Instituto Superior Técnico / University of Lisbon
 Departament of Bioengineering
 Master on Biomedical Engineering
 Signals and Systems in Bioengineering

1st Semester de 2016/2017
João Miguel Sanches

Test 1

November 16, 2016

Name:

Number:

The duration of the test is 1 h 30 m . The score of each item is 2 when right and -0.5 if wrong. Only one option can be selected in each question.

1. Consider a continuous signal, $x(t)$, sampled with a sampling frequency of $f_{s}=10 \mathrm{~Hz}$. How many samples correspond to the first 1.45 seconds of the signal $(t \in[0,1.45])$?
a) 14 .

- ■ b) 15 .
-c) 16 .
d) None

Solution: $t_{k}=k T_{s}=k / f_{s}$ where $k=0,1, \ldots N-1$.
$t_{k_{\max }}=k_{\max } / f_{s} \leq 1.45 \Rightarrow k_{\max }=$ floor $\left(1.45 * f_{s}\right)=$ floor $(14.5)=14=N-1$
$\Rightarrow N=15$
2. Let \mathbf{p}_{1} and \mathbf{p}_{2} two real unit norm vectors, $\left\|\mathbf{p}_{i}\right\|=1$, from a non-orthogonal basis.

What is the value of the following inner product: $<\mathbf{p}_{1}+\mathbf{p}_{2}, \mathbf{p}_{1}-\mathbf{p}_{2}>$?

- ■ a) 0 .
- \square b) 1 .
- \square c) 2 .
d) None

Solution:

$$
\begin{align*}
<\mathbf{p}_{1}+\mathbf{p}_{2}, \mathbf{p}_{1}- & \mathbf{p}_{2}>=<\mathbf{p}_{1}, \mathbf{p}_{1}>-<\mathbf{p}_{1}, \mathbf{p}_{2}>+<\mathbf{p}_{2}, \mathbf{p}_{1}>-<\mathbf{p}_{2}, \mathbf{p}_{2}>= \\
& <\mathbf{p}_{1}, \mathbf{p}_{1}>+<\mathbf{p}_{1}, \mathbf{p}_{2}>(1-1)-<\mathbf{p}_{2}, \mathbf{p}_{2}>=1+0-1=0 \tag{1}
\end{align*}
$$

3. Let \mathbf{x} be a vector form S, a subspace of R^{2} spanned by the (column) vectors $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}\right\}$. Consider the following representation of \mathbf{x} as function of the vectors of the basis,

$$
\begin{equation*}
\mathbf{x}=a \mathbf{p}_{1}+b \mathbf{p}_{2}+\mathbf{e}(\theta) \tag{2}
\end{equation*}
$$

where $\mathbf{e}(\theta)$ is an error vector. The optimal set of coefficient, $\theta^{*}=\left[a^{*}, b^{*}\right]^{T}$, that minimize the norm of the error, $\theta^{*}=\arg \min _{\theta}\|\mathbf{e}\|$, can be obtained using the orthogonality principle as follows

$$
\begin{equation*}
\theta^{*}=R^{-1} P \tag{3}
\end{equation*}
$$

where $\left.R=\Phi^{T} \Phi, P=\left[<\mathbf{x}, \mathbf{p}_{1}>,<\mathbf{x}, \mathbf{p}_{2}\right\rangle\right]^{T}$ and $<,>$ denotes the inner product operator.
In this formulation what is Φ ?

- ■ a) $\Phi=\left[\mathbf{p}_{1}, \mathbf{p}_{2}\right]$.
\bulletb) $\Phi=\left[\mathbf{p}_{1}, \mathbf{p}_{2}\right]^{T}$.
c) $\Phi=\mathbf{p}_{1}^{T} \mathbf{p}_{2}$.
-d) None

4. Consider an unknown continuous scalar function $f(t)$ defined in the interval $t \in[0,1]$ and a set of M observations $F=\left[f_{1}, f_{2}, \ldots, f_{M}\right]^{T}$ taken at random time points, t_{k}, from the interval where $f(t)$ is defined. Let also consider a continuous function $g(t)=$ $\sum_{k=0}^{N-1} c_{k} \phi_{k}(t)$, a linear combination of N known basis functions, $\phi_{k}(t)$, evenly distributed in the same time interval, $\phi_{k}(t)=\phi(t / \Delta-k), k=0 \ldots N-1$ where $\phi(t)$ is a mother interpolation function and Δ is the distance between interpolation functions.
The optimal set of coefficients, $\mathbf{c}=\left[c_{0}, c_{1}, \ldots, c_{N-1}\right]^{T}$ are computed by minimizing the norm of the error $E(\theta)=\|F-G\|$ where $G=\left\{g\left(t_{k}\right)\right\}$ with t_{i} is the time point of the $i^{\text {th }}$ observation.

Using the appropriated formulation (2nd laboratory work) the solution is

$$
\mathbf{c}^{*}=\left(\Theta^{T} \Theta\right)^{-1} \Theta^{T} F
$$

where Θ is a function of the observations and interpolation functions.
Under this formulation what are the dimensions of matrix Θ ?

- \square a) $N \times M$.
- b) $M \times N$.
-c) $N \times N$.
d) None

Figura 1: Adaptive filter.
5. Consider the canonical adaptive filter displayed in Fig. 1 where $d(n)=x(n)$ and $h(n)$ is a 4 length FIR filter. In this conditions what is the optimal impulse response of the FIR that minimizes the norm of the error, $\|\mathbf{e}\|$?

- \square a) $h(n)=\mathbf{x} * \mathbf{x}$.b) $h(n)=[0,0,0,0]$.
- ■ c) $h(n)=[1,0,0,0]$.
-d) None

Solution: If $d(n)=x(n)$ and $\mathbf{h}=[1,0,0,0,0]$ then $y(n)=x(n) \Rightarrow e(n)=d(n)-y(n)=$ $x(n)-x(n)=0$. In these conditions the optimality criterion, the minimization of $\|\mathbf{e}\|$, holds and the error norm is the minimum possible $\|\mathbf{e}\|=\|[0,0, \ldots, 0]\|=0$.
6. Consider the complex signal $x(n)=[1 ; j ;-1 ;-j]$. What is the 4 length DFT value for $k=4, X_{4}(4)$?

- ■ a) 0 .
-b) 4 .
-c) $2(1-j)$.
-d) None

7. Consider a $N=1000$ length complex signal $x(n)$ to be filtered by a $P=24$ length FIR filter with impulse response $h(n)$.

What is the minimum length of the Fast Fourier Transform (FFT) used to compute the DFTs needed to filter $x(n)$ in the frequency domain without loss of information?

- \square a) 1000 .
- \square b) 1023 .
- ■ c) 1024 .
d) None

Solution: Let us consider the integer $r . N_{F F T}=2^{r} \geq \operatorname{length}\left(x_{k} * h\right)=N+P-1=$ $1000+24-1=1023 \Rightarrow r \geq \log _{2}(1023)=\ln (1023) / \ln (2)=9.9986 \Rightarrow r=10 \Rightarrow$ $N_{F F T}=2^{r}=1024$.
8. Consider two finite length sequences $x_{5}(n)$ and $y_{6}(n)$ with lengths 5 and 6 respectively. $w(n)=x_{5}(n) * y_{6}(n)$ and $z(n)=x_{5}(n)\left(\star_{8}\right) y_{6}(n)$ are the linear $(*)$ and circular length $8,\left(\star_{8}\right)$, convolutions respectively. Which condition is true?

- \square a) $w(0)=z(0)$.
- \square b) $w(2)=z(2)$.
- \square c) $w(10)=z(10)$.
-d) None

Problem (4) Let $x(n)$ be a N length strictly positive sequence and consider the following non linear model

$$
x(n)=x^{\alpha}(n-1) x^{\beta}(n-2) e^{\epsilon(n)}
$$

Formulate the estimation problem of the vector of coefficients $\theta=[\alpha, \beta]^{T}$ using matrix notation by minimizing the norm of the error, $\|\epsilon\|$.

Solution:

$$
\begin{align*}
x(n)=x^{\alpha}(n-1) x^{\beta}(n-2) e^{\epsilon(n)} & \Rightarrow \\
\log [x(n)]=\alpha \log [x(n-1)]+\beta \log [x(n-2)]+\epsilon(n) & \Rightarrow \\
\tilde{\mathbf{y}}=\alpha \tilde{\mathbf{x}}_{1}+\beta \tilde{\mathbf{x}}_{2}+\mathbf{e} & \Rightarrow \\
\tilde{\mathbf{y}}=\left[\tilde{\mathbf{x}}_{1}, \tilde{\mathbf{x}}_{2}\right] \theta & +\mathbf{e} \tag{4}
\end{align*}
$$

where $\theta=[\alpha, \beta]^{T}, \tilde{\mathbf{y}}=[\log [x(n)]], \tilde{\mathbf{x}}_{1}=[\log [x(n-1)]]$, $\tilde{\mathbf{x}}_{2}=[\log [x(n-2)]]$ and $\mathbf{e}=[\epsilon(n)]$. Solve (4) for θ by minimizing the norm of the error: $\|\epsilon\|$.

