Solid Mechanics, Recap test 2, February 2, 2021.

Problem 3

a) The constitutive law of a homogeneous and isotropic Hookean material is given by

 $\varepsilon_{ij} = 1 / E [(1 + v) \sigma_{ij} - v \sigma_{kk} \delta_{ij}],$

where E is Young's modulus and v Poisson's coefficient.

Define shear modulus G and establish the relationship between G, E and v.

b) An orthotropic material in plane stress has the following flexibility matrix:

$$\begin{pmatrix} e_{11} \\ e_{22} \\ \gamma_{12} \end{pmatrix} = \begin{bmatrix} 1/E_{11} & -\nu_{21}/E_{22} & 0 \\ -\nu_{12}/E_{11} & 1/E_{22} & 0 \\ 0 & 0 & 1/G_{12} \end{bmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{pmatrix},$$

The modulus and coefficients of that material are the following in the $x_1 x_2$ frame:

	Carbon/Epoxy
	Bidirectional
E ₁₁ [GPa]	50.0
E ₂₂ [GPa]	50.0
G ₁₂ [GPa]	5.0
V ₁₂	0.0

Determine the shear modulus G of that material in a 45° direction with x_1 and x_2 . You may use Mohr's circle to represent stresses and deformations.