Instituto Superior Técnico / Tecnical University of Lisbon Departament of Bioengineering Master on Biomedical Engineering Signal and Systems in Bioengineering

1st Semester de 2013/2014
João Miguel Sanches

Test 1

Novembro 13, 2013

Name:
Number:

The duration of the test is 1 h 30 m . The score of each item is 2 when right and -0.5 if wrong. Only one option can be selected in each question.

1. Consider the Linear Time Invariant (LTI) system described by the following difference equation

$$
\begin{equation*}
y(n)=x(n)+y(n-1)-0.25 y(n-2) . \tag{1}
\end{equation*}
$$

What type of filter is this system?

- \square a) High-pass filter .
- \square
b) Band-pass filter.
- \square
c) Low-pass filter.
d) None

2. Compute the angle between signals t and t^{2}, defined in the interval $[-1,1]$?

- \square a) 0 .b) $1 / 2$.
c) $1 / 4$.
d) None

3. Consider a discrete signal obtained with a sample rate of 20 kHz . What is the corresponding continuous spectral frequency in Hz of the FFT_{1024} coefficient $X(16)$?

- \square a) 312.5 Hz .
b) $0.0982 \mathrm{rad} /$ sample.
c) 125 Hz .

4. Consider a 10 length signal $x=[0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9]$. Sample the Fourier transform of $x, X(\omega)$, at 8 evenly spaced frequencies, $X_{8}(k)$, and compute $y(n)=D F T_{8}^{-1}(X)$, for $n=[0,1, \ldots, 7]$, where $D F T_{8}^{-1}()$ denotes a 8 length DFT inversion operator.
What is $y(n)$?

- \square a) $y(n)=[0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$.
- \square b) $y(n)=[8 ; 9 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$.
- \square c) $y(n)=[8 ; 10 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$.
- \square d) None

5. Consider a 8 length DFT, $X(k)=[1 ; X(1) ; 1-j ; j-j ; 1+j ; 1-j]$, of a real signal $x(n)$. What is the value of $X(1)$?

- \square a) $X(1)=0$.b) $X(1)=1+j$.
- \square c) $X(1)=1-j$.
d) None

6. Consider a band pass filter with the following transfer function;

$$
\begin{equation*}
H(z)=\frac{1}{1-(3 / 2) z^{-1}+(13 / 16) z^{-2}} \tag{2}
\end{equation*}
$$

with poles $p_{1,2}=\frac{3}{4} \pm j \frac{1}{2}$. What is central frequency of this filter?

- \square a) $\omega_{0}=0 \mathrm{rad} /$ sample.
- \square b) $\omega_{0}=1 \mathrm{rad} / \mathrm{sample}$.
- \square c) $\omega_{0}=\arctan (2 / 3)$.
- \square d) None

7. The inner product $<\phi_{k}(n), \phi_{r}(n)>$ with

$$
\begin{equation*}
\phi_{\tau}(n)=\frac{1}{\sqrt{N}} e^{j \frac{2 \pi}{N} \tau n} \tag{3}
\end{equation*}
$$

where k, r and τ are integers and N is the total length of the signals, is

- \square a) $\delta(k-r)$.
b) 0 .c) 1 .d) None

8. What is the period of the signal $y(n)=\cos (n)$?a) 1 sample.
b) $2 \pi \mathrm{rad} /$ sample.
c) 1 second.
d) None

Problem (4) Consider the following model describing noisy observations

$$
\begin{equation*}
y(n)=x(n)+\eta(n) \tag{4}
\end{equation*}
$$

where $\eta(n)$ is additive white Gaussian noise with normal distribution, $\eta(n) \sim \mathcal{N}\left(0, \sigma^{2}\right)$. $\mathbf{y}=[y(0), y(1), \ldots, y(N-1)]^{T}$ are the noisy observations and $x(n)$ the unknown signal to estimate.

The maximum likelihood (ML) estimation of $\mathbf{x}=[x(0), x(1), \ldots, x(N-1)]^{T}$ can be computed by minimizing the following energy function,

$$
\begin{equation*}
J=\|(A \mathbf{x}-\mathbf{y})\|^{2} \tag{5}
\end{equation*}
$$

where A is a known $N \times N$ matrix modelling the blur effect.

1. Derive the close form solution for the ML estimate of \mathbf{x} from the observation \mathbf{y} vector.
2. The minimization of (5) is an ill-posed problem. To regularize the solution a modified energy function is proposed,

$$
\begin{equation*}
J=\|(A \mathbf{x}-\mathbf{y})\|^{2}+\alpha \sum_{n=1}^{N-1}(x(n)-x(n-1))^{2} \tag{6}
\end{equation*}
$$

Derive the close form solution of the minimizer of (6).

