
PARALLEL AND DISTRIBUTED COMPUTING

2016/2017 2nd Semester

2nd Exam July 3rd, 2017 Duration: 2h00

- No extra material allowed. This includes notes, scratch paper, calculator, etc.
- Give your answers in the available space after each question. You can use either Portuguese or

English.
- Be sure to write your name and number on all pages, non-identified pages will not be graded!
- Justify all your answers.

- Do not hurry, you should have plenty of time to finish this exam. Skip questions that you find less
comfortable with and come back to them later on.

I. (1,5 + 1 + 1 + 1,5 = 5 val.)

1. Write down two possible outputs for the following program. Assume that each thread only flushes
the stdout when the newline character is printed.

#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[])
{

int i;
#pragma omp parallel num_threads(2)
{

printf("X");
#pragma omp for schedule(static,2)
for(i = 0; i < 7; i++)
printf("%d", i);
#pragma omp single
printf("Y");
printf("\n");

}
}

IST ID: Name: 1/9



2. What is the effect of the #pragma omp parallel directive and what is its scope?

3. Discuss the differences between #pragma omp critical and #pragma omp atomic.

IST ID: Name: 2/9



4. The Sieve of Erastothenes is a simple algorithm for generating prime numbers that creates a se-
quence of all the integers up to a given number n, picks one number p from the sequence, in ascen-
ding order, removes all the multiples of p above p2 and repeats until it reaches the end of the se-
quence. Write an efficient OpenMP-based parallel implementation of the function int se(int
v[], int n), listed below, just by introducing OpenMP directives or block delimiters ({})
wherever necessary. Upon the execution of the function, vector v should contain all the prime
numbers computed, in any order.

int se(int v[], int n)

{

int *m = calloc(n, sizeof(int));

int i, p = 2, t = 0;

while(p*p < n) {

for(i = p*p; i < n; i += p)

m[i] = 1;

for(p++; m[p]; p++);

}

for(i = 2; i < n; i++)

if(!m[i])

v[t++] = i;

free(m);

return t;

}

IST ID: Name: 3/9



II. (1,5 + 1,5 + 2 = 5 val.)

1. In an optimized implementation of the MPI function MPI_Gather, what is the size of the last
message the destination process receives? Explain. (assume p represents the number of processes
and n the complete size of the array)

2. Steps 3 and 4 of the Foster’s design methodology are, respectively, “Aggregation” and “Mapping”.
In what way are they similar, and what is the fundamental difference?

IST ID: Name: 4/9



3. Consider the following piece of code, where:

– variable id holds the identifier of the MPI task;

– array words contains the words to be searched in array text (assume each tasks uses a
different text);

– array hits gets the number of times each word is found in the text;

if(id != 0) {
hits = find_words(words, N_WORDS, text[id]);
MPI_Send(hits, N_WORDS, MPI_INT, 0, COUNT, MPI_Comm_world);

}
else {

total = find_words(words, N_WORDS, text[id]);
for(i = 1; i < NUM_PROCS; i++) {

MPI_Recv(hits, N_WORDS, MPI_INT, i, COUNT, MPI_Comm_world, &status);
for(j = 0; j < N_WORDS; j++)

total[j] += hits[j];
}

}

Propose an optimized MPI implementation for this code. (don’t worry about the syntax of any MPI
routine you use, but make sure all the relevant parameters are there)

IST ID: Name: 5/9



III. (1,25 + 1,25 + 2,5 = 5 val.)

1. What is the meaning of obtaining 0 for the Experimentally determined serial fraction metric, when
evaluating a program on 2, 4, 8 and 16 processors.

2. Discuss the limitations of Amdahl’s Law.

IST ID: Name: 6/9



3. Suppose that for an application:

– the serial cost execution time is Θ(n3)

– the parallel computation time is Θ(n3/p)

– the memory requirements are Θ(n2)

– the communication overhead is Θ(n2 log p)

where n is the size of the problem and p is the number of processors. Determine how scalable this
application is, based on the scalability function. Justify your answer.

IST ID: Name: 7/9



IV. (1 + 1 + 1 + 1 + 1 = 5 val.)

1. The typical approach for a parallel implementation of a Parallel Backtrack Search algorithm is
to go down a few levels of the search tree and then distribute the subtrees at that level to the
different tasks. State the advantages and disadvantages of going to a deeper level of the tree before
distributing the work.

2. Many problems involving the simulation of physical systems are based on finite difference methods.

a) Briefly describe what are finite difference methods.

b) These methods generally require the use of ghostpoints. Explain why.

IST ID: Name: 8/9



3. In Monte Carlo methods, discuss the problems with a centralized approach for the random number
generation in:

a) a shared-memory implementation.

b) a distributed-memory implementation.

IST ID: Name: 9/9


