
CSC 
 

Assignment 5 
Buffer Overflows 

 

Goal 

 Exploit buffer overflow vulnerabilities. 

 

1. Introduction 

Log in with username user (password inseguro), on the virtual machine. All 

exercises should be performed on a console using the user user. Whenever you need 

to execute privileged commands enter sudo before the command and enter the root 

password. 

All sample programs used in this class are in the directory 

~/assignment4 

1.1. When asked to compile a sample program, e.g. x.c, do: 

> gcc -ggdb -fno-stack-protector -m32 -z execstack –z norelro x.c -o x 

 

1.2. When prompted to install a sample program, e.g. x.c, follow 

these steps (in privileged mode): 

1.2.1. Compile x.c. 

1.2.2. Change ownership of the program by executing 

 sudo chown root x 

1.2.3. Change program privileges in order to run with root privileges. (´4´ 

activates SUID flag): 

> chmod 4755 x  

2. Buffer Overflows 

2.1. Change the return address 

Through a buffer overflow attack it is possible to change the return address of a 

function. 

2.1.1. Change the overflow.c so that it fills the buffer with 128 ‘A’ characters 

and calls the overflow_function. 



2.1.2. Compile and run overflow.c program. 

2.1.3. Now execute the program inside gdb. 

2.1.4. Do: 

> bt 

…check the return address of the functions (eip register). Why 

0x41414141? 

The following command shows the content of the stack pointer. 

> x $esp 

 

2.2. Buffer overflow in stack 

The program vuln.c is vulnerable to buffer overflow. 

2.2.1. Check what the vuln.c program does. 

2.2.2. Install vuln.c program. (see introduction). 

2.2.3. Compile and execute program exploit.c. 

2.2.4. Do: 

> whoami 

2.2.5. Check what the exploit.c program does. 

Refer to the following figure to understand exploit.c 

 

0xbffff137

argv[1]

Return	add

ESP

Buffer	
(500	bytes)

0xbfffecac

Return	add

ESP
0xbfffef70

ESP	HINT
0xbffff0a8

Ret	Add	HINT
0xbfffecc0

Landing	zone
(NOPs)

Shell	Code

Ret	Address	
(0xbfffecc0)

Stack

fcopy
frame

main
frame



The figure describes the content of the stack of program vuln.c after being 

called by exploit.c. Notice that vuln.c has two stack frames, on top of each 

other, the stack frame of the main function and the stack frame of the fcopy 

function. The vulnerability of vuln.c is in the fcopy function. The exploit.c 

calls the vuln.c program placing on its argv[1] parameter a specially crafted 

buffer, with three areas: the landing zone, the Shell Code, and the return 

address area. When the fcopy function copies the content of argv[1] to its 

variable “buffer”, it will override the ESP and Return Address of the fcopy 

stack frame. 

The attacker does not know in which address is the variable buffer and how 

far is the return address from the beginning of the variable. In the figure the 

buffer is in address 0xbfffecac and the return is just a few bytes below the 

end of the buffer, but usually the attacker does not know. If the attacker 

new these addresses he would choose the return address to be the beginning 

of the buffer and he would make the size of argv to be the size of the buffer 

plus the distance from the end of the buffer to the return address, but he 

does not know so he has to guess.  

To guess the return address the attacker checks his own ESP and then begin 

to guess the size of both stack frames of vuln.c. In the current situation, the 

guess is not very good, the ESP guess of the attacker is ESP=0xbffff0a8 

while the initial ESP of vuln.c is ESP=0xfffef70. Still the attacker is able to 

exploit the code because instead of filling just the return position in the 

stack with the new return address he fills something like 88 memory 

positions, to be sure that one of those overwrites the correct return position. 

Moreover, because he is not sure that he calculates the correct return 

address (beginning of the buffer) he fills the beginning of the buffer with 

NOP instructions, landing in any of these addresses is enough to perform 

the attack. 

2.3. Buffer overflow in stack using perl 

 

Perl is a good tool to inject strings in other programs. 

2.3.1. Execute the line in exploit.txt file. Copy and paste the line into the 

terminal or execute  



>source exploit.txt.  

2.3.2. Do: 

> whoami 

Change the return address of the function if necessary. 

2.3.3. Check what this command does. Notice that the back quotation marks `` 

enclosing the commands after ./vuln are used to execute the commands and 

replace them by their output. Therefore the last thing executed is 

 ./vuln <output of the other commands> 

2.4. Buffer overflow using environment variables 

Sometimes the buffer doesn´t have enough space to put the entire shell code 

there. The vuln2.c program is an example of that. In this case it’s possible to 

exploit buffer overflow running the shell code in memory positions where the 

environmental variables are placed.   

2.4.1. Install vuln2.c program (see introduction).  

2.4.2. Compile and run env_exploit.c program. 

2.4.3. Do: 

> whoami 

2.4.4. Check what env_exploit.c program does. 

 

Use perl now: 

2.4.5. Create an environmental variable using the command in env_exploit.txt 

file. 

> source env_exploit.txt 

2.4.6.  In gdb check where ./vuln2 variable is. To do that put a breakpoint in 

main, using the following command and execute the program until main: 

> b main 

2.4.7. See what’s in stack memory. 

> x/20s $esp 

2.4.8. Look for the environmental variables by pressing “Enter” until you find 

the shell code address. Have in mind the name of the environmental 

variable to calculate the actual address where the shell code begins. This 

address is to be used as the main function return address. You may have to 

make your terminal window a bit longer, and be prepared to hit “Enter” 



several times. When finding the SHELLCODE mind that you should add 

16 to the address shown to cope with the size of the word 

“SHELLCODE=”, (12 with the double quotes) and align at the next 4 

byte boundary. 

 

> ./vuln2 `perl –e ´print “<address>”x10´`  

 

Note: Suppose that the obtained address is 0xbffff7c4, this will have to be 

passed to prompt line as \xc4\xf7\xff\xbf because the values are represented 

in memory in little-endian (last byte first). 

 

3. String formats (optional) 

It’s possible to explore a program that makes use of the printf form: printf (str). In 

file fmt_vuln.c there is an example where the string is printed correctly and 

incorrectly. Begin installing fmt_vuln.c program (see Introduction). 

3.1. Execute the following steps: 

3.1.1. Determine where the string is: 

o The string is more advanced in stack so, to find it, it’s necessary to do: 

> ./fmt_vuln `printf “AAAA”`%x 

o   Add %x to the command until you find the string. 

o When you find the beginning of the string `AAAA` (in hexadecimal), it 

means that the last parameter of the string accesses `AAAA`. 

3.1.2. Choose an address to change the content: 

o Choose the test_val address to ensure that you are changing the correct 

position. 

o To know what is the test_val address: 

> ./fmt_vuln test 

o > ./fmt_vuln `printf  “\x01\x02\x03\x04”`%x<.%x sufficient> 

 Where 0x04030201 is the address of test_val (".% x sufficient" when 

it allows to observe the entered value). 

o > ./fmt_vuln `printf  “\x01\x02\x03\x04”`%x<.%x sufficient-1>%n 

Check the change in test_val. What is this value? What does the option 

%n do? 



o Consider the change of %x and %n to %Nx and %M$n where M and 

N are the numbers of the string’s parameter. N is the size of the output 

of the number read with %x. Increasing this number increases the 

number of bytes written by printf and therefore increases the number 

written in test_val. If N=x then test_val=x+4. Assuming 4 as the 

number of %x sufficient, then should be M=4. M is the number of the 

argument  that should be used for %n.1 Check that the following 

command (N=3, M=4) will replace the same value in test_val. Why? 

> ./fmt_vuln `printf “\x01\x02\x03\x04”`%3\$11x%4\$n 

   

3.1.3. With the previous procedure, it’s possible to put any value in any 

memory position. It’s possible, for instance, to change the return value that 

is in stack to point to the shell code that is in an environmental variable. Put 

the shell code address in test_val variable to check if it’s correct: 

o Do export to the variable SHELLCODE. 

o See with gdb, ./fmt_vuln, where the SHELLCODE variable is. 

o To put the address in test_val it’s necessary to do it byte by byte. Using 

%N\$x e %M\$n, we now have a pair %x%n for any byte that we 

want to write: 

>  ./fmt_vuln `printf  “\x01\x02\x03\x04”`%Nx%M\$n 

o > ./fmt_vuln `printf 

“\x01\x02\x03\x04\x02\x02\x03\x04\x03\x02\x03\x04\x04\x02\x03\x0

4”` %Nx%M\$n 

Where 0x04030202, 0x04030203, 0x04030204 are the addresses of the 

test_val integer. 

o  Add L value to the %x parameter: 

% N \ $ Lx where L is the number of characters that the parameter x 

occupies. This will increase the string in order to write the right value 

in test_val. The value that we want to write will be the least significant 

byte address of the shell code. Check that the least significant byte in 

test_val is written correctly. 

                                                      
1 Besides the format string printf has accepts a variable number of parameters. Parameters 
are associated with formatted string % in order, the first % uses the first parameter, with 
M$ it is possible to choose which parameter should be used for each %. 



o Add a new %N\$Lx%(M+1)\$n, to allow the writing of the test_val’s 

2nd byte. Now we have the address ready. Picture 1 shows an example 

of how to put the 0xc4f7ffbf address in test_val variable: 

 

Picture 1 

3.1.4. It only remains now to put it in the right memory location. Since it’s not 

easy to know where the return address of a function is, we will choose 

another location. In C it’s possible to define destructive functions. These 

functions are in the section .fini_array in the array which begins with 

0xffffffff and ends with 0x00000000. Since these functions are always 

called, just change the pointer to this function to the value of the code shell: 

> objdump –s –j .fini_array ./fmt_vuln 

This allows us to have the memory location of the address where the 

program will jump when finished. This memory location is the address 

immediately following the address where the value 0xffffffff is. Put this 

value instead of the address of test_val. 

3.1.5. Do: 

> whoami 


