
PARALLEL AND DISTRIBUTED COMPUTING

2016/2017 2nd Semester

1st Exam June 16th, 2017 Duration: 2h00

- No extra material allowed. This includes notes, scratch paper, calculator, etc.
- Give your answers in the available space after each question. You can use either Portuguese or

English.
- Be sure to write your name and number on all pages, non-identified pages will not be graded!
- Justify all your answers.

- Do not hurry, you should have plenty of time to finish this exam. Skip questions that you find less
comfortable with and come back to them later on.

I. (1 + 1 + 1,5 + 1,5 = 5 val.)

1. Consider the following parallel version of a function that computes the max on a vector of unsorted
integer numbers:

int max(int a[], int N)
{

int i, m = a[0];
#pragma omp parallel for
for (i = 0; i < N; i++)
#pragma omp critical

if(a[i] > m)
m = a[i];

}

a) The above implementation is very inefficient. Explain why.

Tecnico ID: Name: 1/10



b) Rewrite the function to make it as efficient as you can, having in mind its execution in a
machine with a large number of cores.

Tecnico ID: Name: 2/10



2. Consider the following two code fragments:

#pragma omp parallel sections
{

#pragma omp section
f1();
#pragma omp section
f2();
#pragma omp section
f3();

}

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
f1();
#pragma omp task
f2();
#pragma omp task
f3();

}
}

Explain the differences between their execution.

Tecnico ID: Name: 3/10



3. Write down a valid output produced by the code below, assuming that during its execution the
value of the environment variable OMP_NUM_THREADS is 6.

#include <stdio.h>
#include <omp.h>

int main(int argc, char *argv[])
{

int i, v[10];

#pragma omp parallel for schedule(static,1)
for(i = 0; i < 20; i++)

v[omp_get_thread_num()] = i;

#pragma omp parallel
#pragma omp single
for(i = 0; i < omp_get_num_threads(); i++)

printf("%d\n", v[i]);

return 0;
}

Tecnico ID: Name: 4/10



II. (1,5 + 1,5 + 1 + 1 = 5 val.)

1. In an optimized implementation of the MPI function MPI_Bcast (broadcast), how many messa-
ges does the source process need to send? Explain. (assume P represents the number of processes
and n the size of the array to send)

2. The Foster’s design methodology consists of four steps, the second of which is “Communication”.
What are the objectives of this step and in what way does it help in achieving a more efficient
implementation?

Tecnico ID: Name: 5/10



3. Consider the following piece of MPI code, where: variable id holds the identifier of the MPI task;
P is the number of processes; N is the size of array arr.

for(i = BLOCK_LOW(id, P, N); i < BLOCK_HIGH(id, P, N); i++) {
printf("Proc %d: %d, %c\", id, i, arr[i]); fflush(stdout);

}

Modify the code above such that (don’t worry about the syntax of any MPI routine you use, but
make sure all the relevant parameters are there):

a) the indexes over all the pieces of the array are printed in order, i.e., no i+ 1 before an i.

b) each process, in order, print one position at a time, i.e., process 0 prints index 0, then process
1 prints index 0, and so on until all processes have printed position 0, then process 0 prints
index 1, and so on.

Tecnico ID: Name: 6/10



III. (1,5 + 1,5 + 1 + 1 = 5 val.)

1. The Experimentally determined serial fraction metric is given by

e =
σ(n) + κ(n, p)

σ(n) + ϕ(n)

where σ(n) are inherently sequential computations, ϕ(n) are completely parallelizable computati-
ons, and κ(n, p) represents communication / synchronization / redundant operations.

Describe how we can use this metric to efficiently optimize a parallel program.

2. Discuss the possibility of achieving an efficiency ε > 1 in a parallel system.

Tecnico ID: Name: 7/10



3. Consider the problem of computing the sum of each row of a large n× n matrix. A given parallel
MPI implementation, divides the matrix into smaller submatrices, in a checkerboard configuration,
computes the sum of each row for such submatrices, and then share this local result such that the
overall sum can be computed.

a) Derive the isoefficiency relation for this parallel implementation, assuming the number of
processors to be p. Note: assume reasonable simplifications to facilitate your calculations.

b) Is this implementation scalable? Justify using the scalability function.

Tecnico ID: Name: 8/10



IV. (1 + 1 + 1 + 1 + 1 = 5 val.)

1. a) Why are Monte Carlo methods easy to parallelize?

b) What is the most critical issue for parallel Monte Carlo methods? Discuss how it is solved in
practice.

2. Branch and bound algorithms for optimization problems keep a list of touched nodes in the search
tree, ordered in terms of the most promising nodes based on a lower-bound estimate (a measure
of what at least the cost function will - for a minimization problem). In a distributed implementa-
tion, each computational node keeps a local list. State what are the negative consequences of this
approach and how they can be mitigated.

Tecnico ID: Name: 9/10



3. A Maximal Independent Set I of a graph G(V,E) is a set of vertices I ⊂ V such that no pair of
vertices in I is connected via an edge in G and no other vertex in V can be added to I without
violating this rule.

Luby’s algorithm provides a good parallel solution to finding I:

1. Start with an empty set.

2. Assign a random number to each vertex.

3. Vertices whose random number are smaller than all of the numbers assigned to their adjacent
vertices are included in the MIS.

4. Vertices adjacent to the newly inserted vertices are removed.

5. While graph not empty, Goto 2.

Analyze its implementation under:

a) shared-memory

b) distributed-memory

Tecnico ID: Name: 10/10


