Instituto Superior Técnico / University of Lisbon

Departament of Bioengineering

Master on Biomedical Engineering

Signals and Systems in Bioengineering

1st Semester de 2014/2015

João Miguel Sanches

Test 1

Novembro 13, 2014

Name :

Number:

The duration of the test is 1h30m. The score of each item is 2 when right and -0.5 if wrong. Only one option can be selected in each question.

- 1. Consider the complex signal x(n) = [0; j; 1+3j; -1-j; 0; 3; -2j; 1-j]. What is the value of $X_8(k)$ for k = 8?
 - □ a) 0.
 - □ b) 4.
 - \Box c) 4 j.
 - \square d) None
- 2. Consider the signal x(n) = [3; 2; 1; 0; 1; 2; 3; 4]. What is the option where the 8-length DFT is real?
 - \square a) $x((n-1)_8)$.
 - \Box b) $x((n+1)_8)$.
 - \Box c) $x((n-2)_8)$.
 - \square d) None
- 3. Consider the 4-length and 8-length sequences $x_4(n)$ and $y_8(n)$ respectively. Let also w(n) = x(n) * y(n) and z(n) = x(n) * y(n) where * and * denote the linear and 8-length circular convolutions respectively. Select the right option.
 - \Box a) z(0) = w(0).
 - \Box b) z(1) = w(0).
 - \Box c) z(4) = w(4).
 - \square d) None

- 4. What is the frequency of the discrete signal x(n) = exp(j2n/7)?
 - □ a) 2/7.
 - □ b) 2/14.
 - \Box c) $2\pi/14$.
 - \square d) None

5. Consider the *Linear Time Invariant* (LTI) filter with the following transfer function

$$H(z) = \frac{1 - 0.1z^{-1}}{1 - 0.7z^{-1} + 0.1z^{-2}}$$
(1)

What is the corresponding time recursion that can be used to implement the filter?

- \square a) y(n) = x(n) 0.1x(n-1) + 0.7y(n-1) 0.1y(n-2).
- \square b) y(n) = x(n) 0.1x(n-1) 0.7y(n-1) + 0.1y(n-2).
- \square c) y(n) = x(n) + 0.1x(n-1) + 0.7y(n-1) 0.1y(n-2).
- \square d) None
- 6. Consider a 10 length signal x = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]. Sample the Fourier transform of $x, X(\omega)$, at 8 evenly spaced frequencies, $X_8(k)$, and compute $y(n) = DFT_8^{-1}(X)$, for n = [0, 1, ..., 7], where $DFT_8^{-1}()$ denotes a 8 length DFT inversion operator.

What is y(n) ?

- \square a) y(n) = [0; 1; 2; 3; 4; 5; 6; 7].
- \square b) y(n) = [8; 9; 2; 3; 4; 5; 6; 7].
- \square c) y(n) = [8; 10; 2; 3; 4; 5; 6; 7].
- \square d) None
- 7. Consider the following transfer function of a filter:

$$H(z) = \frac{1 - 0.5z^{-1}}{1 - (3/2)z^{-1} + (13/16)z^{-2}}$$
(2)

with poles $p_{1,2} = \frac{3}{4} \pm j\frac{1}{2}$. What is central frequency of this filter?

- \square a) $\omega_0 = 0$ rad/sample.
- \square b) $\omega_0 = 1$ rad/sample.
- \square c) $\omega_0 = \arctan(2/3)$.

- \Box d) None
- 8. The goal is to filter, in real time, an audio signal from a microphone with a 25 length impulse response FIR filter. The signal should be processed with a 500 sample length blocks and the convolution is performed by using a 512 length FFT algorithm. What is the number of overlapped samples of the input blocks?
 - \square a) 24.
 - □ b) 12.
 - □ c) 0.
 - \square d) None

Problem (4)

Let X(k) and Y(k) be the DFTs of the N-length x(n) and y(n) sequences respectively where

$$Y(k) = \begin{cases} -X(k) & \text{if } k \text{ is even} \\ X(k) & \text{otherwise} \end{cases}$$
(3)

- 1. What is the relation between y(n) and x(n)
- 2. If x(n) = [0; 1; 2; 3; 4; 5; 6; 7] what is y(n)?