Instituto Superior Técnico / Tecnical University of Lisbon

Departament of Bioengineering

Master on Biomedical Engineering

Digital Signal Processing in Bioengineering

2nd Semester de 2012/2013

João Miguel Sanches

Test $2 \Box$ / Exam $1 \Box$

Jun 7, 2013

Name :

Number:

The duration of the test is 1h30m and of the exam is 3h. The score of each item in the test is 2 when right and -0.5 if wrong. In the exam the scores are half, 1 when right and -0.25 if wrong. Only one option can be selected in each question.

DON'T FORGET TO INDICATE THE QUESTIONS YOU ARE ANSWERING FOR THE SECOND TEST IN THE BOX LABELED WITH $[T:\Box]$. A maximum of 8 items are allowed in the test.

- 1. $[\mathbf{T}:\Box]$ Let $x(n) = [1, -1]^T$ and $y = [j, -j]^T$. What is the value of the inner product $\langle x, y \rangle$?
 - □ a) 0
 - □ b) 2*j*
 - ■ c) -2*j*
 - \Box d) None
- 2. [**T**: \Box] Let $p = [p_1, p_2, ..., p_N]$ a complete, orthogonal and normed basis of a vector space S, were each element x can be obtained as the following linear combination, $x = \sum_{i=1}^{N} c_i p_i$. The norm of x in this space is
 - **a**) ||x|| = ||c||
 - \Box b) $||x|| \le ||c||$
 - \Box c) ||x|| < ||c||
 - \square d) None
- 3. $[\mathbf{T}:\Box]$ Consider a flame intensity, x(t), captured by a photo diode (light sensor), x(t). If a 4096 length FFT is used to obtain the spectrum what should be the sampling rate used, form the list below, in the digitalization process to have a spectral resolution smaller (better) than 100Hz?

- \square a) 100kHz
- □ b) 250kHz
- ■ c) 500kHz
- \square d) None
- 4. [T: \Box] Consider the finite length sequence $x(n) = \{1, 2, 3\}$ and the sequence $y(n) = x((2-n)_5)$. What is the value of y(3).
 - **a**) 0
 - 🗆 b) 1
 - □ c) 2
 - \square d) None
- 5. [**T**: \Box] Consider the complex signal $x(n) = \{1, 1 j, 0, 2 j, 3, -2 + j, 2j\}$. What is the 8 length DFT value for $k = 8, X_8(8)$?
 - ■ a) 5 + j
 - 🗆 b) 0
 - 🗆 c) 6
 - \square d) None

6. [**T**: \Box] What is the period of the signal $sin(0.01\pi n)$?

- **a**) 200
- \square b) it is not periodic
- 🗆 c) 0.01
- \square d) None
- 7. [T:□] The goal is to filter, in real time, an audio signal from a microphone with a 25 length impulse response FIR filter. The signal should be processed with a 500 sample length blocks and the convolution is performed by using a 512 length FFT algorithm. What is the number of overlapped samples of the input blocks?
 - □ a) 24.
 - **b**) 12.
 - □ c) 0.
 - \square d) None

- 8. [**T**:□] With respect to the previous item how many processed samples should be added to the next output block if the corresponding invalid samples are set to zero?
 - **a**) 24.
 - 🗆 b) 12.
 - □ c) 0.
 - \square d) None
- 9. [**T**: \Box] Let x(n) be a band limited signal, with a cut-off frequency of $\omega_c = 3\pi/4$. To change the sampling rate by a factor of R = 0.75, $f_s(new) = Rf_s$, where h is the impulse response of an ideal low-pass filter, what is the appropriated sequence of operations?
 - \square a) $T_{\uparrow 3}[T_{\downarrow 4}[h * x(n)]]$
 - \square b) $T_{\uparrow 3}[h * T_{\downarrow 4}[x(n)]]$
 - \blacksquare c) $T_{\downarrow 3}[h * T_{\uparrow 4}[x(n)]]$
 - \square d) None
- 10. [**T**:□] What is the window that allows highest time frequency compression in the scope of time-frequency analysis?
 - **a**) $e^{-t^2}/\sqrt{\pi}$.
 - \square b) $e^{-t}/\sqrt{\pi}$.
 - \square c) sinc(t).
 - \square d) None
- 11. $[\mathbf{T}:\Box]$ Consider an infinite length discrete signal, x(n). For this signal there is/are
 - \square a) a lower bound for scale resolution (coarser).
 - **b**) a upper bound for scale resolution (finer).
 - \square c) no bounds for scale resolution.
 - \square d) None

12. [**T**: \Box] What is the polyphase decomposition of $H(z) = 1/(1 - 0.5z^{-1})$ for M=3?

- \square a) $1/(1 0.5z^{-1})$.
- \blacksquare b) $(1 + 0.5z^{-1} + 0.25z^{-2})/(1 0.5^3z^{-3})$
- \square c) $z^{-2}/(1 0.5z^{-1})$
- \Box d) None

- 13. $[\mathbf{T}:\Box]$ A perfect reconstruction of a signal from the wavelet decomposition requires,
 - \square a) the approximation and detail coefficients from all scales
 - ■ b) the detail coefficients from all scales and the approximation coefficients of the coarser scale
 - \Box c) only the detail coefficients
 - \square d) None
- 14. $[\mathbf{T}:\Box]$ Consider a 1024 length discrete signal, x(n). How many decompositions scales is it possible to compute with a dyadic *discrete wavelet transform* (DWT)?
 - \square a) 1024
 - 🗆 b) 102
 - **c**) 10
 - \square d) None
- 15. [**T**: \Box] Consider the basis functions of the DFT, $\phi_k(n) = e^{j\frac{2\pi}{N}kn}$. What is the inner product $\langle \phi_k(n), \phi_r(n) \rangle$? (where $\delta(n)$ is the impulse and N is the length of the signals to analyse).
 - **a**) $N\delta(k-r)$
 - 🗆 b) 0
 - □ c) N
 - \square d) None
- 16. $[\mathbf{T}:\Box]$ Consider the following prototype filter of a filter bank,

$$|H(\omega)| = \begin{cases} 1 - 4|\omega|/\pi & \text{if } |\omega| < \pi/4\\ 0 & \text{otherwise} \end{cases}$$
(1)

How many replicas of this filter are needed do maximally decompose a real discrete signal (since the signal and filter are real consider only the interval $[0, \pi]$)?

- 🗆 a) 6
- **b**) 5
- □ c) 4
- \Box d) None

Problems

Please present the details of your computations. For **test**, only one of these problem need to be solved.

1. **T**: \Box Let x(n) be a N length real discrete signal and

$$y(n) = \begin{cases} x(n) & \text{if n is even} \\ 0 & \text{otherwise} \end{cases}$$
(2)

- (a) How are related the N length DFT_N s of x(n) and y(n)?
- (b) **T**: Let x(n) = [0, 1, 0, 2, 0, 3, 0, 4, 0,] be a 256-length discrete signal. What is the N length DFT of y(n), $Y_{256}(k)$?
- 2. **T**:□Consider a *Linear Time Invariant* (LTI) filter described by the following difference equation

$$y(n) = x(n) + 0.5x(n-1) - 0.25y(n-1) + 0.5y(n-2)$$
(3)

- (a) Derive its transfer function, which is the Z-transform of its impulsive response, H(z) = TZ(h(n)).
- (b) Represent it graphically in the canonical *Direct Form II*, where the number of delay blocks is minimized.
- (c) Is this filter stable? Prove