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Abstract

Active perception and foveal vision are the foundations of our visual system. While foveal vision
reduces the amount of information to process at any time instance, active perception will direct the
eyes to promising parts of the visual field. Together, they allow a detailed perception of the objects
on the environment with limited neuronal processing resources. We develop a method that combines
both concepts to explore and identify all the objects on an image with the least number of gaze shifts.
A foveal sensor will scan the image sequentially and create a semantic map of the scene, choosing
at each step the location with higher information gain, regarding the identification of the objects.
Our framework uses the foveated images as input to a state-of-the-art object detector, whose scores
are modelled by a Dirichlet distribution that depends on the distance to the fovea, denoted Foveal
Observation Model. After each new saccade, this Model is used to perform a Sequential Fusion of
the detection scores in a global map. With the updated distributions at each map point, a decision
based on information theoretic measures is made to find the next-best-viewpoint that maximizes our
knowledge of the world. Despite the blur, we show that it is possible to combine foveated images with
state-of-the-art object detectors using our proposed models. Furthermore, our models not only improve
the identification of objects by 2-3%, but also reduce 3x (in average) the number of required gaze shifts
to achieve similar performances against randomly choosing the next viewpoint.
Keywords: Active Perception; Foveal Vision; Object Detection; Active Object Search; Fusion of
Classifiers

1. Introduction

Central vision (or foveal vision) is an indispensable
feature of the human eye allowing to perform activ-
ities which require high-resolution visual details, in
contrast with peripheral vision where the resolution
is much lower (blurred image).

So, why are our eyes divided in these two regions?
It would be reasonable to think that having a wider
central vision could greatly improve our survival.
But in fact, human eyes are built the other way
around. The fovea comprises less than 1% of retinal
size, but takes up over 50% of the cortex [10], thus
one can imagine that our brain would have to be
impractically large to handle the full visual field at
high resolution.

However, since the amount of information is
greatly reduced by the foveation mechanism, one
could think that, to analyse a scene, it would just
require a gaze shift to every location, and extract
the information obtained by the fovea. Still, scan-
ning the entire scene would require an unbearable
amount of time. Nevertheless, the fovea does not
need to cover the entire scene, the peripheral vi-
sion also extracts some useful information to guide

the eyes to visit unexplored places where there is
a high probability of existing objects, given all the
acquired information.

Just like human vision, many computer vision ap-
plications are constrained by the involved compu-
tational effort, specially when implemented on arti-
ficial intelligent agents whose tasks depend on the
analysis, in real-time, of their surroundings. Hence,
urges the need to develop models capable of filter-
ing and fusing information, ignoring what is not
relevant for the task in hands. This is where the
Active Perception models, combined with foveal vi-
sion, come to the picture. Active perception se-
lectively chooses new targets for the acquisition of
information based on the knowledge that the agent
has about the current state of the world and what
is promising or not to complete a certain task.

Although there have been a large amount of re-
search and developments on attention and visual
search models (as in [4], [3], [1] and [11]), there is
still a long way to go, specially regarding the mod-
eling of the mechanisms that help the decision of
where to shift the gaze to. Besides, at the extent
of our knowledge, there are no attempts on com-
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bining state-of-the-art object detection mechanisms
and active perception methods to perform a scene
exploration task using foveal vision.

1.1. Problem Definition
The main goal of this project is to implement a
model to optimize the exploration of a scene, gath-
ering as much information as possible about all the
objects, in the least amount of gaze shifts, using
foveal vision.
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Figure 1: Scene/image representation where the
squares represent the objects O and the center of
the dashed circles represents the focal point (xt, yt).

So, let’s start by considering C as the set of pos-
sible classes of objects Om

C = {co, c1, ..., cK} (1)

where K is the number of classes, and c0 is the label
of the background class.

The set of detected objects It seen by a detector
algorithm (may be different from the actual number
of objects), at instant t is given by

It = {It,l}, l = 1, ..., Lt (2)

where

It,l = (Bt,l,St,l) (3)

being Bt,l a bounding box, which is an array con-
taining the location and size of the object, and St,l
an array of confidence scores. The position of the
bounding box Bt,l can be given by the local coor-
dinates (ut,l, vt,l) representing the relative position
of the center of the bounding box to the focal point
(xt, yt). On the other hand, the confidence scores
St,l contain the probability of a given detection It,l
belonging to each of the K classes of objects C for
which the detector was trained to detect:

St,l = [st,l,1, st,l,2, ..., st,l,K ]T , 0 ≤ st,l,j ≤ 1 (4)

The confidence scores St,l are in the probability
simplex after normalizing the probabilities to sum

to one,
∑K
k=1 st,l,k = 1 and st,l,k ≥ 0 for all

k ∈ {1, ...,K}.
After having the output of the detections on the

resulting foveated images of each saccade, we first
need to build an Observation Model that mod-
els how the detections and their confidence scores
vary depending on their relative position to the
retina. The Observation Model is then defined for
each detection It,l as the distribution of its confi-
dence scores St,l, given the distance to the fovea
dt,l = ‖(ut,l, vt,l)‖, for each possible object class la-
bel ck, :

p(St,l|ck, dt,l) (5)

Secondly, a world map has to accumulate over
time the knowledge that the observations provide,
for our application we can consider a body centered
2D map of the surroundings. Therefore, a Fusion
Model is required to update the map with new ob-
servations, after each saccade

Mt(x, y) = P (Cx,y|I0:t,ft,l(x,y), x0:t, y0:t) (6)

where Mt can be seen as the map information
(state) at iteration t, containing at each pixel (x, y)
a vector of parameters that encode the probability
distribution of the fusion of all observations that
overlap the pixel (x, y), which are given by the func-
tion ft,l(x, y), where Cx,y ∈ C is the class label that
we want to estimate

Having now the updated map information, in or-
der to make a full exploration in the least number
of gazes, an Active Perception method that chooses
the point to look next that maximizes the gain of
information about the scene has to be implemented

x∗, y∗ = argmax
x,y

F (x, y,M) (7)

where F (x, y,M) corresponds to the gain of infor-
mation or the loss of confusion.

2. Background & Related Work
In this section we will review related work on ac-
tive perception and integration with foveal vision,
as well as recent work on how to fuse observations
in order to keep updating the knowledge that the
agent has of the world.

2.1. Active Perception
Machine Learning techniques often rely on huge
amounts of labeled data. The data is then pro-
cessed by a training algorithm, which optimizes the
parameters to perform the task for what it was de-
signed. One constrain of these machine learning
techniques, and perhaps the biggest one, is the in-
sufficient amount of available data to train the al-
gorithm, and the time it would take to process it.

To overcome this issue, active learning began to
emerge as a hot scientific topic. Active Learning is
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built upon the principle that the learning algorithm
has the ability to choose the data from which it
learns, and, this way, if the the data is well chosen,
the algorithm can perform better with less training
[15].

Active perception is a particular subset of ac-
tive learning. The agent acquires information di-
rectly from the sensors, which is combined with
prior knowledge of the world and the current state,
to then select the next information to gather [5].
Active perception can be performed with different
kinds of sensors and stimulus. The focus of this
work is on solving a search problem using visual
sensory information, and, therefore, the active per-
ception specialization that will be studied here is
given the name of active vision [2]. This problem
can be seen as a planning problem, denominated
”next best view point”.

The choice of the next best view point is made
through the use of acquisition functions, where the
objective is to choose the point that maximizes a
function related to our objective. Figueiredo [7] on
his work used three common acquisition functions,
the Upper Confidence Bound, the Probability of Im-
provement and the Expected Improvement. The
application of the acquisition functions depends on
the type of information acquired by the sensors and
others can be derived from these reference ones. On
section 3.4 the acquisition functions developed to
our specific case will be explained in detail.

Earlier work on actively searching for objects
was proposed by Ayedemir [4], with an Active Vi-
sual Search strategy considering topological rela-
tions between objects. The approach had a major
drawback, the amount of prior information needed,
which the user had to input whenever a new search
was to be performed. Anyway, Aydemir latest
work [3], where he added the uncertain semantic
of the environment, already provided promising re-
sults when compared against humans on performing
an object search task on unknown map.

On another approach, a new mechanism combin-
ing stereo vision and active perception was pur-
posed by Grotz [8], where a more task-related gaze
selection was explored, based on multiple saliency
maps. His objective was to reduce the uncertainty
associated to the desired object pose to then be able
to grab it more efficiently. The detection of the ob-
ject was made based on the extraction of local fea-
tures and the uncertainty associated to the object
pose was modelled as a Gaussian distribution and
updated using a Kalman filter. Nevertheless, the
use of local feature detectors greatly reduces the
possible complexity of the objects present on the
scene.

We were actually inspired by a more recent
work developed by Figueiredo [7] where depth in-

formation was combined with the uncertainty in
stereo matching to perform an active gaze selection
method. The objective was to extract the maximum
amount of information of the closest object to the
camera while updating the world map using foveal
mechanisms. Figueiredo’s results showed that, with
the right parameters, foveal vision would outper-
form Cartesian, regarding the amount of informa-
tion extracted. Nevertheless, besides the promising
results, the optimization criteria was to choose the
closest object, with disregard for the type of object
itself.

Following Figueiredo’s work [7], an iterative ap-
proach combining saliency maps (inspired on Grotz
approach [8]) with active perception to improve
the detection of objects was proposed by Almeida
[1]. Almeida proposed a biological inspired object
classification and localization framework combining
DCNN with foveal vision. First, a DCNN operates
over the foveated image to predict the class labels.
Then, a color-based saliency map is used to obtain
the object location proposal. At the next iteration,
the center of the location proposal is used as the
new foveation point, and the process is repeated,
in order to try to improve the classification and lo-
calization of the object. As in Grotz work, the use
of this kind of saliency maps reduces the quality
of the localization of the objects as the image gets
more complex. Besides that, Almeida’s framework
considered images with just one object.

Other biological inspired work was performed by
Melicio [11], where attention mechanisms were com-
bined with foveal vision to perform image classifi-
cation. Melicio dropped the model based saliency
maps by using a CNN to both detect salient re-
gions and classify the foveated image in just one
step. The salient regions outputted by the CNN
were then used to shift the foveation point to loca-
tions that would potentially improve the classifica-
tion. Melicio showed that after the gaze shift, the
performance improves. In her work the localization
of the object is not required, since, as in Almeida’s
work, the objective was to classify an image con-
taining one central object. Thus, the uncertainty
in the detection imposed by the foveal vision did
not need to be modelled.

2.2. Approaches on Fusing Observations
The fusion problem consists in, given a set of clas-
sification scores for a single pattern (which can be
from distinct classifiers that produce observations
at the same time, to a single classifier that obtains
consecutive measurements for the same pattern but
in different time instants), how can one calculate a
single global classification score p and/or estimate
its distribution. For our specific case the objective
here would be to update the world map M enunci-
ated in eq.(6)

3



As an example, Montesano [13] developed an al-
gorithm that learns local visual descriptors of good
grasping points based on a set of trials performed
by the robot. The parameters of the correspond-
ing distribution (in this case Beta distribution) are
updated as a simple function of the number of suc-
cesses and failures.

Although we will not have ”successes” and
”failures” to use Montesano’s approach, we can
use Figueiredo’s [7] sequential Bayesian filtering.
Bayesian filtering allows one to accumulate sensor
inputs and update the likelihood of a map point
being the desired object, at each time instant, as-
suming that we know the probability distribution
of the data.

Considering an arbitrary pixel and that we only
have one score vector per instant of time for that
pixel St (which is not the case, but simplifies the
notation), the Bayesian filtering, or Näıve Bayes ap-
proach, updates the map distribution Mt by

MT = P (C|S1, ...,ST ) =
1

Z
P (C)

T∏
t=1

P (St|C) =

=
1

A
P (ST |C)MT−1

(8)
and, individualizing for each class of objects cj

p(cj |S1, ...,ST ) =
1

Z
p(cj)

T∏
t=1

st,j (9)

where A and Z are normalizing constants that do
not depend on the object class, and p(cj) is the prior
class probability for cj .

An interesting work on testing the performances
of the Näıve Bayes against other fusion methods was
performed by Kaplan [9], where a new approach on
fusing classifiers was proposed. The fusion method
proposed by Kaplan maps the classifications into
a Dirichlet distribution with parameters βx,yt , be-
ing able to take into consideration the uncertainty
associated to each classifier when fusing. This is
interesting since it allows to store the information
of how many updates were done at each map cell.
Let’s again consider an arbitrary pixel (x, y) and,
for simplicity, omit the coordinates from the equa-
tions of this section.

First, Kaplan proposes a what he calls näıve ap-
proach that instead of adding the number of oc-
currences to the Dirichlet parameters (as in Mon-
tesano approach [13]), the Dirichlet parameters are
updated by adding the actual confidence scores

βt+1,k = βt,k + st,k (10)

This approach is actually equivalent to a classical
approach named sum rule, considering uniform pri-
ors. The sum rule tries to approximate the poste-
rior class probabilities, but instead of multiplying

the observations, it sums them, presenting a more
robust solution to outliers than the Näıve Bayes,
since values close to zero would automatically lead
the result of the Näıve Bayes to low probability val-
ues. Nevertheless, Kaplan states that this sum rule
does not yield a posterior Dirichlet distribution that
fits well the actual posterior distribution of p.

Kaplan then proposes a new updated, by approx-
imating a Dirichlet distribution to the actual pos-
terior f(p|β,S) through a moment matching ap-
proach. On this new approach on fusing classifiers
(Kaplan’s update), the Dirichlet parameters are up-
dated by the following equation

βt+1,k =

βt,k

(
1 +

st,k∑K
j=1 βt,jst,j

)
1 +

minj st,j∑K
j=1 βt,jst,j

(11)

It will be interesting to test how this different
updates work, as we will be dealing with the un-
certainty imposed by the foveal sensor that is not
constant: depends on the object location. We will
therefore expand Kaplan’s work on comparing dif-
ferent fusion methods, to our specific problem.

3. Approach
The proposed project involves the integration of
several components (see figure 2). These compo-
nents will be described and explored throughout
this section.

3.1. Foveal Conversion
The Foveal Conversion will collect the image that
we wish to explore and use Almeida [1] and Meĺıcio
[11] model to foveate the collected Cartesian im-
age with the center of the fovea being the one re-
turned by the Gaze Selection block at each itera-
tion. Where they first build a Gaussian scale-space
where each level corresponds to a low-passed ver-
sion of the previous level. Each level has an in-
creasing level of blur, but similar resolution. Then,
a Laplacian scale-space is built where the difference
between adjacent Gaussian levels is computed, re-
sulting in a set of error images. Finally, each level
is multiplied by exponential kernels to emulate a
smooth fovea. Their approach creates an image
which has a higher resolution around the foveation
point, decreasing gradually over the periphery but
does not change the pixel size and distribution along
the foveated image. Consequently, although sim-
ulating foveal vision, this approach does not take
advantage of the decrease of resolution over the pe-
riphery to reduce computational costs. Anyway, it
is a convenient process to analyse the consequences
of foveal images in artificial vision and machine
learning methods, since it creates an image ready
to be processed by a pre-trained CNN for Carte-
sian images; One just has to resize the image to fit
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Figure 2: Graphical model of the framework.

the input requirements of the network.
Nevertheless, in order to take full advantage of

the possible memory reduction when using foveal
vision, a different approach was recently proposed
by Siebert & Ozimek [16]. They use a self-similar
neural network to define retina sampling locations
as described by Clippingdale & Wilson [6]. This
approach was only tested for classification tasks and
not detection ones, and it would require a re-train
of already built detection algorithms. So, since we
are more concerned on how to actively explore a
scene and search for objects using foveated images,
we will leave this interesting approach for future
work.

3.2. Object Detection & Foveal Observation Model
The foveated image serves as input to the object
detection method (we will use a YOLOv3 [14]),
which outputs are modeled by the foveal observa-
tion model. The whole process is represented graph-
ically in figure 3.

P(C|p) Dir(S|α)Dir(p|β)

Lt

α

p C Sβ

x,y

u,v

Figure 3: Object detection and Foveal Observation
Model diagram.

For each image location, given by the global co-
ordinates (x, y), there is a probability of appearing
a given object, represented by a probability vector

p = [p1, p2, ..., pK ]T (12)

sampled from a Dirichlet prior with parameters β
that depend on the environment (on our case we
are assuming a uniform β generates a uniform p,
i.e. there is no preference for any class of objects).
K is the number of possible object classes.

Given p, an object represented by the random
variable C is sampled, which is then associated to
a bounding box.

Given C and the position on the foveated image,
our YOLO detector generates, for each instant t

and each object detected l (l = 1, ..., Lt), a multi-
nomial score vector St,l. The score vector contains
the confidence scores of the detection algorithm for
each class of object, as enunciated on eq.(4).

It’s important to note that object detection al-
gorithms were built upon the assumption that the
input image is Cartesian, meaning that they were
not trained to detect the blur imposed by the foveal
sensor on the objects, and, therefore, do not know
the location of the focal point. That information
could be useful to better classify an object affected
by the blur on the peripheries, since it would be
already expected that the uncertainty and the con-
fusion between object classes would be higher there.

The multinomial score vector St,l has then a
Dirichlet prior that depends on the location of the
image (which is expected to have less entropy near
the center of the fovea, and higher entropy on the
peripheries).

The parameters of the Dirichlet prior that char-
acterizes the uncertainty on the output of the score
vector St,l can be written as:

αk,dt,l = [αk,dt,l,1, αk,dt,l,2, ..., αk,dt,l,K ]T (13)

that depends on the distance dt,l between the out-
putted bounding box, and the center of the fovea
(xt, yt), i.e., depends on the detection local coor-
dinates (ut,l, vt,l). These parameters have to be
learned from a supervised training set, with the out-
puts of the classifier obtained on different observa-
tion conditions for each of the classes. Each Dirich-
let distribution of the Foveal Observation Model
was trained using an iterative approach proposed
by Minka [12].

The Foveal Observation Model is then composed
by a set of different Dirichlet distributions, one for
each pair class k and distance level dk,l (on our case
7 different distance levels were considered). Thus,
whenever a detection It,l appears, depending on the
distance to the focal point, a Dirichlet distribution
is chosen for each class of object k = 1, ...,K

S′t,l =[s′t,l,1, ..., s
′
t,l,K ] =

=
1

D
[Dir(St,l|α1,dt,l), ..., Dir(St,l|αK,dt,l)]T

(14)
Where D is a normalization factor given by D =∑K
k=1Dir(St,l|αk,dt,l), so that

∑K
k=1 s

′
t,l,k = 1.

These new score vector S′t,l is expected to have less
confusion than the ones outputted by the detector.
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3.3. Fusion Model
In order to simplify the exploration, our world cor-
responds to a single image, where we wish to cor-
rectly detect and classify every object on the least
number of gaze shifts. Therefore, the information
obtained every time the algorithm moves the eyes
has to be stored in a map and fused with the infor-
mation already obtained on previous iterations.

As proposed by Kaplan [9] (refer back to section
2.2), the fusion results of both the sum rule and
”Kaplan’s approach” can be mapped onto a Dirich-
let distribution with parameters β. Therefore, stor-
ing on the map these parameters βxm,ym

t , for the
current instant t, for each map cell (xm, ym) will
allow one to not only extract the expected proba-
bility of each class of objects k (for k = 1, ...,K) on
that cell

pxm,ym
t,k =

βxm,ym
t,k∑K

j=1 β
xm,ym
t,j

(15)

but also to have more information about the uncer-
tainty of these expected values, since the parame-
ters β of the Dirichlet distribution contain more in-
formation than the categorical distribution p alone.

Updating the map information with the sum rule
can then be done through eq.(10), and, using Ka-
plan’s approach can be done through eq.(11). Fol-
lowing Kaplan’s [9] work we defined the initial pa-
rameters for each fusion algorithm and map cell as
β0
k = 0.5 for k = 1, ..,K.
The other fusion approach that will be tested on

our framework, the Näıve Bayes, can not be mod-
elled by a Dirichlet and therefore each map cell will
store the categorical distribution p outputted with
the Näıve Bayes approach, instead of the β param-
eters as in the other approaches.

For our specific case, the confidence scores out-
putted by the YOLO algorithm St,l would be used
on the sum rule equation (eq.(10)) and Kaplan’s
equation (eq.(11)). Nevertheless, for each map cell
(xm, ym) there might be 0, 1 or more detections at
a given instant of time t, meaning that for that in-
stant of time each fusion process for the map cell
(xm, ym) is repeated for every detection belonging
to the set Ixm,ym

t , where Ixm,ym
t is the set of detec-

tions at instant t which bounding boxes intersect
with the map cell (xm, ym).

Also, a ”background” class was appended to each
score vector, just as it was a confidence score out-
putted by the object detector (YOLO only assigns
confidence scores to objects). The confidence score
of the background was chosen to be the value that
the detector would output on every class in the
highest uncertainty case, the uniform distribution
case (st,l,K+1 = 1

K+1 ).
Nevertheless, using Kaplan fusion method

(eq.(11)) with simply the output of the detector al-
gorithm would ignore the knowledge that we have

about the location of the objects in relation to the
center of the fovea. Thus, in order to analyse if
this knowledge can improve the performance of a
scene exploration, the full observation model has to
be considered on a modified version of this fusion
method, substituting Sxm,ym

i for S′xm,ym
i , following

eq.(14).

The scores outputted by the foveal observation
model (eq.(14)) will serve as input to the Näıve
Bayes update (eq.(9)) and to a modified version of
Kaplan’s approach (eq.(11)), which we will call the
”modified Kaplan approach”, and will be compared
to the classical sum rule (eq.(10)) and Kaplan ap-
proach (eq.(11)).

3.4. Active Perception - Gaze Selection

We want to predict what is the next focal point that
minimizes the confusion on the map. In this work
three common metric to measure the map confusion
will be tested: the KL divergence, the entropy and
the difference between the two classes with highest
probability (difference between two peaks).

The KL divergence is computed over the parame-
ters of the Dirichlet distributions that characterizes
the map cells (β), and measures how different they
are from its initial state. Whilst the entropy and the
difference between two peaks are computed over the
expected values (p) of those distributions.

Having metrics that can measure the amount of
uncertainty/confusion on each map cell, the best
predicted next view point is computed by acquisi-
tion functions that have to predict the global (av-
erage) uncertainty of the map if the focal point
changed to another pixel of the image. The acqui-
sition functions considered in this work aim to find
the cell that minimizes the average map uncertainty
with each of the the metrics above.

For the KL Divergence, one aims to maximize the
average KL Divergence of the map:

(x∗m, y
∗
m) = argmax

i,j

X∑
xm=1

Y∑
ym=1

Eij
{
D
xm,ym,(t+1)
KL

}
(16)

where Eij{.} corresponds to the expected value for
a fovea centered on (i, j).

Using the Classification Entropy metric, one
wishes to minimize the average entropy of the map.
Thus, following the same notation as above:

(x∗m, y
∗
m) =

argmax
i,j

{
−

X∑
xm=1

Y∑
ym=1

Eij
{
Entrxm,ym,(t+1)

}}
(17)

For the Difference between Two Peaks, one
wishes to maximize the absolute gain of this metric:
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(x∗m, y
∗
m) =

argmax
i,j

max
xm,ym

∣∣∣Dxm,ym,t
2Peaks − E

ij
{
D
xm,ym,(t+1)
2Peaks

}∣∣∣
(18)

Predicting the resulting detections and updates of
the map, if the algorithm shifts the gaze to a certain
position, is possible due to knowing that the fovea
will have a higher resolution than the peripheries.
Taking advantage of the distance to the center of
the fovea to try to predict which objects are where
is exactly what the Foveal Observation Model does.
Thus, by modeling the current expected values of
the state of each map cell, one can predict the evo-
lution of the map for each hypothetical focal point.
This is something that can not be done without the
Foveal Observation Model.

4. Results

For this section, experiments to validate and anal-
yse the performance of each of the models used on
this work were performed.

4.1. Foveal Observation Model Validity

The foveal observation step is supposed to take ad-
vantage of the relative position of the objects to
the center of the fovea, in order to model the un-
certainty imposed by the blur on the peripheries on
the output scores of the detected objects.

For this comparison, several random images were
taken (from the COCO dataset) and foveated using
randomly chosen focal points. The correspondence
between the classification outputs and the ground-
truth objects was done by finding bounding boxes
with an IoU greater than 30% with the ground-
truth information.

On figure 4 one has the comparison of the classifi-
cation performance with and without modelling the
confidence scores with the foveal observation model.
The metrics are an average over every image.

The accuracy lines (figure 4(a)) are very similar,
meaning that modelling the detections with the ob-
servation model does not impose a drop on perfor-
mance, proving the validity of the foveal observa-
tion model. Moreover, it reduces the uncertainty
that the algorithm has on the detection, as one can
see on figure 4(b).

Figure 4(b) shows that low confidence scores di-
rectly outputted by the detector (p.e. detections
affected by the blur on the peripheries) have a high
degree of entropy , but when these scores are mod-
elled by the observation model, the entropy of the
confidence score vector is much lower. The model
tries to find the object, for that distance, that bet-
ter fits the distribution of the scores, even if there
is a big confusion among some of the classes, to
present a more certain classification. Although this

(a) Accuracy comparison.

(b) Entropy comparison.

Figure 4: Performance comparison between using
(blue) and not using (red) the observation model

does not prove to be an improvement on a 1-step
classification approach (as seen on figure 4(a)), it
will still be useful for the multi-step classification
approach that we are taking.

4.2. Fusion Model Performance
Having analysed the performance and validity of the
foveal observation model, it’s now time to check the
performance when using this model to update the
information on the map, at each iteration.

Four different fusion methods were implemented
to update, at each iteration, the current state of
each map cell - Näıve Bayes (eq.(9)), Kaplan Up-
date (eq.(11)), Modified Kaplan Update (eq.(11)
with eq.(14)), and Sum Rule (eq.(10)). On this sec-
tion, the performance of each method will be tested
when fusing detections on foveated images.

The values used in the plots to evaluate this ex-
periment correspond to the average of the accuracy
and uncertainty metrics over a set of 50 images from
the COCO database, where each one was foveated
sequentially with random focal points. The random
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exploration approach will be used instead of an ac-
tive one, allowing to isolate the performance of the
fusion methods without considering the gaze selec-
tion step. The ground-truth object for each classifi-
cation is again chosen with the 30% IoU threshold.

(a) Average Accuracy evolution.

(b) Average KL divergence evolution.

Figure 5: Time-wise analysis of the fusion algo-
rithms as new bounding boxes are detected.

On figure 5(a) one can see how the average ac-
curacy evolves as new bounding boxes are detected
(each bounding box corresponds to one classifica-
tion). It is possible to note that every algorithm
achieves a similar performance on the accuracy, ex-
cept for the Näıve Bayes, where the performance is
lower. Also, due to the drastic entropy reduction
imposed by the foveal observation model, the Näıve
Bayes approach was greatly affected by most of the
classes having a score closer to zero, outputting no
uncertainty upon fusing different observation. That
is why the Näıve Bayes was not considered for fur-
ther analysis (since we need the uncertainty to pre-
dict the next view point) and it is not represented
on figure 5(b).

As for the other algorithms, both the expected

value and the uncertainty have a positive evolution
as new bounding boxes are fused, where the Kaplan
updates present slightly better results, as in Kaplan
experiments [9].

4.3. Active Gaze Selection Performance

Knowing what is the most promising next view
point is the key to achieve better performances
than, per example, choosing a random point at each
iteration.

Let’s start by comparing the performance of
each acquisition function used in this work (section
2.1): Absolute Gain on the Difference between Two
Peaks (eq.(18)), KL Divergence Gain (eq.(16)), and
Classification Entropy Loss (eq.(17)).

For this experiment, 150 random images from the
COCO dataset were used and each one foveated
10 times. The foveation points were chosen by
the acquisition functions and differ from method to
method, nevertheless, the starting focal point was
randomly chosen for each different image, but is the
same on every method. The detections at each iter-
ation were used to update the information of the
map using the Modified Kaplan Update (eq.(11)
with eq.(14)), since only the Modified Kaplan ap-
proach depends on the distance of the detection to
the center of the fovea, and, therefore, it is the only
one that can predict the evolution of the map in
order to choose the most promising view point.

On figure 6 one can see a clear difference be-
tween using the Classification Entropy Loss and the
other acquisition functions. Although both the en-
tropy and the KL Divergence measure similarly the
amount of confusion on a map cell, the KL Diver-
gence combines that confusion with the amount of
updates done in that particular cell, more updates
mean less uncertainty even if the probability of ev-
ery class is the same. We can then say that the
KL Divergence is the most suited metric to mea-
sure the uncertainty of the Dirichlet distributions
that characterize the state of the map.

It is now time to compare the benefits of active
gaze selection with respect to random search. The
experiment is the same as before but now the Mod-
ified Kaplan fusion method is tested against all the
other fusion methods, which choose the next focal
point randomly.

The results of figure 7 are promising. One can
immediately notice that the Modified Kaplan up-
date jointly with the best Active Perception method
analysed achieves better F1-Score at almost ev-
ery iteration than all other fusion algorithms when
choosing randomly the next focal point.

One other important aspect is the growth rate of
the performance on classifying the objects on the
image. Since the goal is to find and classify every
object on the image, in the least number of gaze
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Figure 6: Comparison between the F1-Scores using
the three different acquisition functions.

Figure 7: F1-Score comparison of the Modified Ka-
plan using the acquisition function ”KL Divergence
Gain” (red), against the ones choosing the focal
point randomly.

shifts, analysing how fast the algorithm can detect
and correctly classify most of the objects is a key
factor. As one can see, choosing the next focal point
by maximizing the predicted gain on the average KL
divergence of the map, achieves an F1-Score around
the third iteration that can not be surpassed by any
of the methods that use random search.

Besides the improved growth rate, we can also
see on figure 7 that choosing the next focal point by
maximizing the KL Divergence Gain contributes to
an overall performance improvement (on average) of
around 2-3% on the F1-Scores after the 10 iterations
of the experiment.

5. Conclusions

In this work we propose a computational frame-
work, inspired by human vision, that incorporates
the combination of foveal vision and a state-of-the-
art object detector with recent approaches on fu-

sion of classifiers, to perform an active exploration
for objects.

The main goal was to find and correctly classify
as many objects as possible in one image, in the
least number of gaze shifts. For this purpose, the
work was divided in three major components. The
Foveal Observation Model (section 3.2), the fusion
of incoming observations (section 3.3), and the pre-
diction of the next best view point (section 3.4).

Regarding the first component, object detectors
were built to locate and classify objects on Carte-
sian images, thus, one of our contributions was to
train, develop, and analyse a Foveal Observation
Model that post-processes the results of the object
detector, taking advantage of the confusion imposed
by the blur on the periphery of the image to try to
classify the objects in one passage.

The classification performance of the Foveal Ob-
servation Model was validated in our tests (as pre-
sented on section 4.1), reducing the uncertainty im-
posed on the classification scores while achieving
a similar accuracy when compared to the object
detector itself. From these results, we can con-
clude that the confusion between classes, due to
the increasing blur as we go to the peripheries of
the fovea, can be modeled. Moreover, the Observa-
tion Model could make good predictions about the
evolution of the map on the next iteration (section
4.3), depending on the location of the fovea, based
only on the current knowledge. This is one of the
most important features and contributions of this
Observation Model, since it allows one to use this
predictions to then choose the most promising point
where to look next.

About updating the map information, we pro-
posed a modified version of Kaplan’s fusion algo-
rithm, combining it with the outputs of the Foveal
Observation Model instead of using directly the out-
puts of the object detector. We concluded on sec-
tion 4.2 that the outputs of the Foveal Observation
Model remain valid when combined with the fusion
algorithm, and that the greediness of the classifica-
tion using the observation model is compensated by
the limits imposed by the fusion algorithm on each
update, something that doesn’t happen when fusing
these outputs with the Näıve Bayes approach.

The results obtained on the last component, the
active gaze selection, are significant, and validate
the proposed framework as being the first explo-
ration algorithm with foveal vision that takes ad-
vantage of the performance of a state-of-the-art de-
tector. The algorithm achieved a performance more
than three times faster by trying to shift the gaze
to the location that maximizes the KL divergence
gain, and also contribute with an overall improve-
ment of 2-3% of the performance (F1-Score), than
when choosing randomly the next focal point (sec-
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tion 4.3). The results show that it is possible to take
advantage of the uncertainty imposed by this kind
of images to optimize the exploration of a scene.

We can finally conclude that this work con-
tributes with a promising new approach on active
exploration, since it is a first step on taking ad-
vantage of the performance of a state-of-the-art ob-
ject detector, trained on Cartesian images, to de-
velop a searching algorithm using foveal vision. By
modelling the uncertainty imposed by the image on
the detections we showed that it was possible to
perform a search for objects on a given environ-
ment without resorting to more specific and limited
heuristics.

For future work it would be interesting to expand
the search to a real-world scenario, instead of being
restricted to an image, and also analyse if the re-
duction of the required number of saccades can be
translated in computational gains, when compared
with a search done using full-resolution vision.
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