

Instituto Superior Técnico / University of Lisbon

Departament of Bioengineering

Master on Biomedical Engineering Signals and Systems in Bioengineering

1st Semester de 2016/2017 João Miguel Sanches

Epoca Especial

July 25, 2017

Name:	Number:
-------	---------

The duration of the exam is 3h. The score of each item is 1 when right and -0.25 if wrong. Only one option can be selected in each question.

Part 1

- 1. Consider the signal $y(n) = x(n n_0)$ where x(n) = [1; 2; 1; 0; -1; -2; -1; 0]. What should be the value of n_0 for which the DFT of y(n), Y(k), is pure imaginary,
 - ■ a) 1
 - □ b) 0
 - \Box c) -1
 - \Box d) None of the above
- 2. Consider the signal x(n) = [0; 1; 0; 1]. What is its DFT?,
 - \Box a) $e^{-k\pi/2} e^{-3k\pi/2}$
 - \blacksquare b) $2(-1)^k cos(k\pi/2)$
 - \Box c) $cos(k\pi/2)$
 - \Box d) None of the above
- 3. Let $g(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \mathbf{y})^T (\mathbf{x} + \mathbf{y})$ where \mathbf{x} and \mathbf{y} are N length column vectors. $g(\mathbf{x}, \mathbf{y})$ is
 - $\bullet \square$ a) a metric function because is strictly positive.
 - \square b) a metric because involves the difference $(\mathbf{x} \mathbf{y})$.

- \Box c) a metric because is null if and only if $\mathbf{x} = \mathbf{y}$.
- $\bullet \blacksquare d$) None of the above
- 4. What is the period of the signal $x(n) = e^{j0.2\pi n}$?
 - □ a) 0.
 - □ b) 5.
 - ■ c) 10.
 - \Box d) None of the above
- 5. What is the impulse response of the filter $H(z) = [1 + az^{-1}]^{-1}$?
 - \Box a) [1, a]
 - **I** b) $(-a)^n u(n)$
 - \Box c) $a^n u(n)$
 - □ d) None
- 6. Let $x(n) = exp(-j\pi n/128)$. What is the N-length DFT of x(n), $X_N(k)$?
 - \square a) $X_N(k) = [\delta(k-2) + \delta(k-N+2)]/2$
 - \Box b) $X_N(k) = \delta_N(k 128)$
 - \blacksquare c) $X_N(k) = \delta_N(k-2)$
 - □ d) None of the above.
- 7. Let us consider an infinite signal, to be filtered by FIR filter with impulse response length 10. To implement the filtering process by blocks with a 2048 length FFT algorithm, what should be the length of the input blocks to not have overlap of these blocks?
 - ■ a) 2030.
 - □ b) 2040.
 - □ c) 2050.
 - \square d) None
- 8. Consider the *Linear Time Invariant* (LTI) system described by the following transfer function

$$H(z) = \frac{1}{1 + (3/2)z^{-1} + (9/16)z^{-2}}$$
 (1)

What type of filter is this system?

- \blacksquare a) High-pass filter.
- \square b) Band-pass filter.
- \square c) Low-pass filter.
- □ d) None

Problem (2)

- 1. Consider the finite N length signal, x(n), and let y(n) be a M length sequence, obtained from x(n), by sampling its Fourrier transform in M < N evenly spaced frequencies, including $(X(\omega)|\omega=0)$. Compute y(n).
- 2. If x = [5, 4, 3, 2, 1, 0, -1, -2, -3, -4] represent graphically the signal y(n) for M = 8.

Part 2

1. Consider the LTI system described the following difference equations

$$y(n) = x(n) - 0.5y(n-1)$$
(2)

What is the mean value of the output signal if the input is $x(n) = \eta(n) + 4$ where $\eta \sim \mathcal{N}(2, 2^2)$ is white Gaussian noise?

- □ a) 8.
- ■ b) 4.
- □ c) 2.
- \Box d) None of the above
- 2. What is the value of the following integral?

$$\int_{-\infty}^{\infty} e^{-\frac{(x-1)^2}{4}dx} \tag{3}$$

- \blacksquare a) $2\sqrt{\pi}$.
- □ b) 1.
- \Box c) ∞ .
- \Box d) None of the above
- 3. Consider the following decimation operation $y(n) = T_{\downarrow 2}[h(n) * x(n)]$ where $x(n) = \cos(\frac{3\pi}{4}n)$ and h(n) is an ideal anti-aliasing filter. What is the output signal?
 - \blacksquare a) y(n) = 0.
 - \Box b) $y(n) = cos(\frac{3\pi}{4}n)$.
 - \Box c) $y(n) = cos(\frac{3\pi}{8}n)$.
 - \Box d) None of the above
- 4. Let x and y two zero mean correlated random variables with variances σ_x^2 and σ_y^2 respectively. What is the variance of the z = x + y?
 - \Box a) $\sigma_x^2 + \sigma_y^2$.
 - \blacksquare b) $\sigma_x^2 + \sigma_y^2 + 2E[xy]$.
 - \Box c) $(\sigma_x + \sigma_y)^2$.
 - \Box d) None of the above

- 5. Consider an unitary negative feedback output topology where $G(s) = \frac{1}{s+1}$ and G(s) = K(s+2) are the plant and controller transfer functions respectively. How many branches will have the root-locus of the closed loop system?
 - \Box a) 0.
 - ■ b) 1.
 - □ b) 2.
 - □ d) None of the above
- 6. Using the previous example, how many branches go to ∞ ?
 - ■ a) 0.
 - □ b) 1.
 - □ b) 2.
 - \Box d) None of the above
- 7. Consider a system with the following open-loop transfer function

$$G(s) = \frac{s+1}{s(s-1)} \tag{4}$$

and an unitary negative feedback output topology where the controller is just a gain, C(s) = K. What is the value of K that makes the closed loop system stable?

- \Box a) K = 0
- \blacksquare b) K = 1
- \Box c) $K = \infty$
- \Box d) None of the above
- 8. Consider the following open loop transfer function $G(s) = \frac{1}{(s+1)^2}$. The corresponding closed loop system with C(s) = K(s-1) is... (complete the sentence)
 - \square a) Stable for every K.
 - \square b) Unstable for every K.
 - \square b) Stable for K > 0.
 - ■ d) None of the above

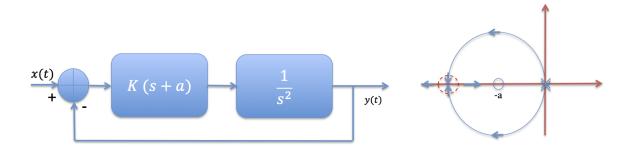


Figura 1: Unit feedback control system.

Problem (2)

Consider the feedback system represented in Fig.1.

For a=0

- 1. Derive the corresponding root-locus for K > 0 and K < 0 without using the root-locus rules. Do it based on the analytic expression of the closed loop poles.
- 2. What is the stability interval for K (the interval of K for which the closed loop system is stable).

For a > 0

- 3. The root-locus for a > 0 and K > 0 is displayed in the figure above (right). Derive analytically the interval of values of K that lead to closed loop complex poles.
- 4. What is location of the poles inside the dashed circle (in the right side of the figure) and the corresponding value of K.
- 5. Compute and draw the root-locus for K < 0. Is the system stable in this case?