Instituto Superior Técnico / University of Lisbon
 Departament of Bioengineering
 Master on Biomedical Engineering Signals and Systems in Bioengineering

1st Semester de 2014/2015
João Miguel Sanches

Test 1

Novembro 13, 2014

Name:
Number:

The duration of the test is 1 h 30 m . The score of each item is 2 when right and -0.5 if wrong. Only one option can be selected in each question.

1. Consider the complex signal $x(n)=[0 ; j ; 1+3 j ;-1-j ; 0 ; 3 ;-2 j ; 1-j]$. What is the value of $X_{8}(k)$ for $k=8$?
\bulleta) 0 .

-

b) 4 .
c) $4-j$.
d) None
2. Consider the signal $x(n)=[3 ; 2 ; 1 ; 0 ; 1 ; 2 ; 3 ; 4]$. What is the option where the 8 -length DFT is real?
-a) $x\left((n-1)_{8}\right)$.
b) $x\left((n+1)_{8}\right)$.
c) $x\left((n-2)_{8}\right)$.
-d) None
3. Consider the 4 -length and 8-length sequences $x_{4}(n)$ and $y_{8}(n)$ respectively. Let also $w(n)=x(n) * y(n)$ and $z(n)=x(n) \star y(n)$ where $*$ and \star denote the linear and 8-length circular convolutions respectively. Select the right option.

- \square a) $z(0)=w(0)$.
- \square b) $z(1)=w(0)$.
-c) $z(4)=w(4)$.
d) None

4. What is the frequency of the discrete signal $x(n)=\exp (j 2 n / 7)$?

- \square a) $2 / 7$.
\bulletb) $2 / 14$.
-c) $2 \pi / 14$.d) None

5. Consider the Linear Time Invariant (LTI) filter with the following transfer function

$$
\begin{equation*}
H(z)=\frac{1-0.1 z^{-1}}{1-0.7 z^{-1}+0.1 z^{-2}} \tag{1}
\end{equation*}
$$

What is the corresponding time recursion that can be used to implement the filter?

- \square a) $y(n)=x(n)-0.1 x(n-1)+0.7 y(n-1)-0.1 y(n-2)$.
b) $y(n)=x(n)-0.1 x(n-1)-0.7 y(n-1)+0.1 y(n-2)$.
c) $y(n)=x(n)+0.1 x(n-1)+0.7 y(n-1)-0.1 y(n-2)$.
d) None

6. Consider a 10 length signal $x=[0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9]$. Sample the Fourier transform of $x, X(\omega)$, at 8 evenly spaced frequencies, $X_{8}(k)$, and compute $y(n)=D F T_{8}^{-1}(X)$, for $n=[0,1, \ldots, 7]$, where $D F T_{8}^{-1}()$ denotes a 8 length DFT inversion operator.
What is $y(n)$?

- \square a) $y(n)=[0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$.
b) $y(n)=[8 ; 9 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$.
- \square c) $y(n)=[8 ; 10 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$.
d) None

7. Consider the following transfer function of a filter:

$$
\begin{equation*}
H(z)=\frac{1-0.5 z^{-1}}{1-(3 / 2) z^{-1}+(13 / 16) z^{-2}} \tag{2}
\end{equation*}
$$

with poles $p_{1,2}=\frac{3}{4} \pm j \frac{1}{2}$. What is central frequency of this filter?

- \square a) $\omega_{0}=0 \mathrm{rad} /$ sample.
-b) $\omega_{0}=1 \mathrm{rad} /$ sample.
-c) $\omega_{0}=\arctan (2 / 3)$.
d) None

8. The goal is to filter, in real time, an audio signal from a microphone with a 25 length impulse response FIR filter. The signal should be processed with a 500 sample length blocks and the convolution is performed by using a 512 length FFT algorithm. What is the number of overlapped samples of the input blocks?

- \square a) 24 .
b) 12 .
c) 0 .
d) None

Problem (4)

Let $X(k)$ and $Y(k)$ be the DFTs of the N-length $x(n)$ and $y(n)$ sequences respectively where

$$
Y(k)= \begin{cases}-X(k) & \text { if } k \text { is even } \tag{3}\\ X(k) & \text { otherwise }\end{cases}
$$

1. What is the relation between $y(n)$ and $x(n)$
2. If $x(n)=[0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7]$ what is $y(n)$?
