

Instituto Superior Técnico / Tecnical University of Lisbon

Departament of Bioengineering

Master on Biomedical Engineering

Signal and Systems in Bioengineering

1st Semester of 2013/2014

João Miguel Sanches

Exame 2

February 1, 2014

	Name :	Number:
--	--------	---------

The duration of the test is 3h. The score of each item is 1 when right and -0.25 if wrong. Only one option can be selected in each question.

$[\Box]$ Part 1

- 1. Let $x(n) = [1, 0, 1, 2, 3, 2]^T$. Select the signal which has a pure real DFT coefficients
 - \Box a) $x((n+1)_6)$
 - \Box b) $x((n-1)_6)$
 - **I** c) $x((n-2)_6)$
 - \square d) None
- 2. Let $p = [p_1, p_2, ..., p_N]$ a complete, non orthogonal basis of a vector space S. In this case the Graminian is
 - ■ a) Non-diagonal
 - \square b) Non-invertible
 - \square c) Non-square
 - \square d) None

3. What is the impulse response of the filter $H(z) = [1 + az^{-1}]^{-1}$?

- \Box a) [1, a]
- ■ b) (-a)ⁿu(n)
- \square c) $a^n u(n)$
- \square d) None

Figura 1: Direct Form II IIR filter

4. Consider the following IIR filter:

$$H(z) = \frac{2 + z^{-1} + 0.5z^{-2}}{1 - 1.25z^{-1} + 0.3z^{-2}}$$
(1)

What is the vector of coefficients, $\mathbf{p} = [p_0, p_1, p_2, p_2, p_3, p_4, p_5, p_6, p_7]$, at Fig.1 that implements this filter?

- **a**) $\mathbf{p} = [1, 2, 1, 1, 1.25, 1, -0.3, 0.5]$
- \square b) $\mathbf{p} = [1, 1, 1, 1, -1.25, 1, 0.3, 0.5]$
- \square c) $\mathbf{p} = [0, 0, 0, 0, 1.25, 1, -0.3, 0.5]$
- \square d) None

5. What is the period of the signal $\sin(\pi n/2) + 0.25 \cos(\pi n/3)$?

- □ a) 6
- **b**) 12
- \square c) 24
- \square d) None

- 6. Let us consider an infinite signal, to be filtered by FIR filter with impulse response length 10. To implement the filtering process by blocks with a 2048 length FFT algorithm, what should be the length of the input blocks to not have overlap of these blocks?
 - **a**) 2030.
 - □ b) 2040.
 - \square c) 2050.
 - \square d) None
- 7. Consider a continuous signal, x(t), sampled at a sampling frequency of $f_s = 1000$ Hz. What should be length N of the FFT used for spectral analysis in order to obtain a spectral separation of at most $f_1 \leq 1$ Hz?
 - \square a) N = 1000
 - \Box b) N = 1012
 - ■ c) N = 1024
 - \square d) None
- 8. Consider the *Linear Time Invariant* (LTI) system described by the following transfer function

$$H(z) = \frac{1}{1 + (3/2)z^{-1} + (9/16)z^{-2}}$$
(2)

What type of filter is this system?

- \blacksquare a) High-pass filter .
- \square b) Band-pass filter.
- \square c) Low-pass filter.
- \Box d) None

Figura 2: Adaptive filter

Problem

Consider the FIR filter h(n) in Fig.2,

$$z(n) = \sum_{k=0}^{p} h(k)x(n-k)$$
(3)

where p is the order of the filter and $\mathbf{h} = \{h(0), h(1), \dots h(p)\}^T$ are the p+1 coefficients of the filter to be estimated at each n^{th} sample, according the following criterion

$$\mathbf{h}(n) = \arg\min_{\mathbf{h}} J(\mathbf{h}) \tag{4}$$

where

$$J(\mathbf{h}) = \sum_{i=0}^{N-1} \left(y(n-i) - z(n-i) \right)^2$$
(5)

with N is the length of a window.

- 1. $\mathbf{z} = [z(0), z(1), ..., z(N-1)]^T$ can be expressed as $\mathbf{z} = A\mathbf{h}$. Define A.
- 2. Express $J(\mathbf{h})$ by using matrix notation.
- 3. Derive a closed-form solution for the optimization problem described in (4).
- 4. What is the optimal filter h(n) if p = 10 and y(n) = x(n-2)?

$[\Box] Part 2$

- 1. Let x and y two random variables with variances σ_x^2 and σ_y^2 respectively. What is the variance of the z = x + y?
 - \square a) $\sigma_x^2 + \sigma_y^2$.
 - \blacksquare b) $\sigma_x^2 + \sigma_y^2 + 2E[(x \mu_x)(y \mu_y)].$
 - \square c) $\sigma_x^2 + \sigma_y^2 + E[xy]$.
 - \square d) None of the above
- 2. Consider the following LTI system

$$H(z) = \frac{0.5}{1 - 0.5z^{-1}} \tag{6}$$

. If the input is zero mean $(\mu_x = 0)$ white noise with variance $\sigma_x^2 = 1$, $x \sim N(0, 1)$. What is the *power spectral density* (PSD) of the output?

- \Box a) $\frac{1}{1.25 0.5 cos(\omega)}$. • \Box b) $\frac{1.5}{1.0625 - 0.5 cos(\omega)}$. • \blacksquare c) $\frac{.25}{1.25 - cos(\omega)}$.
- \square d) None of the above
- 3. Consider a LTI system described by the equation $y(n) = x(n) + 0.25z^{-2}$ where the autocorrelation of the input signal is $\phi_{xx}(m) = 4$. What is the mean of the output signal?
 - ■ a) 8/3.
 - □ b) 16/9.
 - □ c) 0.
 - \square d) None of the above
- 4. Consider z = xy where x and y are two random variables with mean μ_x and μ_y respectively. The mean of z, μ_z , is
 - □ a) 0.
 - \blacksquare b) $\mu_x \mu_y$ if x and y are independent.
 - \square c) $\mu_x + \mu_y$.
 - \square d) None of the above

Consider a unity feedback control system with a controller C(s) and a system (plant) to control G(s) = 1/(s+1), as shown in Fig.3.

Figura 3: Unity feedback control system

- 5. For a proportional controller, C(s) = K, what is the value of K for which the static error, e(t) = x(t) y(t), is zero?
 - \square a) K = 0.
 - \Box b) K = -1.
 - \blacksquare c) $K = \infty$.
 - \square d) None of the above

6. Which controller leads to a finite error to a ramp input, x(t) = tu(t)?

- \square a) C(s) = K(s+10).
- \blacksquare b) C(s) = K(s+10)/s.
- \square c) C(s) = K(s+10)/(s+1).
- \square d) None of the above

7. The overshooting of the closed loop response for C(s) = K:

- \square a) Increases with K.
- \square b) Decreases with K.
- \square c) There is no overshooting.
- \blacksquare d) None of the above

8. The settling time of the closed loop response to a step, x(t) = u(t),

- \square a) Increases with K.
- \blacksquare b) Decreases with K.
- \square c) Is independent of K.
- \square d) None of the above

Figura 4: Unity feedback control system with disturbances

Problem

Consider the previous feedback system with disturbances, p(t), at the output, as shown in Fig. 4.

- 1. Compute the dependence of the output, y(t), with the disturbances, p(t), H(s) = Y(s)/P(s).
- 2. What is the attenuation performed by te closed-loop system to a 1 rad/s sinusoidal disturbance, p(t) = sin(t)?
- 3. What is the *Power Spectral Density* (PSD) of the output when the disturbance is white noise with unit variance $\sigma_p^2 = 1$ for K = 9?
- 4. What is the *Power Spectral Density* (PSD) of the output when the disturbance and the input are both white noise with unit variances, $\sigma_p^2 = 1$ and $\sigma_x^2 = 1$, for K = 9.