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Abstract

In the pursuit of designing complex systems accurately and with affordable computational cost,
multi-fidelity Super Efficient Global Optimization (SEGO) is one of the most recent approaches. Fur-
thermore, various systems involve multiple disciplines interaction that must be considered during the
optimization. These disciplines directly influence each other, hence information between them needs
to be exchanged during optimization through transfer schemes. Since the transfer schemes are a sig-
nificant part of the computational cost in the optimization process, new configurations can be used
to try to reduce this time. Therefore, this work considers the extension of a multi-disciplinary opti-
mization problem to multi-fidelity using SEGO. An aircraft wing is desired to be optimized with the
aim of consuming the minimum fuel during the flight mission. The problem is defined using a low fi-
delity multi-disciplinary tool, OpenAeroStruct (OAS), that considers models for the aerodynamics and
structures. In this work, we verify that the transfer schemes implemented in OAS do not fulfill the
conservation requirement. Then, an extension of the transfer schemes is developed to enable different
discipline discretization. Multi-fidelity SEGO with fidelity levels varied from one to three and two types
of design of experiments is performed. We verify that the best approach is the one that uses two fidelity
levels with only nested samples. Then, the transfer schemes extension is employed in the best approach
of multi-fidelity SEGO for the same problem. We verify that very similar results are obtained with a
computational cost reduction.
Keywords: Surrogate modeling, Bayesian optimization, Efficient Global Optimization, Aero-structural
design

1. Introduction

When designing complex systems, such as an air-
craft, there are various models of the system that
can be used to simulate the system behavior. This
models can have different degrees of accuracy, usu-
ally designated as fidelity levels. A model that accu-
rately represents the system is a high fidelity model
and the contrary is a low fidelity model. Unfortu-
nately, designing complex systems with high fidelity
models can be prohibitive and using low fidelity
models may signify a big loss of accuracy. In this
case, we may use a surrogate model, a model that
mimics the behavior of the system as closely as pos-
sible while being computationally cheaper to evalu-
ate. This model is constructed based on a dataset
of limited intelligently chosen sample points. When
using this approach, we can feed the surrogate
model with samples from one fidelity level (single-
fidelity) or we can combine models with different fi-
delity levels (multi-fidelity). Bayesian optimization
[1] is an optimization that from the approximation
model, determines what is the best sample to query.

One particular algorithm is the Efficient Global Op-
timization (EGO) that uses a kriging model as ap-
proximation function.

Another important topic when designing systems
is the correct consideration of the various disci-
plines that interact with each other [2]. An aircraft,
for instance evolves structures, aerodynamics, con-
trol, propulsion among others. Traditionally, each
of the disciplines are tackled individually by inde-
pendent teams. However, the disciplines are cou-
pled and a change in the aircraft’s design affects
more than one of the teams. This sequential ap-
proach produces non-optimal results, which can be
overpassed by Multi-disciplinary Design Optimiza-
tion (MDO). One of the most common applications
of MDO in aircraft design is coupled aerodynamic
and structural optimization due to the strong in-
teraction between the two disciplines. Information
between these two disciplines needs to be contin-
uously exchanged during the optimization process
through transfer schemes. This is a demanding
task in computationally time terms. Therefore, the
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way the transfer schemes are implemented, that is
related with the discretization used for each dis-
cipline, greatly influences the computational time
spent.

This work aims to explore the potentiality of an
extension of a multi-disciplinary optimization prob-
lem to multi-fidelity. We study the performance of
single and multi-fidelity optimization (fidelity lev-
els varying from one to three) using EGO in an air-
craft wing considering the aerodynamic and struc-
tural disciplines. To integrate the disciplines in the
optimization, a low fidelity tool, OpenAeroStruct
(OAS) [3], is used. OAS uses the same spanwise
discipline discretization when modeling the system.
We extend the OAS transfer schemes to handle non-
identical spanwise discipline discretization. We im-
plement the new transfer schemes to EGO and com-
pare the results and computational time.

2. Background
2.1. Surrogate Modeling

A surrogate model or metamodel mimics the be-
havior of a function, constructed on a finite set of
samples, the Design of Experiments (DOE), while
being computationally cheaper. In general, a surro-
gate assumes that the outcome of interest y(x) can
be expressed as ŷ(x) + ε, where ŷ(x) is the model
and ε are the residuals, that are independent iden-
tically distributed. The kriging model assumes that
the residuals are not independent, but rather a func-
tion of the samples location. This model takes the
form ŷ(x) = m(x) + Z(x), where m(x) is the re-
gression term and Z(x) is the functional departure
from the regression [4]. The regression term for the
universal kriging is formulated as

m(x) =

r∑
j=1

βjfj(x), (1)

where fj(x) are the basis functions and βj are the
corresponding coefficients. Z(x) is a Gaussian pro-
cess with covariance function expressed as

cov(Z(x), Z(w)) = σ2
zR(x,w), (2)

where σ2
z is the process variance, x and w are two

design points in Rd and R(x,w) is the spatial cor-
relation function, also known as the process kernel.
The choice of the kernel determines how the meta-
model fits the data. One of the most commonly
used kernels is the squared exponential correlation
kernel

R(x,w) = exp(−
d∑
b=1

θb(xb −wb)
2), (3)

where θ ∈ Rd and θ > 0 is a vector of hyperpa-
rameters of the kriging model. The vector of hy-
perparameters is fitted using a set of sample data

X = {x1, ..., xn} with xi ∈ Rd, with observed re-
sponses Y = {y1, ..., yn} with yi ∈ R. Once the ker-
nel is defined, the mean and variance of the kriging
model can be formulated as

µ(x) = f(x)′β + r(x)′R−1(Y − Fβ) (4)

and

σ2(x) = σ2
z [1−r(x)′R−1r(x)+(f(x)′−r(x)′R−1F )

(F ′R−1F )(f(x)′ − r(x)′R−1F )], (5)

where x ∈ Rd is the prediction point, R is the ma-
trix of correlations among training points, r(x) is
the vector of correlations between the prediction
point and the sample data, β is the vector of co-
efficients presented in equation (1), F is the matrix
of values of the regression basis function at the po-
sitions of the training points and f(x) is the vector
of values of these functions at the prediction point.
For multi-fidelity surrogate models, Kennedy and
O’Hagan [5] proposed a formulation that links the
high and low fidelity through a scaling factor ρ and
a discrepancy function δ(x) as

fHF (x) = ρfLF (x) + δ(x), (6)

with fLF (x) and δ(x) independent. Le Gratiet [6]
proposed a formulation inspired in [5] that takes the
lower fidelity model as a basis function and thus
reformulates equation (1) as

m(x) =

r∑
j=1

βjfj(x) + βρfLF (x), (7)

where βρ is an estimation of ρ performed by the
likelihood maximization [7]. Based on equation (6),
the mean and variance of a high fidelity model (only
two fidelity levels) can be expressed respectively as

µHF = ρµLF + µδ (8)

σ2
HF = ρ2σ2

LF + σ2
δ . (9)

This approach can be applied to l levels of fidelity.
Let us denote f1, ..., fl the hierarchically ranked fi-
delity levels, being f1 the lowest and fl the highest.
Equations (8) and (9) can then be rewritten as

µk = ρk−1µk−1 + µδk (10)

σ2
k = ρ2k−1σ

2
k−1 + σ2

δk
. (11)

Le Gratiet’s formulation requires nested DOE, that
is, Xl ⊆ Xl−1... ⊆ X1, where Xk represents the
sample data to train the model of fidelity level 1
to l. We express the uncertainty contribution of
the fidelity level k at design point x to the model
(corrected from page 163, [6]) as

σ2
cont(k,x) = σ2

δk
(x)

l−1∏
j=k

ρ2j . (12)
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Equation (12) shows that the uncertainty of the fi-
delity level k is computed by the variance contribu-
tion of the same level scaled using ρj until we get
to the highest fidelity level.

2.2. Multi-fidelity Super Efficient Global Optimiza-
tion (MFSEGO)

In 1975, Močkus [1] defined Bayesian optimiza-
tion as an optimization technique based upon the
minimization of the expected deviation from the ex-
tremum of the studied function. This optimization
approach places a prior over the objective through
a surrogate model which is constructed with an ini-
tial set of samples. The prior captures an estimated
behavior of the function. This estimation is used
to construct an acquisition function, often also re-
ferred as Infill Sampling Criterion (ISC), that de-
termines what is the most appropriate query point
to add.

Efficient Global Optimization (EGO) is a
Bayesian optimization approach developed by Jones
[8]. Let y be the objective function. We start by
getting a set of samples X = {x1, x2, ..., xn} yield-
ing the responses Y = {y1, y2, ..., yn}. Using this
set of samples, a kriging model is built with a mean
and variance function µ and σ2 respectively, as de-
scribed in section 2.1. The information provided by
the kriging model is used to establish the Expected
Improvement function (EI), the employed ISC in
EGO. This function will determine the next point
to query. First, let

ymin = min{y1, y2, ..., yn} (13)

be the current best function value. The EI is simply
given by

E[I(x)] = E[max(ymin − Y (x), 0)], (14)

where Y (x) is a random variable following the dis-
tribution N (µ(x), σ2(x)). By expressing the right-
hand side of equation (14) as an integral, and ap-
plying some tedious integration by parts, the EI can
be expressed in closed form as

E[I(x)] = (ymin − µ(x))Φ
(ymin − µ(x)

σ(x)

)
+ σ(x)φ

(ymin − µ(x)

σ(x)

)
, (15)

where Φ(.) and φ(.) are respectively the cumula-
tive distribution function and the probability den-
sity function of N (0, 1). Note that for equation (15)
E[I] = 0 when σ(x) = 0. Then, we determine the
next point to be sampled as

xn+1 = argmax
x

(E[I(x)]), (16)

and the respective response yn+1 is computed. The
model is updated with the new information and this

process is repeated for a certain number of times.
Equation (15) is a balance between seeking promis-
ing areas of the design space (Exploitation) and
choosing something from where we can better learn
the design space (Exploration). This is the most
important property of EGO.

More sophisticated ISC functions have been de-
veloped over the EI criterion, such as Watson and
Barnes (WB2) criterion [9] formulated as

WB2(x) = −µ(x) + E[I(x)], (17)

that gives slightly more merit to local search instead
of design space exploration.

Sasena [4] proposed an extension of the EGO al-
gorithm to handle constrained problems: the Super
Efficient Global Optimization (SEGO). SEGO con-
structs kriging models of the objective function and
the n constraints. Each new point to sample is in
the feasible domain, defined by the constraints krig-
ing models.

SEGO can be extended to multi-fidelity prob-
lems. Following the approach presented by Meliani
[10], MFSEGO algorithm handles with a two-stage
decision process: (1) the search of the most promis-
ing sample and (2) the choice of the level of enrich-
ment of that sample. The first problem is tackled
by the ISC. The second problem analysis the uncer-
tainty of the chosen point and decides the fidelity
level where this point should be queried. Generally,
low fidelity models are used to exploration and high
fidelity models are used to exploitation.

Let f1, ..., fl be the lowest to highest fidelity
model of the objective function, with the querying
costs c1, ..., cl. Recalling the recursive formulation
of Le Gratiet, we known that fidelity levels relate
as

fk = ρk−1 fk−1 + δk for k ∈ {1, ..., l} (18)

ρk−1 = corr(fk, fk−1)
std(fk)

std(fk−1)
(19)

σ2
k = ρ2k−1σ

2
k−1 + σδ

2
k. (20)

Recalling equation (12) and due to the necessity of
nested DOEs (the fidelity levels lower than k of the
sampling point x∗ are enriched as well) the uncer-
tainty reduction becomes

σ2
red(k,x∗) =

k∑
i=0

σδ
2
i (k,x

∗)

l−1∏
j=k

ρ2j . (21)

The corresponding cost of the enrichment through
fidelity level k yields

costtotal(k) =

k∑
i=0

ci. (22)
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Mostafa [10] proposed the following enrichment
level criterion

t = argmax
k∈(0,...,l)

σ2
red(k,x∗)

costtotal(k)2 + offset
, (23)

where t is the highest fidelity level to be added and
the offset is the scalar that takes into account the
cost of building the surrogate model and maximiza-
tion of the ISC.

2.3. Multi-disciplinary Design Analysis Optimiza-
tion (MDAO) and Optimization Algorithms

The architecture of a MDAO system describes
how a method handles the coupling of several disci-
plines. Figure 1 depicts the eXtended Design Struc-
ture Matrix (XDSM) diagram of Multi-Disciplinary
Feasible (MDF) similar to the one employed at the
core of this work.

Figure 1: XDSM for a MDF architecture with a
Gauss-Seidel MDA solver.

Following the sequential numeral flow in figure 1,
for each optimization iteration the MDA solver iter-
ates through all the discipline analysis until conver-
gence guaranteeing a set of feasible coupling vari-
ables. Then, these variables are used to compute
the objective function and constraints values and
the next point is determined.

To determine the next point we can use gradient-
free algorithms, such as EGO, or gradient-based
algorithms. Gradient-based algorithms define the
search direction from one iteration to the next based
on evaluations of the objective function and its
derivatives with respect to the design parameters.
In this work, we use the Sequential Least-Square
Quadratic Programming (SLSQP) [11] that simpli-
fies the original problem, a non-linear problem, into
a sequence of simpler quadratic sub-problems. This
algorithm is used to maximize the WB2 criterion
and to obtain the reference solution.

2.4. Aerodynamics Model
The vortex-lattice method (VLM), commonly

used to model incompressible potential flow, is an
extension of the lifting-line theory [12]. In this
method, several lifting lines are superimposed along
the chordwise direction to enable two-dimensional

discretization. The wing is modeled as a set of pan-
els, each of them containing a single horseshoe vor-
tex with a control point. For each of the control
points, a velocity V is induced by the discretized
vortexes. These velocities can be obtained using
the Biot-Savat law,

dV =
Γ

4π

dl× r

||r3||
, (24)

where Γ is the circulation of the vortex, dl moves
along the vortex filament at hand and r is the dis-
tance from said filament to the control point. A
system can then be assemble to compute the vortex
velocities un through all the vortex circulations Γn.

un =

N∑
j=1

Ai,jΓj , (25)

where N represents the total number of vortexes de-
fined and Ai,j represents a row of the aerodynamic
influence coefficient matrix. The influence coeffi-
cient Ai,j represents the induced flow on panel i
due to the vortex on panel j. From equation (25),
one can obtains the velocity at control point n con-
sidering the circulations of the N vortexes.

2.5. Structures Model
We now define the structural model to obtain the

wing stiffness. The finite element method (FEM)
is employed. This method divides the lifting sur-
face into smaller parts with the aim to simplify
the model computations. In this work, a spatial
beam element with 12 degrees of freedom (six at
each node) is utilized, illustrated in figure 2.

Figure 2: 12-DOF beam element.

The relevant equations are solved for each ele-
ment, in a local reference frame, and then the re-
sults are transformed to a global reference frame,
obtaining the global stiffness matrix [K] of the en-
tire structure. The aerodynamic analysis provides
a set of loads that are applied to the lifting surfaces.
Now, we can define the Hook’s law used to obtain
the wing stiffness

[K]× u = F, (26)

where u is the displacement/rotation vector and F
is the force/moment vector. The vector of displace-
ments and rotations produce a deformed updated
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mesh. Then, we can iterate upon the architecture
using the updated mesh on the aerodynamics anal-
ysis, obtaining a new set of loads.

2.6. Fluid-Structure Interaction

The previously described disciplines, aerodynam-
ics and structures, are constantly exchanging in-
formation during the optimization process, such
as aerodynamic pressures and structural displace-
ments. Thus, a fluid-structure interaction is imple-
mented.

The fluid-structure interaction must satisfy the
requirements of consistency and conservation [2].
Consistency states that resultant forces and mo-
ments due to the pressure field, must be transferred
into an equivalent set of nodal forces and moments,
thereby satisfying the load conservation. However,
there is an infinite number of sets of nodal forces
that satisfy this requirement. The conservation re-
quirement states that the virtual work performed by
the load vector, over virtual displacements must be
equal to the work performed by the pressure field,
undergoing equivalent displacements [3].

3. Implementation

As referred, OpenAeroStruct is the low fidelity
tool employed to model and analyzed the aerody-
namic and structural disciplines. This tool models
both disciplines with the same spanwise discretiza-
tion as depicted in figure 3

Figure 3: Aerodynamic grid and beam finite ele-
ments.

In this section, the developed transfer schemes
to handle non-identical spanwise discretization are
presented. The transfer schemes presented in [3] ful-
fill the consistency and conservation requirements,
but the implemented ones do not fulfill the con-
servation requirement. We informed the MDO lab
that developed OAS, however the extended schemes
are based on the implemented ones, since the new
version of OAS has not yet been released.

3.1. Load Transfer

The load transfer considers that the force and
moment of a structural node is computed through
the area bounded by half length of the left beam
element to half length of the right beam element of

that node. The content of that area can vary, from
multiple sections of aerodynamic panels to just one
panel section according to the applied discretiza-
tion. Figure 4 illustrates the area corresponding
to node 1 for two different discipline discretiza-
tions. For figure 4 (a), the aerodynamic discretiza-
tion (AD) is more refined than the structural dis-
cretization (SD) and for figure 4 (b), the SD is more
refined than the AD. The aerodynamic panels are
represented by the continuous line and the area as-
sociated to node 1 is bounded by the dashed line.
In figure 4 (a), node 1 has associated 3 panel slices
and in figure 4 (b) only 2 panel slices. Each of these
parts has an associated area Si and a load per unit
area Ti.

(a) AD more refined than
SD

(b) SD more refined than
AD

Figure 4: Panels sections associated to node 1 to
perform load transfer.

The equations to compute the force and moment
of a structural node yields{

Fs =
∑n
i=1 TiSi

Ms =
∑n
i=1 rcp,i ×TiSi,

(27)

where Ti and Si are, respectively, the load and area
associated to panel slice i. The vector rcp,i points
from the point on the beam element aligned with
the center of pressure to the aerodynamic center of
pressure of the panel slice.

Figure 5: Scheme for transferring the load T to
adjacent structural nodes for method 1 with same
discipline discretization (adapted from [3]).

To illustrate this method, let us analyze how the
load is transferred to the structural nodes using the
same discipline discretization, depicted in figure 5.

The forces and moments at the nodes are defined
as
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{
Fs,1 = TS1

Fs,2 = TS2

(28)

and {
Ms,1 = rcp,1 ×TS1

Ms,2 = rcp,2 ×TS2.
(29)

3.2. Displacement Transfer
Let us now introduce the displacement trans-

fer for non-identical discipline discretization. The
edges (at constant y) of the panels are aligned with
the structural nodes for the same discipline dis-
cretization. The displacement transfer algorithm
compares the y location of the structural nodes with
the aerodynamic mesh nodes. In case this y coordi-
nate of the aerodynamic mesh nodes does not match
any of the structural nodes, a linear regression of
the displacement of the two surrounding structural
nodes and the y coordinates is performed. Thus,
we obtain displacements on a structural mesh with
the same discretization as the aerodynamic mesh.

Figure 6: Scheme for transferring the displacement
of the structural mesh to the aerodynamic mesh.

To clarify the scheme, let us introduce an example
illustrated in figure 6. Since there are no structural
nodes aligned with edge [A,D], a linear interpola-
tion with nodes 1 and 2 is computed to obtain the
displacement of node 4 yielding

us,4 =
us,2 − us,1
ys,2 − ys,1

. ys,4

+ us,1 − ys,1
(us,2 − us,1
ys,2 − ys,1

)
, (30)

where us,i is the structural displacement associated
with node i and ys,i is the y coordinate of node
i. The same idea is applied in nodes 2 and 3 to
produce node 5.

4. Results
4.1. Optimization Problem Definition and Initial

Setup
Let us now define the optimization problem in

table 1. The quantity we are looking to minimize
is the fuel consumed using the Breguet range equa-
tion. The wing twist and spar thickness are con-
trolled by a B-pline with 5 points each, so our prob-
lem has a total of 11 design variables. For the fail-
ure constraint, the aggregation method based on

the Kreisselmeier-Steinhauser function [13] is em-
ployed.

Table 1: Optimization problem definition.

Function/variable Bounds

minimize fuel consumed

w.r.t. angle of attack [8, 12]◦

wing twist [-6, 3]◦

spar thickness [0.0015, 0.05] m

subject to lift = weight

σvon Mises ≤ σy

2.5

The mechanical properties of Aluminum-7075 are
considered for the wing spar and additionally the
following group of parameters.

Parameter Value

Mach number 0.84
Altitude (m) 10.7× 103

Air density (kg/m3) 0.38
Range (m) 11× 106

Empty weight (kg) 1.2× 105

CT (kg/W/s) 1.54× 10−5

Table 2: Cruise flight conditions and thrust specific
fuel consumption (CT ).

Next, we present the employed numerical toler-
ances. The first two lines of table 3 are the stopping
criterion for each design point, that is, the MDA
solution. The last line of table 3 is a relative tol-
erance used to converge the optimization problem
when using the SLSQP optimizer.

Parameter Value

MDA absolute error tolerance 10−7

MDA relative error tolerance 10−30

Optimizer tolerance 10−3

Table 3: Gauss-Seidel MDA and SLSQP optimizer
numerical tolerances.

4.2. Fidelity Levels and Associated Cost
Once we will perform optimizations up to three

fidelity levels, we need to define the mesh discretiza-
tion and cost of each level. To define the dis-
cretizations, we use the mesh convergence study
of the structural failure quantity shown in figure
7. The variables num y and num x in figure 7 are
the spanwise and chordwise wing discretization, re-
spectively. As the mesh is progressively refined, the
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time to run the MDA increases and the model con-
verges to -0.84. The lower the fidelity level of the
model, the less accurate results it provides. Thus,
we choose the less refined mesh of figure 7 to be
the low fidelity mesh. As medium fidelity mesh,
we choose the second less refined mesh. The sec-
ond most refined mesh of figure 7 is set as high fi-
delity mesh, since it presents excellent convergence
results.

Figure 7: Structural failure mesh convergence
study.

The discretization associated to each fidelity level
is summarized in table 4.

Table 4: Discretization associated to high, medium
and low fidelity levels.

Fidelity levels High Medium Low

num y 61 9 5

num x 7 5 3

Normally, the cost ratios imposed to a sample of
each fidelity level are linked to the computational
time needed to run the analysis. Here, as we are us-
ing the OAS for all fidelity levels, the time difference
to run the analysis between the fidelity levels is not
very significant. Once we are testing an optimiza-
tion algorithm, we impose the costs of each fidelity
level to be more related with real problems. The
cost of the high fidelity samples is always set to 1
and the other fidelity levels have smaller associated
costs. The cost selected to the low fidelity samples
is based on previous internal studies. To select the
cost of the medium fidelity samples, a linear inter-
polation between the selected costs for high and low
samples and the structural failure values was per-
formed from figure 7. The cost ratios imposed to a
sample of each fidelity level are summed up in table
5.

Table 5: Cost ratios associated to each fidelity level.

Fidelity cost High Medium Low

Normalized cost 1 50/125 1/125

4.3. Design of Experiments Sampling Size
The sampling size of the employed DOEs are

summarized in table 6. The DOEs are partitioned
in two different groups - modified DOE and com-
plete DOE - each of them compound by two DOEs
of two and three fidelity levels (FL) optimization (2
F and 3 F). Additionally, there is the DOE corre-
sponding to one fidelity level optimization (1 F).

Table 6: Design of experiments sampling size.

Number of fidelities

FL 1 F
Modified DOE Complete DOE

2 F 3 F 2 F 3 F

L - 40 40 80 160
M - - 40 - 80
H 40 40 40 40 40

Please note that high, medium and low had been
shortened to H, M and L. The complete DOE group
considers that the number of samples of the FL k
doubles the number of samples of the most accurate
consecutive FL k + 1. Thus, half of the samples
of each FL are equal to the samples of the most
accurate consecutive FL (nested samples), and the
other half of samples is extra information to the
model. The DOE from the complete group of 3 F is
the only one that is computed while the remaining
four DOEs are obtained by filtering from it.

4.4. Multi-fidelity Parameters Definition
The optimization budget is a parameter to con-

trol the desired computational time to solve the
problem and it is managed by summing progres-
sively the associated cost of each point to be sam-
pled during the optimization and stopping the opti-
mization process when the budget has been reached.
The chosen optimization budget is a trade-off be-
tween having acceptable computational time for
several optimization runs and acceptable objective
function results. The objective function results are
considered to be acceptable when they are close or
smaller than those of the reference solution pre-
sented in next section. After some experiments, the
budget of 110 was defined. It is important to note
that this budget does not include the cost associ-
ated to each DOE.

The Root Square Constraint Violation (RSCV) is
used to evaluate the results in terms of constraint
violation and it is given by

RSCV =
√
C2

1 + C2
2 , (31)

where C1 is the equality constraint of lift=weight,
and C2 is the wing failure constraint. The common
logarithmic log (RSCV) is employed during the re-
sults analysis for simplicity.
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4.5. Reference Solution
For each of the DOE types, we run 100 run tests

and filter them based on a reference solution. This
solution, shown in table 7 along with the corre-
sponding log (RSCV) value, is obtained using the
SLSQP optimizer, the numerical tolerances pre-
sented in table 3 and the high fidelity mesh dis-
cretization. Our objective is, based on this refer-
ence solution, to define the minimum requirements
that the solutions of the 100 run tests must satisfy.
These limits are defined based on a trade-off rela-
tionship. On one hand a significant amount of run
tests should fulfill the requirements to allow data
statistical studies, on the other hand the filtered
results should be close to the reference solution. Af-
ter some tests, we chose the threshold presented in
table 7.

Table 7: Reference solution and maximum accept-
able values to filter the results.

Parameter Value

Reference objective function 1.0680× 105 Kg

log (RSCV) −5.23

Maximum objective function 1.0787× 105 Kg

Maximum log (RSCV) −2.5

We are now ready to perform the filtering pro-
cess. We are seeking for the best solution of each
test. This solution is the one that has the lowest
objective function (fuel consumption) value and ful-
fills the established requirements. Table 8 shows the
number of optimizations for each DOE type that is
conserved after the filtering process. The number
of solutions that fulfilled the requirements has the
same order of magnitude, except for the 3 F opti-
mizations. Let us now observe the results of each
optimization approach.

Table 8: Number of optimizations conserved after
the filtering process.

1 F
Modified DOE Complete DOE

2 F 3 F 2 F 3 F

74 72 32 78 43

4.6. One Fidelity Level Optimization
Figure 8 shows the scatter plot where each circle

represents a best filtered solution associated with
the cost and the fuel consumption value in the verti-
cal and horizontal axis, respectively. Moreover, the
color of the circle provides a qualitative representa-
tion of the log (RSCV) value of that solution. The

more negative the log (RSCV) value is, the less the
solution violates the constraints. Figure 8 depicts
a cluster of circles in the upper left corner corre-
sponding to the lowest values of fuel consumption
associated with the highest costs.

Figure 8: Scatter plot for the best solutions of 1
fidelity level optimization.

4.7. Two Fidelity Levels Optimization
Next, the acceptable result of optimizations with

two fidelity levels using complete and modified DOE
are shown and compared. Let us start by analyzing
the scatter plots in figures 8 and 9.

Figure 9: Scatter plot of the best solutions of 2
fidelity levels optimization using complete DOE.

Observing the log (RSCV) values, no clear con-
clusion can be taken between the log (RSCV) and
the other two quantities. The first impression when
observing both plots is the data clustering in the
upper left corner of the 2 F complete DOE solu-
tions in contrast to the more scattered solutions of
1 F.

The 2 F approach not only starts with a more
informed model, but also usually starts with the
exploration of the design space by querying low
fidelity (LF) samples and then the exploitation
phase, where mainly high fidelity (HF) samples are
queried. In the first stage, the optimizer reduces
the uncertainty of the ISC, allowing a more efficient
decision when querying HF samples. The data clus-
tering in the scatter plot shows that this approach
manages most of the times to find low fuel consump-
tion values with different initial DOE, providing ro-
bustness to the method.

Thereby, we can conclude that the 2 F complete
DOE approach is the one that provides the best
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solutions more often and so, we proceed the com-
parison between 2 F optimizations for complete and
modified DOE using the same type of plots.

Figure 10: Scatter plot of the best solutions for 2
fidelity levels optimization using modified DOE.

Observing the scatter plots in figures 9 and 10,
we start by noting that, again, it is difficult to de-
tected any relation between the log (RSCV) values
and the other two quantities. Both figures have a
data clustering in the upper left corner of the distri-
butions, that is, the lower fuel consumption values
are associated with the maximum costs. We also
observe that for the 2 F complete DOE there are
more scattered solutions across the domain. Those
scattered solutions are also more often associated
with the maximum costs.

Thereby, the modified DOE approach is more
likely to provide better solutions outcomes, which
appears to be an odd tendency, once the problem
is initiated with less information. In fact, the qual-
ity of the 40 non-nested LF samples included in the
complete DOE data set can be so low that they are
erratically informing the kriging model and induc-
ing the optimizer into less promising areas of the
design space where the budget is spent.

4.8. Three Fidelity Levels Optimization
Next, we present the acceptable result of the op-

timizations with three fidelity levels using complete
and modified DOE using the same type of plots.

Figure 11: Scatter plot of the best solutions for 3
fidelity level optimization using complete DOE.

Observing figures 11 and 12, we conclude that
the results of both approaches are less clustered and
have higher costs than the previous 1 F and 2 F op-
timizations. The 3 F optimizations not only tend

Figure 12: Scatter plot of the best solutions for 3
fidelity level optimization using modified DOE.

to provide worst results with higher costs, but also
have more solutions that failed to fulfill the require-
ments, as noted in table 8. The extra fidelity level
and the necessity of nested DOE increases the cost
of HF samples, making the optimizer choosing less
of them. This degrades the quality of the results.

4.9. Two Fidelity Levels Optimization with Non-
identical Spanwise Discretization

Finally, let us introduce the optimization with the
developed transfer schemes for non-identical disci-
pline discretization. The 2 F modified DOE ap-
proach is employed. Table 9 shows the new samples
discretization where num s represents the structural
discretization. The cost of the LF samples is set to
1/200.

Table 9: Discretization of high and low fidelity
levels for non-identical discipline discretization.

FL num y num x num s

High 61 7 31
Low 5 3 3

Again, we run 100 run tests for this approach
and we obtain 86 acceptable solutions. Observing
figure 9, we see that this optimization provides very
similar results to the 2 F approaches.

Figure 13: Scatter plot for the best solutions of 2
fidelity levels optimization using modified DOE for
non-identical discipline discretization.

4.10. Summary and Overview
Next, we present the time to run 10 optimizations

of each of the approaches. We conclude that higher

9



the number of fidelity levels used, higher the time
needed. Thus, when choosing the number of fidelity
levels, we must be aware that adding a fidelity level
to the optimization implies a time penalty, so the
decision of use an extra fidelity level must provide
a significantly improvement of the results, as ob-
served between 1 F and 2 F. Comparing the time
of the 2 F approaches with the non-identical dis-
cipline discretization approach, we observe a slight
reduction, as expected.

Table 10: Mean computational time to run 10 op-
timizations of each fidelity level approach.

1F
Modified DOE Complete DOE

NI
2 F 3 F 2 F 3 F

0.63 1.70 3.15 1.67 3.27 1.60

Finally, the approaches can be organized by per-
formance improvement as: 3 F modified DOE, 3
F Complete DOE, 1 F, 2 F complete DOE, 2 F
modified DOE and 2 F modified DOE with NI dis-
cretization.

5. Conclusions

In this work, we extended the transfer schemes
of OAS to non-identical discipline discretization.
We performed a study to explore and compare the
results of SEGO using a different number of fi-
delity levels, varying from one to three, and differ-
ent DOE. We concluded that the best approach is
the multi-fidelity optimization using 2 fidelity lev-
els with only nested samples in the initial dataset,
which proves the superiority of multi-fidelity op-
timization over single-fidelity optimization using
SEGO. Then, the optimization approach that pro-
vided the best results was used to test the new
transfer schemes. We selected new mesh discretiza-
tions and associated costs and performed again 100
run tests. We concluded that the results were very
similar to the ones of 2 fidelity levels with a reduc-
tion of the computational time needed to run the
optimization. Thereby, we can deduce that using
a different spanwise discretization in the aerody-
namic and structural disciplines is a viable solution
to reduce the computational time of an optimiza-
tion process while keeping the quality of the result.
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