Instituto Superior Técnico / Tecnical University of Lisbon
 Departament of Bioengineering
 Master on Biomedical Engineering Digital Signal Processing in Bioengineering

2nd Semester de 2012/2013
João Miguel Sanches

Test 1 - Solution

April 23, 2013

Name:

Number:

The duration of the test is 1 h 30 m . The score of each item is 2 when right and -0.5 if wrong. Only one option can be selected in each question.

1. Let V and U two sub-spaces of a space S. The intersection $U \cap V$

- a) it is necessarily a sub-space of S.b) it is a sub-space of U or V but not from both simultaneously.
-c) it is not a sub-space of S.
d) None

2. What is the angle between the functions $\cos (x)$ and $\sin (x)$, defined in the interval $[-\pi, \pi]$?
a) 0 .
b) $\pi / 4$.

- \square
c) $\pi / 2$.
d) None

3. Consider a discrete signal obtained with a sample rate of 20 kHz . What is the corresponding continuous spectral frequency in Hz of the FFT_{1024} coefficient $X(16)$?

- ■ a) 312.5 Hz .
-b) $0.0982 \mathrm{rad} /$ sample .
c) 125 Hz .d) None

4. Let $x(n)=[1,-1,1,0]$. What is the value of 4 dimension DFT coefficient $X_{4}(1)$?

- \square a) 0 .
- \square b) 1 .
- ■ c) j.
- \square d) None

5. What is the period of the signal $y(n)=\sin (n)$?

- \square a) 1 sample.
- \square b) $2 \pi \mathrm{rad} /$ sample.
- \square c) 1 second.
- d) None

6. Let $g(x, y)=\sin (d(x, y))$ be a function of two vectors x and y, where $d(x, y)$ is a metric function. The function $g(x, y)$

- \square a) is a metric function because it is strictly non negative.
- \square b) it is not a metric function because $g(x, x) \neq 0$
- \square c) it is a metric function because its value increases when $\|x-y\|$ increases.
- d) None

7. Let $x(n)$ and $y(n)$ two discrete sequences of length 16 with $D F T$ coefficients $X_{16}(k)$ and $Y_{16}(k)$ respectively, where $Y(k)=\left\{\begin{array}{ll}X(k) & \text { for } k \text { even } \\ -X(k) & \text { for } k \text { odd }\end{array}\right.$.
What is the right option?

- \square a) $y(2)=x(10)$.b) $y(1)=x(11)$.
- \square c) $y(0)=x(12)$.
d) None

8. The goal is to filter, in real time, an audio signal from a microphone with a 50 length impulse response FIR filter. The signal should be processed with a 500 sample length blocks and the convolution is performed by using a 512 length FFT algorithm. What is the number of overlapped samples of the input blocks.

- \square a) 12 .
- b) 37 .
- \square c) 50 .
- \square d) None

Problem (4) Let $\left(x_{i}, y_{i}, z_{i}\right)$ be N data triplet observations with the underlying model

$$
\begin{equation*}
z_{i}=\alpha x_{i}^{\beta+\gamma y_{i}} \tag{1}
\end{equation*}
$$

- a) Derive the expression of the square norm of the error vector, $\mathbf{e}=\left\{e_{i}\right\}$, with $e_{i}=z_{i}-\alpha x_{i}^{\beta+\gamma y_{i}}$ and the closed form solution of the minimizer vector of parameters,

$$
\begin{equation*}
(\alpha, \beta, \gamma)=\arg \min _{\alpha, \beta, \gamma}\|\mathbf{e}\|_{2}^{2} \tag{2}
\end{equation*}
$$

Solution

$$
z_{i}=\alpha x_{i}^{\beta \gamma y_{i}}=\alpha e^{\log \left(x_{i}\right)\left(\beta+\gamma z_{i}\right)} \Rightarrow \log z_{i}=\log \alpha+\beta \log \left(x_{i}\right)+\gamma y_{i} \log \left(x_{i}\right)
$$

Solve

$$
\begin{equation*}
\theta=\arg \min _{\theta}\|\mathbf{e}\|^{2} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{i}=\hat{\alpha}+\beta \hat{x}_{i}+\gamma \hat{y}_{i}-\hat{z}_{i} \tag{4}
\end{equation*}
$$

and

$$
\begin{aligned}
\hat{z}_{i} & =\log z_{i} \\
\hat{x}_{i} & =\log x_{i} \\
\hat{y}_{i} & =y_{i} \log x_{i}
\end{aligned}
$$

Vector $\mathbf{e}=\left\{e_{i}\right\}$ can be written as follows

$$
\begin{equation*}
\mathbf{e}=\Phi \theta-\mathbf{z} \tag{5}
\end{equation*}
$$

where $\mathbf{z}=\left\{\hat{z}_{i}\right\}, \theta=\{\log (\alpha), \beta, \gamma\}^{T}$ and

$$
\Phi=\left(\begin{array}{ccc}
1 & \hat{x}_{1} & \hat{y}_{1} \tag{6}\\
\ldots & \ldots & \cdots \\
1 & \hat{x}_{i} & \hat{y}_{i} \\
\ldots & \ldots & \ldots \\
1 & \hat{x}_{N} & \hat{y}_{N}
\end{array}\right)
$$

Problem (3) can be solved by finding the stationary point of $\mathbf{e}^{T}(\theta) \mathbf{e}(\theta)$ with respect to θ,

$$
\begin{align*}
\nabla_{\theta} \mathbf{e}^{T} \mathbf{e} & =\nabla_{\theta}(\Phi \theta-\mathbf{z})^{T}(\Phi \theta-\mathbf{z})=\Phi^{T}(\Phi \theta-\mathbf{z})=0 \Rightarrow \\
\theta^{*} & =\left(\Phi^{T} \Phi\right)^{-1} \Phi^{T} \mathbf{z}=\operatorname{pinv}(\Phi) \mathbf{z} \tag{7}
\end{align*}
$$

- b) Propose an iterative algorithm to compute the optimum vector of parameters (α, β, γ) that minimizes the L_{1} norm of the error vector

$$
\begin{equation*}
(\alpha, \beta, \gamma)=\arg \min _{\alpha, \beta, \gamma}\|\mathbf{e}\|_{1} \tag{8}
\end{equation*}
$$

Solution

$$
\begin{equation*}
\|\mathbf{e}(\theta)\|_{1}=\sum_{i}\left|e_{i}(\theta)\right|=\sum_{i} \frac{1}{\left|e_{i}(\theta)\right|} e_{i}^{2}(\theta)=\sum_{i} w_{i}(\theta) e_{i}^{2}(\theta) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{i}(\theta)=\frac{1}{\left|e_{i}(\theta)\right|} \tag{10}
\end{equation*}
$$

By using matrix notation the L_{1} norm of \mathbf{e} can be written as follows

$$
\begin{equation*}
\|\mathbf{e}\|_{1}=\mathbf{e}^{T}(\theta) W(\theta) \mathbf{e}(\theta) \tag{11}
\end{equation*}
$$

where $W(\theta)$ is a diagonal matrix with $w_{i i}=\frac{1}{\left|e_{i}(\theta)\right|}$. The minimizer of (9) can be found as

$$
\begin{equation*}
\theta^{*}=\arg \min _{\theta} \mathbf{e}^{T}(\theta) W\left(\theta^{*}\right) \mathbf{e}(\theta) \tag{12}
\end{equation*}
$$

where θ^{*} is the minimizer we are looking for. Therefore, the following iterative method is used

$$
\begin{equation*}
\theta^{t}=\arg \min _{\theta} \mathbf{e}^{T}(\theta) W\left(\theta^{t-1}\right) \mathbf{e}(\theta) \tag{13}
\end{equation*}
$$

where t is the iteration index and θ^{t-1} is the optimum θ obtained in the previous iteration. The initialization of W is the identity matrix, $W_{0}=I$. The optimization of (13) in each iteration is performed by using the method derived in a).

