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Test 1

1. What is the impulse response of the filter H(z) = [1 + az−1]−1?

• 2 a) anu(n)

• 2 b) −anu(n)

• � c) (−a)nu(n)

• 2 d) None

H(z) = [1 + az−1]−1 ⇒ Y (z)(1 + az−1) = X(z)⇒ y(n) = x(n)− ay(n− 1)
⇒ h(n) = δ(n)− ah(n− 1)⇒
h(0) = 1
h(1) = −a
h(2) = a2

...
h(n) = (−a)nh(n)

2. Consider the following optimization problem,

c∗ = arg min
c
‖Ac− x‖1 (1)

where A is a N ×L matrix, x is a N length column vector of observations and c is a L
length column vector of coefficients to be estimated. ‖e‖1 =

∑L
k=1 |ek| is called L1 norm
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where |.| denotes the absolute value function. This optimization problem can solved
using the Iteratve Reweighted Least Squares (IRLS) algorithm as follows

ct+1 = arg min
c

eTW (ct)e (2)

where e = Ac− x and W (ct) = diag(wi) is a diagonal matrix with elements

• 2 a) wi = 1

• 2 b) wi = |eti|
• � c) wi = 1/|eti|
• 2 d) None of the above.

3. Consider the Linear Time Invariant (LTI) system described by the following transfer
function

H(z) =
1

1 + (4/3)z−1 + (8/9)z−2
, (3)

where the roots of the denominator are p1,2 = 2/3 ± j2/3. What type of filter is this
system?

• 2 a) High-pass filter .

• � b) Band-pass filter.

• 2 c) Low-pass filter.

• 2 d) None

4. Let x(n) = [1,−1, 1, 0 ]. What is the value of the 4 dimension DFT coefficient X4(1)?

• 2 a) 0.

• 2 b) 1.

• � c) j.

• 2 d) None

5. Let x(n) and y(n) two discrete sequences of length 16 with DFT coefficients X16(k)

and Y16(k) respectively, where Y (k) =

{
X(k) for k even

−X(k) for k odd
.

What is the right option?

• � a) y(2) = x(10).
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• 2 b) y(1) = x(11).

• 2 c) y(0) = x(12).

• 2 d) None

6. What is the period of the signal sin(πn/2) + 0.25 cos(πn/3)?

• 2 a) 6

• � b) 12

• 2 c) 24

• 2 d) None

7. Consider a space with inner-product, < x,y > and induced norm ‖x‖ =
√
< x,x >.

Which condition is true?

• 2 a) ‖x + y‖ ≤ ‖x‖ − ‖y‖.
• � b) | < x,y > | ≤ ‖x‖.‖y‖
• 2 c) ‖x + y‖ ≥ ‖x‖+ ‖y‖.
• 2 d) None

8. The Fast Fourier Transform (FFT) optimizes the computation of the DFT by removing
completely redundant computations. The core of the FFT algorithm, called butterfly,
is a structure that computes a 2-length DFT vector of Fourier coefficients DFT2(x) =
X = [X(0), X(1)]T from 2 length sequences, x = [x(0), x(1)]T . Using matrix notation

X = Wx

where W is one of the following 2× 2 square matrices. What is that matrix?

• 2 a) W = [1, 0; 0, 1].

• � b) W = [1, 1; 1,−1].

• 2 c) W = [1, 0; 1, 0].

• 2 d) None
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Problem (T=4/Ex=2)

Figura 1: Adaptive filter.

Consider the FIR filter h(n) in Fig.1,

y(n) =

p∑
k=0

hk(n)x(n− k) (4)

where h(n) = {h0(n), h1(n), ...hp(n)}T are the p + 1 coefficients of the filter to be esti-
mated at each nth sample, according the following criterion

h(n) = arg min
h
J(h) (5)

where

J(h) =
N−1∑
i=0

(d(n− i)− y(n− i))2 (6)

with N is the length of a window.

(a) y(n) = [y(n), y(n− 1), ..., y(n−N)]T can be expressed as y(n) = Ah(n).
Define A.

(b) Express J(h) by using matrix notation.

(c) Derive a closed-form solution for the optimization problem described in (5).

(d) What is the optimal filter h(n) if p = 10 and y(n) = x(n− 2)?
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Test 2

1. Consider the following procedure to change the sampling rate of a discrete signal x(n)
by a factor of R = 2/3,

y(n) = T↓3[h(n) ∗ T↑2[x(n)]]

where h(n) is an ideal low-pass filter with a cut-off frequency ωc = π/3. If x(n) =
sin(πn/3) + sin(5π/6) what is y(n)?

• 2 a) y(n) = sin(πn/2) + sin(15π/12)

• 2 b) y(n) = sin(15π/12)

• � c) y(n) = sin(πn/2)

• 2 d) None

• After up-sampling the resulting signal is x(n) = sin(πn/6) + sin(5π/12)

• After filtered the resulting signal is x(n) = sin(πn/6)

• After down-sampled the resulting signal is x(n) = sin(πn/2)

2. Consider the discrete signal x(n) where two (2) additional zero samples are introduced
between the original ones, [...x(i), 0, 0, x(i+ 1), ...]. The ideal interpolation of these new
samples can be implemented by filtering the augmented signal with an ideal low-pass
filtering with a cut-off frequency ωc. What should be that frequency?

• 2 a) ωc = π/2

• � b) ωc = π/3

• 2 c) ωc = π/4

• 2 d) None

Two additional zeros for each sample correspond to an upsampling ratio D = 3. In this
case, the ideal low-pass interpolation filter has a cut-off frequency of ωc = π/D = π/3.

3. Consider a first order unknown system G(s) = A/(1 + τs) and its step, x(t) = u(t),
response displayed in Fig. 2. What is the time constant, τ , in seconds?

• 2 a) 25.

• 2 b) 20.

• 2 c) 1/4.

• � d) None
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Figura 2: First order step response of an unknown system, G(s) = A/(1 + τs).

4. Consider two independent random variables, x and y, with variances σ2
x and σ2

y respec-
tively. What is the variance of z = xy?

• � a) σ2
x ∗ σ2

y .

• 2 b) σ2
x/σ

2
y .

• 2 c) σ2
x + σ2

y.

• � d) None of the above

Using E(x2) = σ2
x + µ2

x and µz = µxµy, because x and y are independent, then

σ2
z = E((z − µz)2) = E((xy − µxµy)2) = E(x2y2 − 2xyµxµy + µ2

xµ
2
y) =

E(x2)E(y2)−µ2
xµ

2
y = (σ2

x+µ2
x)(σ

2
y +µ2

y)−µ2
xµ

2
y = σ2

xσ
2
y +σ2

xµ
2
y +σ2

yµ
2
x+µ2

xµ
2
y−µ2

xµ
2
y ⇒

σ2
z = σ2

xσ
2
y + σ2

xµ
2
y + σ2

yµ
2
x

if µx = µy = 0⇒ σ2
z = σ2

xσ
2
y

5. Consider the system

H(z) =
1

1− 0.25z−1
. (7)

If the input is a zero mean (µx = 0) white noise with variance σ2
x = 2, x ∼ N(0, 2).

What is the power spectral density (PSD) of the output?

• � a) 2
1.0625−0.5cos(ω) .

• 2 b)
√
2

1.0625−0.5cos(ω) .
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• 2 c) 2
1.25−0.25cos(ω) .

• 2 d) None of the above

6. Consider a LTI system with impulse response h(n) = δ(n) − 1
3
δ(n − 1) and an input

signal with autocorrelation φxx(m) = δ(m) + 4. What is the mean of the output signal?

• 2 a) 4/9.

• 2 b) 2/3.

• � c) 4/3.

• 2 d) None of the above

7. A closed-loop real system with complex conjugated poles is always

• 2 a) unstable.

• 2 b) stable.

• � c) overshot

• 2 d) None of the above

8. Consider the discrete stochastic process x(n) = sin(2πn/N)+η(n) where η(n) ∼ N (0, 1)
is white Gaussian noise. This process is

• 2 a) Stationary.

• 2 b) Ergodic.

• 2 c) White.

• � d) None

• It is not stationary because it is time varying.

• It is not Ergodic because it is not stationary

• It is not white because
E[x(n)x(n+m)] = sin(2πn/N)sin(2π(n+m)/N)+E[sin(2πsin(2πn/N)sin(2π(n+
m)/N) + ψη(m) =
sin(2πn/N)sin(2π(n+m)/N) + δ(m) 6= δ(m)
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Figura 3: Unit feedback control system.

Problem (T=4/Ex=2)
Consider the feedback system represented in Fig.3.

1. (2) Draw the root-locus (RL) for K > 0 and K < 0. Compute explicitly the break
in and break out points at the real axis, asymptotic center and angle of the
asymptotes and the sections of the real axis of RL.

(a) break in and break out points: Characteristic equation: 1 + k
s(s+1)(s+10)

= 0⇒ k =

−s(s+ 1)(s+ 10)⇒
dk
ds

= 3s2 + 22s+ 10 = 0⇒ s1,2 = −0, 4869;−6, 8464

(b) Imaginary axis crossing point: θ1 + θ2 + θ3 = (2r + 1)π ⇒
π/2 + tan−1(ω) + tan−1(ω/10) = π ⇒
tan (tan−1(ω) + tan−1(ω/10)) = tan (π/2) = ω+ω/10

1−ω2/10
=∞⇒

1− ω2/10 = 0⇒ ω = ±
√

10

(c) σass = (
∑

k pk −
∑

r zr) /(N −M) = −11/3 = −3.33

(d) φ(k > 0) = {±π/3;π}
(e) φ(k < 0) = {0;±2π/3; }

2. (0,5) Compute the values of K for which the closed-loop poles are equal (double-poles)
and indicate their positions in the RL.

The double-poles occur at the break-in and break-out points of the real axis: k =
−s(s+ 1)(s+ 10)|s=[−0,4869;−6,8464] = [2, 38;−126, 23]

3. (0,5) What is the minimum value of K for which the system is stable without oversho-
oting?
The system is stable without overshoot for k ∈ [0; 2, 38], that correspond to the part of
the RL where the closed loop poles are real and negative (stable).

4. (1) For which value of K the system becomes critically stable? Indicate over the RL
the location of the poles for this value of K. What is the frequency of the oscillations?
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See item 1b.
For this position: s = jω = j

√
10⇒

k(j
√

10) = −s(s+ 1)(s+ 10)|s=jω=j√10 = 110

The frequency of oscillations is ω =
√

10rad/sec.
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