

Eletrónica I

LAB0 INTRODUÇÃO AO LTSPICE

2º semestre 2020/2021

Pedro Vitor

03/03/2021 Eletrónica I - 2º semestre 2020/2021 INTRODUÇÃ

INTRODUÇÃO AO LTSPICE

1

- 1. Introdução
- 2. Instalação do Ltspice
- 3. Resumo do programa
- 4. Exemplos de simulação
 - Ponto de funcionamento em repouso (.OP)
 - Varrimento de uma ou várias tensões (.DC)
 - Análise AC sinais fracos, regime linear (.AC)
 - Análise transitória no domínio do tempo (.tran)

Sumário

1. Introdução

- SPICE Simulation Program with Integrated Circuit Emphasis
- Desenvolvido pelo laboratório de investigação de Eletrónica da Universidade da Califórnia, Berkeley, por Laurence Nagel em 1973, designado SPICE1
- SPICE veio a ser a principal ferramenta de simulação de circuitos eletrónicos, com modelos para os díodos, transístores bipolares (equações de Gummel-Poon), JFET e MOSFET
- O programa evoluiu com diversas versões:
 - Open source XSPICE, CIDER, SPICE OPUS, Ngspice
 - Comerciais ISPICE, PSPICE (Cadende), LTspice (Analog Devices), TINA-TI (Texas Instruments)

2. Instalação do LTspice

- Versões Windows (vers. 7, 8 e 10) e Mac (10.9+):
 - <u>https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html#</u>
- Para Windows: fazer o download e executar o ficheiro LTspiceXVII.exe (≈45MB)
- Quando se corre o programa aparece o seguinte ecrã:

3. Resumo do programa

• O programa permite:

– Introduzir o esquema de um circuito com componentes dos quais se destacam

Componentes simples	Resistências, condensadores, bobines, transformadores
Semicondutores	Díodos, transístores bipolares, transístores MOSFET e JFET
Fontes de alimentação	DC, AC, Sinusoidal, quadrada, exponencial, SFFT
Componentes complexos	Circuitos Integrados, módulos amplificadores, conversores, etc.

– Indicar o tipo de simulação que se pretende:

DC	Ponto de funcionamento em repouso (tensões e correntes DC)		
AC	Análise linear na frequência (circuito linear tensões e correntes sinusoidais)		
DC transfer curve	Análise da variação de uma fonte DC		
Transfer function	Função de transferência		
Transient	Análise no domínio do tempo		
Noise	Análise de ruído		
Outro tipo	Sensibilidades, polo-zero, distorção, temperaturas		

3. Resumo do programa

• O programa permite:

- Realizar a análise e obter os resultados no esquema, em forma de tabela ou em gráficos

INTRODUÇÃO AO LTSPICE

3. Resumo do programa

- Atribuição de valores a componentes (unidades):
 - Na atribuição de valores, ter em atenção que a primeira letra após os números pode representar um fator multiplicativo e as restantes são ignoradas
 - Por exemplo é permitido e tem o mesmo significado:
 - 225P, 225p, 225pF, 225pFarad, 225E-12, 0.25n, 0.25N
 - Fatores multiplicativos (indiferente maiúsculas ou minúsculas):

Letra	Fator multiplicativo	Significado
f	10 ⁻¹⁵	femto
р	10 ⁻¹²	pico
n	10 ⁻⁹	nano
u	10 ⁻⁶	micro
m	10 ⁻³	mili
k	10 ³	kilo
meg	10 ⁶	mega
g	10 ⁹	giga
t	10 ¹²	tera

- <u>DC op pnt</u> Ponto de funcionamento em repouso (.OP)
 - Obter as correntes e tensões do circuito utilizando um transístor bipolar referência BC547 com o seguinte modelo:

.model BC547 NPN(Vtf=1.7 Cjc=7.306p Nc=2 Tr=46.91n Ne=1.307 + Cje=22.01p Isc=0 Xtb=1.5 Rb=10 Rc=1 + Tf=411.1p Xti=3 Ikr=0 Bf=400 Fc=.5 + Ise=14.34f Br=6.092 Ikf=.2847 Mje=.377 Mjc=.3416 + Vaf=74.03 Vjc=.75 Vje=.75 Xtf=3 Itf=.6 + Is=14.34f Eg=1.11)

NOTA: Cada linha iniciada com o caracter + significa linha de continuação

- Dar um nome aos nós de base (VB) e coletor (VC): tecla direita + Label Net
- Representar no esquema as tensões em todos os nós do circuito, as correntes de base, emissor e coletor do transístor, assim como I(VCC), I(R1) e I(R2): <u>tecla direita + Place</u> <u>.op Data LabelNet</u>

- DC sweep Varrimento de uma ou várias tensões (.DC)
 - Variar VCC desde 0 a 12V com passo de 0.1V
 - Representar graficamente VB, VC e IC em função de VCC
 - Utilizar os cursores 1 (VC) e 2 (IC) para medir os valores das variáveis para VCC=5V
 - Praticar as teclas e as letras de atalho de edição do esquema:

F1	Help	Т	Text
F2	Component	R	Resistor
F3	Draw wire	С	Capacitor
F4	Label Net	L	Inductor
F5	Delete	D	Diode
F6	Duplicate	G	Ground
F7	Move	S	Spice directive
F8	Drag	Ctrl R	Rotate
F9	Undo	Ctrl E	Mirror
Sh. F9	Redo		

- Característica de transferência de um inversor CMOS → LAB1 Inversor CMOS
 - <u>DC op pnt</u> Obter vo para vin=0V, 5V e 10V
 - <u>DC sweep</u> Variar VIN desde 0 a 10V com passo de 0.001V e representar graficamente vo(vin) e verificar a alteração se o passo for 0.1V em vez de 0.001V

- <u>AC Analysis</u> Análise AC sinais fracos, regime linear (.AC) → LAB2 Amplificador com Transístores Bipolares
 - Representar a característica de transferência (módulo e fase) em função da frequência vo/vin(f), desde 1Hz a 1MHz, numa escala logarítmica
 - Determinar as frequências limite da banda de passagem a -3dB
 - Observar as diferença entre escala LOG e LIN

- <u>Transient</u> Análise transitória no domínio do tempo (.tran) → LAB3 Amplificador Diferencial
 - Representar vd, vo1 e vo2 para vd sinusoidal com 0.1V de amplitude e frequência de 500Hz
 - Aumentar a amplitude de vd para 1V e observar a diferença

