Instituto Superior Técnico / Tecnical University of Lisbon
 Departament of Bioengineering
 Master on Biomedical Engineering Digital Signal Processing in Bioengineering

2nd Semester de 2012/2013
João Miguel Sanches
Test $2 \square /$ Exam 1
Jun 7, 2013

Name:
Number:

The duration of the test is 1 h 30 m and of the exam is 3 h . The score of each item in the test is 2 when right and -0.5 if wrong. In the exam the scores are half, 1 when right and -0.25 if wrong. Only one option can be selected in each question.

DON'T FORGET TO INDICATE THE QUESTIONS YOU ARE ANSWERING FOR THE SECOND TEST IN THE BOX LABELED WITH [T:ロ]. A maximum of 8 items are allowed in the test.

1. $[\mathbf{T}: \square]$ Let $x(n)=[1,-1]^{T}$ and $y=[j,-j]^{T}$. What is the value of the inner product $<x, y>$?a) 0

- \square b) $2 j$
- \square c) $-2 j$
-

d) None
2. $[\mathbf{T}: \square]$ Let $p=\left[p_{1}, p_{2}, \ldots, p_{N}\right]$ a complete, orthogonal and normed basis of a vector space S, were each element x can be obtained as the following linear combination, $x=\sum_{i=1}^{N} c_{i} p_{i}$. The norm of x in this space is

- ■ a) $\|x\|=\|c\|$
- \square b) $\|x\| \leq\|c\|$
- \square c) $\|x\|<\|c\|$
- \square d) None

3. [T: $\square]$ Consider a flame intensity, $x(t)$, captured by a photo diode (light sensor), $x(t)$. If a 4096 length FFT is used to obtain the spectrum what should be the sampling rate used, form the list below, in the digitalization process to have a spectral resolution smaller (better) than 100 Hz ?.

- \square a) 100 kHz
- \square b) 250 kHz
- ■ c) 500 kHz
- \square d) None

4. [$\mathbf{T}: \square]$ Consider the finite length sequence $x(n)=\{1,2,3\}$ and the sequence $y(n)=$ $x\left((2-n)_{5}\right)$. What is the value of $y(3)$.

- ■a) 0
- \square b) 1
c) 2
d) None

5. [$\mathbf{T}: \square]$ Consider the complex signal $x(n)=\{1,1-j, 0,2-j, 3,-2+j, 2 j\}$. What is the 8 length DFT value for $k=8, X_{8}(8)$?

- ■a) $5+j$
-b) 0
-

c) 6
d) None
6. [$\mathbf{T}: \square]$ What is the period of the signal $\sin (0.01 \pi n)$?

- ■ a) 200
-

b) it is not periodic
-
c) 0.01d) None
7. [$\mathbf{T}: \square]$ The goal is to filter, in real time, an audio signal from a microphone with a 25 length impulse response FIR filter. The signal should be processed with a 500 sample length blocks and the convolution is performed by using a 512 length FFT algorithm. What is the number of overlapped samples of the input blocks?

- \square a) 24 .
- \quad b) 12 .
- \square c) 0 .
- \square
d) None

8. [$\mathbf{T}: \square]$ With respect to the previous item how many processed samples should be added to the next output block if the corresponding invalid samples are set to zero?

- ■a) 24 .
-

b) 12 .

- \square
c) 0 .
- \square d) None

9. [$\mathbf{T}: \square]$ Let $x(n)$ be a band limited signal, with a cut-off frequency of $\omega_{c}=3 \pi / 4$. To change the sampling rate by a factor of $R=0.75, f_{s}($ new $)=R f_{s}$, where h is the impulse response of an ideal low-pass filter, what is the appropriated sequence of operations?a) $T_{\uparrow 3}\left[T_{\downarrow 4}[h * x(n)]\right]$b) $T_{\uparrow 3}\left[h * T_{\downarrow 4}[x(n)]\right]$

- ■ c) $T_{\downarrow 3}\left[h * T_{\uparrow 4}[x(n)]\right]$
-d) None

10. [$\mathbf{T}: \square]$ What is the window that allows highest time frequency compression in the scope of time-frequency analysis?

- ■ a) $e^{-t^{2}} / \sqrt{\pi}$.
-

b) $e^{-t} / \sqrt{\pi}$.
c) $\operatorname{sinc}(t)$.
d) None
11. [T: $\square]$ Consider an infinite length discrete signal, $x(n)$. For this signal there is/are

- \square a) a lower bound for scale resolution (coarser).
- \square b) a upper bound for scale resolution (finer).c) no bounds for scale resolution.
- \square
d) None

12. [$\mathbf{T}: \square]$ What is the polyphase decomposition of $H(z)=1 /\left(1-0.5 z^{-1}\right)$ for $\mathrm{M}=3$?

- \square a) $1 /\left(1-0.5 z^{-1}\right)$.
- b) $\left(1+0.5 z^{-1}+0.25 z^{-2}\right) /\left(1-0.5^{3} z^{-3}\right)$
- \square c) $z^{-2} /\left(1-0.5 z^{-1}\right)$
- \square
d) None

13. [T: $\square]$ A perfect reconstruction of a signal from the wavelet decomposition requires,

- \square a) the approximation and detail coefficients from all scales
- b) the detail coefficients from all scales and the approximation coefficients of the coarser scale
- $\square \mathrm{c})$ only the detail coefficients
- \square d) None

14. [T: $\square]$ Consider a 1024 length discrete signal, $x(n)$. How many decompositions scales is it possible to compute with a dyadic discrete wavelet transform (DWT)?

- \square a) 1024
- \square
b) 102
- ■ c) 10
- \square
d) None

15. [T: $\square]$ Consider the basis functions of the DFT, $\phi_{k}(n)=e^{j \frac{2 \pi}{N} k n}$. What is the inner product $<\phi_{k}(n), \phi_{r}(n)>$? (where $\delta(n)$ is the impulse and N is the length of the signals to analyse).

- ■ a) $N \delta(k-r)$
- \square b) 0
- \square c) N
- \square d) None

16. [T:■] Consider the following prototype filter of a filter bank,

$$
|H(\omega)|= \begin{cases}1-4|\omega| / \pi & \text { if }|\omega|<\pi / 4 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

How many replicas of this filter are needed do maximally decompose a real discrete signal (since the signal and filter are real consider only the interval $[0, \pi]$)?

- \square a) 6
- ■ b) 5
- \square c) 4
d) None

Problems

Please present the details of your computations. For test,only one of these problem need to be solved.

1. T: \square Let $x(n)$ be a N length real discrete signal and

$$
y(n)= \begin{cases}x(n) & \text { if } \mathrm{n} \text { is even } \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

(a) How are related the N length $D F T_{N}$ of $x(n)$ and $y(n)$?
(b) \mathbf{T} : Let $x(n)=[0,1,0,2,0,3,0,4,0, \ldots .$.$] be a 256$-length discrete signal. What is the N length DFT of $y(n), Y_{256}(k)$?
2. T:■Consider a Linear Time Invariant (LTI) filter described by the following difference equation

$$
\begin{equation*}
y(n)=x(n)+0.5 x(n-1)-0.25 y(n-1)+0.5 y(n-2) \tag{3}
\end{equation*}
$$

(a) Derive its transfer function, which is the Z-transform of its impulsive response, $H(z)=T Z(h(n))$.
(b) Represent it graphically in the canonical Direct Form II, where the number of delay blocks is minimized.
(c) Is this filter stable? Prove

