty.

2.3 Code in detail

Now that the basic theory and the approach used were described, main imple-

mentation steps of the code developed by the Hydrology group of Trento University

are summarized and main conditions and assumptions are listed.

2.3.1 Implementation steps

In this preliminary work on the code, observational data are obtained from a

synthetic field by simulating a tomography test in known properties fields. Given

means, variances and integral scales of the two properties distributions, random

fields are generated by HYDROGEN, a random field generator developed by Bellin

and Rubin (1996).

Y (x) = mY + Y ′(x)

Z(x) = mZ + Z ′(x)
(2.3.1)

where Y ′ and Z ′ are the fluctuations around means. Then, locally they are trans-

formed to create the reference conductivity and storativity fields.

K(x) = exp[Y (x)]

S(x) = exp[Z(x)]
(2.3.2)

Following, the hydraulic tomography test is simulated on reference fields. The gov-

erning equation 2.2.5 is solved for each well pumping and for each frequency of the

oscillatory pumping test. Indeed, a single test is considered as the signal emission

from a certain well that is pumping periodically with a certain frequency and the
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contemporaneous transient head recording in other non-pumping wells. Therefore,

observational data will consist of Nws − 1 values recorded at non-pumping wells

for each test. The number of tests Ntests is equal to the number of wells that are

pumping in sequence Nws multiplied for the frequencies used Nω.

Then, the inversion process is followed to determine realizations compatible with

the observations of reference fields. This procedure, which s the same used by

Castagna and Bellin (2009), consists of five steps, where Pr represents both prop-

erties of log-storativity and log-conductivity:

1. Unconditional fields, Pru, are randomly generated by HYDROGEN.

2. Unconditional fields are conditioned to log of the measurements of hydraulic

property Prk(xk,j), where j indicates the measurement location number, it

ranges from 1 to the number of measurements Nk. Conditioning is done by

distributing residuals, Prk(xk,j) − Pru(xk,j), to grid points by kriging and

then added to unconditional fields Pru. These fields are conditioned only to

measurements and they will be following called prior log fields Prc,p. At this

step, a preliminary set of structural parameters θ is generated respecting some

predefined bounds.

3. Prior log fields are further conditioned basing on pilot points values, Prpp(xpp,j)

where j = 1, ....Npp, with Npp being the number of pilot points. These val-

ues are randomly generated at first and then they are obtained by the PSO

by minimizing the fitness function 2.2.17. The procedure of this conditioning

step is similar to the previous one: residuals, Prpp(xpp,j) − Prc,p(xpp,j), are

distributed by kriging in the whole domain. These fields are therefore condi-

tioned both to measures and to pilot points and they will be called conditioned

fields, Prc.

4. In this step, the governing equation 2.2.5 is solved for conditioned fields in

order to compute transient heads at observation wells. These heads will be

then compared to observations.

5. The fitness function 2.2.17 is evaluated with z being the amplitude and phase

shift of head oscillations at all observation (wells) points. Therefore another
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set of parameters is obtained by using the PSO searching algorithm and the

steps from 2 to 5 repeated.

The iterations end when all particles are stacked in the same position, or the maxi-

mum number of iterations is reached, this number is typically assigned in order to

contain the simulation time within acceptable bounds.

Moreover, the procedure just described is repeated in the Monte Carlo framework

where unconditional fields are randomly generated with a different seed.

2.3.2 Geometry, grid and conditions

Focusing on the domain studied in this work, the work aims to characterize an

area of 10 m× 20 m in which seven wells are distributed with the geometry shown

in figure 2.3.1 (Nw = 7). From the figure, it is possible to notice that twelve pilot

points are located in strategic positions between wells (Npp = 12). Moreover, no

measurement points are located in this study (Nk = 0). Wells are placed in such a

way to distance from a minimum of 5.5 m to a maximum of 16 m.

Furthermore, the two main anisotropy axes are assumed to coincide with the ref-

erence system utilized for solving the problem by using governing equations 2.2.5.

The mesh used is square-shaped and the square sides dx are 1 m long. The shape

was chosen just for its simplicity. Regarding the size, it was established in order to

guarantee that dx stays at least three times in the integral scales, however it has not

to generate a mesh too much refined that would lead to long computational times.

Another important issue is how assignation of heterogeneous hydraulic parameters

(Y and Z) happens. Firstly, the two independent random functions are generated on

this regular grid by HYDROGEN (Bellin and Rubin (1996)). The RSF generator

assigns a value to the center of the grid. However, because the solver works on cells’

corners, the center value is assigned to the bottom-left corner.

It is now necessary to define some boundary conditions for the domain. However,

to avoid the influence of these boundaries reaching the area of interests, conditions

of constant head are assigned to an external area sized 60 m× 60 m. This way, the

change in head h faraway from the interested area is blocked equal to 0.

Moreover, drawdown data are not affected by the head gradient of the domain be-
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cause of the linearity of governing equations 2.2.5. Therefore, the head gradient is

completely neglected and not assigned at all.

Figure 2.3.1: Geometry of the studied domain, where is evident the central area of
interest.
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3
Preliminary sensitivity analysis

In order to use correctly the code, it is important to fully understand how the

code works varying some characteristics both of code and field.

These variable properties are order of the code solver, average diffusivity of the field,

discharge and frequencies used for the simulated pumping test. The first one is im-

portant for the solution accuracy and the computational time. While others are

relevant because in an oscillatory pumping test it is essential that observing wells

are affected by the pumping one, therefore the influence extension is crucial. Conse-

quently, effected area is used as comparison in field’s and test’s properties analyses.

The influence area is here defined as the area in which the head variation has a value

major or equal to 10% of the maximum change in the pumping well location. Areas

of influence of a pumping well are particularly relevant because they should enclose

surrounding observing wells to make the pumping test valid. Anyway, they cannot

be too large otherwise they touch field boundaries that is not computationally cor-

rect.

Following, the sensitivity analysis is carried out starting from two isotropic main

scenarios characterized by the basic parameters reported in table 3.1, they differ

only on variances. The so called Scenario 1 has a variance equal to 2 that is a usual

high value in field (see tables in the Handbook edited by Jaques Deller (1998)),

while Scenario 2 has a higher variance equal to 4. This is quite a high value given

that the MADE site is considered highly heterogeneous with a large-scale variance

of hydraulic conductivity equal to 4.5, in which it was determined a higher small-

scale variance of 5.45 (Zheng et al. (2011) and Harvey and Gorelick (2000)). The

other parameters are selected within their boundaries. The frequencies used in the
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following analysis are reported in table 3.2.

Table 3.1: Parameters of the two main scenarios

mY σ2
Y mZ σ2

Z Ix Iy Q
[m] [m2] [m] [m2] [m] [m] [l/s]

Scenario 1 -8 2 -8 2 4 4 1
Scenario 2 -8 4 -8 4 4 4 1

Table 3.2: Frequencies used in main scenarios

Period Frequency
[s] [s−1]
5 1.2566
10 0.6283
15 0.4189
20 0.3142
50 0.1256

3.1 Code analysis: Order 1 and 2

The first analysis is about the order of the code solver. Indeed, generally higher is

the order, higher is the accuracy of the result, with some limits due to the stability

of the solution. However, higher is the order and longer is the computational time.

Of course, a highly time consuming code is not suitable to use for technicians if it is

slightly better than a faster solver, and this is what this section aims to check: the

solution’s improvement due to an increased order.

In order to compare the two orders, two experiments are done: check head variation

along the transect of the pumping well at certain times and check head variation in

time for a point close to the pumping well. All simulations are carried out for each

well and for each frequency but here are reported only results for the middle well

and medium frequency.

For the first experiment, as it is possible to notice from figures 3.1.1, there is a

discrepancy between the two orders mainly at the pumping well position. Already
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one meter away from it, solutions are very similar and two meters away are almost

equal. Remembering that the code only use values at other wells’ positions, more

than 4 m far, what is important to observe in this step is the similarity of simula-

tions at greater distances. Therefore, this check is completely fulfilled.

Figure 3.1.1: Transect in T/4 and T/2 - pumping well (30,30) and frequency
0.4189 s−1 - Scenarios 1 and 2

As just mentioned, the main interest is on the discrepancy at distances greater

than 4 m. Observing that differences go smaller increasing the distance, the second

experiment focuses on head at a point exactly 4 m far from the pumping well.

Figures 3.1.2 show the head variation in time at location (34,30) while the middle

well is pumping with a frequency of 0.4189 s−1. It is noticeable that results are very

similar and slightly different on peaks. However, it is necessary to report that not all

results for this experiment are like that. Firstly, for higher frequencies simulations

are quite different for the two orders, order 1 tends to underestimate the head.

Anyway, the head oscillation is orders of magnitude smaller than the reported result,

therefore even if they seem completely out, the absolute error is not so different from

before. Secondly, there are some wells that have a worst comparison than others

for each frequency, this can be due to the diffusivity in the specific position, indeed

results depend on signal transmission and informations arriving to observation wells.

After having shown that orders slightly differ on solutions, let’s compare approxi-

matively the computational time. For the same operation of creation of the synthetic
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Figure 3.1.2: Head variations in time in point (34,30) - pumping well (30,30) and
frequency 0.4189 s−1 - Scenarios 1 and 2

field, the 2nd order code takes 16 min 42 s while the 1st order takes only 1 min 21 s,

twelfth of time. Even if the PSO process is much more variable in time depending

on starting position of particles, the saved time is surely remarkable. Therefore, it is

possible to conclude that the first order is not lacking in resolution and much more

convenient in time.

3.2 Field analysis: Diffusivity

The second analysis aims to understand the importance of a simulated field prop-

erty: the diffusivity. As already mentioned, diffusivity describes the ability of the

field to transmit a signal, higher it is, faster is the aquifer response and larger is the

influenced area.

This analysis comprehends three cases which differ in the mean of the log-storativity

Z: D0 where the diffusivity is exactly equal to 1 m2/s; D1 where it increases to

2.72 m2/s; D2 where it reaches 7.39 m2/s. The following table 3.3 reports the main

chosen parameters, averages of Y and Z, the correlated average conductivities and

storativities, K and S, and their radius of influence determined approximatively as:

R =
√
TD (3.2.1)
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where T is the period that varies from 5 s to 50 s as shown in 3.2. Corresponding

to these period values, minimum and maximum radii of influence are calculated.

These two last columns are an approximate indication of the extension of the area

of influence.

Table 3.3: Diffusivities used in the sensitivity analysis

Case mY mean(K) mZ mean(S) Diffusivity
Radius of influence
min max

[−] [m/s] [−] [1/m] [m2/s] [m] [m]
D0 -8 3.35 10−04 -8 3.35 10−04 1.00 2.24 7.07
D1 -8 3.35 10−04 -9 1.23 10−04 2.72 3.69 11.66
D2 -8 3.35 10−04 -10 4.54 10−05 7.39 6.08 19.22

In this analysis, the area of influence of a pumping well is the key tool of com-

parison. Indeed, what is important to check is that it reaches nearby observation

wells because only in this case the pumping test is effective. Figures 3.2.1 show

areas of influence for the three cases for the middle well pumping at a frequency of

0.4189 s−1. As it is expected, it is evident how a larger diffusivity affects a larger

area. Furthermore, same results for other wells show that the two upper wells and

the eastern one have smaller areas of influence because they are located in a low-

diffusivity zone of the synthetic field. This should not be a problem because also the

absence of signal is an information for the model. Another final observation is that

high frequencies have smaller areas while small ones influence larger areas. In par-

ticular, frequency 1.2566 s−1 produces effected areas that never reach surrounding

wells while frequency 0.1256 s−1 has areas of influence reaching observation wells,

not for the three wells located in the low diffusivity zone.
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Figure 3.2.1: Influence radius for several diffusivities - frequency 0.4189 s−1 - Sce-
narios 1 and 2

3.3 Pumping test analysis: discharge and frequency

3.3.1 Discharge

In this analysis, the amount of water pumped in by the well is studied. Even if

it clearly influences the local head, the discharge should not effects influence area

as here defined. Therefore, it should not be relevant in this code because calculated

parameters of conductivity and storativity are not correlated to it.

The experiment involves three cases which discharges are respectively 1 l/s, 5 l/s

and 10 l/s and their areas of influence are compared. As expected, in figures 3.3.1

only one line can be observed. This is simply due to the fact that areas are perfectly

overlapping and therefore the check is verified.
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Figure 3.3.1: Influence radius for several discharges - frequency 0.4189 s−1 - Scenar-
ios 1 and 2

3.3.2 Frequency

As already mentioned in section 3.2, frequency clearly affects areas of influence.

This last analysis aims to enlarge the set of frequencies in order to select the most

appropriate ones for following computations. Table 3.4 lists all frequencies analyzed.

Table 3.4: Frequencies used in the sensitivity analysis

Period Frequency Radius of influence
[s] [s−1] [m]
5 1.2566 3.69
10 0.6283 5.21
15 0.4189 6.38
20 0.3142 7.37
50 0.1256 11.66
100 0.0628 16.49
150 0.0419 20.18
200 0.0314 23.32
300 0.0209 28.58

This analysis simply show the area of influence for each pumping well for each

frequency. As for previous analyses, only results of the middle well are reported in

this section. Figures 3.3.2 clearly shows how a smaller frequency influence a larger
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area around the well. The shape is not circular, as would be for an homogeneous

field, but it evidently depends on local diffusivity, enlarging in high diffusivity zones.

Considering that simulations would be more precise if areas are large enough to

Figure 3.3.2: Influence radius for several frequencies - pumping well (30,30) - Sce-
narios 1 and 2

include observing wells, there is the possibility to enlarge them with low frequencies

and a higher diffusivity. However, it is important to check that areas are not too large

to beat boundaries. Ideally, boundaries should not be influenced by the pumping

well, but here it is possible to have a slight influence because both synthetic and

reproduced fields have the same problem. Following figures 3.3.3 show areas of the

middle well for several frequencies in a field with higher diffusivity (test D2 in section

3.2). Figures 3.3.4 represent the most critical well located in (22,30): it influences a

very large area that approach boundaries, even if it does not touch them. However, it

is important to remember that this area is the 10% of the maximum head, meaning

that in reality the area is larger and therefore it probably slightly influences the

boundary.
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Figure 3.3.3: Influence radius for several frequencies - pumping well (30,30) and D2
- Scenarios 1 and 2

Figure 3.3.4: Influence radius for several frequencies in whole field - pumping well
(22,30) and D2 - Scenarios 1 and 2

After having understood the influence of frequencies basing on influence areas,

this paragraph wants to determine more rigorously those to use in the test. For this

purpose, dimensionless governing equations 2.2.12 and a simple case of an horizontal

isotropic layer are considered. The 3rd direction is neglected and in the horizontal

plane the only spatial scale is IY h that it is here assumed equal to 4 m, middle value

between the two scenarios’ spatial scales. Knowing the distance that test should

interest (minimum and maximum distances between wells), approximate radii are
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calculated using two simple equations, 3.2.1 and first of 2.2.11:

ω∗ =
D

I2Y h
ω

R∗ =
√
TD =

√
2π

ω∗
D =

√
2πI2Y h
Dω

D =

√
2π

ω
IY h

(3.3.1)

In table 3.5 approximate influence radii with correlated frequencies are reported.

Looking at this table, it is evident how ideal frequencies depend on field diffusivity,

that is unknown a priori. Therefore, in reality technicians should use a large range

of frequencies to be sure to include the correct ones.

Table 3.5: Frequencies and correlated influence radii for the three diffusivity cases

R∗ R = R∗

IY h
ω = 2π

R2 ω∗D0 = D0
I2Y h

ω TD0 = 2π
ω∗D0

ω∗D1 TD1 ω∗D2 TD2

[m] [−] [−] [rad/s] [s] [rad/s] [s] [rad/s] [s]
4 1.00 6.2800 0.3925 16.00 1.0676 5.88 2.9006 2.17
5 1.25 4.0192 0.2512 25.00 0.6833 9.19 1.8564 3.38
6 1.50 2.7911 0.1744 36.00 0.4745 13.24 1.2891 4.87
7 1.75 2.0506 0.1282 49.00 0.3486 18.01 0.9471 6.63
8 2.00 1.5700 0.0981 64.00 0.2669 23.53 0.7251 8.66
9 2.25 1.2405 0.0775 81.00 0.2109 29.78 0.5730 10.96
10 2.50 1.0048 0.0628 100.00 0.1708 36.76 0.4641 13.53
11 2.75 0.8304 0.0519 121.00 0.1412 44.49 0.3835 16.37
12 3.00 0.6978 0.0436 144.00 0.1186 52.94 0.3223 19.49
13 3.25 0.5946 0.0372 169.00 0.1011 62.13 0.2746 22.87
14 3.50 0.5127 0.0320 196.00 0.0872 72.06 0.2368 26.52
15 3.75 0.4466 0.0279 225.00 0.0759 82.72 0.2063 30.45
16 4.00 0.3925 0.0245 256.00 0.0667 94.12 0.1813 34.64
17 4.25 0.3477 0.0217 289.00 0.0591 106.25 0.1606 39.11
18 4.50 0.3101 0.0194 324.00 0.0527 119.12 0.1432 43.84

3.4 Selected parameters

After having fully understood the code sensibility to some important characteris-

tics, in this section their values are decided for following simulations.

Firstly, the solver order is 1. Indeed, it was previously showed how the second order

does not lead to a relevant accuracy improvement for the oscillatory pumping test,

while computational times are much longer.
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Secondly, the average diffusivity of the field is arbitrarily fixed to 1 m2/s, scenario

D0 in section 3.2. This choice does not lead to any advantage, the only consequence

is the need to carefully select appropriate frequencies complying with table 3.5. In

all following synthetic cases, frequencies used are those reported in table 3.7.

Finally, last values to fix are statistical parameters and the discharge rate. Statis-

tical parameters are chosen only following the already defined average diffusivity.

Regarding the variance, it is selected equal to 4 because it is a high value, usually

difficult to reproduce and rarely analyzed with other models. Finally, the discharge

rate is arbitrarily fixed to 1 l/s. All selected parameters are reported in table 3.6.

Table 3.6: Selecte parameters

mY σ2
Y mZ σ2

Z Ix Iy Q
[m] [m2] [m] [m2] [m] [m] [l/s]

Scenario -8 4 -8 4 3 5 1

Table 3.7: Selected frequencies

R∗ ω∗D0 TD0

[m] [rad/s] [s]
6 0.1744 36.00
8 0.0981 64.00
11 0.0519 121.00
13 0.0372 169.00

In order to check if pumping wells influence observing ones with these selected

parameters, following are reported areas of influence of wells for this field and these

frequencies. Moreover, in order to have a more precise check, the influence area

is here defined as the area in which head variation has a value major or equal to

1% of the maximum change in the pumping well location. Note that areas are in

reality still bigger than what it is shown but influence is very little. In figures 3.4.1 is

evident how almost all wells are able to reach with their areas other wells. Therefore

frequencies used are correct and well selected. Only exceptions are sixth and seventh

wells, whose areas are very close to the pumping well and they do not include other

observing wells.
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Figure 3.4.1: Influence areas for all selected frequencies in the chosen field, for wells
1 to 750



4
Synthetic cases

The previous sensitivity analysis evaluated the better parameters to use in the

code in terms of solver order, diffusivity of the field and frequencies used in the test.

This step was very useful to determine some important values used following.

At this point, the code is tested in different simulations in order to observe how it

behaves in simpler and more complex fields. The main purpose is to fully understand

limitations and strong points of the model.

4.1 Reported results

In order to understand how much the inference is able to correctly reproduce the

real field, there are many results that can be shown. It is important to specify here

that not all inferred simulations are described in this work, only the most important

simulations are here reported: the best simulation with the highest modified Nash-

Sutcliffe efficiency and the average of all realizations (following simply called mean

simulation). The latter is the simulation often inferred by applied models.

First of all, log-conductivity, log-storativity and diffusivity field maps of best and

mean simulations are reported in order to visibly compare their heterogeneity and

pattern.

Anyway, maps are only an aspect in assessing the quality of the inversion, other

results reported are Y and Z values along transects where wells and pilot points are

located. Diagrams report reference values, ones of the best simulation and ones of

the average of all realizations.
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Then, probability distribution functions (pdfs) of properties for all realizations are

reported. Even if this result does not show the local correctness of the simulation,

it highlights the goodness of estimated statistical parameters.

Scatter plots of simulated versus observed amplitudes and phases are also inserted.

This is a really effective tool, because it directly compares observations of the ref-

erence field and of the best simulation. It is easy to read: closer points are to the

diagonal line, closer simulated values are to observed ones, and therefore better is

the realization.

However, all these results evaluate the goodness of reproduction of field hydraulic

properties. Though, the real aim of this model is the reproduction of the con-

taminant spreading, therefore the most important aspect here is the contaminant

transport. In order to evaluate this feature, two typologies of results are listed:

breakthrough curves and connectivity functions. The firsts are determined for all

realizations by using MODFLOW and MODPATH models. The field is exactly re-

produced in geometry and grid spacing, while hydraulic gradient of 0.001 is assigned.

The particle tracking is computed in steady state conditions after solving the flow

with conductivity fields obtained from the inversion of the oscillatory pumping tests

data. An important observation is that in steady state the only relevant property

is conductivity, storativity plays a role only in transient conditions. Therefore, this

result is an important check only for one property. Connectivity functions indicate

connectivity along flow paths with hydraulic conductivity above a given threshold,

typically fixed based on the quantiles of the pdf of hydraulic conductivity. For ex-

ample, connectivity for high quantiles, say 90%, indicates fast pathways.

Given the difficulty to correctly and fully compare simulations with many aspects

to take into consideration, it is helpful to have more mathematically based results.

Several tables are reported with reference versus simulated statistics, absolute er-

rors, efficiency coefficients for signal, amplitude and phase, and connectivity indexes

determined as 1.2.12.

The signal efficiency is determined with the normalized coefficient 2.2.18. While

for amplitude and phase efficiencies, the NashSutcliffe efficiency coefficient is used.

It is defined as:

NS = 1−
∑nsample

obsW=1(Hsim −Hobs)
2∑nsample

obsW=1(Hobs −Hobs)2
(4.1.1)
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where nsample is the number of observation, Hsim are head variations in observing

wells locations for tested frequencies, Hobs are corresponding observed head varia-

tions, Hobs is the mean of observed values.

4.2 Tests organization

Several tests have been performed in order to explore the capability of oscillatory

pumping tests in inferring hydraulic property variations. Tests here reported are: 1)

a simple chessboard with block-type variability for both conductivity and storativity

(Cb); 2) a heterogeneous storativity and a homogeneous conductivity (K0); 3) a het-

erogeneous conductivity and homogeneous storativity (S0); and finally 4) hydraulic

conductivity and storativity both heterogeneous (SK). In this case, two tests are

carried out in order to understand the importance of the extent of ranges set as in-

put in which the PSO algorithm searches possible solutions. We considered also the

cases of false negative and false positive as follows: the K-false negative test (KNeg)

aims to reproduce heterogeneous reference fields of conductivity and storativity but

inversion is performed by assuming correctly that the Z field is heterogeneous and

incorrectly that the Y one is homogeneous, while the equivalent S-false negative test

(SNeg) assumes a homogeneous storativity field and a heterogeneous conductivity

field; the K-false positive test (KPos) aims to infer a homogeneous Y true field and

a heterogeneous Z true field by assuming both heterogeneous in the inversion, while

the equivalent S-false positive test (SPos) aims to infer a heterogeneous conductivity

field and a homogeneous storativity field still assuming both heterogeneous.

Table 4.1: Summary of modeling scenarios considered

Case
True field Assumed field in inversion

Log T Log S Log T Log S
Cb Chessboard Chessboard. Gaussian heterog. Gaussian heterog.
K0 Homogeneous Gaussian heterog. Homogeneous Gaussian heterog.
S0 Gaussian heterog. Homogeneous Gaussian heterog. Homogeneous
SK Gaussian heterog. Gaussian heterog. Gaussian heterog. Gaussian heterog.

KNeg Gaussian heterog. Gaussian heterog. Homogeneous Gaussian heterog.
SNeg Gaussian heterog. Gaussian heterog. Gaussian heterog. Homogeneous
KPos Homogeneous Gaussian heterog. Gaussian heterog. Gaussian heterog.
SPos Gaussian heterog. Homogeneous Gaussian heterog. Gaussian heterog.
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4.3 Chessboard

The first test is a simulation of a very simple case, often used in applications where

heterogeneity is introduced by identifying blocks in which the hydraulic conductivity

can be assumed homogeneous. These blocks, showing contrasting hydraulic prop-

erties, are typically identified from geological analysis of the simulation domain. In

particular, we consider the case of a domain divided into 4 blocks with homogeneous,

but contrasting, hydraulic property variations. In short we call this case chessboard..

The field is divided into four squares and log-conductivity and log-storativity values

are assigned to each one in such a way to have different fields but with an average

diffusivity of 1 m2/s. Values of the central zoom are showed in figure 4.3.1.

Figure 4.3.1: Reference fields, Chessboard test

4.3.1 Results and observations

Figures 4.3.2 and 4.3.3 show the best hydraulic conductivity and storativity fields

(i.e., the fields showing the highest Nash-Shutcliffe coefficient 2.2.18), and the ensem-

ble mean, computed by using forty inversions of the same set of oscillatory pumping

tests, respectively. By purpose in the inversion we assumed the wrong model of spa-

tial variability: fields were considered as a SRF with exponential covariance function

(2.2.15) despite the real spatial variability is of four blocks with homogeneous, but

contrasting hydraulic properties. A first look at the maps suggests that they are not

so close to reference fields. Though, observing with more attention it is possible to
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Figure 4.3.2: Best fields, Chessboard test

Figure 4.3.3: Mean fields, Chessboard test
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notice many similarities.

Indeed, looking at the Y field of the best realization, the area of lower conductivity

is correctly located at the northeastern corner while other squares have higher con-

ductivity. In the other three corners a high conductivity area is present, mainly in

the southwestern square and it spreads on other two zones. In average, these last

two squares are correctly characterized by medium values. The storativity field of

the best solution is also quite good: northern corners are very well identified, highest

and lowest values are located in the two close squares; while the southern area is

not characterized homogeneously by medium values but by two belts off high and

low conductivity.

The ensemble average of all inversions shows a better resemblance with the ref-

erence field. The lowest log-conductivity values on the northeastern corner, the

highest ones on the southwestern one and other two corners are quite well charac-

terized by medium values. Regarding the log-storativity field, similar observations

can be done. The model is able to correctly locate highest and lowest values, even if

in this case the lowest ones in the northwestern corner are slightly noticeable. The

southern area is correctly characterized by medium values.

Figure 4.3.4: Diffusivity maps of the reference, best and mean fields, Chessboard
test

Figures 4.3.4 show how the diffusivity is reproduced by the model. The best sim-

ulation correctly identifies the low values in the eastern zone while it overestimates

high values on the West. The mean simulation reproduces much better the diffu-

sivity pattern, identifying the lowest and medium values. Also the western area is

characterized by medium-high values. Globally the diffusivity pattern is correctly

captured.
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Figure 4.3.5: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, Chessboard test

Figures 4.3.5 report log-conductivity and log-storativity values along five tran-

sects. These transects are located in lines where wells and pilot points are placed,

respectively indicated as circles and full points. From this diagrams it is evident

how the average of realizations tends to be quite flat and in observation points it is

usually close to reference values. On the contrary, the best solution is usually more

fluctuating. Values in pilot points are relatively far from reference ones, while in

wells locations values are coherent.

Specifically on conductivity diagram, best solution is smooth and similar to the

mean in transects where wells are located. The third and fifth transects show sim-

ilar decreasing trend in x, even if simulations are not able to correctly reproduce

the step. In the first transect, not even the decreasing trend is captured by the best

solution. In the second and fourthtransects, where only pilot points are present, so-

lutions are more fluctuating, mainly the best one. Looking at the mean solution, it

respects the trend and it is also able to reproduce the step. While the best solution

has a general decreasing trend but simulation is far from the reference.

Concerning storativity diagram, the last three transects are all flat and close to the

reference. The first transect shows the mean simulation that follows the reference

seeing also the upward step and the best solution that has a smooth increasing trend.

The second one reports a well reproducing mean and a best solution that notices

the step but it emphasizes it too much.
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Figure 4.3.6: Empirical cumulative distribution functions of Y, Z and D, Chessboard
test
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Observing cumulative distribution functions of fields it is possible to notice how

reference curves have a completely different shape from others. This is obvious be-

cause the chessboard is not a Gaussian field while all realizations are created as

Gaussian fields by HYDROGEN. The mean curve tends to be more vertical than

the best one, that is because mean tends to remove extreme values and concentrate

on medium values, therefore its range is quite small comparing to all single realiza-

tions. Also in the diffusivity field it is noticeable how the best curve is far from the

reference as well as many realizations, while the mean one is closer to it.

Table 4.2: Statistical parameters comparison, Chessboard test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y ) Ix(Z) Iy(Z)
Reference -7.93 0.50 -8.02 0.45 6.43 3.37 1.89 2.98
Best -7.77 0.48 -8.04 0.86 3.35 1.68 5.37 0.98
Mean -7.86 0.41 -8.12 0.23 5.60 3.06 1.37 4.55

This good reproduction of a non-Gaussian field is confirmed by table 4.2 that

reports statistical parameters of best and mean solutions compared to reference pa-

rameters evaluated in the central area of interest. It is impressive how close inferred

means are to reference ones. Indeed, means have relatives errors lower than 2%

while variances have higher relative errors, mainly for the log-storativity where the

variance is doubled or halved in simulations. Unfortunately, integral scale are incor-

rectly reproduced: best solution is worse than main one in this case.

Table 4.3: Mean absolute errors of fields and efficiency coefficients, Chessboard test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 0.5645 0.6722
Mean 0.3109 0.3777

(b)

NSEE
signal 0.84
amplitude 0.94
phase 0.97

Next reported results are scatter plots comparing observed values of the reference

field and simulated values of the best solution of both amplitude and phase of the

signal. To be clear, if a point is exactly in the diagonal line, it means that simula-

tion was able to perfectly evaluate the amplitude or phase of the signal in a specific
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Figure 4.3.7: Scatter plots of simulated versus observed values of amplitude and
phase, Chessboard test

observing well for a certain well pumping with a specific frequency. Moreover, in a

scatter plot there are as many points as observations. In this work, there are seven

wells, one is pumping and six are observing, and each well pumps with four different

frequencies. Therefore, observations are 6× 7× 4 = 168. Observing plots in figure

4.3.7, results are very good in this chessboard test. Indeed, it is possible to see how

close points are to the diagonal line, mainly in the phase scatter plot while they are

a little bit farer in the amplitude one. Therefore, the best simulation reproduced a

better phase than amplitude of the signal.

Tables 4.3(a) and 4.3(b) are an important indication of the general reproduction

efficiency and they confirm what just noticed. First one reports the mean of local

absolute errors for the log-conductivity and log-storativity fields. This case, values

are all lower than 0.7 and it is definitely a good result. The second table shows how

good are the results reporting efficiencies of the signal defined with the modified

NashSutcliffe efficiency (equation 2.2.18) and of amplitude and phase defined with

the NashSutcliffe efficiency (equation 4.1.1). These three efficiencies are all very

high and close to the maximum 1.

As already mentioned describing the reported results in section 4.1, the compari-

son of breakthrough curves and connectivity functions is the most important result
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Figure 4.3.8: Breakthrough curves of realizations, Chessboard test

for contaminant transport. In this case, breakthrough curves of simulations have

different shape from the reference curve, due to the fact that Gaussian fields demand

to reproduce a non-Gaussian one. However, curves are not so far from the reference.

Most of particles of simulations are faster than ones of the reference, except for tails

that go longer in time. It is noticeable how the best solution is much faster and not

well representative: fastest particles arrive at the end of the interested area, 40 m,

in about 100 d (150 d for the reference simulation) and slowest in around 200 d

(400 d in the reference). On the contrary, the mean of realizations is more capable

to capture the shape of the reference breakthrough curve with fastest particles closer

to 150 d and lowest ones arriving in more than 300 d.

Connectivity indexes and functions are evaluated as already explained in section

1.2.6. The index, determined with equation 1.2.12, shows how both mean and best

simulations underestimate the value of the reference connectivity index, even if they

are quite close to it. Looking at the functions for the three defined thresholds (50,

75, 90 percentiles), a similar observation can be done. Simulations underestimate

the reference connectivity for all considered lags going well below bounds defined as

the reference field plus/minus the standard deviation of all fields for that specific lag.

Figures 4.3.9 show that for a low threshold the connectivity is globally high while
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for the 75 and 90 percentiles the connectivity curve declines similarly for the best

and mean, but both faster than in the reference field, suggesting that the inferred

fields are less connected than the reference, as it is expected due to the wrong model

of spatial variability.

Figure 4.3.9: Connectivity functions (50, 75,
90 percentile), Chessboard test

Table 4.4: Connectivity indica-
tor CI, Chessboard
test

CI
reference 1.78
best 1.56
mean 1.64

Considering all these results it is evident how simulations are able to infer reference

properties of a simple non-Gaussian field. In particular, the best solution is good

on estimating heterogeneity and on reproducing the observed signal. However, the

average of all realizations identifies patterns more precisely and well infer statistics

of the true field. Observing results about contaminant transport, breakthrough

curves are close to the reference but its trend is not correctly inferred neither by the

best nor the mean simulation, connectivity function too is always underestimated

by simulations.

4.4 One heterogeneous and one homogeneous fields

A simple test is done assuming that one property of the field is homogeneous, the

homogeneity is known a priori but the exact value of the property is not known.

Given the knowledge of homogeneity for a certain property, the range in the PSO

algorithm of the respective variance is fixed equal to 0, as reported in table 4.5.
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Table 4.5: Parameters and ranges for the two homogeneous tests (K0 and S0)

mean(Y ) var(Y ) mean(Z) var(Z) Ix Iy

K0
true parameters -8 0 -8 4 3 5

range
-9.50 0.00 -9.50 3.00 1.00 1.00
-6.50 0.00 -6.50 5.00 7.00 7.00

S0
true parameters -8 4 -8 0 3 5

range
-9.50 3.00 -9.50 0.00 1.00 1.00
-6.50 5.00 -6.50 0.00 7.00 7.00

4.4.1 Results and observations for ’Homogeneous K’

Figure 4.4.1: Reference fields, K-homogeneous test

Figures 4.4.2 and 4.4.3 are the maps of log-conductivity and log-storativity repro-

duced respectively by best and mean simulations. Observing the best reproduction

of the Z field that is more of interest in this specific test, it is noticeable that the

inferred field is able to reproduce approximatively the reference field. Indeed, the

pattern is identified with a low-values belt on the West and medium-high values

on the eastern area. However, the two spots characterized by lowest values on the

western corners are only partially reproduced, while a high-values spot is incorrectly

inferred on the East. Considering now the mean simulation, the inferred Z field cor-

rectly recognizes the pattern of the property but it is not able to see extreme values,
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Figure 4.4.2: Best fields, K-homogeneous test

Figure 4.4.3: Mean fields, K-homogeneous test
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Figure 4.4.4: Diffusivity maps of the reference, best and mean fields, K-
homogeneous test

such as lowest ones on the West, and heterogeneity on the eastern zone.

The inference of diffusivity is strongly influenced by the inference of conductivity

and storativity, due to the homogeneous Y field it is mainly influenced by the Z field.

Figures 4.4.4 clearly show how the best simulation approximatively reproduces the

pattern but it misses highest values due to the missed reproduction of lowest values

of log-storativity on western corners. The mean simulation infers an almost homo-

geneous diffusivity field.

Figure 4.4.5: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, K-homogeneous test

Transects in figures 4.4.5 give more detailed information on simulations repro-

duction. Indeed, it is evident how close the average of all realizations reproduces
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the homogeneous log-conductivity field, while the best simulation is slightly worst.

Moving to the more dynamic Z transects, the mean simulation is able to follow

the general trend of the reference field but it does not reproduce oscillations and

extreme values. On the contrary, the best simulation follows much more precisely

the reference line but it incorrectly estimates values mainly on lateral zones. It is

noticeable how it tends to overstate values on western belt (see first, second and

fifth transects) and on central eastern area (see third and forth transects). Always

on the eastern area, the best simulation also understates the reference field on first

and last transects.

Figure 4.4.6: Empirical cumulative distribution functions of Y, Z and D, K-
homogeneous test

Heterogeneity of the field is reproduced by simulations even if they are not so
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Table 4.6: Statistical parameters comparison, K-homogeneous test

Field mY σ2
Y mZ σ2

Z Ix(Z) Iy(Z)
Reference -8.00 0.00 -6.95 4.92 2.42 3.28
Best -8.25 0.00 -6.75 4.83 2.53 2.84
Mean -7.99 0.00 -6.50 1.21 3.45 4.73

precise. Therefore, let’s compare probability distributions to see how statistics are

inferred. Observing the Y pdf it is evident what already mentioned before, the mean

simulation exactly infers the reference while the best simulation is close to it but

it is not overlapping. On the contrary, the best Z pdf overlaps the reference pdf

in medium values while it underestimates probability of extreme values. The mean

simulation in this case is too steep because it does not consider extreme values and

it is more concentrated on central values. Diffusivity probabilities are not inferred

precisely by the best simulation that, as already above-mentioned, does not repro-

duce highest diffusivity values. The reference field reaches values of 150 m2/s while

the best one does not even reach 50 m2/s. The diffusivity pdf of the main simulation

is almost vertical and it does not see high values at all.

Table 4.6 confirms what just observed about statistical reproduction. Indeed,

best simulation infers correctly both means and variances, the Y variance easily for

assumption while the Z variance is precisely inferred. Also integral scales of Z are

very well identified. The mean simulation returns very precise means, mainly the Y

mean, but it strongly undervalues the log-storativity variance.

Scatter plots of simulated observations on wells in figures 4.4.7 show that am-

plitude of the signal is inferred precisely while phase is sometimes misunderstood.

Indeed, points on the amplitude plot are quite concentrated along the diagonal while

points of the phase plot are much more scattered in the graph. These outside points

are numerous and the majority of them is due to the seventh well, located in a

low diffusivity field that obstructs signal transmission. Same observations are done

watching at table 4.7(b) where the amplitude efficiency is very high while the phase

one is low and it strongly influences the overall signal efficiency.

Results of figure 4.4.8 are very similar to previous conductivity results. Indeed,
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Figure 4.4.7: Scatter plots of simulated versus observed values of amplitude and
phase, K-homogeneous test

Table 4.7: Mean absolute errors of fields and efficiency coefficients, K-homogeneous
test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 0.2538 1.5516
Mean 0.0076 1.2712

(b)

NSEE
signal 0.38
amplitude 0.94
phase 0.36
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Figure 4.4.8: Breakthrough curves of realizations, K-homogeneous test

considering that contaminant transport is mainly linked to the conductivity field

and that it is homogeneous, breakthrough curves are here vertical because particles

uniformly reach the border. Moreover, due to the precise reproduction of the con-

ductivity field by the mean simulation, also in this result the mean curve is really

close to the reference one, while the best one is less precise.

Same observations can be done for connectivity functions. Indeed, the mean sim-

ulation perfectly overlaps the reference one while the best simulation understates

it. The connectivity index is the same for all simulations, due to the uprightness of

breakthrough curves.

69



Figure 4.4.9: Connectivity functions (50, 75,
90 percentile), K-homogeneous
test

Table 4.8: Connectivity in-
dicator CI, K-
homogeneous test

CI
reference 1.00
best 1.00
mean 1.00

4.4.2 Results and observations for ’Homogeneous S’

Figure 4.4.10: Reference fields, S-homogeneous test

Figures 4.4.11 and 4.4.12 show how the model is able to infer the reference field

visible in figures 4.4.10. Looking first at the best simulation, it is possible to notice

how well it reproduces fields. The log-storativity field is obviously homogeneous

and close to the reference value, the log-conductivity field is very heterogeneous and
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Figure 4.4.11: Best fields, S-homogeneous test

Figure 4.4.12: Mean fields, S-homogeneous test
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Figure 4.4.13: Diffusivity maps of the reference, best and mean fields, S-
homogeneous test

quite similar to the reference pattern. Indeed, it infers the low-conductivity belt on

the East, while on the West it recognizes a fragmented medium-conductivity area

with high values that are not as compacted as they should be. Looking now at the

mean fields, the Z field is of course homogeneous and close to the reference value,

while the Y field is too homogeneous to reproduce correctly the reference field. A

slightly visible pattern identifies the central high-conductivity zone and the eastern

low-conductivity belt. However, in the mean process extreme values are eliminated

and values are very close to the average of the reference field.

The diffusivity field depends on conductivity and storativity fields following its

definition 1.2.10. Considering that the log-storativity is homogeneous in the field,

the diffusivity patter will depend mainly on the log-conductivity. Indeed, observa-

tions done in the Y field can be here repeated. The best field well recognizes the

eastern belt and the central high values zone, even if it is more scattered than the

reference. While the mean field does not show any extreme value but it identifies

the pattern.

Figures 4.4.14 illustrates properties variations along the five transects where wells

and pilot points are placed. Regarding log-conductivity, it is evident how the mean

is almost flat, it slightly follows the reference trend. On the contrary, the best sim-

ulation has a more oscillating tendency. Usually, it is able to follow the reference

trend overstating some points. Only in the third transect there is a relatively long

section where the best conductivity is below the reference and this is the central
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Figure 4.4.14: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, S-homogeneous test

high-values zone that was already noticed as missed in the maps. Regarding log-

storativity, transects are all completely flat due to the assumption of homogeneity.

Both mean and best simulations underestimate the value but they are very close to it.

Observing in figures 4.4.15 the probability distributions of the three properties

(log-conductivity, log-storativity and diffusivity), it is evident how the best simula-

tion well captures the statistics of the reference field. Indeed, in the Y distribution

function, all simulations are close to the reference, the best pdf almost overlaps

the reference one on highest values while it overstates low-medium values. On the

contrary, the mean pdf completely misunderstands the distribution because it ex-

cludes extreme values and concentrates on medium values, as already noticed in

maps 4.4.12. Looking at Z pdfs, the first observation is that they are all vertical

due to the assumption of homogeneity and they are all close to the reference, indeed

the range of variation for Z in the PSO algorithm, in which particles can move, is

(−9.5;−6.5), but due to the PSO optimization the final values are much closer to the

reference value, approximatively from −8.6 to −7.8. Finally, the diffusivity pdfs are

also quite close to the reference, understandable considering that log-conductivity

and log-storativity statistics are both well inferred. The best simulation almost over-

laps the reference along all diffusivity values, mostly in highest values while best pdf

overstates low-medium values, as for the conductivity pdf. Also in this property,

the mean pdf misunderstands the reference due to the exclusion of extreme values.
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Figure 4.4.15: Empirical cumulative distribution functions of Y, Z and D, S-
homogeneous test

Table 4.9: Statistical parameters comparison, S-homogeneous test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y )
Reference -6.63 2.61 -8.00 0.00 0.79 2.18
Best -6.85 3.25 -8.24 0.00 0.76 2.77
Mean -6.54 0.17 -8.17 0.00 0.44 3.52
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Table 4.9 states what was already noticed from previous results. Both best

and mean simulations well infer means of the properties, but the mean simulation

strongly underestimates the variance of the log-conductivity creating a smoothed

field, while the best simulation recognizes a high variance, even if it overestimates

it. Moreover, it is observable that integral scales of the log-conductivity are pre-

cisely inferred by the best simulation. Of course, there are no integral scales for the

log-storativity given that it is homogeneously distributed.

Figure 4.4.16: Scatter plots of simulated versus observed values of amplitude and
phase, S-homogeneous test

Scatter plots of amplitude and phase of the signal show how the observed signal

in the observing wells is globally well inferred by the best simulation. The phase

points concentrate along the diagonal while the amplitude ones seem slightly more

diffused but it is only for few points.

Table 4.10(a) reports absolute mean errors for the log-conductivity that are quite

high, while they are very low for the homogeneous log-storativity. While table

4.10(b) reports efficiency coefficients for the signal, the amplitude and the phase.

It is noticeable that they are very high, the amplitude efficiency reaches almost the

maximum while the phase is lower and it is the component that lowers the overall

signal efficiency.
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Table 4.10: Mean absolute errors of fields and efficiency coefficients, S-homogeneous
test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 1.6597 0.2353
Mean 1.2062 0.1682

(b)

NSEE
signal 0.84
amplitude 0.93
phase 0.82

Figure 4.4.17: Breakthrough curves of realizations, S-homogeneous test

Observing simulated breakthrough curves, the majority of the curves are charac-

terized by a steep foot and a long tail, registering a clear distinction between faster

and slower particles. Particles are relatively slow on the reference field, considering

that almost all inferred curves are faster. Faster particles reach the end of the cen-

tral area of interest in about 75 d, while slower ones take more than 300 d. The best

simulation has a faster breakthrough curve, in which faster particles take less than

50 d, while slower ones more than 150 d. On the contrary, the mean curve has a

different trend that does not clearly differentiate faster and slower particles due to

the smoothed field.
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Figure 4.4.18: Connectivity functions (50, 75,
90 percentile), S-homogeneous
test

Table 4.11: Connectivity
indicator CI, S-
homogeneous test

CI
reference 1.47
best 1.33
mean 1.65

The final results consider the connectivity of the field. Figure 4.4.18 reports the con-

nectivity function versus the space lag between two pixels. In this test, the best curve

is very close to the reference one in all the thresholds used. This is very promis-

ing because it means that, even if the field’s heterogeneity and the breakthrough

curve are not fully captured, the connectivity field is understood for both high and

medium values. On the contrary, the mean curve overestimates the connectivity for

the 50 percentile, underestimates for the 75 percentile and it does not see anything

for the 90 one. Looking at the connectivity index reported in table 4.11, both best

and mean simulations result in indexes close to the reference value, but this is a

much more limited comparison respect to the connectivity function.

4.4.3 Observations

In this section, the model is facilitated in its work considering that one statistical

parameter, the variance of one property, is known and therefore not variable in the

inversion and optimization procedures.

In the first K-homogeneous test, the reference log-conductivity field is homogeneous

and it is known. The reproduction by the best simulation of fields is quite precise
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even if it misses lowest values and it exaggerates on highest ones. However, pdfs

and statistics are well reproduced. As for the Y field, results about contaminant

transport are nice but not precise, the mean simulation gets a better reproduction.

The overall efficiency is 0.38.

The latter test, S-homogeneous test, results in a good reproduction of the heteroge-

neous log-conductivity field, the homogeneous log-storativity one, pdfs and statis-

tics. Indeed, it has a overall efficiency of 0.84. Breakthrough curves are close to

the reference but the best solution is not able to reproduce it, while connectivity

functions are very close to the reference one mainly for higher thresholds.

Summarizing all results, it is possible to conclude that in both tests the average of

all realizations is able to identify the heterogeneity pattern but it does not repro-

duces extreme values, misunderstanding pdfs and statistics. Moreover, it is evident

how the S-homogeneous test reaches a much higher overall efficiency than the K-

homogeneous one and it is mainly linked to the much higher phase efficiency. This

large difference is not so evident by properties maps, however transects and pdfs are

reproduced better in the latter test.

4.5 Heterogeneous fields with small and large PSO

ranges

The model here tested uses the PSO algorithm to optimize solutions, as explained

in section 2.2. In order to use this algorithm, it is necessary to give as input ranges of

possible variation for the parameters, so that PSO has a delimited multidimensional

search space. These ranges are unknown a priori and therefore they have to be large

enough to be sure to include real field parameters. However, if some information

is available thanks to preliminary tests or knowledge, it is possible to considerably

reduce ranges. This way, the computational time decreases.

This section aims to compare tests of the same random field obtained using first

small ranges, then larger ones. The reference field is characterized by the previously

selected parameters, reported in table 3.6. Fields obtained are showed following

while ranges are reported in table 4.12.
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Table 4.12: Ranges used for the PSO algorithm in Small and Large ranges scenarios
(SKS and SKL)

mean(Y ) var(Y ) mean(Z) var(Z) Ix Iy

Small
-9.50 3.00 -9.50 3.00 1.00 1.00
-6.50 5.00 -6.50 5.00 7.00 7.00

Large
-12.00 0.01 -12.00 0.01 1.00 1.00
-4.00 6.00 -4.00 6.00 10.00 10.00

Figure 4.5.1: Reference fields, PSO ranges test

4.5.1 Results and observations for ’Small ranges’

Figures 4.5.2 and 4.5.3 are fields inferred by the best simulation and the aver-

age of all simulations. Ideally they should be similar to reference fields 4.5.1. In

this test, fields seem to get wrong inference. Indeed, the best simulation results

in a log-conductivity field that recognize the central medium-high Y spot, but it

strongly underestimates the western area and the northeastern corner. Looking at

the log-storativity field, the best simulation identifies the low conductivity zone but

it wrongly places lowest values. Moreover it underestimates the south-eastern cor-

ner and overestimates the north-eastern one. On the contrary, the mean simulation

identifies correctly the pattern of the field but, as in previous cases, it does not

consider extreme values, so it is very smooth.

Diffusivity field is quite well inferred by best and mean simulations. Highest val-

ues are correctly located on the western area, even if the best solution misses some
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Figure 4.5.2: Best fields, Small PSO ranges test

Figure 4.5.3: Mean fields, Small PSO ranges test

Figure 4.5.4: Diffusivity maps of the reference, best and mean fields, Small PSO
ranges test
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high values on the South while the mean simulation concentrates too much the high

values on the southwestern corner.

Figure 4.5.5: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, Small PSO ranges test

Figures 4.5.5 report log-properties’ values along five transects. Observing the

log-conductivity graph, the mean simulation does not oscillate but it goes up and

down following the general trend of the reference. This is particularly evident on the

second and third transects. The best simulation fluctuates more but it still follows

the reference. However, it is noticeable how it well capture the central zone, while

it always underestimates lateral conductivities. This underestimation was already

observed on the maps. Moving to log-storativity transects, similar observations can

be done for trends of best and mean simulations. There is not the lateral underesti-

mation but it is noticeable a general undervaluation on the western part of the first

three transects an on the eastern part of the last two, other sectors are reproduced

correctly.

Concerning the probability distributions of properties, the log-conductivity pdf

clearly does not find the reference curve, it strongly increases the probability of low-

medium values. On the contrary the log-storativity pdf is very close to the reference

one and it perfectly overlaps in lowest values. The diffusivity pdf is consequently

wrong depending on the other two properties, this case the wrong log-conductivity

pdf causes a wrong diffusivity pdf along all values. As in previous cases, the mean
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Figure 4.5.6: Empirical cumulative distribution functions of Y, Z and D, Small PSO
ranges test
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Table 4.13: Statistical parameters comparison, Small PSO ranges test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y ) Ix(Z) Iy(Z)
Reference -6.63 2.61 -6.95 4.92 0.79 2.18 2.42 3.28
Best -8.02 4.54 -7.22 5.85 -0.22 4.18 3.05 2.13
Mean -6.91 1.61 -7.07 1.20 3.17 4.20 2.80 5.03

simulation does not correctly infer the reference statistics mainly due to the exclu-

sion of extreme values.

Table 4.9 clearly demonstrates that the best solution does not complies with the

statistics of the central zone of interest. Indeed, mean and variance of the log-

conductivity is strongly overvalued, while ones of the log-storativity are slightly

overestimated. Regarding the integral scales, ones of Y are much greater than the

reference except for an unusual negative value of the best reference that expresses

the difficulty of the best simulation to infer the log-conductivity field. On the con-

trary, the inferred log-storativity integral scales are quite good.

Figure 4.5.7: Scatter plots of simulated versus observed values of amplitude and
phase, Small PSO ranges test

Scatter plots of the amplitude and phase of the signal show how much the sim-

ulation was able to infer observations. In figures 4.5.7, amplitude points are close
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to the diagonal but quite spread. On the contrary, phase points are more concen-

trated around the diagonal except for points completely out in which best simulation

strongly underestimates observations. They will probably reduce drastically the ef-

ficiency. These extern points are all tests of the seventh well (the eastern one), this

well is located in a low diffusivity area, therefore the signal does not travel easily

and probably it is the cause of this error.

Table 4.14: Mean absolute errors of fields and efficiency coefficients, Small PSO
ranges test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 2.1255 2.1231
Mean 1.1808 1.3124

(b)

NSEE
signal 0.59
amplitude 0.86
phase 0.44

Table 4.14(b) shows that the overall signal efficiency is quite good, with a modi-

fied NashSutcliffe efficiency of 0.59. The efficiency of the signal amplitude is high,

but the phase one is low. This is probably due to the seventh well, considering the

four outside points that were noticed in figure 4.5.7.

Figure 4.5.8 reports breakthrough curves of simulations. It is evident how the best

simulation gets a wrong curve which particles are much slower than the reference

field. Indeed, faster particles arrive at 40 m in 400 d, when also the slowest particles

of the reference already arrived. In this case, the mean simulation is much closer

to the reference even if it is much more uniform on arrival times and it is almost

vertical, as usual.
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Figure 4.5.8: Breakthrough curves of realizations, Small PSO ranges test

Figure 4.5.9: Connectivity functions (50, 75,
90 percentile), Small PSO ranges
test

Table 4.15: Connectivity indica-
tor CI, Small PSO
ranges test

CI
reference 2.19
best 2.09
mean 1.74

Results of the connectivity suggest that the best simulation is able to well infer this

property. Indeed, in figure 4.5.9, the curve of the best simulation underestimates

the connectivity for the lowest threshold of 50 percentile, but it is not so far from
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the reference curve. For higher thresholds the fit improves reaching almost the com-

plete overlapping for the 90 percentile. Also the mean curve improves with higher

thresholds but it is not as good as the best one. This good fit is confirmed by the

connectivity indexes reported in table 4.15, where the best simulation has an index

very close to the reference one while the mean is lower but still quite close.

4.5.2 Results and observations for ’Large ranges’

At a first sight, maps obtained in Large PSO ranges tests are better than ones in

Small PSO ranges one. Indeed, observing the best log-conductivity field in figure

4.5.10, the low-conductivity belt is recognized in the eastern side, while medium

values are inferred on the West. The central high Y zone is localized, even if it

wrongly spreads on the South. The log-storativity field is even better, it recognizes

the western low Z belt and the eastern medium values, where two low-values spots

are correctly identified. As usual, mean fields well identifies patterns but they are

not able to see extreme values.

Diffusivity fields of both the best and the mean simulations correctly infer a high-

value zone in the southwestern corner even if in the reference field this area is less

compacted and more scattered. Moreover, the best simulation wrongly identifies a

high-diffusivity spot on the North. However, inferences are globally good.

Figures 4.5.13 report the log-properties values along five transects. As for previ-

ous tests, the mean simulation has smooth trends that follow reference ones. On

the contrary, the best simulation is more oscillating. Concentrating on the log-

conductivity graph, the best solution approximatively follows the reference trend.

In the first transect it almost overlaps the reference simulation, while in others it

is less precise. Mainly in the last two transects there is a relevant overestimation

between 4 m and 8 m that coincides with the overvalued southern area noticed in

figures 4.5.10. Observing log-storativity transects, the best solution follows the ref-

erence trend, usually recognizing ups and downs but exaggerating them sometimes.

Figures 4.5.14 display good inferences of the probability distributions of the prop-

erties. Looking at the log-conductivity function, the best simulation perfectly over-
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Figure 4.5.10: Best fields, Large PSO ranges test

Figure 4.5.11: Mean fields, Large PSO ranges test

Figure 4.5.12: Diffusivity maps of the reference, best and mean fields, Large PSO
ranges test
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Figure 4.5.13: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, Large PSO ranges test

Figure 4.5.14: Empirical cumulative distribution functions of Y, Z and D, Large
PSO ranges test
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Table 4.16: Statistical parameters comparison, Large PSO ranges test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y ) Ix(Z) Iy(Z)
Reference -6.63 2.61 -6.95 4.92 0.79 2.18 2.42 3.28
Best -6.33 2.29 -6.85 3.38 1.34 3.04 1.28 4.09
Mean -6.42 1.31 -6.48 1.58 2.39 3.29 3.06 5.46

laps the reference pdf for medium values while it underestimates the probability of

highest and lowest values. Moreover, for this property, the mean pdf is also good,

inasmuch it overlaps the reference pdf for medium and high values, even if it gets

a completely wrong estimation of lowest values. Even in the log-storativity distri-

butions, the best pdf overlaps the reference one for medium-high values while it

still underestimates lowest values. The mean pdf is more steep than others pdfs

and it is not able to infer correctly extreme values, mainly lowest ones. Due to

the good best inferences of Y and Z, the diffusivity distribution of the best simula-

tion is very close to the reference one, the bigger error is for lowest diffusivity values.

Table 4.16 confirms that the best simulation well infers reference statistics, as al-

ready noticed in the distributions figures 4.5.14. In this table it is possible to notice

how both means are close to the reference one and variances are much closer than

previous tests. Also the integral scales are slightly better than before, even if there

are relative errors around 50%. For the mean simulation, same observations can be

done, except for the variances which are strongly underestimated.

Scatter plots of the amplitude and phase of the signal in figures 4.5.15 show how

the best simulation generally underestimates the amplitude of observations while

it correctly estimates the phase except for two points far from the diagonal due to

the sixth well, located in a low diffusivity zone that causes a poor signal transmission.

Table 4.17(a) reports mean absolute errors that are smaller than errors in the

Small PSO ranges test even if they are not small. Furthermore, the overall effi-

ciency is quite good, with a modified NS efficiency of 0.69. Both amplitude and

phase NS efficiencies are higher, noticing that the phase efficiency decreases mainly

due to the sixth well, as mentioned in the scatter plots comment.
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Figure 4.5.15: Scatter plots of simulated versus observed values of amplitude and
phase, Large PSO ranges test

Figure 4.5.16: Breakthrough curves of realizations, Large PSO ranges test
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Table 4.17: Mean absolute errors of fields and efficiency coefficients, Large PSO
ranges test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 1.505565 1.661928
Mean 1.17339 1.2663

(b)

NSEE
signal 0.69
amplitude 0.83
phase 0.70

Breakthrough curves of the several simulations reported in figure 4.5.16 are scat-

tered along a big range of time. The majority is steep at first and then it has a long

tail due to slowest particles. The curve of the best simulation has a trend similar to

the reference one but it is much faster, indeed fastest particles arrive at the end of

the central zoom of interest after 50 d (75 d for the reference ones) and slowest after

almost 200 d (more than 350 d for the reference ones). The curve of the average of

all simulations has the same trend but it is even faster. Even if previous results of

this test are good, the breakthrough curve is not yet fully captured.

Figure 4.5.17: Connectivity functions (50,
75, 90 percentile), Large PSO
ranges test

Table 4.18: Connectivity indica-
tor CI, Large PSO
ranges test

CI
reference 2.19
best 1.82
mean 1.77

Finally looking at the connectivity parameter, the best simulation is able to repro-

duce the connectivity function of the reference fields. Indeed, best connectivity

function is very close to the reference curve for lowest thresholds while the fit is
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slightly worst for the highest threshold (90 percentile). The mean simulation ap-

proximatively fits the reference curve even if it tends to overestimate it. This ap-

proximatively good fit of the best simulation is confirmed by the connectivity index

in table 4.18, while the index of the mean simulation is slightly lower and farer from

the reference index.

4.5.3 Observations

The reproduction of a heterogeneous field for both log-conductivity and log-

storativity was here done in two tests characterized by different ranges where parti-

cles can search on the PSO algorithm.

The first one is characterized by small search ranges around the means of the

reference. This case could apply in reality if there is previous information about

the field. Looking at obtained results in general, it is evident how this test with a

decent efficiency of 0.59 obtains good but not precise maps of properties’ hetero-

geneity and an incorrect log-conductivity pdf and statistics. On the contrary, pdf

and statistics of the log-storativity field are reproduced relatively well. Regarding

the contaminant transport results, the reference breakthrough curve is completely

misunderstood by the best simulation, while the connectivity function of the best

solution is quite close to the reference one, especially for higher thresholds.

The latter test is characterized by large ranges of the PSO optimization. Observing

all results, there is a general improvement in the reproduction. First of all, hetero-

geneity maps of the best simulation are very close to the reference ones looking both

at values and at patterns. Secondly, probability distributions are well inferred ex-

cept for lowest values which probability is underestimated for both properties. Still,

the transport results are the worst: breakthrough curves are not yet reproduced cor-

rectly even if they are better than ones of the previous test, while the connectivity

function of the best solution is close but not overlapping the reference one.

As in the previous section of homogeneous properties, the best simulation returns

better results than the average of all realizations. Indeed, it is better on identifying

extreme values, therefore heterogeneity, pdfs and statistics.

It is possible to conclude from this section that the time-consuming Large PSO
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ranges test returns better results on heterogeneity inference even if it is still not able

to capture the particle transport behavior of the reference field. This better solution

of the second test was unexpected but, looking for the cause, it was noticed the best

field has high correct variances of the central area of interest but low incorrect

variances of the whole field. This probably means that PSO ranges for variances

has to be set large enough to allow the inferred field to adapt to observations in the

central area, completely misunderstanding values in external areas not of interest.

4.6 False positives and negatives

The aim of this section is to assess the accuracy and the effectiveness of the

methodology in case distributions of log-conductivity or log-storativity are incor-

rectly assumed.

First case considers both Y and Z true fields characterized by a Gaussian distribu-

tion, however in the inversion it is assumed only the latter as a stochastic process

while the former is assumed spatially constant (KNeg). The second case is similar

to the previous one, but Z is the property considered homogeneous in the entire field

(SNeg). The third case considers a true field where Y is a stochastic process while Z

is homogeneous, however inversion assumes both properties as stochastic processes

(KPos). The last case is similar to the previous one, but the Y field is wrongly

assumed: the reference field is homogeneous, while it is inverted as heterogeneous

(SPos). A summary table is reported following to show true parameters and ranges

used.

4.6.1 Results and observations for ’K false negative’

Figures 4.6.1 and 4.6.2 show the inferred fields of best and mean simulations. The

reference fields are not here reinserted because they were already reported in figures

4.5.1, the difference is that here the conductivity field is assumed homogeneous and

therefore it does not show any similarity on patterns and the value is close to the

average of the field. Neglecting this field that is obviously wrong passing from a

reference field with a high variance of 4 to a homogeneous field (variance equal to

0), the focus of the discussion in this test is the inference of the log-storativity field.
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Table 4.19: Parameters and ranges for false positive and negative tests

mean(Y ) var(Y ) mean(Z) var(Z) Ix Iy

KNeg
true parameters -8 4 -8 4 3 5

range
-9.50 0.00 -9.50 3.00 1.00 1.00
-6.50 0.00 -6.50 5.00 7.00 7.00

SNeg
true parameters -8 4 -8 4 3 5

range
-9.50 3.00 -9.50 0.00 1.00 1.00
-6.50 5.00 -6.50 0.00 7.00 7.00

KPos
true parameters -8 0 -8 4 3 5

range
-9.50 0.00 -9.50 3.00 1.00 1.00
-6.50 6.00 -6.50 5.00 7.00 7.00

SPos
true parameters -8 4 -8 0 3 5

range
-9.50 3.00 -9.50 0.00 1.00 1.00
-6.50 5.00 -6.50 6.00 7.00 7.00

Figure 4.6.1: Best fields, K-false negative test

94



Figure 4.6.2: Mean fields, K-false negative test

Figure 4.6.3: Diffusivity maps of the reference, best and mean fields, K-false nega-
tive test

The field is very similar to the reference field, the eastern area is correctly identified

as a medium-high storativity area with a branch on the North. However, the best

solution misses to identifies the two corners with lowest storativity. As for previous

tests, the mean simulation succeeds on the pattern reproduction but it is not able

to recognize extreme values.

Figures 4.6.3 show how best and mean simulations are able to differentiate low

and medium diffusivity areas. However, they completely miss to reproduce highest

values of diffusivity. This of course is due to the wrong assumption of a homoge-

neous conductivity fields that leads to not consider high values on the western area.

Observing transects in figure 4.6.4, clearly the log-conductivity figure shows the
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Figure 4.6.4: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, K-false negative simulation

homogeneous inferred simulations that do not reproduce the real heterogeneity. In

the log-storativity figure, instead, the best simulation well follows the reference field

in its oscillating tendency. However, in this figure it is noticeable what was already

evident on the map 4.6.1, on the left of first and last two transects there is s strong

overestimation of Z values. This way two spots of low values are completely missed.

Concerning the mean simulation, it follows quite precisely the reference trend but

it is flattered and it does not reproduces smaller oscillations.

The probability distributions of the properties in figures 4.6.5 display how wrong

is the inference of the log-conductivity due to the incorrect original assumption. On

the contrary, it reports quite a good reproduction of the log-storativity pdf, even if

it strongly understates the probability of lowest values. The mean curve overlaps

to the reference pdf for medium values but it misses extreme storativities. Mainly

due to the incorrect inference of the conductivity, the diffusivity distribution is also

incorrect. It does not consider highest values: the reference diffusivity field reaches

values of about 300 m2/s while the best simulation does not even reach 50 m2/s.

The main diffusivity field is very flattered and consequently the curve is almost ver-

tical without upper tail.

Table 4.20 reports all inferred statistics. It is evident from this table that the best

simulation succeeds on estimating the log-conductivity average but, clearly, it eval-
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Figure 4.6.5: Empirical cumulative distribution functions of Y, Z and D, K-false
negative test

Table 4.20: Statistical parameters comparison, K-false negative test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y ) Ix(Z) Iy(Z)
Reference -6.63 2.61 -6.95 4.92 0.79 2.18 2.42 3.28
Best -6.65 0.00 -6.33 3.09 2.46 3.59
Mean -6.82 0.00 -6.76 1.23 3.23 4.84
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uates a wrong variance equal to 0. On the other hand, looking at the log-storativity

statistics, the mean of the best simulation is enough close to the reference mean of

the central area and also the variance has a decent inference. Instead, surprising

are the simulated integral scales that in previous tests were not well inferred while

here they are very close to the reference ones. Observing the statistics of the mean

simulation, means are well inferred but variances are underestimated, the Y variance

for assumption and the Z variance for a faulty inference.

Figure 4.6.6: Scatter plots of simulated versus observed values of amplitude and
phase, K-false negative test

Scatter plots in figures 4.6.6 illustrate how the periodic signal is simulated by the

best solution considering its two components: amplitude and phase. The amplitude

is rather diffused with tests both underestimated and overestimated, while the phase

is more concentrate along the diagonal except for some outsiders due to sixth and

seventh wells. These points probably cause the low phase efficiency (reported in

table 4.21(b)) that strongly reduces the overall signal efficiency.

Table 4.21(a) lists mean absolute errors that are rather high, especially for the

log-storativity field. Indeed, the log-conductivity field is inferred as a homogeneous

field with an average value of the reference field, therefore errors are lower in aver-

age. While for the heterogeneous Z field it is easier to have big discrepancies.

98



Table 4.21: Mean absolute errors of fields and efficiency coefficients, K-false negative
test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 1.2669 1.6093
Mean 1.2672 1.2922

(b)

NSEE
signal 0.50
amplitude 0.83
phase 0.34

Figure 4.6.7: Breakthrough curves of realizations, K-false negative test

In this test, breakthrough curves are not a useful result because they strongly

depend on the conductivity field. Therefore, incorrectly assuming a homogeneous

field leads to have a completely different type of curves, as illustrated in figure 4.6.7.

Indeed, homogeneous fields result in a uniform movement of particles that arrive

all at the same time. On the contrary, a heterogeneous field is characterized by

preferential pathways where particles are much faster than outside this routes.

As for breakthrough curves, connectivity depends mainly on the conductivity

field, that here is incorrectly assumed. Indeed, looking at the connectivity function

in figure 4.6.8, both best and mean simulations are not able to reproduce the ref-

99



erence connectivity function. This incorrect reproduction is evident also in indexes

reported in table 4.22.

Figure 4.6.8: Connectivity functions (50, 75,
90 percentile), K-false negative
test

Table 4.22: Connectivity indica-
tor CI, K-false nega-
tive test

CI
reference 2.19
best 1.00
mean 1.00

4.6.2 Results and observations for ’S false negative’

Figure 4.6.9: Best fields, S-false negative test

Figures 4.6.9 and 4.6.10 display the inference of reference fields 4.5.1 obtained by
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Figure 4.6.10: Mean fields, S-false negative test

Figure 4.6.11: Diffusivity maps of the reference, best and mean fields, S-false neg-
ative test

best and mean simulations incorrectly assuming that the log-storativity field is ho-

mogeneous. The best simulation is able to approximatively infer the log-conductivity

field, indeed it is reproduced the eastern low-values belt and the medium-high con-

ductivity area on the West. The main incorrectness is the movement to the left of

the spot with highest values. On the contrary, the mean simulation barely notices

the western area with higher values.

The reference diffusivity field in figure 4.6.11 is reproduced rather well by the best

simulation that correctly infers the pattern but it is not able to see highest values.

This is due to the assumed homogeneous field of the log-storativity field that does

not allow to see areas with lowest values. Furthermore, looking at the field inferred

101



by the mean simulation, it does not even infer the diffusivity pattern.

Figure 4.6.12: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, S-false negative test

Observing the five transects of the log-conductivity in figure 4.6.12, it is evident

how the best simulation is partially able to follow the reference curve. Mainly the

second and third transects are incorrectly inferred. Moreover, it can be noticed in

these two transects how the area of highest values between 6 m and 12 m is moved

to the left. The mean simulation is flattered, as in all tests, but in this case it is

always underestimating reference values. Regarding log-storativity transects, best

and mean simulations are perfectly overlapping and flat due to the initial assump-

tion.

From figures 4.6.13, it is evident how few are the simulations respect to other tests.

This is due to the fact that in the post-processing only simulations with positive

efficiency are considered, in this test only 14 out of 40 simulations are positive. The

log-conductivity pdf of the best simulation is actually the closest pdf to the reference

one. They overlap for highest values, while the best simulation overestimates the

probability of lowest values. The pdf of the mean simulation is incorrect, it over-

states probability of all values and it does not consider highest values. Observing

the log-storativity pdf, same observation done for the Y pdfs of the K-false negative

observations can be here replied. Indeed, the statistics of the Z field are completely

wrong due to the incorrect initial assumption. Consequently, the diffusivity pdf is

also incorrect because it strongly depends on both conductivity and storativity.
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Figure 4.6.13: Empirical cumulative distribution functions of Y, Z and D, S-false
negative test
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Table 4.23: Statistical parameters comparison, S-false negative test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y ) Ix(Z) Iy(Z)
Reference -6.63 2.61 -6.95 4.92 0.79 2.18 2.42 3.28
Best -6.99 3.32 -6.58 0.00 1.99 3.83
Mean -8.97 1.37 -6.62 0.00 2.99 4.95

Table of statistic parameters 4.23 shows how much incorrect are statistics of the

log-storativity field, obviously the variance but also the mean is not accurate for

both best and mean simulations. For what regards the log-conductivity field, the

best simulation approximate the mean with a relative error of 5% and the variance

with a relative error of 30%. The mean simulation obtains still worst statistics

completely misunderstanding the mean and underestimating the variance. Also the

integral scales are not correctly inferred, they are strongly overestimated.

Figure 4.6.14: Scatter plots of simulated versus observed values of amplitude and
phase, S-false negative test

As for the previous test, scatter plots in figure 4.6.14 display a scattered amplitude

scatter plot, while the phase one is generally more concentrate along the diagonal

with some external points mainly corresponding to sixth and seventh wells that are
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Table 4.24: Mean absolute errors of fields and efficiency coefficients, S-false negative
test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 1.7083 1.7755
Mean 2.5619 1.7712

(b)

NSEE
signal 0.31
amplitude 0.68
phase 0.09

located in low diffusivity areas.

Table 4.24(a) reports high mean absolute errors for both fields. Moreover, it is

confirmed that the mean field is completely wrong on the Y field. The efficiencies

table 4.24(b) shows a low overall signal efficiency of 0.31 mostly due to the very low

phase efficiency.

Figure 4.6.15: Breakthrough curves of realizations, S-false negative test

The majority of breakthrough curves inferred in this test are characterized by a

very long tail but the best simulation has a curve close to the reference even if it

does not follows its trend. The mean simulation results in a breakthrough curve

characterized by slower particles. Slowest particles of the mean simulation arrive
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after about 900 d while the slowest ones of the reference field arrive after not even

400 d.

Figure 4.6.16: Connectivity functions (50, 75,
90 percentile), S-false negative
test

Table 4.25: Connectivity indica-
tor CI, S-false nega-
tive test

CI
reference 2.19
best 1.71
mean 2.73

As for the breakthrough curves, results of the connectivity confirm the goodness

of the best simulation to recognize fast pathways and the lacking reproduction of

the mean simulation. This is clearly visible in figure 4.6.16 where the mean al-

ways underestimates the connectivity due to the general underestimation of the

log-conductivity.

4.6.3 Results and observations for ’K false positive’

The last two tests aim to understand how the model works inferring a homoge-

neous field that is assumed heterogeneous in the PSO algorithm. In the first test,

the log-conductivity field is homogeneous, as visible in figures 4.6.17. The best sim-

ulation in figures 4.6.18 imprecisely inferred fields. Indeed, the Y field is basically

homogeneous with two spots of low values and two of high values. These spots surely

influence statistical parameters, such as the variance. Observing the log-storativity

field, it seems quite different because the two western corners are not identified as

low values, while the southern spot is shifted more centrally. Moreover, the best
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Figure 4.6.17: Reference fields, K-false positive test

Figure 4.6.18: Best fields, K-false positive test
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Figure 4.6.19: Mean fields, K-false positive test

Figure 4.6.20: Diffusivity maps of the reference, best and mean fields, K-false pos-
itive test

simulation infers a zone of high values that is not present in the reference field. The

mean simulation captures quite well the homogeneous Y field, except for an inferred

low-values spot, and it is able to correctly infer the Z pattern even if it does not see

lowest values.

The pattern of the reference diffusivity field is inferred by best and mean simula-

tions but highest values are wrongly located by the best simulation or they are not

placed at all by the mean simulation. Regarding the incorrect location of highest

values for the best simulation, it is mainly due to the wrong placement of lowest

values on the log-storativity field. While the missed identification of highest values

for the mean simulation is still mainly due to the leaking inference of extreme low

values in the Z field.
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Figure 4.6.21: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, K-false positive test

From figures 4.6.21 reporting properties values along five transects, it is evi-

dent how simulations are not able to reproduce correctly the homogeneous log-

conductivity field. Indeed, best simulation is really oscillating (see the fourth tran-

sect) and it understates Y values in the first three transects. The mean simulation

is smoother than the best one but however it still reproduces the field as heteroge-

neous. Observing log-storativity transects, it is noticeable how in central transects

best and mean simulations follow the trend of the reference field. On the contrary, in

the first transect the best simulation always understates the reference curve except

for the low-values spot on the left, while the mean simulation is almost flat. The

last transect is incorrectly inferred by the best simulation that trades places of low

and high-values spots, while the mean simulation does not even see these spots.

In order to understand the statistical reproduction of simulation, probability dis-

tributions are now compared. As expected, simulations are not able to correctly re-

produce Y pdf because the reference field is homogeneous and therefore its function

is vertical, while simulations are Gaussian fields with higher variances and therefore

characterized also by extreme values. On the contrary, the Z pdf is approximatively

reproduced by simulations. Indeed, it is possible to see how the pdf of the best

simulation is quite close to the reference one. They overlap for lowest values while

the best simulation overvalues probability of medium values and undervalues one

of highest values. Moreover, it considers higher values than ones of the reference

109



Figure 4.6.22: Empirical cumulative distribution functions of Y, Z and D, K-false
positive test
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Table 4.26: Statistical parameters comparison, K-false positive test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y ) Ix(Z) Iy(Z)
Reference -8.00 0.00 -6.95 4.92 2.42 3.28
Best -8.63 3.54 -6.66 7.03 1.63 3.18 0.85 2.99
Mean -8.34 1.53 -6.72 1.40 1.17 3.96 3.29 4.80

field. The mean simulation captures central values but it does not infer extreme

values, therefore it is more steep. Despite these incorrectnesses for log-conductivity

and log-storativity pdfs, the reference diffusivity pdf is inferred rather precisely by

the best simulation, while the mean one does not reproduce diffusivity values higher

than 20 m2/s, while the reference field has diffusivity values reaching 150 m2/s.

Table 4.26 confirm what just noticed on statistics. Indeed, variances of the Y

field are much higher than 0, in particular the best simulation infers a field much

more heterogeneous. On the contrary means are quite close to the reference value.

Moving to the Z field, means are inferred precisely while variances are incorrect: the

best simulation infers a very heterogeneous field while the mean simulation infers a

smoothed field. Integral scales are also incorrect.

Figure 4.6.23: Scatter plots of simulated versus observed values of amplitude and
phase, K-false positive test
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Looking scatter plots of amplitude and phase of signal observed in figures 4.6.23,

it is evident how the amplitude plot is characterized by points close to the diagonal

while the phase one has almost half of points far from the diagonal and the scatter

plot results very scattered. As noticed in previous tests, a bad phase scatter plot

and therefore a low phase efficiency results in a low overall signal efficiency. This is

confirmed by table 4.27(b) where the high amplitude efficiency is not so helpful in

the overall efficiency.

Table 4.27: Mean absolute errors of fields and efficiency coefficients, K-false positive
test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 1.6444 2.5411
Mean 1.0394 1.3517

(b)

NSEE
signal 0.34
amplitude 0.90
phase 0.39

Figure 4.6.24: Breakthrough curves of realizations, K-false positive test

Breakthrough curves of this test in figure 4.6.24 are close to the reference curve

but the majority of them has a completely different shape. Indeed, the reference

curve is vertical due to the homogeneous log-conductivity field, while other curves
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are mostly characterized by a long tail for slowest particles. This results in best

and mean simulations with curves that are very precise on the arrival time of fastest

particles while they overstate arrival time of slowest ones, mainly the best simulation.

Also connectivity functions have completely different shapes. Indeed, the refer-

ence field has a constant connectivity function for all the field length while it changes

for all other Gaussian simulations that strongly underestimate values. Important to

specify that there is only one graph because in this case thresholds are percentiles

of a constant field, therefore they are equal. The incorrect inference of connectivity

is also noticeable from connectivity indexes in table 4.28.

Figure 4.6.25: Connectivity functions (50, 75,
90 percentile), K-false positive
test

Table 4.28: Connectivity indica-
tor CI, K-false posi-
tive test

CI
reference 1.00
best 1.60
mean 1.41
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Figure 4.6.26: Reference fields, S-false positive test

Figure 4.6.27: Best fields, S-false positive test
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Figure 4.6.28: Mean fields, S-false positive test

4.6.4 Results and observations for ’S false positive’

Figures 4.6.26 show reference fields for this test in which the log-storativity field is

homogeneous but it is considered heterogeneous for assumption. The homogeneous

field is inferred by the best simulation, figures 4.6.27 as slightly heterogeneous ex-

cept for the relevant low-values spot on the North. This is an error that will lead

to a lower efficiency and a relevant variance of the simulated field. On the contrary

the mean Z field shows in figures 4.6.28 some heterogeneity but it is very light and

it can be considered homogeneous. Regarding the log-conductivity field, it is ap-

proximatively inferred by the best simulation. The field recognizes the high-values

spot in the center and the majority of middle values but it infers two horizontal

belts characterized by low values. The southern one is partially correct because the

southern corners of the reference Y fields have also low values, but the northern one

with very low values is not linked to the reference field that in that area has medium

values. As usual, the mean simulation succeeds on identifying the pattern but it

misses extreme values.

Figures 4.6.29 show how badly the diffusivity field is inferred by simulations. In-

deed, the best simulation wrongly identifies northeastern areas with high diffusivity

and it does not see the low-values belt on the East. While the mean simulation sees

the high diffusivity area on the South-West but it is too compact and large.
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Figure 4.6.29: Diffusivity maps of the reference, best and mean fields, S-false posi-
tive test

Figure 4.6.30: Transects of reference, best and mean fields in wells and power point
rows, Y and Z fields, S-false positive test

Transects in figure 4.6.30 show how properties are inferred in fivetransects. From

the log-storativity transects it is visible how the mean simulation is able to reproduce

this homogeneous field. It is almost flat but always underestimating the reference.

The best simulation also reproduces quite precisely the reference but it overstates

some points, mainly on the northern zone. Concerning log-conductivity transects,

the mean simulation is still flatter than the best one but it follows anyway the gen-

eral trend of the reference field. The best simulation better follows the trend but

in first and lasttransects the inference strongly undervalues the reference field in

almost all the transect length.

Comparing probability distributions is possible to understand how statistics of
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Figure 4.6.31: Empirical cumulative distribution functions of Y, Z and D, S-false
positive test
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Table 4.29: Statistical parameters comparison, S-false positive test

Field mY σ2
Y mZ σ2

Z Ix(Y ) Iy(Y ) Ix(Z) Iy(Z)
Reference -6.63 2.61 -8.00 0.00 0.79 2.18
Best -7.02 4.58 -8.37 2.25 7.39 -0.08 7.21 0.98
Mean -6.46 1.08 -8.97 0.19 1.99 3.70 -0.77 3.80

the field are inferred. Regarding the Z pdfs, it is evident how simulations are not

able to infer the reference curve because this describes a homogeneous field while

they describe heterogeneous fields with variable variances. The best simulation is

a typical Gaussian distribution with a long tail for lowest values. The mean sim-

ulation is much more steep and has a concentrated range of values, however it is

shifted to lower values and it does not center the mean. Looking at the Y pdf, the

function of the best simulation overlaps the reference pdf for medium-high values

but it overvalues the probability of lowest values. The mean simulation strongly

underestimates the probability of lowest values but it follows the reference pdf for

highest values even if these two curves do not overlap. Finally the probability dis-

tribution function of the diffusivity field is reproduced quite well by best and mean

simulations. The pdf of the best simulation is the closest pdf to the reference even

if it undervalues the probability of all diffusivity values. The mean simulation gets

also a nice function especially because it overlaps the reference one for highest values.

Table 4.29 shows what already said previously. Concerning the homogeneous Z

field, the best simulation infers a mean close to the reference one but it is wrong

on the variance estimation. On the contrary, the mean simulation considerably un-

dervalues the mean but it nicely infers a low variance recognizing the homogeneous

field. The Y field is inferred by both best and mean simulations precisely for what

concerns the mean while the reference variance is overvalued by the best simulation

and it is undervalued by the mean one. Integral scales are absolutely incorrect.

Even if statistical parameters seem to be incorrectly inferred, scatter plots show a

decent reproduction of observations in wells’ locations, both for the amplitude and

the phase of the signal. This is also noticeable in table 4.30(b) where both ampli-

tude and phase efficiencies are higher than 0.90 and consequently the overall signal

efficiency is also high.
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Figure 4.6.32: Scatter plots of simulated versus observed values of amplitude and
phase, S-false positive test

Table 4.30: Mean absolute errors of fields and efficiency coefficients, S-false positive
test

(a)

Field Mean(|∆Y |) Mean(|∆Z|)
Best 1.9439 1.0907
Mean 1.1233 0.9719

(b)

NSEE
signal 0.86
amplitude 0.92
phase 0.90

In order to analyze the reproduction of the behavior of the reference field in sit-

uations of contaminant transport, breakthrough curves are an important result. In

this case, curves of simulations are quite different from the reference because they

tend to have longer tails, therefore longer arrival times of slowest particles. Indeed,

it is evident how the best simulation produces a curve that has very short arrival

times for faster particles and very long times for slowest one, this is confirmed by the

huge connectivity index in table 4.31. On the contrary, the mean simulation results

in a curve that is almost vertical, with first particles as fast as reference ones and

last particles much faster than reference ones. However, it has a better reproduction

of curves respect to the best simulation.
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Figure 4.6.33: Breakthrough curves of realizations, S-false positive test

Figure 4.6.34: Connectivity functions (50, 75,
90 percentile), S-false positive
test

Table 4.31: Connectivity indica-
tor CI, S-false posi-
tive test

CI
reference 2.19
best 10.01
mean 1.30

Looking instead at connectivity functions in figure 4.6.34, mean simulation infers

the reference function better than the best simulation only for the lowest threshold,

while for higher one the best simulation has a very good inference.
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4.6.5 Observations

The aim of this section is to understand the robustness of the model to incorrect

initial assumptions that inevitably lead to wrong reproduction. This is done by

two type of tests: false negative where an highly heterogeneous property is assumed

homogeneous, false positive where a homogeneous property is assumed as heteroge-

neous.

The first test, K-false negative, obviously does not reproduce correctly the log-

conductivity field but it reproduces quite well log-storativity heterogeneity, pdfs and

statistics. The main incorrectness is the lacking identification of the two low-values

spots. In any case, the total efficiency is quite high, 0.50. Due to the incorrect as-

sumption of conductivity field, both breakthrough curve and connectivity function

are wrongly reproduced.

The S-false negative test has a lower overall efficiency of 0.31. Indeed, obviously the

log-storativity field is incorrect and the log-conductivity field is reproduced quite

well even if there is a movement of the high-values spot. The log-conductivity pdf

overlaps to the reference one for highest values but it overvalues the probability of

low-medium values. The efficiency results quite low because the observations are

not reproduced correctly how is noticeable from the two strewn scatter plots, mainly

the phase one. Results about contaminant transport are relatively good.

The false positive test for the log-conductivity aims to reproduce a homogeneous

reference field not knowing this a priori, therefore the variance can be searched by

the PSO algorithm in a large range from 0 to 6. The overall efficiency of this test is

only 0.34. Indeed, maps of the best simulation show a too heterogeneous Y field and

a Z field with shifted low-values spots and with a high-values spot that is absent in

the reference. However, the probability distribution functions are nice, except for

the Y pdf. Inferred breakthrough curves and connectivity functions are far from the

reference ones due to the missed reproduction of the homogeneous log-conductivity

field.

The S-false positive test results in a general efficiency much higher than the other

false positive test, 0.86. The best simulation is able to reproduce an almost homoge-

neous Z field, except for a low-values spot, and also the Y field is nice even if there
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are some incorrectnesses. As in the previous test, inferred pdfs well reproduce the

reference one, except for the Z field. Breakthrough curves are still far from the ref-

erence one, while connectivity functions for highest thresholds are precisely inferred.

From these false tests it is possible to conclude that doing a wrong assumption

is obviously damaging for the overall simulation, except for the false positive of the

log-storativity. Indeed, it is expected that false positives result in better simulations

due to the fact that the possible range of the variance is large enough to include

homogeneity, variance equal to 0. On the contrary, in false negatives the wrong

assumption does not allow any adaptation. However, only the false positive of Z has

a high signal efficiency, even if single results seem not to be so nice, mainly inferred

statistical parameters.
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5
Conclusions

In this study we proposed to use the steady-periodic model for oscillatory pump-

ing test in a Monte Carlo framework in order to characterize hydrogeological for-

mations. Using the model with governing equations in the Fourier space, we were

able to overcome limitations of existing models for aquifers understanding, such as

computational time, consideration of heterogeneity and comprehension of all possi-

ble realizations. Below are reported in detail different contributions of this study.

First, we discuss the choice of reproduction of the only non-Gaussian field: the

Chessboard. This test was at first introduced to try out the model in a simple field,

characterized by a block-type variability. However, the good inference showed to be

not only a positive starting point for generally heterogeneous fields, but it showed

how Gaussian realizations of this test can nicely reproduce a geometric field. In-

deed, their easy adaptability to observational data make them succeed in simulating

a field that is really different from a Gaussian one.

By looking at results of all tests on random fields, where at least one of the prop-

erties’ fields is heterogeneous, another observation can be made on the comparison

between realizations of the ensemble average of all inversions and of the best re-

alization of the Monte Carlo framework. The former returns inferred properties’

maps where the heterogeneity pattern is correctly identified and reproduced but

extreme values are always absent. Therefore, statistics of the properties are incor-

rect, mainly because variances are too low. On the contrary, the best simulation

returns inferred fields whose heterogeneity is close to the one taken as reference,
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despite it is not identical. The best realization notices and places extreme values

even if they are sometimes shifted in the map. However, statistical parameters are

usually closer to the reference field as for probability density functions. This is an

important observation because many models actually used invert observational data

in order to obtain the average of all simulations, therefore to evaluate deterministi-

cally the field. However, it is mainly the uncertainty to allow the reproduction of

extreme values and that makes maps of the best simulation closer to reference fields.

Thirdly, realizations of the model are generally able to infer accurately statistical

parameters and probability distribution functions of properties. Local properties

in the field are approximatively reproduced giving an indicative idea of their het-

erogeneity. Moreover, for situations of pollutant spreading, contaminant transport

on the field is crucial but difficult to infer even with the model proposed in this

study. Indeed, breakthrough curves have never been correctly reproduced by simu-

lated fields. Inferred fields produce curves that surround the reference one but best

and mean simulations never overlap it, mainly arrival times of slowest particles are

different. On the other hand, the connectivity function is usually reproduced quite

precisely by the best simulation. It is a good result because it is a relevant indica-

tion of the presence of fast pathways where contaminant particles can move. Even

if arrival times of particles are wrongly inferred, the connectivity function gives an

idea about the possibility for particles to move fast and therefore it is an indication

of contaminant spreading risk. This approximate information could be very useful

for sensible areas.

We discuss now the comparison between Small and Large PSO ranges tests. This

paper applies a model that uses as input ranges of data where the PSO algorithm

searches statistical parameters of the field. If prior information of the field is avail-

able, it is possible to narrow these ranges in order to speed the model and reduce the

computational time. Moreover, inferred fields were expected to have higher efficien-

cies than those from Large PSO ranges test because parameters are closer to the real

value. Instead, the latter test returns better results both in terms of heterogeneity

maps and statistics. Large ranges on the PSO algorithm allow the inferred field to

adapt to the available observations about the area of interest, even if the inference

of the external area is completely misunderstood in its values and statistics. Our
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comment is mainly directed to ranges of variances, therefore a good compromise

could be to have small ranges for means and large ones for variances. By applying

this arrangement the adaptation of the inferred field is allowed but computational

time decreases.

Final tests, where the spatial variability of the reference field was wrongly as-

sumed, make clear how obviously damaging is to do an incorrect initial assumption.

However, looking at heterogeneity maps of the best simulation, it seems that log-

storativity is more adaptable to observations than log-conductivity. For example,

in performing the K-false negative test it is evident how well the storativity is able

to follow the reference trend, while the same adaptation does not happen for the

conductivity field when performing the S-false negative test. Finally, false positive

tests were carried out: the reference field of one property is homogeneous and it is

assumed heterogeneous in the inversion with the possibility to be inferred with very

low variance. Also in this case, log-storativity results more adaptable because in

the S-false positive test the Z field results almost homogeneous, while the Y field is

more heterogeneous in the K-false positive test.

Following the previous observation on adaptation and looking at Y-Z error ta-

bles of all tests, it is possible to conclude that the applied model is more sensible

to storativity than conductivity. The general rule noticed is that tests with a low

efficiency of the best simulation are all characterized also by a low efficiency of the

phase and by high mean absolute errors of the log-storativity field, while the error

of the log-conductivity field seems not to be so relevant. Indeed, for each group of

tests (one homogeneous field, both heterogeneous fields, false negatives and posi-

tives) the test with best reproduction and highest efficiency is always the one with

lowest mean absolute error of Z. This is understandable given that the model is ap-

plied to an oscillatory pumping test and therefore it works in transient conditions.

Indeed, it is widely known that in steady conditions conductivity is the relevant

parameter, while in transient conditions storativity turns into the main parameter

even if conductivity still influences. However, motivations of this observation are

focused on results of the best simulation that is identified by maximizing the mod-

ified NashSutcliffe efficiency. Could be that using another formula to maximize on

the inversion process leads to different best simulations. Even so, it is reasonably
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conceivable that different formulas lead to slightly different best realizations but

there are not significant changes. Therefore, it could be recommendable to combine

this model which accurately infers storativity of the field with an alternative model

for field’s connectivity estimation.

In conclusion, we summarize the main point highlighted by this study. First, the

best simulation is usually able to accurately reproduce the field while ensemble aver-

age of all inversions identifies the heterogeneity pattern, but it lacks in estimation of

extreme values therefore misunderstanding statistics of the field. Second, contami-

nant transport remains difficult to infer accurately: breakthrough curves are never

correctly reproduced, while connectivity functions are approximatively inferred by

the best simulation. Third, when using the PSO algorithm, large ranges of variances

should be set as input in order to let the inference adapt to observations. Finally, the

model better reproduces storativity than conductivity, due to working conditions on

the field.
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Glossary of Notations

α Geoformation compressibility [T 2L/M ]

β Water compressibility [T 2L/M ]

γ Liquid unit weight [M/(L2T 2)]

Γd Dirichlet boundary

Γn Neumann boundary

Γw Linearized water table boundary

θ Unknown vector with structural parameters of the geostatis-

tical model of spatial variability, on the inversion procedure

µ Fluid viscosity [M/(LT )]

ρ Fluid density [M/L3]

σ2
Y Variance of the log-conductivity [-]

σ2
Z Variance of the log-storativity [-]

τ Connectivity function [-]

Φω Phasor, a complex-valued field variable [-]

ω Frequency [rad/T ]

ωinertia Inertia weight of the PSO algorithm [-]

Ω Domain of interest

= Forward nonlinear operator

a Unknown vector of Y and Z values, on the inversion procedure

a Vector of prior estimates of a, on the inversion procedure

A non-Hermitian symmetric matrix, on the COCR solver [-]

b Saturated thickness of the aquifer [L]
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c1 Constant cognitive learning factor, on the PSO algorithm [-]

c2 Constant social learning factor, on the PSO algorithm [-]

Ca Covariances function of a, on the inversion procedure [-]

Cv Covariances function of v, on the inversion procedure [-]

CY Axisymmetric exponential covariance function, on the inver-

sion procedure

[-]

CI Connectivity index [-]

d Distance [L]

dxi Distance in i-th direction [L]

D Diffusivity [L2/T ]

e Anisotropy ratio [-]

g Gravitational acceleration [L/T 2]

gkbest Global best position, index k refers to the iteration, on the

PSO algorithm

[L]

h Head change from an initial steady condition [L]

H Hydraulic head [L]

Hobs Observed head variations in observing wells locations [L]

Hobs Mean of observed head variations in observing wells locations [L]

Hsim Simulated head variations in observing wells locations [mL]

IY h Horizontal spatial scale of conductivity [L]

IY v Vertical spatial scale of conductivity [L]

k Intrinsic permeability of the soil [L2]

K Conductivity [L/T ]

Kef Effective hydraulic conductivity [L/T ]

KG Geometric conductivity [L/T ]

KH Harmonic conductivity [L/T ]

mY Mean of the log-conductivity [-]

mZ Mean of the log-storativity [-]

n Fraction of void space [-]

n Outward normal of a certain boundary [-]

ne Effective porosity [-]

Nω Number of frequencies used [-]

Nθ Number of parameters of the geostatistical model of spatial

variability

[-]
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Nk Number of measurements [-]

Npp Number of pilot points [-]

Ntests Number of tests [-]

Nws Number of wells [-]

ntime Number of time steps [-]

pkbest,i Partial best position, indexes i and k refer respectively to the

particle and the iteration, on the PSO algorithm

[L]

pn Search direction, on the COCR solver [L]

P Gauge pressure [M/(LT 2)]

Pr Property, log-conductivity or log-storativity [-]

Prk Log measurement [-]

Prpp Pilot point value of the property [-]

Prc Conditioned field [-]

Prc,p Prior log field [-]

q Volumetric water source [(L3/T )/L3]

qi Specific discharge in i-th direction, called Darcy’s velocity [L/T ]

Q Peak flow rate [(L3/T )/L3]

r Distance vector between two points [L]

rn Residual vector, on the COCR solver [L]

R Radius of influence of a pumping well [L]

s Drawdown [L]

S Storativity [-]

Sr Specific retention [-]

Ss Specific storage [L−1]

Sy Specific yield [-]

t Time [T ]

tav Average arrival time [T ]

t5% Arrival time of the faster 5% of particles [T ]

T Period [T ]

T Transmissivity [L2/T ]

v Vector of the measurement errors, on the inversion procedure [m]

vki Spatially constant drift, indexes i and k refer respectively to

the particle and the iteration, on the PSO algorithm

[L]

Vt Total volume [L3]
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Vv Void volume [L3]

x Vector of spatial coordinates [L]

xn n-th approximate solution, on the COCR solver [L]

Y Log-conductivity [-]

z Elevation at the piezometer bottom [L]

z Vector of head measurements [m]

Z Log-storativity [-]

COCR Conjugate A-Orthogonal Conjugate Residual

COCG Conjugate Orthogonal Conjugate Gradient

M-OHI Multifrequency Oscillatory Hydraulic Imaging

NS Nash-Sutcliffe efficiency

NSEE Modified Nash-Sutcliffe efficiency

QMR Quasi-Minimal Residual method

RSF Random Space Function

pdf Probability distribution function

PSO Particle Swarm Optimizer

D0 Scenario with average diffusivity equal to 1 m2/s

D1 Scenario with average diffusivity equal to 2.72 m2/s

D2 Scenario with average diffusivity equal to 7.39 m2/s

Cb Chessboard test

K0 K-Homogeneous test

S0 S-Homogeneous test

SK Heterogeneous properties test

KNeg K-false negative test

SNeg S-false negative test

KPos K-false positive test

SPos S-false positive test
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