Dealing with Text Databases

- Unstructured data
- Boolean queries
 - Sparse matrix representation
 - Inverted index
- Counts vs. frequencies
- Term frequency
- tf x idf term weights
- Documents as vectors
 - Cosine similarity
 - Dimensionality reduction
- Vectors and Boolean queries
Christopher Manning

Prabhakar Raghavan

Hinrich Schütze

Unstructured data

Which plays of Shakespeare contain the words *Brutus AND Caesar* but *NOT Calpurina*?

- (Calpurinia, third and last wife of Julius Caesar)

One could grep all of Shakespeare’s plays for *Brutus* and *Caesar*, then strip out lines containing *Calpurnia*?

- Slow (for large corpora)
- *NOT Calpurnia* is non-trivial
Term-document incidence

<table>
<thead>
<tr>
<th>Term and Document</th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worse</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Brutus AND Caesar but NOT Calpurnia

Incidence vectors

- So we have a 0/1 vector for each term

- To answer query: take the vectors for Brutus, Caesar and not Calpurnia (complemented) © bitwise AND

- 110100 AND 110111 AND 101111 = 100100
Answers to query
110100 AND 110111 AND 101111 = 100100

- Antony and Cleopatra
- Hamlet

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worse</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Sparse matrix representation

- For real data matrix becomes very big
- Matrix has much, much more zeros than ones
 - Matrix is extremely sparse
 - Why? Not every term (word) in every document present
- What’s a better representation?
 - We only record the 1 positions
Inverted index

- For each term T, we must store a list of all documents that contain T
- Do we use an array or a list for this?

<table>
<thead>
<tr>
<th>Term</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutus</td>
<td>2 4 8 16 32 64 128</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>1 2 3 5 8 13 21 34</td>
</tr>
<tr>
<td>Caesar</td>
<td>13 16</td>
</tr>
</tbody>
</table>

What happens if the word *Caesar* is added to document 14?

Inverted index

- Linked lists generally preferred to arrays
 - Dynamic space allocation
 - Insertion of terms into documents easy
 - Space overhead of pointers
Inverted index construction

Documents to be indexed.

Token stream.

Linguistic modules

Modified tokens.

Indexer

Inverted index

Boolean queries: Exact match

- The Boolean Retrieval model is being able to ask a query that is a Boolean expression:
 - Boolean Queries are queries using AND, OR and NOT to join query terms
 - Views each document as a set of words (terms)
 - Is precise: document matches condition or not
Exact match

- Primary commercial retrieval tool for 3 decades

- Professional searchers (e.g., lawyers) still like Boolean queries:
 - You know exactly what you’re getting.

Scoring

- Our queries have all been Boolean
- Good for expert users with precise understanding of their needs and the corpus

- Not good for (the majority of) users with poor Boolean formulation of their needs
Scoring

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank order the docs in the corpus with respect to a query?
- Assign a score – say in [0,1]
 - for each doc on each query

Incidence matrices

- Recall: Document (or a zone in it) is binary vector X in \(\{0,1\}^v\)
- Query is a vector
- Score: Overlap measure: \(|X \cap Y|\)

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Example

- On the query *ides of march*, Shakespeare’s *Julius Caesar* has a score of 3
- All other Shakespeare plays have a score of 2 (because they contain *march*) or 1
- Thus in a rank order, *Julius Caesar* would come out tops

Overlap matching

- What’s wrong with the overlap measure?
- It doesn’t consider:
 - Term frequency in document
 - Term scarcity in collection (document mention frequency)
 - *of* is more common than *ides* or *march*
 - Length of documents
Scoring: density-based

- Obvious next idea: if a document talks about a topic *more*, then it is a better match
- This applies even when we only have a single query term.
- Document relevant if it has a lot of the terms
- This leads to the idea of term weighting

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Bag of words model
 - Document is a vector in *N*: a column below

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>worse</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Counts vs. frequencies

- Consider again the *ides of march* query
 - *Julius Caesar* has 5 occurrences of *ides*
 - No other play has *ides*
 - *march* occurs in over a dozen
 - All the plays contain *of*

- By this scoring measure, the top-scoring play is likely to be the one with the most *ofs*

Digression: terminology

- **WARNING**: In a lot of IR literature, “frequency” is used to mean “count”
 - Thus *term frequency* in IR literature is used to mean *number of occurrences* in a doc
 - Not divided by document length (which would actually make it a frequency)

- We will conform to this misnomer
 - In saying *term frequency* we mean the *number of occurrences* of a term in a document.
Term frequency \(tf \)

- Long docs are favored because they’re more likely to contain query terms.
- Can fix this to some extent by normalizing for document length.
- But is raw \(tf \) the right measure?

Weighting term frequency: \(tf \)

- What is the relative importance of
 - 0 vs. 1 occurrence of a term in a doc
 - 1 vs. 2 occurrences
 - 2 vs. 3 occurrences …
- Unclear: while it seems that more is better, a lot isn’t proportionally better than a few.
 - Can just use raw \(tf \)
 - Another option commonly used in practice:
 - \(t=\text{term}, d=\text{document} \)

\[
wf_{t,d} = 0 \text{ if } tf_{t,d} = 0, \quad 1 + \log tf_{t,d} \text{ otherwise}
\]
Score computation

Score for a query $q = \sum_{t \in q} tf_{t,d}$

- [Note: 0 if no query terms in document]
- This score can be zone-combined
- Can use wf instead of tf in the above
- Still doesn’t consider term scarcity in collection (ides is rarer than of)

Weighting should depend on the term overall

- Which of these tells you more about a doc?
 - 10 occurrences of hernia?
 - 10 occurrences of the?
- Would like to attenuate the weight of a common term
 - But what is “common”?
- Suggest looking at collection frequency (cf)
 - The total number of occurrences of the term in the entire collection of n documents
Document frequency

- But document frequency \((df)\) may be better:
- \(df = \) number of docs in the corpus containing the term

<table>
<thead>
<tr>
<th>Word</th>
<th>(cf)</th>
<th>(df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alfa</td>
<td>10422</td>
<td>17</td>
</tr>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
</tbody>
</table>

- Document/collection frequency weighting is only possible in known (static) collection
 - The number of documents in the entire collection of \(n\) documents
- So how do we make use of \(df\) ?

\[idf_i = \log \left(\frac{n}{df_i} \right) \]

tf \(\times\) idf term weights

- tf \(\times\) idf measure combines:
 - term frequency \((tf)\)
 - or \(wf\), some measure of term density in a doc
 - inverse document frequency \((idf)\)
 - measure of informativeness of a term: its rarity across the whole corpus
 - could just be raw count of number of documents the term occurs in \((idf_i = 1/df)\)
 - but by far the most commonly used version is:

- See Kishore Papineni, NAACL 2, 2002 for theoretical justification
Summary: tf x idf (or \textbf{tf.idf})

- Assign a tf.idf weight to each term \(i\) in each document \(d\)

\[w_{i,d} = tf_{i,d} \times \log\left(\frac{n}{df_i}\right) \]

- \(tf_{i,d}\) = frequency of term \(i\) in document \(d\)
- \(n\) = total number of documents
- \(df_i\) = the number of documents that contain term \(i\)

- Increases with the number of occurrences within a doc
- Increases with the rarity of the term across the whole corpus

Document frequency is the number of documents in the collection containing a certain term

\[df_i, \quad \text{(9.7)} \]

If \(s\) is the number of documents in the collection, then surprise of a term \(i\) is defined as

\[s_t = \frac{s}{df_i}, \quad \text{(9.8)} \]

The bigger the probability \(p(\text{term}_i)\)

\[p(\text{term}_i) = \frac{df_i}{s}. \quad \text{(9.9)} \]

Information of a term is defined as

\[I_i = \log_2(s_t) = -\log_2(p(\text{term}_i)). \quad \text{(9.10)} \]
\[idf_i := I_t = \log_2(s_t) = -\log_2(p(\text{term}_i)) = \log_2 \left(\frac{s}{\partial f_t} \right) \approx \log \left(\frac{s}{\partial f_t} \right) \quad (9.12) \]

or

\[w_{td} = tf_{td} \times \log \left(\frac{s}{\partial f_t} \right) = tf_{td} \cdot I_t \quad (9.13) \]

\[w'_{td} = w_{td} \times \log \left(\frac{s}{\partial f_t} \right) = w_{td} \cdot I_t \quad (9.14) \]

With \(n \) being the number of different terms \(\text{term}_i \) and \(p(\text{term}_i) \) the probability of occurrence of the term, then the theoretical minimum average number of bits of a document is computed using the Shannon's formula of entropy

\[H = -\sum_{i=1}^{n} p(\text{term}_i) \cdot \log_2 p(\text{term}_i). \quad (9.11) \]
Real-valued term-document matrices

- Function (scaling) of count of a word in a document:
 - Bag of words model
 - Each is a vector in \mathbb{R}^v
 - Here log-scaled $tf.idf$

<table>
<thead>
<tr>
<th>Term</th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>13.1</td>
<td>11.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Brutus</td>
<td>3.0</td>
<td>8.3</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Caesar</td>
<td>2.3</td>
<td>2.3</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0.0</td>
<td>11.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>17.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Meryc</td>
<td>0.5</td>
<td>0.0</td>
<td>0.7</td>
<td>0.9</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Worser</td>
<td>1.2</td>
<td>0.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Documents as vectors

- Each doc j can now be viewed as a vector of $wf \times idf$ values, one component for each term
- So we have a vector space
 - terms are axes
 - docs live in this space
 - even with stemming, may have 20,000+ dimensions
Why turn docs into vectors?

- First application: **Query-by-example**
 - Given a doc \(d \), find others “like” it.

- Now that \(d \) is a vector, find vectors (docs) “near” it....

Intuition

Postulate: Documents that are “close together” in the vector space talk about the same things.
Desiderata for proximity

- If d_1 is near d_2, then d_2 is near d_1
- If d_1 near d_2, and d_2 near d_3, then d_1 is not far from d_3
- No doc is closer to d than d itself

First cut

- Idea: Distance between d_1 and d_2 is the length of the vector $|d_1 - d_2|$.
 - Euclidean distance

- Why is this not a great idea?
- We still haven’t dealt with the issue of length normalization
 - Short documents would be more similar to each other by virtue of length, not topic
- However, we can implicitly normalize by looking at angles instead
Cosine similarity

- Distance between vectors d_1 and d_2 captured by the cosine of the angle θ between them.
- Note – this is similarity, not distance
 - No triangle inequality for similarity.

A vector can be normalized (given a length of 1) by dividing each of its components by its length – here we use the L_2 norm

$$\|x\|_2 = \sqrt{\sum_i x_i^2}$$

This maps vectors onto the unit sphere:

- Then, $|\tilde{d}_j| = \sqrt{\sum_{i=1}^n w_{i,j}} = 1$
- Longer documents don’t get more weight
Normalized vectors

- For normalized vectors, the cosine is simply the dot product:

\[\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k \]

- Varies from 0 to 1!!!!!
Euclidean distance between vectors:

$$|d_j - d_k| = \sqrt{\sum_{i=1}^{n} (d_{i,j} - d_{i,k})^2}$$

For normalized vectors, Euclidean distance gives the same proximity ordering as the cosine measure.

Queries in the vector space model

Central idea: the query as a vector:

- We regard the query as short document
- We return the documents ranked by the closeness of their vectors to the query, also represented as a vector

$$\text{sim}(d_j, d_q) = \frac{\vec{d}_j \cdot \vec{d}_q}{\|\vec{d}_j\| \|\vec{d}_q\|} = \frac{\sum_{i=1}^{n} w_{i,j} w_{i,q}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^2} \sqrt{\sum_{i=1}^{n} w_{i,q}^2}}$$

- Note that d_q is very sparse!
- Varies from 0 to 1!!!!!
Normalized vectors

For normalized vectors, the cosine is simply the dot product:

\[
\cos(\vec{d}_j, \vec{d}_k) = \vec{d}_j \cdot \vec{d}_k
\]

Varies from 0 to 1!!!!!

Example

Docs: Austen’s *Sense and Sensibility*, *Pride and Prejudice*; Bronte’s *Wuthering Heights*. tf weights

<table>
<thead>
<tr>
<th></th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.996</td>
<td>0.993</td>
<td>0.847</td>
</tr>
<tr>
<td>jealous</td>
<td>0.087</td>
<td>0.120</td>
<td>0.466</td>
</tr>
<tr>
<td>gossip</td>
<td>0.017</td>
<td>0.000</td>
<td>0.254</td>
</tr>
</tbody>
</table>

\[
\cos(\text{SAS, PAP}) = 0.996 \times 0.993 + 0.087 \times 0.120 + 0.017 \times 0.0 = 0.999
\]

\[
\cos(\text{SAS, WH}) = 0.996 \times 0.847 + 0.087 \times 0.466 + 0.017 \times 0.254 = 0.889
\]
What if we could take our vectors and “pack” them into fewer dimensions (say 50,000→100) while preserving distances?

(Well, almost.)

- Speeds up cosine computations
A random projection from \(n \) to \(m \) with
\[
m \ll n
\]
is given by this simple algorithm:
- choose a random direction \(\mathbf{a}_1 \) in the vector space;
- for \(i = 2 \) to \(m \)
 - choose a random direction \(\mathbf{a}_i \) that is orthogonal to \(\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_{i-1} \);
 - project each document vector of dimension \(n \) into the subspace spanned by \(\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_m\} \).

The subspace spanned by \(\{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_m\} \) defines a projection matrix of the dimension \(m \times n \)
\[
A = \begin{pmatrix}
 \mathbf{a}_1^T \\
 \mathbf{a}_2^T \\
 \vdots \\
 \mathbf{a}_m^T
\end{pmatrix} = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}.
\]
(9.15)

The vectors that represent the document collection and the query vector are projected with the projection matrix \(A \) into \(m \) dimensional space. Relative distances are preserved by projection \(A \) with high probability according to the The Johnson-Lindenstrauss lemma, see section 7.4. An alternative

The Johnson-Lindenstrauss lemma [W. Johnson (1984)] states that if \(s \) points in vector space of dimension \(n \) are projected onto a randomly selected subspace of suitably high dimensions \(m \), then the Euclidean distance between the points are approximately preserved. For
\[
0 < \epsilon < 1
\]
and a set of \(s \) vectors of the dimension \(n \) and dimension \(m \) with
\[
m > 8 \cdot \frac{\log(s)}{\epsilon^2}
\]
and a linear mapping
\[
f : R^n \rightarrow R^m
\]
exists such that that for the Euclidean metric
\[
(1 - \epsilon) \cdot \|\mathbf{x} - \mathbf{y}\|^2 \leq \|f(\mathbf{x}) - f(\mathbf{y})\|^2 \leq (1 + \epsilon) \cdot \|\mathbf{x} - \mathbf{y}\|^2.
\]
\[
\vdots
\]
(7.29)
Measures for Results

- All of the preceding criteria are measurable: we can quantify speed/size; we can make expressiveness precise
- The key measure: user happiness
 - What is this?
 - Speed of response/size of index are factors
 - But blindingly fast, useless answers won’t make a user happy
- Need a way of quantifying user happiness

Measuring user happiness

- Issue: who is the user we are trying to make happy?
 - Depends on the setting
- Web engine: user finds what they want and return to the engine
 - Can measure rate of return users
- eCommerce site: user finds what they want and make a purchase
 - Is it the end-user, or the eCommerce site, whose happiness we measure?
 - Measure time to purchase, or fraction of searchers who become buyers?
Measuring user happiness

- **Enterprise (company/govt/academic):** Care about “user productivity”
 - How much time do my users save when looking for information?
 - Many other criteria having to do with breadth of access, secure access, etc.

Happiness: elusive to measure

- Commonest proxy: *relevance* of search results
- But how do you measure relevance?
- We will detail a methodology here, then examine its issues
- Relevant measurement requires 3 elements:
 1. A benchmark document collection
 2. A benchmark suite of queries
 3. A binary assessment of either Relevant or Irrelevant for each query-doc pair
 - Some work on more-than-binary, but not the standard
Evaluating an IR system

- Note: the information need is translated into a query.
- Relevance is assessed relative to the information need, not the query.
- E.g., Information need: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
- You evaluate whether the doc addresses the information need, not whether it has those words.

Unranked retrieval evaluation: Precision and Recall

- **Precision**: fraction of retrieved docs that are relevant = \(P(\text{relevant}\mid\text{retrieved}) \)
- **Recall**: fraction of relevant docs that are retrieved = \(P(\text{retrieved}\mid\text{relevant}) \)

<table>
<thead>
<tr>
<th></th>
<th>Relevant</th>
<th>Not Relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>(tp)</td>
<td>(fp)</td>
</tr>
<tr>
<td>Not Retrieved</td>
<td>(fn)</td>
<td>(tn)</td>
</tr>
</tbody>
</table>

- Precision \(P = \frac{tp}{tp + fp} \)
- Recall \(R = \frac{tp}{tp + fn} \)
Accuracy

- Given a query an engine classifies each doc as “Relevant” or “Irrelevant”.
- Accuracy of an engine: the fraction of these classifications that is correct.
- Why is this not a very useful evaluation measure in IR?
- No result, 100% accuracy

Precision/Recall

- You can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved
- In a good system, precision decreases as either number of docs retrieved or recall increases
 - A fact with strong empirical confirmation
Difficulties in using precision/recall

- Should average over large corpus/query ensembles
- Need human relevance assessments
 - People aren’t reliable assessors
- Assessments have to be binary
 - Nuanced assessments?
- Heavily skewed by corpus/authorship
 - Results may not translate from one domain to another

A combined measure: F

- Combined measure that assesses this tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- People usually use balanced F_1 measure
 - i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$
Evaluating ranked results

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a precision-recall curve