E1 2018

1. a) Use of a matched filter corresponding to an impulse response that replicates the cosine pulse with a physical delay. Alternatively a correlator can be used
b) The output envelope is represented by the auto-correlation of a cosine pulse of finite duration $1 \mu \mathrm{~s}$
$\mathrm{T}=2$ (* half -cosine pulse duration $\mathrm{T} / 2=1 \mu \mathrm{~s} *$);
$\operatorname{Plot}\left[\left\{\frac{1}{4}(T-2 \operatorname{Abs}[t]) \cos \left[\frac{2 \pi t}{T}\right]+\frac{T}{4 \pi} \operatorname{Abs}\left[\operatorname{Sin}\left[\frac{2 \pi t}{T}\right]\right]\right\},\{t,-T / 2, T / 2\}\right]$

2.

TR $=60000 ;$ ToF $=0.5 \times 10^{-3}$ (*Time of flight $*$) $c=3 . \times 10^{8}$;
freq $=2.9 \times 10^{9} ; \lambda=c / f r e q ;$
MajorAxis = c ToF;
a = MajorAxis / 2;
e = TR / MajorAxis(*eccentricity, = 0.4 *);
$\theta=75^{\circ}$;
R1 $=\mathrm{a} \frac{1-\mathrm{e}^{2}}{1+\mathrm{e} \operatorname{Cos}[\theta]}$ (* distance from target to receiver *)
57090.

R2 = 2a-R1 (* distance from target to transmitter *)
9.291×10^{4}
PT $=50000 ; \mathrm{GT}=10^{3.5} ; \mathrm{GR}=10^{2.7}$;
(* $\frac{\mathrm{Pt} \lambda^{2} G T G R R C S}{(4 \pi)^{3} \mathrm{R}^{2} \mathrm{R}^{2}} \geq \mathrm{K}$ Teq $\Delta \mathrm{f}(\mathrm{S} / \mathrm{N})_{1}$;
$\Delta \mathrm{f} \simeq 1 /(2 \mathrm{~T})$ (assuming matched filter, rectangular pulses);
$(S / N)_{1} \simeq 11 \mathrm{~dB}$ (10 pulses integrated, see graphic) *)
$\mathrm{T}=1.5 \times 10^{-6} ; \Delta \mathrm{f}=1 /(2 \mathrm{~T}) ; \mathrm{SN} 1=10^{1.1}$;
F = 10; T0 = 290; Teq = F T0;
$K=1.38 \times 10^{-23}$;

RCSmin $=\frac{\mathrm{KTeq} \Delta \mathrm{f} \operatorname{SN1}(4 \pi)^{3} \mathrm{R1}^{2} \mathrm{R}^{2}}{\mathrm{PT} \lambda^{2} \mathrm{GT} \mathrm{GR}}$
11.06

Ans: $11.06 m^{2}$
3 a)
prf1 $=750 ; c=3 \times 10^{8} ; f=5.25 \times 10^{9} ; \lambda=3 \times 10^{8} / f$
0.05714
$\mathrm{vb}=\lambda \mathrm{prf1} / 2\left(* \mathrm{~ms}^{-1} *\right)$
21.43
vbkmh $=\mathrm{vb} * 3.6\left(* \mathrm{~km} \mathrm{~h}^{-1} *\right)$
77.14
vb1kmh $=($ vbkmh - 5$)$
72.14
vb1 = vb1kmh / 3.6
20.04

The "range of velocities" superimposing with the clutter spectrum is then [72.14, 77.14]km/h or [20.04, 21.43]m/s
b) In the case prf2 would be such that the blind velocity would be equal to the previous vb1, than there would be no spectral superposition. Thus
vb2 = vb1 (* m/s *)
20.04

This would require
prf2 $=2 \mathrm{vb} 2 / \lambda$
701.4

5 a)
Assumption: the code behaves similar to a Barker code
The time elapsed between the pulse centers coming form the two targets is
$\delta t=\frac{1}{2} \frac{250 .}{3 \times 10^{8}}$ "s"
$4.167 \times 10^{-7} \mathrm{~s}$
a)

Sub-pulse duration

Tsub $=\frac{30 \cdot \times 10^{-6}}{150}$
$2 . \times 10^{-7}$
The spectral bandwidth necessary for recognizing a rectangular sub-pulse is about
$\Delta f=\frac{2}{\text { Tsub }}$

1. $\times 10^{7}$
b) the half duration of the time main lobe is the sub-pulse duration after compression, that is, 2×10^{-7};
Since the pulse centers form the two targets are separated by 4.167×10^{-7} these do not superimpose although they are relatively closed.
The time side lobes have amplitudes of about $1 / 150$ relative to the main lobe, although with variations, since it is not a true Barker code.

