
Automated Identification of
Monolith Functionality Refactorings

for Microservices Migrations
José Correia

INESC-ID
Instituto Superior Técnico, University of Lisbon

Email: j.meneses.correia@tecnico.ulisboa.pt
Supervisor: António Rito Silva

Abstract—The process of migrating a monolith to a mi-
croservices architecture has a cost due to the migration of its
functionalities in an eventual consistent transactional context.
On the other hand, the object-oriented approach commonly
followed in the development of monolith systems promotes fine-
grained interactions in the functionalities implementation, which
further increases the migration cost due to the large number
of remote invocations between microservices. We propose a
heuristic tool to help the software architect identify possible
functionality refactorings and reduce the cost of their migration
to microservices when applying the SAGA pattern in the func-
tionality microservices implementation. The heuristic accuracy
and efficiency of the tool are evaluated using a dataset extracted
from 78 codebases and comparing with expert refactorizations.

I. INTRODUCTION

The microservices architecture allows the split of a software
development project into several small agile cross-functional
teams and facilitates independent scalability of the services
that constitute the product [1], [2]. On the other hand, it is
common practice to start developing a complex system as a
monolith [3], due to the shorter time to market, and the fact
that it is difficult to find the correct modularization of a system
without doing several refactorings. Therefore, many monolith
systems have to be migrated to a microservices architecture
due to the aforementioned advantages.

To address this problem, there is significant recent research
on the migration of monolith to a microservices architec-
ture [4], [5], [6], [7], [8], [9], [10], [11]. Although they
propose different techniques, they concur on the definition
of three steps of the migration process: collection, analysis,
and visualization/migration. During collection, techniques like
static and dynamic analysis are applied to extract data about
the monolith behavior, either based on models or the mono-
lith’s codebase. This information is fed to the second step,
which identifies candidate decompositions of the monolith
into a set of microservices, based on a set of metrics to
define the expected quality of the decomposition. Finally,
some of the approaches also support visualization activities,
where the architect can interact with a visual representation
of the candidate decomposition and even change the decom-
position while being informed by the recalculation of the

quality metrics. Most of the approaches, but [6], [12], do
not consider the interactive capability of experimenting with
different decompositions.

The values returned by the quality metrics are strongly
dependent on the monolith functionalities structure, but this
aspect has not been addressed by the literature, except in [13],
where we analyze how the refactoring of a functionality can
significantly impact on the value of complexity metrics for the
monolith decomposition.

In this article, we leverage on this previous work to sup-
port the architect with a recommendation mechanism for the
refactoring of the monolith functionalities in the context of a
candidate decomposition. In [13] two metrics are proposed to
measure the complexity of migrating a monolith functionality
to a microservices architecture. These metrics measure the
migration effort due to the relaxing of the functionalities
ACID transactional behavior into eventual consistency, when
they are re-implemented using the SAGA pattern [14] in its
orchestration style. Additionally, we observed a code smell
for migrations with high complexity. We verified that the high
complexity associated with the migration of a functionality
is due to the number of inter-candidate microservices invoca-
tions, which increases the number of the SAGAs intermediate
states. The main reason for this situation is that monoliths are
implemented using fine-grained object-oriented invocations.

Therefore, although our previous work allowed the architect
to be informed about the cost of migrating the functional-
ity, given a candidate decomposition, she is not aware of
the possible reductions that can exist if fine-grained inter-
microservice invocations are refactored into a smaller num-
ber of coarse-grained interactions. This situation is worsened
because a monolith can have hundreds, if not thousands, of
functionalities, making it impractical for a manual inspection
of each functionality structure, which indicates that some form
of automation would be desirable.

We propose a recommendation system that, given a candi-
date decomposition of a monolith, and the monolith set of
functionalities, informs the architect about the impact that
transforming fine-grained invocations between microservices
into coarse-grained ones has on the overall cost of migration.

1

Additionally, the recommendation system indicates, for each
refactored functionality, what should be the SAGAs microser-
vice orchestration coordinator. This will also help the devel-
oper in the refactoring activities because, given a coordinator,
it is easier to identify how the refactoring can be done.

Therefore, given a candidate decomposition of a monolith,
its set of functionalities, their sequences of accesses to domain
entities, the data dependencies between those accesses, and
metrics for the effort of migrating the functionality as a SAGA
pattern in the context of the candidate decomposition, we
address the following research question:
• Is it possible to recommend the refactoring of a func-

tionality, by merging fine-grained inter-microservice in-
teractions into coarse-grained ones, that minimizes its
migration effort as an orchestrated Saga in the context
of the decomposition?

• Can we characterize the Saga orchestrators that allow for
a higher reduction of the migration effort?

–TODO : Change
In the next chapter, we discuss the work on monolith

migrations and the identification of code-smells and design
patterns. Chapter III-B presents defines the conceptual frame-
work that is used in Chapter III-C to design the recom-
mendation system. Chapter V evaluates the recommendation
system on 78 codebases and compares some automatically
generated refactorings with the refactorings produced by an
expert. Finally, Chapter VI presents the conclusions.

II. RELATED WORK

The so-called gray literature proposes the use of the SAGA
pattern to implement business functionalities in the microser-
vices architecture [14]. This pattern is based on the seminal
work by Hector-Molina and Kenneth [15] and addresses the
lack of isolation due to the creation of intermediate states that
are visible outside the scope of the functionalities execution.
These intermediate states result in the introduction of eventual
consistency, which adds to the complexity of the function-
ality because the business logic becomes intertwined with
the management of the intermediate states, for instance, the
need to have compensating transactions. Based on the concept
of SAGA, in [13] are proposed two metrics to measure the
complexity associated with a functionality implementation in
a microservices architecture and the complexity that its imple-
mentation adds to the implementation of other functionalities.
These metrics are built on the number of intermediate states
and the number of inter-microservices invocations associated
with the functionality implementation.

In [6] is proposed a set of operations for changing a
candidate decomposition of a monolith system, like move
entity between clusters or merge clusters, while recalculating
the amount of inter-cluster communication. In [13] has been
proposed three operations to refactor a functionality, given a
candidate microservices decomposition, where the refactoring
of fine-grained invocations into coarse-grained ones shown to
have a significant impact on the reduction of complexity of
migrating a functionality in a distributed context.

The current research on identifying code-smell and design
patterns follow two main trends: heuristic and machine learn-
ing classification. In the heuristic classification approach, a set
of code metrics is computed and combined to create detection
rules [16], [17], [18], [19]. However, some drawbacks have
been identified in this approach due to the low agreement
between different detectors and difficulties in finding suitable
thresholds to be used for detection [20]. Fontana et al. [21],
[22], [23], propose the use of machine learning techniques.
These techniques tend to be more flexible and independent
compared to heuristic classification, since learning by example
allows for better handling of distinct scenarios. However,
they require extensive manual classification work to train the
machine learning algorithm.

The research on the migration of monolith systems to
a microservices architecture that uses automatic and semi-
automatic methods already use heuristic, e.g. [4], [7], and
machine learning, e.g. [24], [25], techniques to the identifi-
cation of candidate decompositions, but there is no work on
the automatic identification of code-smells and recommend
refactorings to ease monolith functionality migration in the
context of a candidate decomposition.

III. SOLUTION

A. Strategy

In order to make a decision about the approach that better
fits this use case, we start by analyzing how the human devel-
oper decides which changes must be done to the functionalities
callgraphs to refactor them as Saga orchestrations.

In previous research [13], the authors defined a set of
operations that can be made to a functionality callgraph, in
the context of a candidate decomposition, in order to refactor
it as a Saga orchestration without breaking the data-state layer
of the codebase:
• Sequence Change: the flow of execution of the function-

ality is changed, which happens by swapping the order
of the original sequence of local transactions, Fig. 1.

• Local Transaction Merge: used when two local trans-
actions in the same cluster become adjacent in the se-
quential callgraph. Since it does not make sense to have
a remote invocation between the same cluster, we can
merge both the local transactions as is seen in Fig. 2.

• Define Coarse-Grained Interactions: this operation hap-
pens when both Sequence Change and Local Transaction
Merge operations are applied sequentially, in that order.

Fig. 1: Sequence Change operation applied to a decomposition
callgraph.

The authors proceeded to refactor a set of functionalities in
the LdoD codebase into Saga orchestrations, and evaluate the
results when it comes to the reduction of the FMC and SAC
metrics.

2

Fig. 2: Local Transaction Merge operation applied to a de-
composition callgraph.

Picking up on this work, we started by reverse-engineering
the author’s refactorings to understand his decision-making
and conclude if it follows a standard pattern. We extended
this analysis to 8 functionalities of the codebase, for which we
extracted the initial sequential callgraph and the final callgraph
resulting from the refactorings of the authors, and analyzed
the source code to make conclusions on the design decisions
made. With this, we reached the following conclusions:

• When it comes to the data dependencies, where two local
transactions must not be swapped if the second depends
on data read by the first, we saw that not always did the
developer respect them. This conclusion does not suggest
that the developer broke the data state changes in the
refactored design, but instead, it shows sometimes when
having a write operation in cluster B after a read operation
in cluster A, the write in B does not actually use the data
read in A.

• The rules defined in [13] were not enough to reach
the refactorings made by the authors, since some data
dependencies where not taken into consideration while
refactoring the functionalities.

• Regarding the last question to be answered, we could
not find a pattern regarding the decision, by the authors,
of the clusters that should orchestrate each one of the
functionalities.

By answering the questions above, we concluded that
heuristic tools based on defined rules are too strict and do
not account for the large number of levels of freedom that
codebases have. These observations lead us to believe that a
machine-learning classifier approach may be the end-game at
developing a refactorization system that can analyze codebases
implementing all kinds of design patterns, since theoretically,
it is possible to train the classifier with a large dataset of
functionalities to achieve a much better behavior when the
model views data that is new and was not included in the
dataset.

However, this characteristic of the machine-learning clas-
sifier, which requires an extensive dataset with human-made
refactorizations, is challenging to solve. It is hardly possible to
have a dataset of at least 100 functionality refactors analyzed
purely by human developers without using existing automated
tools simply because it takes an immense amount of time
to complete. The only dataset we have available has the
refactorizations made by the author in [13], and they are not
enough for training a deep learning model.

Considering this, and although their limitations, we decided
to approach the problem from a purely heuristic standpoint.

B. Functionality Migration

The migration of a monolith functionality is based on the
information collected on the functionalities accesses to the
monolith domain entities, the sequences of accesses, and their
data dependencies. Therefore, a monolith is defined as a triple
(F,E, T), where F denotes its set of functionalities, E the
set of domain entities, T a set of traces of the monolith
functionalities accesses.

The traces are defined as a triple (A,S,D), where A =
E × M is a set of read and write accesses to domain
entities (M = {r, w}), S = A × A a execution sequence
relation between elements of A, which indicates that the first
element of the pair was invoked, in the context of a monolith
functionality, immediately before the second element, and
D = A × A the data dependencies between accesses in
the context of a sequence, where the first element is a read
access, the producer, and the second element a write access,
the consumer. Given a sequence, s ∈ S, its transitive closure,
st, is a total order, in particular, any element is comparable
and there is no circularities, ∀(ai,aj)∈st(aj , ai) /∈ st For each
functionality f ∈ F , f.s ∈ S denotes its set of sequence
accesses. Additionally, the data dependencies occur in the
context of a functionality sequence of access and conform to
the sequence order, ∀(ai,aj)∈D∃s∈f.s(ai, aj) ∈ st.

Functionality migration occurs in the context of a candi-
date decomposition, in which each candidate microservice is
represented by a cluster of domain entities. Therefore, given
the set of sequence of accesses f.s of a functionality f and
a decomposition into a set of clusters of the domain entities,
C ⊆ 2E , where the clusters are non-empty and a domain entity
is in exactly one cluster, the partition of a sequence s of a
functionality f , s ∈ f.s, P (s, C) = (LT,RI) is defined by a
set of local transactions LT and a set of remote invocations
RI , where each local transaction:
• is a tuple (A,S)
• is a subsequence of the functionality sequence of ac-

cesses, ∀lt∈LT : lt.s ⊆ s;
• contains only accesses to the domain entities of a single

cluster, ∀lt∈LT∃c∈C : lt.a.e ⊆ c;
• contains all consecutive accesses in the same cluster,
∀ai∈lt.a,aj∈s.a : ((ai.e.c = aj .e.c ∧ (ai, aj) ∈ s) ⇒
(ai, aj) ∈ lt.s) ∨ ((ai.e.c = aj .e.c ∧ (aj , ai) ∈ s) ⇒
(aj , ai) ∈ lt.s);

From the definition of local transaction, results the definition
of remote invocations, which are the elements in the sequence
that belong to different clusters, RI = {(ai, aj) ∈ s : ai.e.c 6=
aj .e.c}.

Note that, in these definitions, we use the dot notation to
refer to elements of a composite or one of its properties, e.g.,
in aj .e.c, .e denotes the domain entity in the access, and .c
the cluster the domain entity belongs to, and lt.a denotes the
set of accesses in the local transaction.

A partition of a functionality f , given a decomposition C,
is the union of the partition of each one of its sequences,
P (f, C) = ∪s∈f.sP (s, C), where local transactions and re-

3

mote invocations that are in the common prefixes of sequences
are not repeated. Additionally, sequence and data dependence
relations between local transactions are inferred from the
functionality original sequence and data dependence relations
and are denoted by <S and <D, respectively.

The partition of a functionality f , given a decomposition
C, and obtained using the above rules, is called the initial
partition of f and it is denoted by Pi(s, C) and Pi(f, C), for,
respectively, a sequence s and all sequences of f .

The refactor of a functionality, given a decomposition,
is done from its initial partition to a SAGA implementing
an orchestration, where the orchestrator is a pivot of the
interactions between local transactions. Therefore, a partition
of a functionality sequence of accesses is an orchestration if
it is involved in all remote invocations, c is an orchestrator if
∀(ai,aj)∈RI : ai.e.c = c ∨ aj .e.c = c. Note that, by definition,
a remote invocation occurs between different clusters.

The refactor of a functionality sequence of accesses is
the change of its initial partition into a partition that is an
orchestration. This refactorization is done to minimize its mi-
gration complexity in the context of a distributed transaction,
because in the new implementation the functionlity business
logic has to be migrated. This complexity is measured by
the number of local transactions and the impact that a local
transaction has on other functionalities migration. This is due
to the lack of isolation that each local transaction brings to
the functionality migration in a decomposition, which requires
the introduction of compensating transactions and the need to
handle intermediate states of the domain entities accessed by
different functionalities [12], [13].

Functionality Migration Complexity (FMC). The com-
plexity of migrating a functionality f , given its partition
(LT,RI) in a decomposition, is the sum of the complexity
of each one of its local transaction:

complexity(f, (LT,RI)) =
∑

lt∈LT

complexity(lt) (1)

Local Transaction Complexity. The complexity of a local
transaction depends on the domain entities it writes because it
is necessary to implement compensating transactions for when
the functionality execution has to rollback. It also depends on
the domain entities it reads because it is necessary to consider
the intermediate states that other functionalities introduce
when they write them in their local transactions.

complexity(lt) = #writes({lt.s})+∑
e∈reads({lt.s})

#{fi ∈ F\{f} : ∃ltj∈P (fi,C)e ∈ writes(ltj .s)}

(2)

where

writes(s) = {e : ∃si∈s(e, w) ∈ prune(si)} (3)

reads(s) = {e : ∃si∈s(e, r) ∈ prune(si)} (4)

and the prune function, when applied to a sequence of ac-
cesses, removes all read accesses to a domain entity after the
first read access to that entity, and removes all accesses to an
entity after the first write access to that entity. This function
identifies which accesses are relevant for other functionalities,
because the local transaction executes with strict consistency
properties and so, after a write local reads do not need to
concern about external writes done by other functionalities,
and only the first read has to consider intermediate generated
by other functionalities.

System Added Complexity (SAC). The migration of a
functionality impacts other functionalities migration complex-
ity. For instance, if a write is done on an entity e due to the
execution of a functionality fi then every other functionality
fj (where i 6= j) that read the same entity e must have to be
changed to handle the possible intermediate states. Hence, the
cost of migrating fj depends on the number of writes done
by fi in entities that fj reads.

addedComplexity(fi, (LT,RI)) =
∑

lt∈P (fi,C)

∑
fj∈F\{fi}

#({e : ∃ltj∈P (fj ,C)e ∈ reads(ltj .s)} ∩ writes(lt.s)) (5)

C. Saga Refactorization Algorithm

The refactoring is implemented by a brute-force heuristic
algorithm to calculate, for each functionality, the orchestra-
tions that have the lowest migration complexity. In Fig. 3 we
present a flowchart with the high-level execution flow of the
algorithm. It performs one refactorization for each one of the
clusters in a functionality, picking in each iteration a different
cluster as orchestrator.

In order to create a Saga design, the algorithm copies the
initial callgraph structure and inserts one invocation of the
orchestrator cluster between each invocation of two other
clusters in the functionality. These invocations are added
without containing any accesses to domain entities, to create
the intermediate state where each service reports back to the
orchestrator to inform if its transaction was successful or not.
After this, the tool proceeds to execute a recursive method that
iterates through each invocation in the functionality callgraph
and checks if it can be merged with the previous invocation
of the same cluster.

As we will explore later, two invocations can be merged
if there are no read accesses in the latest δ invocations of
other clusters before the second one. This scope allows us to
have some configuration of the rigidity of the data dependence
classification, and theoretically, lower values could result in
more merge-operations.

If the invocations are mergeable, they collapse into the first
one, and their domain entity accesses are pruned. The recursive
method stops once we reach the end of a cycle through the
callgraph where the algorithm did not find any invocation that
could be merge, which indicates that the functionality is at the
most simplified state that does not break data dependencies.

4

After all the invocation merges are complete, the Saga
refactorization is saved in a data structure. The algorithm
proceeds to execute the logic again, now with another cluster
as orchestrator. When all of the clusters in the functionality
have been considered, the work is done, and the execution
reaches its end.

Fig. 3: Flowchart for the algorithm that computes the list of
possible Saga orchestrations for a functionality.

The main algorithm estimateSagas(F,C), Listing 1, uses
the functionalities initial partitions Pi, given a candidate
decomposition, and calculates, for each functionality, what is
the complexity migration values when considering each of the
clusters that are involved in the functionality implementation
as orchestrators. The result is an ordered array of migration
complexities where the cluster that has the lower value is the
recommended orchestrator for the functionality refactoring.
The algorithm has three steps: (1) sets a cluster orchestrator
of the functionality, setOrquestrator(Pi(s, C), c); (2) merges
the invocations between the same pairs of clusters, to obtain

coarse-grained invocations, mergeInvocations(p, c); (3) cal-
culates the complexity, complexity(f, pc).

Listing 1: SAGA estimator
estimateSagas(F,C) {

complexities := array[F.size, C.size]
for f := range F {

for c := range C {
pc := {}
for s := range f.s {

p := setOrquestrator(Pi(s,C), c)
p := mergeInvocations(p, c)
pc := pc ∪ p

}
complexities[f,c] := complexity(f, pc)

}
}
complexities[f].sorted

}

To set a cluster as the orchestrator of an initial partition
of a functionality it is necessary to add empty local trans-
actions to the orchestrator cluster and remote invocations to
the other clusters, Listing 2. The sequence of execution of
the local transactions is preserved because the only change
is the introduction of the empty local transactions, which
work as pivots between the invocations. Therefore, the data
dependencies between the local transactions are not changed.

Listing 2: Set Orchestrator for Partition
setOrchestrator((LT,RI),c) {

resultLT := LT
resultRI := {}
skip := false
for lt = range LT.sortedBy(<S) {

if (!skip) {
if (lt.c == c) {

resultRI := resultRI ∪ {(lt,
lt.next)}

resultRI := resultRI ∪ {(lt.next,
lt.next.next)}

skip := true
} else {

emptyLT := new emptyLT(c)
resultLT := resultLT ∪ {emptyLT}
resultRI := resultRI ∪ {(emptyLT,

lt)}
skip := false

}
}

}
return (resultLT, resultRI)

}

Fig.4 exemplifies a transformation made according to se-
tOrchestrator in Listing 2, where we set the empty pivot
orchestrator invocations between each one of the other cluster
invocations

Fig. 4: Operation of adding pivot orchestrator invocations

5

The merge of invocations, Listing 3, merges the invocations
that occur between the orchestrator and another cluster, if
there is no data dependence with a local transaction that
occurs in between. It repeats while two remote invocations can
be merged into a coarse-grained remote invocation, and the
canMerge condition, which applies to pairs of invocations
between the same clusters, is defined by the data dependence
relation <D, such that, it does not exist a local transaction
between the two remote invocations that the local transactions
in the second remote invocation have a data dependence
on. As a result, the merged local transaction sequences are
concatenated and the data dependencies between them are
preserved.

Listing 3: Refactor through merge of fine-grained invocations
into coarse-grained.
mergeInvocation((LT,RI),c) {

resultLT := LT
resultRI := RI
while (ri1 in range RI, ri2 in range

RI.after(ri1), canMerge(ri1,ri2)) {
ri1.caller.prune(ri2.caller)
ri1.callee.prune(ri2.callee)
resultLT := resultLT \ {r21.caller, ri2

.callee}
resultRI := resultRI ∪

{(ri2.previous.caller, ri2
.next.callee)} \ {ri2.previous, ri2,
ri2.next}

}
return (resultLT, resultRI)

}

The canMerge(ri1, ri2) function can be parameterized to
allow variations on the scope (δ) of data dependencies to be
considered. When δ = 1 a data dependence is only considered
if it occurred in the local transaction immediately before
the local transaction being analyzed, however, if δ = ∞
are considered all the local transactions in between the ones
to be merged. Allowing different scopes permits different
evaluations because a previous read does not necessarily imply
that it is used in a subsequent write.

Figure 5 illustrates a transformation performed by mergeIn-
vocation in Listing 3, where all invocation that do not have
data dependencies, according to the value of δ, are merged.

Fig. 5: Operation of merging and pruning invocations without
data dependence

IV. IMPLEMENTATION

The main contribution of this work is a Functionality
Refactorization Service1 , built on Golang in order to take
part of the excelent handling of concurrency that this language

1https://github.com/socialsoftware/mono2micro/tree/master/tools/
functionality refactor/src

implements. Given a codebase analyzed by the Mono2Micro
static analyzer and a cluster decomposition, the service applies
the algorithm presented in Chapter III-C which can estimate
the Saga refactorings that minimize the migration cost of a
codebase to a microservices architecture. In order to commu-
nicate with external services, the transport layer of the tool
exposes a REST API with support for HTTP requests.

The tool starts by extracting the valid controllers of the
codebase decomposition that can be implemented using a Saga
Pattern. A JSON file is written in the file system containing
data about the codebase being refactored, the configuration
parameters of the request, and the controllers classified as valid
to be implemented as an orchestration. From this moment
forward, if the user performs a View Status request to the
service, he will receive the data in this JSON file, which will be
updated as refactorizations finish. With this, the service starts
iterating through each one of the controllers and instantiates
a goroutine to handle the computations. This way, we can
achieve concurrency and parallelism, assuring that Golang’s
scheduler manages the routines memory allocation and uses
multiple processors to reach a lower execution time. After
spawning a goroutine for each controller, the service performs
the HTTP response to the client immediately, without wait-
ing for the refactorization results, which allows for reduced
latency.

The Refactorization Service stands as a separate Docker
container that runs in port 5001 and shares a file system
volume with Mono2Micro’s backend application, which is
used to read the codebase decomposition files generated by
the other functionalities of the Mono2Micro system.

In order to integrate seamlessly with Mono2Micro, we
developed a graphical user interface that an architect can
use to interact with the Refactorization Service directly after
decomposing the monolithic codebase, by using the systems
already existing features. This interface allows to request the
refactorization of a specific codebase, using a configurable
data dependence threshold. The results are them progressively
shown, as the tool finishes refactoring each functionality.

V. EVALUATION

To answer the first research question and validate that
refactorings can minimize the cost associated with the migra-
tion, we executed the tool for a dataset of 78 codebases and
analyzed the results to evaluate the reduction of complexity. To
validate the accuracy of refactorizations we compared with the
refactorizations done by an expert [13] on the LdoD codebase
in terms of complexity reduction and feasibility.

A. Complexity Reduction

The 78 codebases are monolith systems implemented using
Spring-Boot and an Object-Relational Mapper (ORM), where
Java Persitence API (JPA) is used in 75 of the codebases and
Fénix Framework in the other 3. The Spring-Boot controllers
are used to implement the monolith transactional functional-
ities that access the persistent domain entities implemented
using the ORM. The data set was generated through static

6

https://github.com/socialsoftware/mono2micro/tree/master/tools/functionality_refactor/src
https://github.com/socialsoftware/mono2micro/tree/master/tools/functionality_refactor/src

analysis of the source code, where sequences of read/write
accesses to the domain entities are obtained for the function-
alities.

Each codebase was decomposed into clusters, and, after
applying the initial partition to the functionalities sequences,
the functionalities were selected based on two conditions: (1)
the sequence of accesses has least one write access; (2) the
sequence of accesses includes more than two local clusters.
These are pre-conditions for the implementation of the func-
tionalities as SAGAs, by excluding queries and functionalities
that can not be implemented as SAGAs because only have one
or two clusters. After these selections, the dataset was formed
by 652 functionalities.

Table I presents the results, on average, of applying the
refactoring heuristic to the 652 functionalities. It compares
the initial complexity with the complexity of the refactored
functionalities. The heuristic was applied for three variations
of the data dependencies between local transactions, where
δ = 1 means that there is no data dependence with the local
transaction that executed immediately before, δ = 2 means
that there no data dependence with the two local transactions
that executed immediately before, and δ =∞ that there is no
data dependence with any local transaction that executes in
between the data transactions to be merged. It is necessary
to analyze these cases because the data dependencies are
obtained from an analysis of the sequences and this may not
necessarily mean that a local transaction effectively uses the
data read on previous local transactions. For instance, if there
is a write access in a local transaction we consider that data
dependencies exist with all the local transactions that occur
before and that have at least one read access, because the
value read may be used to calculate the value that is going to
be written. This is a limitation of the static analysis procedure
that captures the monolith behavior, which does not capture
the data-flow, and so we considered the worse situation in
terms of data dependencies.

The table also presents the percentage of reduction in
the number of local transactions and domain entities access.
Additionally, it includes the average number of merges, and
the heuristic performance, which was calculated running 10
samples on an Intel i5 2.90GHz, 2 Cores with 4 Threads each.

From the observation of the table can be concluded that
there is a significant positive impact of the refactorings on the
complexity reduction and that the scope of data dependencies
also impacts on final complexity, as expected a larger scope
will reduce the number of possible merges, but it is not sig-
nificant, which means that in most of the functionalities there
is a data dependence between a local transaction and the local
transaction that executes immediately before. It is also worth
mentioning the reduction in the number of domain entities
access, which results from the fact the access are localized
inside the same local transactions and, so, the visibility of
their effects to other local transactions is reduced.

The analysis of the codebases allows us to partially answer
the first research question, due to the reduction in the complex-
ity, but it is necessary to analyze the accuracy of the results:

TABLE I: Average values for running the recommendation
heuristic for 652 functionalities, considering δ = 1, 2,∞.

Metric Initial Final % Reduction
δ =

1

δ =

2

δ =

∞
δ =

1

δ =

2

δ =

∞
FMC 329.0 78.4 86.7 95.6 76.1% 73.6% 70.9%
SAC 404.9 150.7 170.6 201.3 62.7% 57.9% 50.3%
Local
Transac-
tions

35.5 4.3 4.7 5.1 87.9% 86.8% 85.6%

Entity Ac-
cesses

38.7 10.3 11.3 12.4 73.4% 70.8% 67.9%

Number
of Merges

22.5 21.7 21.4

Execution
time (sec)

3.76 4.13 4.40

are the recommended refactorings feasible?

B. Heuristic Accuracy

The tool was applied to the LdoD archive, which consists
of 133 controllers and 67 domain entities. The decomposition
used was done by an which cuts the system into 5 clusters. The
analysis involved comparing the results with the refactorings
of 9 controllers of LdoD [13], where the expert refactored the
code and calculated the initial and final FMC and SAC. We do
not compare the SAC complexity because it depends on the
type of local transaction, which the algorithm cannot predict.
For instance, whether a local transaction is compensatable or
not. The heuristic always considers the worst-case scenario.

Table II presents the results when the heuristic was applied
with a data dependence scope of 1. It can be observed
a clear relation between the complexity reduction of the
functionalities when refactored by the heuristic algorithm
and by the expert, since the average reduction from both
differs only 7.4%, with the tool being able to achieve bigger
complexity reductions on average. In the last column, we
present the relative distance between the complexity of the
best refactoring calculated by the tool and the complexity of
the refactoring with the same orchestrator as chosen by the
expert. As it can be seen in cells with a 0% distance value,
5 out of the 9 functionalities, had both the expert and the
tool selecting the same orchestrator. Note that the value is 0%
because orchestration distance comparison is not done with the
complexity values reported by the expert, but with the values
calculated by our tool.

After having the best refactoring estimated by the algorithm,
the next step of the evaluation involved manually verification
in the source code, to check if the recommended orchestrations
are feasible, for instance, that they do not break any data
dependence between entity accesses.

The selection process of the functionalities was based on
the values from Table II and the functionalities selected fall in
one of the following categories: (1) the tool recommendation
has better complexity reduction; (2) the expert refactoring has
a better reduction; (3) the orchestrators selected by the tool

7

TABLE II: Functionality Migration Complexity reduction re-
sulting from a refactoring using the tool with δ = 1 and by
an expert.

Functionality Initial FMC Final FMC Reduction % Orch.
dist.

Tool Expert Tool Expert Tool Expert
removeTweets 151 134 109 82 27.8% 38.8% 0%
getTaxonomy 317 317 159 192 49.8% 39.4% 1.24%
createLinear-
VE

2978 1790 263 383 91.1% 78.6% 0%

signup 1550 1490 314 376 79.7% 74.8% 0%
approve-
Participant

193 190 113 147 41.5% 22.6% 0%

associate-
Category

1813 1803 642 662 64.6% 63.3% 14.97%

delete-
Taxonomy

261 253 187 164 28.4% 35.2% 11.79%

dissociate 806 772 358 489 55.6% 36.7% 0%
merge-
Categories

485 453 187 253 61.4% 44.2% 37.87%

Averages 950.4 800.2 259.1 305.3 55.5% 48.2%

and the expert are different; (4) the initial complexity value
calculated by the tool is much different than the one calculated
by the expert. This allows us to identify 6 cases where to do
this analysis.

The refactoring of the mergeCategories functionality has a
complexity reduction of 62.7% when compared to the initial
architecture and converted 32 independent cluster invocations
to 5. The algorithm chose a different orchestrator than the
expert and achieved a complexity 18.5% lower. After manually
checking the source code, we verified that this refactor is
a valid option, all the operations are valid and the data
dependencies that exist in the functionality are all taken into
consideration. We can see that the tool computed fewer cluster
invocations, fewer entity accesses, and fewer write operations,
which reduces the complexity compared to the expert refactor.
By looking at the code, we can see that the expert choice
was based on selecting the cluster that contains more entity
accesses as the orchestrator, which resulted in more repetitive
invocations of other clusters. By choosing an orchestrator
that was not so obvious at first glance, the algorithm was
able to obtain a better refactor. The same happened for
the functionality getTaxonomy, where the tool recommend
a different orchestration than the expert, but it was able to
obtain an higher reduction of the complexity by having all the
operations condensed in 1 invocation per cluster, while the
expert refactorization created more intermediate states. The
source code also revealed that no data dependencies were
broken by the tool’s operations, and the sequence is applicable.

In the functionality approveParticipant, both, the tool and
the expert, selected the same orchestrator cluster and did a
very similar refactorization, where only 1 additional merge
operation by the tool was enough to reduce the complexity in
41.5% when compared to the expert’s 22.5%. The functionality
dissociate falls in this same category since it shows that the
tool was able to achieve a lower complexity with the same

orchestrator, however by checking the source code we see that
some invocations were merged while having a data dependence
with previous invocations, which reveals invalid merges. This
occurred because the data dependence distance had a scope
> 1 and due to the test being executed with δ = 1 the tool
did not consider it when verifying if an invocation can be
merged.

The refactor of removeTweets saw a complexity reduction of
26.8% when compared to the initial architecture and converted
14 independent cluster invocations to 7. Both the algorithm
and the expert chose the same orchestrator and performed
a very similar refactor but the expert refactor achieves a
higher complexity reduction. After manually checking the
source code, we verified that this refactor is a valid option,
except for one invocation that could have been merged with
a previous one. Since in the original trace there was a data
dependence between that operation and the one immediately
before, the tool did not do the merge. This behavior reveals
that the heuristic rules can be too restrictive and since the static
analysis is not capturing the data-flow, we cannot accurately
conclude that a write following a read does not use data from
the first, which is something that an expert can directly observe
by reading the code.

In functionality createLinearVE there is a significant differ-
ence of 1188 between the tool’s initial complexity and the one
calculated manually by the expert. This functionality is quite
complex, with 108 local transactions and 210 entity accesses,
and from looking at the source code, it involves many if/else
conditions that define which accesses are performed during
run-time. Ultimately, this difference relates to how the static
analysis builds the functionality trace since it does not account
for conditions and so all branches are collapsed in a single se-
quence. When the expert manually calculates the complexities,
she only considers one of the if/else conditions, which results
in fewer entity accesses and lower initial complexity.

To answer the first research question fully, we can say that
most of the refactorizations applied to LdoD were feasible.
However, there was at least 1 case where data dependencies
were broken due to the configuration of the data dependence
scope δ as 1. This difficulty when defining thresholds is still
one of the major drawbacks of most heuristic techniques for
code-smell and design-pattern detection [20].

C. Orchestrators characterization

The validation of the refactorization of the LdoD codebase,
when compared to the expert, has shown that the recom-
mended refactorings highly reduce the complexity of migrating
the functionalities and they, in most of the cases, even when
the scope is 1, do not break the data dependencies between the
accesses. Another interesting observation is that the heuristic
can suggest better refactors than the ones envisioned by the
expert. To try to explain why the experts intuition may be
misleading, take us to the second research question: what are
the characteristics of a cluster that make it a better fit for being
a SAGA orchestrator.

8

We defined 4 metrics that measure, for each cluster and
in the context of the functionality being refactored, several
aspects, like the number of read and write accesses to the
cluster domain entities, the number of times the cluster is
invoked in the context of the functionality, and the number
of the invocations that cannot be merged due to a data
dependence.

TABLE III: Correlation between the metrics for the orches-
trator cluster and the reduction of the functionality migration
complexity and system added complexity

Metric Correlation (r)
FMC SAC FMC+SAC

read accesses to domain entities 0.145 -0.083 0.014
write accesses to domain entities -0.145 0.083 -0.014
times the cluster is invoked in
functionality

-0.103 -0.090 -0.112

initial data dependencies, when
δ = ∞

-0.110 0.210 0.087

These metrics were visualized for the orchestrators of each
one of the recommended refactorizations for 78 codebases and
correlations were calculated between the value of the metrics
and the reduction of the complexity. Table III shows the
resulting correlations with values between [−0.145,+0.210],
which demonstrates that the data has a big variation and does
not necessarily follow a trend line, with points that are too
dispersed in space. The metric with higher correlation was
related to the metric for reads accesses of orchestrators, but,
even though, not significative.

The low correlation values show that the metrics cannot
characterize the orchestrator, due to the great diversification
of code patterns in the functionalities. A good orchestrator for
a given codebase might have a lot of invocations, for example,
while in another codebase we verified that the opposite may
happen, which makes it hard to set a characterization for an
orchestrator that applies to all the cases.

To answer the second research question we can conclude
that it was not possible to extract enough metrics from the
functionality sequence to characterize what is a good orches-
trator. This increases the need of the recommendation heuristic
tool which applies refactorization operations and validates if
a given candidate orchestrator has the lowest complexity.

D. Threats to Validity

In terms of internal validity, it is verified that the refac-
torings provide a significant reduction of the complexity, even
though the data dependencies are inferred from the analysis of
the sequence of accesses and not directly obtained from the
code. This may have impact on the accuracy of the results,
but the experiment with variations of the scope of data depen-
dencies has shown consistent results. Therefore, even if the
architect uses the wider scope, the recommended refactorings
do not have a significant variation on the complexity. The
sequences of accesses used for the validation, obtained from
static analysis linearize all the accesses of a functionality in
a single sequence. However, we obtained results similar to

the expert refactorizations, sometimes even better. This also
depends on the used dataset, a future version of that static
analyser that captures the data-flow will allow to work with a
dataset that will provide more precise results.

In terms of external validity, the dataset is for a small set
of technologies, Spring-Boot and JPA, but the functionalities
logic is technology independent.

VI. CONCLUSIONS

This paper proposes an heuristic to help a software architect
identify the possible refactorings of monolith functionalities
to reduce their migration cost to a microservices architecture
applying the SAGA pattern. This cost is due to the functionality
migration, because of the introduction of eventual consistency
on the functionality behavior, which adds an extra complexity
to its implementation.

The results show that the tool was able to recommend
refactorings that allow a significant reduction of the func-
tionalities migration. Interestingly, some of the recommended
refactorings provide higher reductions than the ones identified
by an expert, which suggests that it would be interesting to
characterize what are the properties of a good candidate for a
SAGA orchestrator. However, a study with 4 metrics that char-
acterize the clusters accessed by the functionality, shows that
there is no statistical significance in the correlation between
the values of the metrics and the reductions on complexity.
This problem is left for future work, and also indicates that
a heuristic approach, which calculates all combinations, fits
these cases where there is significant variation in the dataset.

REFERENCES

[1] C. O’Hanlon, “A conversation with werner vogels,” Queue, vol. 4,
no. 4, p. 14–22, May 2006. [Online]. Available: https://doi.org/10.1145/
1142055.1142065

[2] M. Fowler, “Microservices.” [Online]. Available: http://martinfowler.
com/articles/microservices.html

[3] ——, “Bliki: Monolithfirst.” [Online]. Available: https://martinfowler.
com/bliki/MonolithFirst.html

[4] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service
cutter: A systematic approach to service decomposition,” in Service-
Oriented and Cloud Computing, M. Aiello, E. B. Johnsen, S. Dustdar,
and I. Georgievski, Eds. Cham: Springer International Publishing, 2016,
pp. 185–200.

[5] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from
monolithic software architectures,” in Web Services (ICWS), 2017 IEEE
International Conference on. IEEE, 2017, pp. 524–531.

[6] R. Nakazawa, T. Ueda, M. Enoki, and H. Horii, “Visualization tool for
designing microservices with the monolith-first approach,” in 2018 IEEE
Working Conference on Software Visualization (VISSOFT), Sep. 2018,
pp. 32–42.

[7] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service
candidate identification from monolithic systems based on execution
traces,” IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[8] L. F. A. Nunes, N. A. V. Santos, and A. R. Silva, “From a monolith
to a microservices architecture: An approach based on transactional
contexts,” in European Conference on Software Architecture (ECSA),
ser. LNCS, vol. 11681. Springer International Publishing, Sep. 2019,
pp. 37–52.

[9] M. H. Gomes Barbosa and P. H. M. Maia, “Towards identifying
microservice candidates from business rules implemented in stored
procedures,” in 2020 IEEE International Conference on Software Ar-
chitecture Companion (ICSA-C), 2020, pp. 41–48.

9

https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1145/1142055.1142065
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html

[10] M. Daoud, A. E. Mezouari, N. Faci, D. Benslimane, Z. Maamar,
and A. E. Fazziki, “Automatic microservices identification from a
set of business processes,” in Smart Applications and Data Analysis,
M. Hamlich, L. Bellatreche, A. Mondal, and C. Ordonez, Eds. Cham:
Springer International Publishing, 2020, pp. 299–315.

[11] A. Selmadji, A. Seriai, H. L. Bouziane, R. Oumarou Mahamane,
P. Zaragoza, and C. Dony, “From monolithic architecture style to
microservice one based on a semi-automatic approach,” in 2020 IEEE
International Conference on Software Architecture (ICSA), 2020, pp.
157–168.

[12] N. Santos and A. R. Silva, “A complexity metric for microservices
architecture migration,” 2020.

[13] J. F. Almeida and A. R. Silva, “Monolith migration complexity tuning
through the application of microservices patterns,” Lecture Notes in
Computer Science, vol. 12292, pp. 39–54, 2020.

[14] C. Richardson, Microservices Patterns. Manning Publications Co.,
2019.

[15] H. Garcia-Molina and K. Salem, “Sagas,” in Proceedings of the
1987 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’87. New York, NY, USA: Association
for Computing Machinery, 1987, p. 249–259. [Online]. Available:
https://doi.org/10.1145/38713.38742

[16] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “A bayesian
approach for the detection of code and design smells,” in 2009 Ninth
International Conference on Quality Software, 2009, pp. 305–314.

[17] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. D. Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 36, pp. 20–36, 2010.

[18] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. L. Meur, “A method
for the specification and detection of code and design smells,” IEEE
Transactions on Software Engineering, vol. 41, pp. 462–489, 2015.

[19] F. Palomba, A. Panichella, A. Lucia, R. Oliveto, and A. Zaidman, “A
textual-based technique for smell detection,” 05 2016.

[20] F. Pecorelli, F. Palomba, D. D. Nucci, and A. D. Lucia, “Comparing
heuristic and machine learning approaches for metric-based code smell
detection,” ICPC ’19: Proceedings of the 27th International Conference
on Program Comprehension, vol. 11681, pp. 93–104, 2019.

[21] M. Zanoni, F. A. Fontana, and F. Stella, “On applying machine learning
techniques for design pattern detection,” The Journal of Systems and
Software, vol. 103, pp. 102–117, 2015.

[22] ——, “Comparing and experimenting machine learning techniques for
code smell detection,” Empirical Software Engineering, vol. 21, p.
1143–1191, 2016.

[23] M. Zanoni and F. A. Fontana, “Code smell severity classification using
machine learning techniques,” Knowledge-Based Systems, vol. 128, pp.
43–58, 2017.

[24] S. Ma, Y. Chuang, C. Lan, H. Chen, C. Huang, and C. Li, “Scenario-
based microservice retrieval using word2vec,” in 2018 IEEE 15th
International Conference on e-Business Engineering (ICEBE), 2018, pp.
239–244.

[25] M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised learning approach
for web application auto-decomposition into microservices,” Journal of
Systems and Software, vol. 151, pp. 243–257, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219300408

10

https://doi.org/10.1145/38713.38742
https://www.sciencedirect.com/science/article/pii/S0164121219300408

	Introduction
	Related work
	Solution
	Strategy
	Functionality Migration
	Saga Refactorization Algorithm

	Implementation
	Evaluation
	Complexity Reduction
	Heuristic Accuracy
	Orchestrators characterization
	Threats to Validity

	Conclusions
	References

