

Instituto Superior Técnico / Tecnical University of Lisbon

Departament of Bioengineering

Master on Biomedical Engineering

Signal and Systems in Bioengineering

1st Semester de 2013/2014

João Miguel Sanches

Test 2 / Exame 1

January 18, 2014

Name : Number:

The duration of the test is 3h. The score of each item is 1 when right and -0.25 if wrong. Only one option can be selected in each question.

Part 1

- 1. Consider the finite length sequence $x(n) = \{1, 2, 3\}$ and the sequence $y(n) = ((4 n)_6)$. What is the value of y(3)?
 - □ a) 1
 - 🗆 b) 2
 - □ c) 3
 - \Box d) None of the above

2. Let $g(x,y) = e^{d(x,y)}$ where d(x,y) is a metric function. g(x,y) is

- \square a) a metric function because is strictly positive.
- \square b) a metric because is convex.
- \Box c) a metric because is null if and only if x = y.
- \square d) None of the above

3. What is the period of the signal $x(n) = cos(0.2\pi n)$?

- □ a) 0.2.
- □ b) 10.
- □ c) 20.
- \Box d) None of the above

- 4. Let us consider an infinite signal, to be filtered by a 15 length impulse response FIR filter. To implement the filtering process by blocks with a 1024 length FFT algorithm, what should be the length of the input blocks to not have overlap of these blocks?
 - □ a) 1010.
 - \square b) 1024.
 - \square c) 1038.
 - \square d) None
- 5. Let x(n) = [1, 0, 0, 0, 0, -1, 0, 0, 0, 0] be a periodic real sequence. What is the value of the 11^{th} coefficient, X(10)?
 - □ a) 2
 - \Box b) -2
 - □ c) 0
 - \square d) None of the above

6. What is the value of the l_{∞} norm of the vector x = [-2, -1, 0, 1]?

- \square a) $\sqrt{6}$
- □ b) 2
- □ c) 4
- \square d) None of the above
- 7. Consider the Linear Time Invariant (LTI) system

$$H(z) = \frac{1}{1 - 2\rho\cos(\theta)z^{-1} + \rho^2 z^{-2}}.$$
(1)

What type of filter is this system for $\rho = 0.8$ and $\theta = \pi/4$?

- \square a) High-pass filter .
- \square b) Band-pass filter.
- \square c) Low-pass filter.
- \square d) None of the above

- 8. Consider a discrete signal sampled at a 8192 samples/s. What is the minimum spectral distance between components of the spectrum if a 4096 length FFT_{4096} is used?
 - □ a) 0.5Hz.
 - 🗆 b) 1Hz.
 - □ c) 2Hz.
 - \square d) None of the above

Problem (4) Consider a finite length, N, signal x(n). Let y(n) be a M length sequence, obtained from x(n), by sampling its Fourier transform in M = N/2 evenly spaced frequencies, including $X(\omega = 0)$.

- 1. What is the *M* length y(n) signal? Derive it analytically by sampling the Fourier transform of x(n).
- 2. If x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] represent y(n) for M = N/2 = 5.

Part 2

- 1. Let x and y two independent random variables with variances σ_x^2 and σ_y^2 respectively. What is the variance of the z = 2x + y?
 - \square a) $4\sigma_x^2 + \sigma_y$.
 - \square b) $2\sigma_x^2 + \sigma_y$.
 - \square c) $\sigma_x^2 + \sigma_y$.
 - \square d) None of the above
- 2. Consider the following LTI system

$$H(z) = \frac{1}{1 - 0.25z^{-1}} \tag{2}$$

What is the mean value of the output signal if the input is white noise with mean $\mu = 2$ and variance $\sigma^2 = 1$?

- □ a) 1.
- □ b) 2.
- □ c) 4.
- \square d) None of the above
- 3. Consider the system (2). If the input is a zero mean ($\mu_x = 0$) white noise with variance $\sigma_x^2 = 2, x \sim N(0, 2)$. What is the *power spectral density* (PSD) of the output?
 - \square a) $\frac{0.75}{1.25 0.5 \cos(\omega)}$.
 - \Box b) $\frac{1.5}{1.0625 0.5 \cos(\omega)}$.
 - \Box c) $\frac{2}{1.0625 0.25 \cos(\omega)}$.
 - \Box d) None of the above
- 4. What is the expected value of a random variable x with distribution p(x) = 2(1 x) for $0 \le x \le 1$?
 - □ a) 0.
 - □ b) 1/3.
 - □ c) 1.
 - \square d) None of the above

- 5. Let H(z) be an ideal lowpass filter with cutoff frequency $\omega_c = \pi/4$ and $H(\omega)|_{\omega=0} = 1$. Consider the input signal $x(n) = 1 + \cos\left(\frac{\pi}{3}n\right) + \eta$ where η is zero mean white noise with variance $\sigma_{\eta}^2 = 1$. What is the power spectrum of the output, $P_y(\omega)$?
 - \square a) $P_y(\omega) = 2\pi \left(\delta(\omega) + 0.5\delta(\omega \pi/3) + 0.5\delta(\omega + \pi/3) \right) + 1.$
 - \square b) $P_y(\omega) = 2\pi\delta(\omega) + 1.$
 - \Box c) $P_x(\omega)$.
 - \square d) None of the above
- 6. Consider a LTI system with impulse response $h(n) = \delta(n) \frac{1}{3}\delta(n-1)$ and an input signal with autocorrelation $\phi_{xx}(m) = \delta(m) + 1$. What is the mean of the output signal?
 - \square a) 4/9.
 - □ b) 2/3.
 - □ c) 0.
 - \square d) None of the above

7. The static error of a type 1 feedback system to an input ramp, x(t) = tu(t), is

- \square a) infinite.
- \square b) finite not null.
- \square c) null.
- \square d) None of the above
- 8. A closed-loop system with complex conjugated poles is always
 - \square a) unstable.
 - \square b) stable.
 - \square c) overshot
 - \square d) None of the above

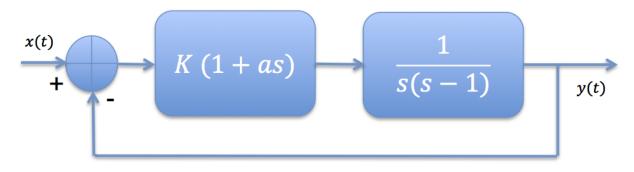


Figura 1: Unit feedback control system.

Problem (2) Consider the feedback system represented in Fig.1.

- 1. Is this system stable in open-loop (without feedback)? Why?
- 2. Draw the root-locus of the system for K > 0 and $\alpha = 0$. Is the closed-loop system stable? Why?
- 3. For $\alpha = 1$ what is location of the closed loop zero?
- 4. What is the value of K for $\alpha = 1$ that stabilize the system?
- 5. Draw the new root-locus for $\alpha = 1$ and K > 0).