Renewable Energy Resources (RER)

Rui Castro

rcastro@tecnico.ulisboa.pt
https://sites.google.com/site/ruigameirocastro/

Economic assessment of renewable energy projects

Profitability of a project

- Capital costs ($€ / \mathrm{MW}$)
- Minimum rate of return (\%)
- Price paid for the electricity ($£ / \mathrm{MWh}$)
- Annual utilisation factor (h)

DISCOUNT RATE

$$
\begin{aligned}
& F_{0} \quad r \text { Discount Rate } \\
& F_{1}=F_{0}+r F_{0}=F_{0}(1+r) \\
& F_{2}=F_{0}(1+r)+r F_{0}(1+r)=F_{0}(1+r)(1+r)=F_{0}(1+r)^{2} \quad F_{0}=\frac{F_{t 1}}{(1+r)^{t_{1}}} \\
& F_{n}=F_{0}(1+r)^{n}
\end{aligned}
$$

- Cash inflows and outflows are spread over a period of time and time has a monetary value
- For instance, if possible, the natural choice is to pay in the future.
- Why?
- The amount to be paid in the future may be invested.
- The actual accumulated amount may be much higher.
- The money invested over time will give a real income.
- Discount rate or effective interest rate (r)
- Allows to convert a value referred to a date to an equivalent amount referred to another date (usually the present time)
- Appreciation of the investment
- Minimum profitability that the investor requires to invest in a given project
- Capital recovery at a certain remuneration + risk reward

LEVELIZED COST OF ENERGY (LCOE)

Production cost

$C_{T}=C_{F}+C_{V}=C P+C W_{a} \quad C T$ is the total annual cost ($€$)
$F_{0}=\frac{F_{t 1}}{(1+r)^{t_{1}}} \quad r$ is the rate of return or discount rate

$$
I_{01}=\frac{A_{T}}{(1+r)}+\frac{A_{T}}{(1+r)^{2}}+\ldots+\frac{A_{T}}{(1+r)^{n}}=A_{T} \sum_{j=1}^{n} \frac{1}{(1+r)^{j}} \begin{aligned}
& \text { IO1 is the investment per MW } \\
& \begin{array}{l}
\text { (} € \text { /MW) } \\
\text { AT is the investment annuity }
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
k_{a}=\sum_{j=1}^{n} \frac{1}{(1+r)^{j}}=\frac{(1+r)^{n}-1}{r(1+r)^{n}} \\
\alpha=\frac{1}{k_{a}}=\frac{r(1+r)^{n}}{(1+r)^{n}-1} & I_{01}=A_{T} \frac{(1+r)^{n}-1}{r(1+r)^{n}}=A_{T} k_{a} \\
A_{T}=\frac{r(1+r)^{n}}{(1+r)^{n}-1} I_{01}=\alpha I_{01}
\end{array}
$$

Production cost

The fixed $\mathrm{O} \& \mathrm{M}$ costs must be added to the annuity.
$C_{F}=C P=(\alpha+\beta) I_{01} P$ They are assumed to be proportional to the investment per MW, the proportionality factor being β.
$C_{T}=(\alpha+\beta) I_{01} P+c W_{a}$
The variable cost c includes the fuel cost and the cost of CO2 emissions, when applicable.
$C_{T 01}=\frac{C_{T}}{P}=(\alpha+\beta) /_{01}+c h_{a} \quad$ Annual total production cost per installed MW
101 is the overnight cost

LCOE and marginal cost

$L C O E=C_{\text {avg }}=\frac{C_{T}}{W_{a}}=\frac{C P}{W_{a}}+c=\frac{C}{h_{a}}+c=\frac{(\alpha+\beta) l_{01}}{h_{a}}+c$
LCOE - Levelized Cost Of Energy
$c_{\text {mrg }}=\frac{\partial C_{T}}{\partial W_{a}}=c \quad$ Marginal cost - Cost of the last unit produced
To ensure the economic sustainability of the power station in the short-term, the marginal cost must be recovered through the sale of electricity (price p).
This condition imposes: $p>=c m r g$
To ensure the economic sustainability of the power station in the long run, the average cost must be recovered through the sale of electricity (price p). This condition imposes: $p>=$ LCOE

LCOE Comparison (\$/MWh)

LAZARD

Levelized Cost of Energy Comparison-Unsubsidized Analysis

Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances

LCOE Comparison (\$/MWh)

LAZARD

Levelized Cost of Energy Comparison-Historical Utility-Scale Generation

Comparison
Lazard's unsubsidized LCOE analysis indicates significant historical cost declines for utility-scale renewable energy generation technologies driven by, among other factors, decreasing capital costs, improving technologies and increased competition
Selected Historical Mean Unsubsidized LCOE Values ${ }^{(1)}$

Capital Cost Comparison (\$/kW)

LAZARD

LAZARD'S LEVELIZED COST OF ENERGY ANALYSIS-VERSION 13.0

Capital Cost Comparison

In some instances, the capital costs of renewable energy generation technologies have converged with those of certain conventional generation technologies, which coupled with improvements in operational efficiency for renewable energy technologies, have led to a convergence in LCOE between the respective technologies

Example for Portugal

		Wind	PV
n	years	25	25
h_{a}	h	2300	1800
r		5%	5%
beta		2%	1%
l_{01}	$M € / M W$	1.1	0.9

Compute the LCOE ($(\mathrm{MWh}$)

ECONOMIC ASSESSMENT INDEXES

Economic assessment of projects

$$
N P V=\sum_{j=1}^{n} \frac{I n c_{j}}{(1+r)^{j}}-\sum_{j=0}^{n-1} \frac{\text { Outc }_{j}}{(1+r)^{j}}
$$

In electricity generation projects, the incomes result from electricity sale.
The outcomes include investment, fuel costs, O\&M expenses, annuity of loans.

If annual incomes and outcomes are constant and equal to R and D

$$
N P V=(R-D) k_{a}-I_{T}
$$

If NPV > 0
project is economically profitable, the costa are recovered, the minimum rate of return of capital is achieved and a surplus is obtained.
If NPV = 0
project is feasible, the costs are recovered and the minimum rate of return of capital is achieved.
If NPV < 0
project is not economically profitable. $\sqrt[\int J]{\mathrm{I}}$

Economic assessment of projects

$0=\sum_{j=1}^{n} \frac{I n c_{j}}{(1+I R R)^{j}}-\sum_{j=0}^{n-1} \frac{\text { Outc }_{j}}{(1+I R R)^{j}} \quad \begin{aligned} & \text { IRR }- \text { Internal Rate of Return } \\ & \text { portrays the real rate of return of the project }\end{aligned}$
$(R-D) \frac{(1+I R R)^{n}-1}{\operatorname{RRR}(1+/ R R)^{n}}=I_{T} \quad$ Nonlinear equation $=>$ Gauss method
$I R R^{(k+1)}=\frac{(R-D)}{I_{T}} \frac{\left(1+I R R^{(k)}\right)^{n}-1}{\left(1+I R R^{(k)}\right)^{n}}$
If IRR $>r$, the project is economically viable.

Economic assessment of projects

VAL
NPV
IRR approximate computation
taxa de actualização

Linear interpolation (aprox.)

$$
I R R \approx r_{1}-\left(r_{2}-r_{1}\right) \frac{N P V_{1}}{N P V_{2}-N P V_{1}}
$$

CURIOSITY - T\&D COSTS

Transmission network (2010) Indicative prices - Lines

		$\mathrm{k} € / \mathrm{km}$
400 kV overhead lines	Double circuit	460
	Single circuit	280
220 kV overhead lines	Double circuit	290
	Single circuit	200
220 kV underground cables	Single circuit	2000
220 kV line uprating		50

Transmission network (2010) Indicative prices - Power equipment

k $€$

Phase-shift transformer 450MVA, 400/150 kV
Transformer 450 MVA, 400/220 kV
Transformer 250 MVA, 220/150 kV
Transformer 126 MVA, 220/60 kV
Capacitors 220 kV , 120 Mvar
Capacitors 60kV, 50 Mvar

10,000
4000
3000
2500
4000
1000
U Li Lisióa

Indicative LV equipment prices (2010)

OH line / UG cable reference	OH or UG	Cross-section $\left(\mathbf{m m}^{2}\right)$	Maximum current (A)	Price $(\mathbf{k} € / \mathbf{k m})$
LXS 4×25+16	OH	25	100	6.7
LXS 4×50+16	OH	50	150	8.3
LXS 4×70+16	OH	70	190	9.1
LXS 4×95+16	OH	95	230	9.4
LSVAV 4×35	UG	35	130	32.0
LSVAV 4×95	UG	95	235	37.0
LSVAV $3 \times 185+95$	UG	185	355	42.5

Grid (kVA)	TS price (k€)
50	9.4
100	10.1
250	14.7
400	20.1
630	22.8
	$\int \frac{\text { IE }}{}$ TÉCNICO

Example

- The capacity factor of a 10 MW wind park is 28.54%. The selling price of electricity is 50 $€ / \mathrm{MWh}$. The investment is $1.2 \mathrm{M} € / \mathrm{MW}$, the expected lifetime is 20 years, and the annual O\&M costs are 1.5\%.
- Compute the LCOE, the NPV at a discount rate of 5% and the IRR.

Solution

$$
L C O E=\frac{I_{01}\left(i+c_{o m}\right)}{h_{a}}=\frac{1.2 \times 10^{6}(0.0802+0.0150)}{0.2854 \times 8760}=45.71 € / \mathrm{MWh}
$$

$N P V=\left(R-e_{o m}\right) k_{a}-I_{t}=$
$=\left(50 \times 10 \times 0.2854 \times 8760-0.0150 \times 1.2 \times 10^{6} \times 10\right) \times 12.4622-1.2 \times 10^{6} \times 10$
$=1,335,213 €$

$$
\begin{aligned}
& I R R^{(k+1)}=\frac{R_{N}}{I_{t}} \frac{\left(1+I R R^{(k)}\right)^{n}-1}{\left(1+I R R^{(k)}\right)^{n}}= \\
& I R R^{(k+1)}=\frac{1,070,052}{12,000,000} \frac{\left(1+I R R^{(k)}\right)^{20}-1}{\left(1+I R R^{(k)}\right)^{20}}
\end{aligned}
$$

$$
\begin{aligned}
& I R R \approx a_{1}-\left(a_{2}-a_{1}\right) \frac{N P V_{1}}{N P V_{2}-N P V_{1}}= \\
& =0.05-(0.07-0.05) \frac{1,335,213}{-663,854-1,335,213} \\
& =6.34 \%
\end{aligned}
$$

0	$10,00 \%$	$7,59 \%$
1	$7,59 \%$	$6,85 \%$
2	$6,85 \%$	$6,55 \%$
3	$6,55 \%$	$6,41 \%$
4	$6,41 \%$	$6,34 \%$
5	$6,34 \%$	$6,31 \%$ ¢́CNICO
6	$6,31 \%$	$6,29 \%$ SBOA
7	$6,29 \%$	$6,29 \%$

