Methodology of Data Warehouse Design

Helena Galhardas
DEI/IST

References

• A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and Implementation, Springer, 2014 (chpt 10)
Outline

• Approaches to DW Design
• General Overview
• Specification of Requirements
• Conceptual Design
• Logical Design
• Physical Design
• Comparison of the various approaches of DW Design
Approaches to DW Design (1)

Two major methods for designing a data warehouse and data marts:

• **Top-down design**: User requirements merged before the design process begins, and one schema for the whole (enterprise) DW is built, from which separate data marts are produced

• **Bottom-up design**: A separate schema built for each data mart, considering the requirements of users of the specific business area or process
 – These schemas are merged in a global schema for the entire data warehouse

Approaches to DW Design (2)

• **Analysis-driven approach (aka goal-driven approach)**: Requires identification of key users to give input about organization goals
 – Users play a fundamental role during requirements analysis
 – Users from different levels of the organization must be selected
 – Several techniques used: interviews or facilitated sessions
 – Specification obtained will include the requirements of users at all organizational levels

• **Source-driven approach (aka source-driven approach)**: DW schema obtained by analyzing the underlying source systems
 – Some techniques require conceptual (e.g., E/R model) or relational representations of the operational source schema
 – Less participation of users; only to confirm the correctness of the identified structures or to identify some facts and measures.

• **Analysis/source-driven approach**: Combination of the analysis- and source-driven approaches
Overview of the method

- Based on the assumption that DW design should follow the traditional database design phases:
 - Requirements specification
 - Conceptual design
 - Logical design
 - Physical design

The phases may be applied to define global DW schema or individual data mart schema.

Outline

- Approaches to DW Design
- General Overview
 - Requirements Specification
 - Conceptual Design
 - Logical Design
 - Physical Design
 - Comparison of the various approaches of DW Design
Requirements Specification

- Determines:
 - Which data should be available
 - How these data should be organized
- Should lead the designer to discover the essential elements of a multidimensional schema, i.e., facts and dimensions.
- Often the phases of requirements specification and conceptual schema overlap
- Three approaches for requirements specification:
 - Analysis-driven
 - Source-driven
 - Analysis/source-driven
Analysis-Driven Requirements Specification

- Analysis of user needs
- Requirements express the organizational goals and needs to support the decision-making process

Phase 1: Identify Users

- Considers users at various hierarchical levels in the organization when analyzing requirements
 - Executive users: Require global, summarized information; help in understanding high-level objectives and goals, and the overall business vision
 - Management users: Require more detailed information about a specific area of the organization; provide insight into the business processes
 - Professional users: Responsible for a specific section or set of services and may demand specific information related to their area of interest
Phase 2: Determine Analysis Needs

Define, refine, and prioritize goals
- Goals of the company: the same for everyone, the entire company pursues the same direction
- Clear specification of goals: Essential to guide user needs and convert them into data elements
- Specific and general goals must be aligned, to ensure a common direction of the overall process
- Goal-gathering process: Interviews and brainstorming sessions
- The list of goals should be analyzed to detect redundancies and dependencies for example:
 - Combine, discard, define as subgoals, etc.

Operationalize goals
- For each identified goal, define a collection of representative queries through interviews with the users to capture functional requirements
- The analyst identifies and disambiguates them (e.g., what does “the best customer” mean?)
- A prioritization process is finally carried out; a possible priority hierarchy: areas -> users -> queries of the same user
- Nonfunctional requirements, e.g., data quality, also specified and associated to each query
Phase 2: Determine Analysis Needs

Define facts, measures, and dimensions
- Identify the underlying facts and dimensions from the queries defined in the previous phase; it is a manual process
 - E.g.: If in the documentation we have: “Name of top five customers with monthly average sales higher than $1,500”, we can guess data elements: customer name, month, and sales
- Also include which data elements will be aggregated and the functions that must be used
- Specify the data granularities required for the measures, and information about additivity

Phase 3: Document Requirements Specification

- The information obtained in the previous phases should be documented
- Documentation should include all elements required by the designers and also a dictionary with:
 - Terminology
 - Organizational structure
 - Policies
 - Constraints of the business
 - Other information that may be needed
- For example, the document could express in business terms:
 - What the candidate measures or dimensions actually represent
 - Who has access to them
 - What operations can be done
- This document will not be final, additional interactions could be necessary during conceptual design
Northwind Example: Identify Users

Three groups of users identified:

- **Executive**: The members of the board of directors of the Northwind company, who define the ultimate company goals.
- **Management**: Managers at departmental levels, for example, marketing, regional sales, and human resources.
- **Professional**: Professional personnel who implement the indications of the management. Examples are marketing executive officers.

Northwind Example: Determine Analysis Needs - Goals

- **General goal**: Increase the overall company sales by 10% yearly.
- **This goal can be decomposed into subgoals**:
 1. Increase sales in underperforming regions.
 2. For customers buying below their potential, increase their orders (in number of orders and individual order amount).
 3. Increase sales of products selling below the company expectations.
 4. Take action on employees performing below their expected quota.
Northwind Example: Determine Analysis Needs - Goals

- **General goal:** Increase the overall company sales by 10% yearly
- This goal can be decomposed into subgoals:
 1. **Increase sales in underperforming regions**
 2. For customers buying below their potential, increase their orders (in number of orders and individual order amount)
 3. Increase sales of products selling below the company expectations
 4. Take action on employees performing below their expected quota

Northwind Example: Determine Analysis Needs – Operationalize Goals

1. **Increase sales in underperforming regions:**
 (a) Five best selling (measured as total sales amount) pairs of customer - supplier countries
 (b) Countries, states, and cities whose customers have the highest total sales amount
 (c) Five best selling (measured as total sales amount) products by customer country, state, and city

2. For customers buying below their potential, increase their orders (in number and order amount):
 (a) Monthly sales by customer compared to the sales for the same customer, in the previous year
 (b) Total number of orders by customer, time period (for example, year), and product
 (c) Average unit price per customer

3. Increase sales of products selling below the company expectations:
 (a) Monthly sales for each product category for the current year
 (b) Average discount percentage per product and month
 (c) Average quantity ordered per product

4. Take action on employees performing below their expected quota:
 (a) Best selling employee per product per year with respect to sales amount
 (b) Average monthly sales by employee and year
 (c) Total sales by an employee and his/her subordinates during a certain time period
Dimensions and Facts for the Analysis Scenarios

<table>
<thead>
<tr>
<th>Dimensions and Levels</th>
<th>Analysis Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1a</td>
</tr>
<tr>
<td>Employee</td>
<td></td>
</tr>
<tr>
<td>Supervision</td>
<td>−</td>
</tr>
<tr>
<td>Subordinate → Supervisor</td>
<td>−</td>
</tr>
<tr>
<td>Territories</td>
<td>−</td>
</tr>
<tr>
<td>Employee to City</td>
<td>−</td>
</tr>
<tr>
<td>State → Country</td>
<td>−</td>
</tr>
<tr>
<td>Continent</td>
<td>−</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>Calendar</td>
<td>−</td>
</tr>
<tr>
<td>Day → Month</td>
<td>−</td>
</tr>
<tr>
<td>Quarter → Semester</td>
<td>−</td>
</tr>
<tr>
<td>Year</td>
<td>−</td>
</tr>
<tr>
<td>Product</td>
<td></td>
</tr>
<tr>
<td>Categories</td>
<td>−</td>
</tr>
<tr>
<td>Product → Category</td>
<td>−</td>
</tr>
<tr>
<td>Customer</td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>−</td>
</tr>
<tr>
<td>Customer to City</td>
<td>−</td>
</tr>
<tr>
<td>State → Country</td>
<td>−</td>
</tr>
<tr>
<td>Continent</td>
<td>−</td>
</tr>
<tr>
<td>Supplier</td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>−</td>
</tr>
<tr>
<td>Supplier to City</td>
<td>−</td>
</tr>
<tr>
<td>State → Country</td>
<td>−</td>
</tr>
<tr>
<td>Continent</td>
<td>−</td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−</td>
</tr>
<tr>
<td>Discount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−</td>
</tr>
<tr>
<td>SalesAmount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−</td>
</tr>
<tr>
<td>UnitPrice</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−</td>
</tr>
</tbody>
</table>
Requirements Specification

- Determines:
 - Which data should be available
 - How these data should be organized
- Should lead the designer to discover the essential elements of a multidimensional schema, i.e., facts and dimensions.
- Often the phases of requirements specification and conceptual schema overlap
- Three approaches for requirements specification:
 - Analysis-driven
 - Source-driven
 - Analysis/source-driven

Source-Driven Requirements Specification

- Based on the data available at the source systems
- Aims at identifying all multidimensional schemas that can be implemented starting from the available operational databases
- Operational databases analyzed exhaustively to discover the elements that can represent facts with associated dimensions, hierarchies, and measures
Phase 1: Identify Source Systems

Aim: To determine the existing operational systems that can be data providers for the warehouse

- Relies on system documentation, preferably represented using the E/R model or relational tables
- In many situations this documentation may be difficult to obtain, e.g., if:
 - Data sources include implicit structures not declared through the DDL
 - Redundant and not normalized structures had been added to improve query response time
 - Database not well designed, or databases reside on legacy systems whose inspection is difficult
- In these situations, reverse engineering can be applied to rebuild the logical and conceptual schemas
- The same data may be available from more than one source, but reliability, availability, and update frequency of these sources may differ from each other

Phase 2: Apply Derivation Process

- **Facts and measures** associated to elements frequently updated
 - If the operational databases are relational, they may correspond to tables and attributes
 - If the operational databases are represented using the entity-relationship model, facts could be entity or relationship types, while measures may be attributes of them
- The process to derive dimensions and hierarchies starts from identifying the static (i.e., not frequently updated) elements that are related to the facts.
- Alternative: Involve users who understand the operational systems and can help to determine what data can be considered measures and dimensions/hierarchies
Phase 3: Document Requirements Specification

- Like in the analysis-driven approach, the requirements specification phase should be documented.
- The documentation should describe those elements of the source systems that can be considered as facts, measures, dimensions, and hierarchies.
- This will be contained in the technical metadata.
- It is desirable to involve a domain expert to define business terminology and tell, for example, whether measures are additive, semiadditive, or nonadditive.

Northwind Example: Source-Driven Requirements
Northwind Example: Apply Derivation Process

- We start by identifying candidate facts
- OrderDetails, with attributes that represent numeric data: candidate to be a fact
 - Candidate measures for this fact are attributes UnitPrice, Quantity, and Discount
 - A fact should be associated to an order line -> products in OrderDetails are subsumed in the Orders table
 - Each record now becomes a fact, called Sales
- A sales fact is associated with a unique employee (in entity type Employees), shipper (in entity type Shippers), and customer (in entity type Customers) – potential dimensions
- Also associated with three dates: order date, required date, and shipped date (potential dimensions)
- The other many-to-many relationship type is EmployeeTerritories, without associated attributes
 - Initially we can consider it a candidate to be a nonstrict hierarchy rather than a fact

Northwind Example: Apply Derivation Process

- Potential dimensions and hierarchies start with the temporal dimension
 - Users have indicated a granularity at the level of day, and that analysis by month, quarter, semester, and year are needed
 - This defines a Time dimension, and the hierarchy Date -> Month -> Quarter -> Semester -> Year
 - We call this hierarchy Calendar
 - Three roles for the Time dimension: OrderDate, ShippedDate, and DueDate
- A sales fact is associated to three other potential dimensions: Employee, Customer, and Supplier
- A careful inspection of these geographic data showed that the data sources were incomplete
 - External data sources need to be checked
 - Example: Wikipedia and GeoNames
- We need several kinds of hierarchies to account for all possible political organization of the countries
Northwind Example: Result of Derivation Process

<table>
<thead>
<tr>
<th>Facts</th>
<th>Measures</th>
<th>Dimension and cardinalities</th>
<th>Hierarchies and levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>UnitPrice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discount</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td></td>
<td>Category</td>
<td>Product → Category</td>
</tr>
<tr>
<td>Supplier</td>
<td></td>
<td>Geography</td>
<td>Supplier → State → Region → Country</td>
</tr>
<tr>
<td>Customer</td>
<td></td>
<td>Geography</td>
<td>Supplier → State → Region → Country</td>
</tr>
<tr>
<td>Employee</td>
<td></td>
<td>Supervision</td>
<td>Employment → State → Region → Country</td>
</tr>
<tr>
<td>OrderDate</td>
<td></td>
<td>Calendar</td>
<td>Date → Month → Quarter → Year</td>
</tr>
<tr>
<td>DueDate</td>
<td></td>
<td>Calendar</td>
<td>(as above)</td>
</tr>
<tr>
<td>ShippedDate</td>
<td></td>
<td>Calendar</td>
<td>(as above)</td>
</tr>
<tr>
<td>Order</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis/Source-Driven Requirements Specification

- Combines both previous approaches
- Can be used in parallel to achieve an optimal design
- Two types of activities:
 - One that corresponds to analysis needs
 - The other one represents the steps involved in creating a multidimensional schema from operational databases
- Each type of activity results in the identification of elements for the initial multidimensional schema
Outline

- Approaches to DW Design
- General Overview
- Requirements Specification
 - **Conceptual Design**
 - Logical Design
 - Physical Design
 - Comparison of the various approaches of DW Design

Analysis-Driven Conceptual Design

- Requirements specification provides the elements for building the initial conceptual DW schema
- This schema represents a set of data requirements in a clear and concise manner that can be understood by the users
- Design of a conceptual schema: Iterative process composed of three steps:
 - Development of the initial schema
 - Verify that the data in this schema are available in the source systems
 - Mapping between the data in the schema and the data in the sources

Define initial conceptual schema -> Check data availability and specify mappings -> Define final conceptual schema and mappings
Phase 1: Develop Initial Conceptual Schema

- Well-specified analysis requirements lead to clearly distinguishable multidimensional elements: facts, measures, dimensions, and hierarchies
- A first approximation to the conceptual schema can be developed
- Should be validated against its potential usage for analytical processing
- Can be done by first revising the list of queries and analytical scenarios and by consulting the users
- Designers should know the features of the multidimensional model in use and pose more detailed questions (if necessary) to clarify any unclear aspect
 - E.g., a schema may contain different kinds of hierarchies, dimensions can play different roles, derived attributes and measures could be needed
- The refinement of the conceptual schema may require several iterations with the users

Phase 2: Check Data Availability and Specify Mappings

- Data contained in the source systems determine whether the proposed conceptual schema can be
- transformed into logical and physical schemas
- All elements in the conceptual schema checked against the data items in the sources
- Result of this step: a specification of the mappings for all elements of the multidimensional schema that match data in source systems
- This mapping can be represented either descriptively or using model-driven engineering techniques
- Specification includes also a description of the required transformations, if necessary
- Important: Determine data availability early to avoid developing logical and physical schemas for which the required data may not be available
Phase 3: Develop Final Conceptual Schema and Mappings

- Data available at the sources for all elements of the conceptual schema => initial schema = final schema
- If not all multidimensional elements can be fed with data from the source systems, a new iteration with the users required
- This is to modify user requirements according to the availability of data
- **Result:** A new schema should be developed and presented to the users for acceptance.
- Changes to the schema may require modification of existing mappings
Northwind Example: Develop Initial Schema

- Conceptual schema is based on the queries and on the table summarizing requirements
- Source data are organized into orders => must transform orders data into sales facts during ETL
- Measures Quantity, UnitPrice, Discount, SalesAmount obtained directly from the sources; Freight is produced in the ETL; NetAmount is derived from the data cube
- Aggregate functions also specified, following the requirements
- Orders are associated with different time instants so Time dimension participates in the Sales fact with roles OrderDate, DueDate, and ShippedDate (not indicated in the requirements table)
- Most scenarios include aggregation over time, to the levels indicated in the queries, then, Time dimension contains four aggregation levels
- Dimension Product and parent level Category follows, e.g., from query “Monthly sales for each product category for the current year” (query 3(a))
- Many-to-many relationship between Employee and City defines a nonstrict hierarchy, discovered analyzing the content of the source database in the requirements phase
- For HR analysis (queries 4(a) to 4(c)), we need to analyze sales by employee supervisors, a recursive hierarchy Supervision in dimension Employee

Northwind Example: Check Data Availability and Specify Mappings

- Rightmost column indicates whether a transformation is required
- For example, ProductName, QuantityPerUnit, and UnitPrice in the operational database can be used without any transformation in the DW as attributes in attributes of level Product
- Table is a simplification of the information that should be collected, additional detailed documentation should be included for mappings and transformations

<table>
<thead>
<tr>
<th>Source Table</th>
<th>Source attribute</th>
<th>DW level</th>
<th>DW attribute</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>ProductName</td>
<td>Product</td>
<td>ProductName</td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td>QuantityPerUnit</td>
<td>Product</td>
<td>QuantityPerUnit</td>
<td></td>
</tr>
<tr>
<td>Products</td>
<td>UnitPrice</td>
<td>Product</td>
<td>UnitPrice</td>
<td></td>
</tr>
<tr>
<td>Customers</td>
<td>CustomerID</td>
<td>Customer</td>
<td>CustomerID</td>
<td>✓</td>
</tr>
<tr>
<td>Customers</td>
<td>CompanyName</td>
<td>Customer</td>
<td>CompanyName</td>
<td></td>
</tr>
<tr>
<td>Orders</td>
<td>OrderID</td>
<td>Order</td>
<td>OrderID</td>
<td></td>
</tr>
<tr>
<td>Orders</td>
<td>OrderDate</td>
<td>Order</td>
<td>OrderDate</td>
<td>✓</td>
</tr>
<tr>
<td>Orders</td>
<td>OrderDate</td>
<td>Order</td>
<td>OrderDate</td>
<td>✓</td>
</tr>
<tr>
<td>Orders</td>
<td>OrderDate</td>
<td>Order</td>
<td>OrderDate</td>
<td>✓</td>
</tr>
</tbody>
</table>

Data transformation between sources and the data warehouse
Northwind Example: Develop Final Conceptual Schema and Mappings

• Revision and additional consultation with users are required to adapt the multidimensional schema to the content of the data sources

• Some of the issues found during the revision process were:
 – We need to create and populate the dimension Time
 – The time interval of this dimension must cover the dates contained in the table Orders of the Northwind operational database
 – The dimensions Customer and Suppliers share the geographic hierarchy starting with City
 – This information is incomplete in the operational database so data for State, Country, and Area must be obtained from an external source

• Metadata for the source systems, DW, and the ETL processes are also developed in this step

Source-Driven Conceptual Design

• Once the operational schemas have been analyzed, the initial data warehouse schema is developed

• Not all facts will be of interest for decision support so input from users is required to identify which facts are important

• Users can also refine the existing hierarchies, since some of these are sometimes “hidden” in an entity type or a table

• The initial data warehouse schema is modified until it becomes the final version accepted by the users
Phase 1: Develop Initial Schema

- Multidimensional elements have been identified in the requirements specification phase so development of an initial data warehouse conceptual schema is straightforward
- The usual practice is to use names for the various schema elements that facilitate user understanding
- However, users are familiar with the technical names used in the source systems
 - In this case, a dictionary of names can facilitate communication with the users

Phase 2: Validate Conceptual Schema with Users

- Start from schema obtained starting from the data sources
- So far participation of the users has been minimal; here, users incorporated in a more active role
- Users are at professional or administrative level, because of their knowledge of the underlying systems
- Initial schema examined in detail, may require modifications for several reasons
 - It may contain more elements than those required for the analysis purposes
 - Some elements may require transformation (e.g., attributes into hierarchies)
 - Some elements could be missing although they exist in the sources (e.g., due to confusing names)
Phase 3: Develop Final Conceptual Schema and Mappings

- Users' recommendations incorporated into the initial schema, leading to a final conceptual schema that should be approved
- An abstract specification of mappings and transformations (if required) between the data in the source systems and the data in the data warehouse is defined

Analysis/Source-Driven Conceptual Design

- Two activities:
 - analysis requirements
 - exploration of the source systems
- Leads to two DW schemas:
 - The schema obtained from the analysis-driven approach
 - The data warehouse schema that can be extracted from the existing operational databases following the source-driven approach
- Both schemas must be matched
Analysis/Source-Driven Conceptual Design

• Several aspects should be considered in this matching process
 – Terminology
 – Similarity between dimensions, levels, attributes, or hierarchies
• Solutions proposed in academic literature: Highly technical, complex to implement
• Ideally, user needs covered by the data in the operational systems, no other data are needed
 – Schema is accepted, mappings between elements in sources and the data warehouse are specified
• Additionally, documentation is developed, with warehouse and source systems metadata, etc.
• In real-world this does not occur. Usually, two situations:
 – Users require less information than what the operational databases can provide
 • Another iteration of the analysis- and source-driven approaches is required
 – Users require more information than what the operational databases can provide; Users may:
 • Reconsider their needs and limit them to those proposed by the analysis-driven solution
 • Require the inclusion of external sources or legacy systems not considered previously
• Each type of activity results in the identification of elements for the initial multidimensional schema

Outline

• Approaches to DW Design
• General Overview
• Requirements Specification
• Conceptual Design
 ➢ Logical Design
• Physical Design
• Comparison of the various approaches of DW Design
Logical Design

- Two steps:
 - Transformation of the conceptual multidimensional schema into a logical schema
 - Specification of the ETL processes, considering transformations indicated in the previous phase

Step 1. Define Logical Schema
Step 2: Define ETL Processes

- Before implementing the ETL processes, several additional tasks must be specified in more detail
- All transformations of the source data should be considered
 - Some are straightforward, e.g., the separation of addresses into their components (for example, street, city, postal code)
 - Other required decisions: Whether to recalculate measure values to express them in euros or dollars, or use the original currency and include the exchange rate

Outline

- Approaches to DW Design
- General Overview
- Requirements Specification
- Conceptual Design
- Logical Design
 - Physical Design
- Comparison of the various approaches of DW Design
Physical Design

• Two aspects:
 – Implementation of the data warehouse
 – ETL process

• Logical schema is converted into a tool-dependent physical database structure
 – Physical design decisions should consider both the proposed logical schema and the analytical queries specified during requirements

Physical Design

• Should enable to manage large amounts of data, refresh the DW, perform complex operations, etc.
• Depend on the facilities provided by the DBMS (storage methods, indexes, partitioning, parallel query execution, aggregation functions, and view materialization, etc.), e.g.:
 – If a query often requests employee names, dimension Employee can be fragmented vertically; attributes FirstName, LastName, and City in one partition, the other ones in another partition
 – The Sales fact table could be partitioned horizontally according to time, if queries frequently require the most recent data
• During physical design we must define an indexing scheme
 – The designer should be aware of the possibilities of the DBMS that she will use
 – E.g., SQL Server does not support bitmap indexes, while Oracle does
 – SQL Server comes equipped with the option to define column-store indexes
• We must also define which will be the most common queries and the materialized views that we need
 – E.g., SQL Server does not support materialized views directly, but through indexed views
Outline

- Approaches to DW Design
- General Overview
- Requirements Specification
- Conceptual Design
- Logical Design
- Physical Design

Comparison of the various approaches of DW Design

Analysis-Driven Approach: Summary

Advantages
- Provides a comprehensive specification of the needs of stakeholders from a business viewpoint
- Facilitates a better understanding of the facts, dimensions, and the relationships between them
- Promotes acceptance of the system through continuous interaction with potential users
- Enables the specification of long-term strategic goals

Disadvantages
- The specification of business goals can be difficult, and its result depends on the techniques applied and the skills of the developer team
- Requirements specification not aligned with business goals may produce a complex schema that does not support the decision processes at all organizational levels
- The duration of the project tends to be longer than the duration of the source-driven approach
- The users’ requirements might not be satisfied by the information existing in the source systems
Source-Driven Approach: Summary

Advantages
- Ensures that the DW reflects the underlying relationships in the data
- Guarantees that the DW contains all necessary data from the beginning
- Reduces the user involvement required to start the project
- Facilitates development process if well-structured and normalized operational systems exist
- (Semi-) automatic techniques can be applied if E/R or relational schemas exist for operational DBs

Disadvantages
- Only business needs reflected in the underlying source data models can be captured
- System may not meet users’ expectations: company’s goals and users’ requirements not considered
- Difficult to apply when logical schemas of operational systems are hard to understand
- Based on existing data so cannot be used to address long-term strategic goals
- Hierarchies may be hidden in various structures, for example in generalization relationships
- It is difficult to motivate end users to work with large schemas developed for and by specialists
- The derivation process can be difficult without knowledge of the users’ needs, since for instance, the same data can be considered as a measure or as a dimension attribute

Analysis/Source-Driven Approach: Summary

Advantages
- Generates a feasible solution, supported by the existing data sources, which better reflects users’ goals
- Alerts about missing data (required to support decision-making) in the operational databases
- If the source systems offer more information than what the business users initially demand, the analysis can be expanded to include new aspects not yet considered

Disadvantages
- The development process is complicated, since two schemas are required (one obtained from the requirements, and another derived from the source systems)
- The integration process to determine whether the data sources cover the users’ requirements may need complex techniques
Next Lecture

• External Presentation by Webdetails/Pentaho, Dec. 5th, Monday.