
PARALLEL AND DISTRIBUTED COMPUTING

2018/2019 2nd Semester

2nd Exam July 2nd, 2019 Duration: 2h00

- No extra material allowed. This includes notes, scratch paper, calculator, etc.
- Give your answers in the available space after each question. You can use either Portuguese or

English.
- Be sure to write your name and number on all pages, non-identified pages will not be graded!
- Justify all your answers.

- Do not hurry, you should have plenty of time to finish this exam. Skip questions that you find less
comfortable with and come back to them later on.

I. (1 + 1 + 1 + 1 + 1 = 5 val.)

1. The following OpenMP code counts the number of odd integers in a given array, with N=1000000:

int data[N];
int oddCount=0;
#pragma omp parallel for
for ( int i = 0; i < N ; i++ )

if( data[i]%2 )
#pragma omp atomic
oddCount++;

Optimize this code in order to avoid the need for a critical or atomic directives and to
minimize the overhead introduced by the OpenMP management and syncronization mechanisms.

2. Explain the meaning of false sharing.
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3. Consider the following OpenMP code, assuming that the program was executed in a system with 4
threads (OMP_NUM_THREADS=4):

#define iter 16;

#pragma omp parallel for private(j)
for ( i = 0; i < iter ; i++ ) {

for ( j = iter - (i+1); j < iter ; j++ ) {
// This function has a computing time of 2s
compute_iteration(i, j, ...) ;

}
}

a) Fill out the following table with a possible thread allocation of the first loop iterations (index i),
assuming a static scheduling defined by the OpenMP directive schedule(static). In-
dicate which thread performs each iteration and how long that iteration takes.
Determine the approximate execution time per thread and the total execution time.

#iter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Thread
Time/iter [s]

Thread 0 Thread 1 Thread 2 Thread 3
Individual thread execution time [s]
Total execution time [s]

b) Repeat the previous question assuming a dynamic scheduling defined by the OpenMP direc-
tive schedule(dynamic,2).

#iter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Thread
Time/iter [s]

Thread 0 Thread 1 Thread 2 Thread 3
Individual thread execution time [s]
Total execution time [s]

c) Justify which of the previous schedules would be best for a generic case (variable number of
iterations and threads).
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II. (1,5 + 1,5 + 1 + 1 = 5 val.)

1. What is the difference between MPI_Waitall, MPI_Waitany and MPI_Waitsome?

2. Explain the functionality of MPI_Allgather. For 4 processes, draw an illustration and explain
how information is transmitted between each of the processes, during the execution of this function,
assuming an optimized implementation.
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3. Consider the function MPI_Gatherv presented below.

int MPI_Gatherv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, const int *recvcounts, const int *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm)

Note that:

– recvcounts is an integer array containing the number of elements that are received from
each process;

– displs is an integer array, for which entry i specifies the displacement relative to recvbuf
at which to place the incoming data from process i;

– root is the rank of the receiving process.

Provide an implementation for MPI_Gatherv, using other MPI functions. Even a simple, but
correct, implementation is acceptable.
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III. (0,75 + 0,75 + 0,75 + 0,5 + 2,25 = 5 val.)

1. A parallel program running on a machine with 11 processors spends 10% in purely serial compu-
tation and the rest is completely parallel.

a) What was the speedup obtained?

b) What is the maximum possible speedup for this program, no matter how many processors are
used?
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2. Consider the Karp-Flatt Metric.

a) What is the value of the Experimentally Determined Serial Fraction for a system with an ideal
speedup?

b) In general, why does the value of the Experimentally Determined Serial Fraction tend to
increase with the number of processors used?

3. Consider a problem with a sequential algorithm that runs in Θ(n
√
n) and with a parallel imple-

mentation that runs in Θ(n
√
n

p log p) with p processors and whose overhead (communication +
redundant computation) per processor is given by Θ(n). If the required memory grows with n,
compute the scalability function for this parallel algorithm. Discuss the result obtained.
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IV. (1,25 + 0,5 + 0,75 + 1,25 + 1,25 = 5 val.)

1. Explain the difference between the Strong and Weak Scalability metrics.

2. The precision of Monte Carlo methods increases at a rate of 1/
√
n where n is the number of

samples used.

a) Why is the speedup in this methods close to p, where p is the number of parallel processors
used?

b) In what sense can we say that a Monte Carlo method in a computer system with p processors
improves the accuracy by

√
p?
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3. Consider a parallel system with p processors running an application that has been split in parallel
tasks, and that the average runtime of a task is t. Discuss for which values of p and t a centralized
work-pool model would be more effective.

4. Briefly explain the main difference between the plain Parallel Quicksort algorithm and the Hyper-
quicksort algorithm. What is the main objective of this improvement?
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