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Abstract

Forest fires have become a recurring disaster worldwide and, every year, thousands of hectares of forests

are devastated. The impacts on nature and society are disastrous. To develop robust deep learning

methods for fire and smoke detection a large number of data and the related annotations are required.

However, the number of publicly available forest fires datasets is very scarce. For this reason, this work

proposes an alternative system capable of detecting and localizing fire and smoke in aerial images using

only weakly-supervised deep learning methods. A classification model was trained using only image-level

labels and, from there, the information from the convolutional layers was extracted to create the first

iteration of a segmentation mask. Afterwards, by combining it with the colour and spatial information

of the original image, one can create a segmentation mask that can correctly detect the fire/smoke zones.

The proposed method was tested and proven to be able to accurately detect fire/smoke at the pixel-level

despite never being trained with any supervision at that level. Compared with other fully-supervised

methods, the results show that when considering their heavy needs, the proposed weakly-supervised

system can strongly compete with them.
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Resumo

Os incêndios florestais tornaram-se um desastre recorrente em todo o mundo e, todos os anos, milhares de

hectares de florestas são devastados. Os impactos na natureza e na sociedade são desastrosos. Para desen-

volver métodos robustos de aprendizagem profunda é necessário um grande número de dados e respectivas

anotações. No entanto, o número de datasets sobre incêndios florestais dispońıveis publicamente é muito

escasso. Por esta razão, este trabalho propõe um sistema alternativo capaz de detectar e localizar o fogo

e fumo em imagens aéreas, utilizando apenas métodos de aprendizagem profunda com fraca supervisão.

Foi treinado um modelo de classificação utilizando apenas anotações de ńıvel de imagem e, a partir dáı

a informação das camadas convolucionais foi extráıda para criar a primeira iteração de uma máscara de

segmentação. Posteriormente, ao combiná-la com a cor e informação espacial da imagem original, con-

segue se criar uma máscara de segmentação que detecta correctamente as zonas de fogo/fumo. O método

proposto foi testado e provou ser capaz de detectar com precisão o fogo/fumo ao ńıvel dos pixel, apesar

de nunca ter sido treinado com qualquer supervisão a esse ńıvel. Em comparação com outros métodos

de segmentação fortemente supervisionados, os resultados mostram que, ao considerar as suas elevadas

necessidades, o sistema proposto de fraca supervisão consegue competir com eles.

Palavras Chave

detecção de incêndios, detecção de fumo, redes neurais convolucionais, métodos fracamente supervision-

ados, aprendizagem profunda
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This thesis presents a study for the implementation of a system in aerial vehicles to detect fire and

smoke zones in order help the firefight teams to create a wiser and faster firefight. It intends to do so

only using methods that do not rely on strong supervision since the lack of data in this field makes the

development of robust algorithm a great challenge.

This work is related to the Firefront project and aims to a develop system to assist fighting forest fire

by providing information on real-time of the localization of fire and smoke. By providing to the teams an

automated method to detect fire and smoke in which they can rely, the process of approaching a fire can

change significantly. A good localization and the respective evolution of the fire can drastically prevent

damages. The fire must be fight as soon as possible since if it takes large proportions it can become

uncontrollable and so, the early detection of smoke columns takes an important role to detect a forest

fire in its’ early stages.

1.1 Motivation

Forest fires are a scourge that every year destroy thousands of hectares of forest around the world. They

have a series of effects on both the burned area and the underlying areas. The consequences go beyond the

visible effects on nature and society such as the destruction of material assets and the effect on vegetation.

The entire ecosystem is threatened, from fauna and flora with loss of biodiversity, soil degradation and

erosion, to CO2 emissions. According to [3], in Portugal between 2017 and 2019 about 630 thousand

hectares were burnt due to forest fires. Only in 2017 more than 100 people have died. Thus, to mitigate

the dangers and minimize the impacts on people and nature, there is the need to have systems capable

of doing effective prevention, early warning, and a clever firefight.

Traditionally, forest fires were mainly detected by human observation from lookout towers. This can

be very limited, inefficient and are still be subject to human error. After the detection, it is up to the

firefighting units to evaluate and study how the firefight will be carried out. For this, they strongly

depend on the information about the fire site and its environment. So, the earliest the fire is detected,

the more effective the firefight will be. Therefore, it is important to detect the fire and its fire fronts in

their early stages to anticipate the behaviour over time and especially the position and intensity However,

in its great majority, this information is scarce, depending sometimes on the perception of the agents

involved in the field which can be very limited.

The use of vision-based systems can transform the traditional methods into a reliable process providing

as much information as possible. There is a wide range of options from terrestrial systems through the

use of surveillance systems, to aerial systems that rely on the vision sensors in aerial vehicles or even to

spaceborne systems that use satellites. The one that can cover a greater amount of useful information for

firefighters will undoubtedly be the use of vision-based systems in aerial vehicles since having real-time

visual information from the fire site could be of extreme value for the combat teams.

3



The Firefront project 1 intends to develop a system to help and support the firefighting teams.

This solution consists in creating a much efficient and fast firefight by detecting and tracking fire fronts

and their possible reburns. This process would be carried out through the use of manned vehicles or

unmanned aerial vehicles (UAVs) that are equipped with red green blue (RGB) and infrared cameras

and other sensors and communication systems. These vehicles will fly over the affected areas, sending the

information collected to a ground station in real-time. This ground station will process all the information

and will then transmit the detection of the fire and smoke zones and their respective georeferenced

coordinates. Then, with the addition of other meteorological factors such as wind speed and direction, a

prediction of the fire fronts evolution can be made.

Early detection and monitoring of fire outbreaks and fronts are crucial as once a forest fire reaches a

certain size it can be hardly controlled. Also, the detection and analysis of smoke columns are essential

to detect early stages of fire and define the type of fire and the direction it may take. All this information

is of great importance for the fire fighting teams and can greatly contribute to a faster and wiser fire

fighting.

The detection phase could benefit from the recent and strong advances in computer vision and machine

and deep learning. These techniques have already proven to be capable of tackle several complex problems.

By combining these techniques with vision-based systems in aerial vehicles, it is possible to detect fire

zones in a more automated and robust way.

1.2 Challenges

The detection of fire and smoke through an image-based system poses a considerable challenge since

neither fire nor smoke has a well-defined shape and a constant colour. The usual methods of locating/i-

dentifying objects using deep learning are trained on a large amount of fully annotated data, which means

that in each image of the dataset there must be an annotation of where each class is present in the image,

for example through the use of bounding boxes or pixel-level annotations. Though, the creation of such

annotations is very expensive and, especially in the case of fire and smoke, it can be very subjective,

since they can take very irregular shapes. Moreover, a single annotator could introduce some bias in the

annotation which limits the models capacity to generalize well on new data.

To demonstrate the cost and possible ambiguity of creating labels at the pixel level by hand, an

experiment was conducted in which 10 different people were asked to annotate 3 images of fire and 3

images of smoke. The idea behind this task was to have multiple annotators for the same set of images

and understand how each one separates the fire and smoke zones. Also, we wanted to understand how

much time each annotator takes to label each image.

Figure 1.1 and 1.2 illustrate the result of the experiment for two images of fire and smoke respectively

1http://www.firefront.pt/
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from three different random annotators. For fire, the major difference between the annotations is the

level of detail each annotator puts in the mask since the shape of fire can be very irregular. This results

in a difficult process and consequently a large time to create the mask. For smoke , the issue was with

zones where the smoke is very dim or where it not clear if its smoke or clouds. Some annotators were

more conservative, delimiting only zones where smoke was very dense and others decide to delimit it by

excess.

In both cases, the differences on the annotations by different annotators are very clear. This demon-

strate how ambiguous and expensive the annotations can be.

Figure 1.1: Fire examples different annotations

Figure 1.2: Smoke examples different annotations

According to this small experiment with 6 images, each label took on average 6 min and 41 sec. For

a dataset of 2000 images, it would take 13366 minutes and 40 seconds. This is equivalent to 223 hours

or approximately 10 full days of work.
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A possible alternative to this complex and time-consuming process is the use of image-level annota-

tions. In this type of annotation, instead of having information about the class in each pixel, there is only

information about the presence of that class in the entire image as in Figure 1.3. This way, it is possible

to create a greater number of annotations in a short period of time. However, this type of annotation

has the cost of losing detail in the annotation. It is then necessary to understand whether the advantage

of getting a greater number of annotations outweighs the cost of losing detail in the annotations.

Figure 1.3: Labelling methods

On the other side, the creation of an image-level label can easily be done through visual inspection

in just a few seconds. Considering by excess that each image-level label takes about 10 seconds to create

and comparing it with the average time that the annotators took to create the pixel-level labels, it can

be concluded that the the creation of a pixel-level annotation takes about 50 times more time than an

image-level annotation.

1.3 Objectives

This thesis addresses a possible solution for the implementation of a system capable of detecting fire and

smoke using images taken by aerial vehicles.

Traditional methods of object detection and segmentation through deep learning require large amounts

of images and their pixel-level annotations. However, in the area of forest fires, this type of data is quite

scarce. On the other hand, it is easy to collect examples from online images but the creation of pixel-level

labels is extremely expensive. Therefore, it is aimed to use the few existing datasets in this study area

and complement them with as many images as possible. With this it is intended to create a method for

fire and smoke segmentation using only annotations at the image-level. So, we will use models that will

only be trained using image-level annotations. This way, it is expected that the deep learning model will

learn the features of the class present in the image and be able to produce segmentation masks without

ever being trained with the information that is typically used for this purpose which are annotations at

the pixel level.

In the end it is intended to prove that the use of this type of methods for fire and smoke detection

6



is advantageous when compared with the expensive process of creating pixel-level annotations. The final

objective is then the creation of segmentation masks that can correctly identify fire and smoke zones at

the pixel level.

1.4 Thesis Outline

This thesis is is organized as follows:

• Chapter 2 presents a review of the background knowledge about convolutional neural networks,

image classification and weakly supervised learning. Moreover, it presents the state-of-the-art about

fire and smoke detection and weakly supervised object detection.

• Chapter 3 presents the proposed work and exposes the methodology of all the stages used in the

proposal.

• Chapter 4 presents the datasets used, makes the connection between the methods to use and the

problem to solve and finally it sets a list of experiments to evaluate and validate the proposed

approach.

• Chapter 5 presents the results for the experiments and evaluate the overall system performance.

• Chapter 6 outlines the most relevant parts of the work and list some suggestion for future work in

order to make some improvements.
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This chapter performs a literature review on fire and smoke detection state of the art. The methods

for the detection can be divided into classic methods which rely on basic components of fire and smoke

images, as their colour components and texture, or deep learning methods that rely on neural networks

to extract and understand the features that characterize fire and smoke. For the latter ones, it starts

by doing a background introduction on key deep learning concepts and generic methods related to those

networks. Then it is introduced and compared two deep learning methods according to the type of

annotations used for the model training. Finally, it is introduced significant works in the field of fire and

smoke detection using the two types of methods described and using different systems and sensors.

2.1 Background

2.1.1 Neural Networks

Artificial neural networks (ANNs) were originally inspired by the incredible functionally of the human

brain to analyze and process information. Similarly to the human brain, an ANN is formed by a group

of neurons interconnected, in this case, artificial neurons. The structure of an artificial neuron (AN) is

illustrated in Figure 2.1. It receives inputs x = (x1, x2, ..., xn) from several other ANs, multiplies them by

respectively assigned weights wi, adds them plus a bias value θ and finally applies an activation function

F to obtain the output y. Mathematically it can be translated through Equations (2.2) (2.1).

y = F (ξ(x,w)) (2.1)

ξ(x,w) = θ +

n∑
i=1

wixi (2.2)

Figure 2.1: Structure of a Neuron

In 1958, Frank Rosenblatt introduced the perceptron in [4] as an ANN with a single layer of neurons.
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A Multi-layer Perceptron (MLP) is, as the name suggests, an ANN with multiple layers as illustrated

in Figure 2.2. The first layer is called Input Layer since contains the data for the model. Each neuron

here represents a unique attribute in the data. The intermediate layers are called hidden-layers and they

are responsible for applying multiple transformations on the inputs and thus extracting representative

features. Usually, there are several of them and they are typically fully-connected which means that each

neuron receives input from all the previous layers’ neurons. The features are then passed to the output

layer which is then responsible to return an output representing the model prediction.

Figure 2.2: Example of a MLP

The Activation functions are responsible for modifying the input before passing it to the next layer.

They can be divided into linear and non-linear. The linear ones are very limited to simple situations with a

straight relationship between the input and the outputs. The non-linear ones give the ANN their potential,

allowing to model non-linear complex relationships. There are three proprieties that helps to create

an ANN. First, the non-linearity to model highly complex relationships. Second, being continuously

differentiable so that the output has a nice slope and it is possible to compute error derivatives with

respect to the weights and understand which direction to update the weights in the training process .

Third, to have a fixed range, so that the input data is compressed into a range that makes the model

more stable and efficient. The most used activation functions [5] are:

• Step - Transform the input into binary values and it is non-linear.

f(x) =

{
0 if x < 0
1 if x > 0

(2.3)

• Rectified Linear Unit (ReLU) - The most used activation function in hidden-layers as it is

non-linear. It returns the value provided as input directly or 0 if the input is smaller or equal to 0.

f(x) = max(0, x) =

{
0 if x < 0
x if x > 0

(2.4)
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• Hyperbolic Tangent - Transforms the input into the range of -1 and 1. Commonly used in

hidden-layers since its output is zero-centred, is non-linear and is continuously differentiable.

f(x) =
ex − e−x

ex + e−x
(2.5)

• Sigmoid - Transforms the input into the range of 0 and 1. Commonly used as an output when

one wants to predict the probability of each final neuron independently. It is non-linear and is

continuously differentiable.

f(x) =
1

1 + e−x
(2.6)

• Softmax - Similar to Sigmoid but takes into account the other neurons in the layer to calculate a

normalized probability. Where xi represents the input of the neuron, xj the inputs of the remaining

ones and K the number of neurons.

f(x) =
exi∑K
j=0 e

xj

(2.7)

Typically, the weights of an ANN are initialized randomly. The process of training an ANN consists

of iteratively update the weights that connect each layer by minimizing a loss function. The objective

is to determine the importance of each neuron to the output. A loss function indicates the performance

of the model to make predictions with the current set of weights by evaluating the error between the

outputted predictions ŷ and the ground-truth results y. Several losses can be used depending on the task

the ANN will be trained for. The most commonly used are:

• Mean Absolute Error - Used for regression problems. Measures the average magnitude of the

errors between the predicted and ground-truth values without considering their direction. Where

n represent the number of classes.

J(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| (2.8)

• Mean Square Error - Very similar to the previous one but now summing the quadratic error.

J(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2 (2.9)

• Binary Cross-Entropy - Used for binary classifications whit exactly 2 classes. Measure the

difference between the actual and predicted probability distributions.

J(y, ŷ) = −yi log(ŷi) + (1− yi) log(1− ŷi) (2.10)
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• Categorical Cross-Entropy - Similar to Binary Cross-Entropy but for a multi-class classification

when the number of classes is greater than 2. Measure the average difference between the actual

and predicted probability distributions for all classes. Where n represent the number of classes.

J(y, ŷ) = −
n∑
i=1

yi log(ŷi) (2.11)

The optimizers aims to iteratively solve the minimisation of the loss function in the training process.

They dictate how the weights will be updated in each iteration so that the error between prediction and

ground truth turns as small as possible. The most commonly used are listed below. The J is the loss

function, w(t) is the set of weights at instance t and w(t+1) at instance t+ 1, ∇w is the gradient relative

to the weights [6].

• Gradient Descent - Updates all the weights in the opposite direction of the gradient of the loss

function. Here η is the learning rate and sets the size of the steps it takes to reach the local

minimum. The learning rate must be set carefully in order not to diverge.

w(t+1) = w(t) − η ∇wJ(w(t)) (2.12)

• Stochastic Gradient Descent (SGD) - Similar to Gradient Descent but only updates the weights

for each training example yi and ŷi selected randomly, decreasing the time of convergence and the

high computational cost.

w(t+1) = w(t) − η ∇w J(w(t), yi, ŷi) (2.13)

• SGD with momentum - The momentum helps to accelerate the SGD in the relevant direction

and dampens oscillations by adding a fraction α of the update vector of the past time step to the

current update.

υ(t+1) = α υ(t) + η ∇wJ(w(t), yi, ŷi) (2.14)

w(t+1) = w(t) − υ(t+1) (2.15)

• Mini-batch gradient descent - it performs the update for every mini-batch of training examples

yi:i+n and ŷi:i+n. It combines the good convergence of the normal Gradient Descent with the low

time of convergence of the SGD. It can be used with momentum as well. It is similar, in its normal

version to Equation (2.12) and in momentum version with Equation (2.14), with the only difference

being that loss function is J(w(t), yi:i+n, ŷi:i+n).

• Adam - Updates the weights through a momentum by using an exponentially decaying average of

past gradients m(t) and past squared gradients v(t). Where β1 and β2 are reals close to 1. So, m(t)
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and v(t) are estimates of the first and the second moment of the gradients, respectively.

g(t) = ∇wJ(w(t)) (2.16)

m(t) = β1 m
(t−1) + (1− β1) g(t) (2.17)

v(t) = β2 v
(t−1) + (1− β2) g(t)

2

(2.18)

In order to counteract the zero bias, one computes the bias-corrected first and second moment

estimates:

m̂(t) =
m(t)

1− β(t)
1

(2.19)

v̂(t) =
v(t)

1− β(t)
2

(2.20)

Finally, they can be used to update the weight.

w
(t+1)
i = w

(t)
i −

η m̂(t)

√
v̂(t) + ε

(2.21)

The weights are then changed according to the how the loss function is evolving during the training

phase.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of ANN that recognize patterns in data through

convolutional operations [7]. They are commonly associated with computer vision problems since they

can easily model spatial patterns in images. A typical classification CNN is illustrated in Figure 2.3 and

can be divided into two parts, the backbone and the classifier. The backbone is the feature extractor of the

network, which is responsible for computing the features from the input data using a series of convolutional

layers. Then, the features are fed to the classifier, which in turn is responsible for generating an output

through the use of fully-connected layers.

A convolution is an element-wise matrix multiplication where one of the matrices is the image, and the

other is the kernel that transforms the image into a convolved feature. In Figure 2.4 the kernel is illustrated

in the middle. The kernel slides into all the parts in the image to perform the convolution. Each operation

generates a new pixel in the output tensor. The stride defines the size of the step the kernel takes between

operations. Figure 2.4 illustrates a convolution operation between an image with dimensions 5 x 5 x 1 and

a kernel with dimensions 3 x 3 x 1 and stride equal to 1. That process results in a convolved feature with

dimensions equal to (Mrows Image − Mrows Kernel + 1) x (Ncolumns Image − Ncolumns Kernel + 1) x

Cchannels Kernel.
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Figure 2.3: Example of CNN

Figure 2.4: Example of a convolution operation

By default, the filter will start in the top left corner of the image and so the borders of the image will

only be visited once while the remaining pixels will be visited multiple times. To attenuate this border

effect, the image can suffer padding before the convolution where a set of zeros is added all around the

image. This way and keeping a stride equal to 1, the dimensions of the convolved feature are the same

as the image. Figure 2.5 illustrates this process. So, a convolutional layer is then a layer responsible for

performing all the convolutional operations in the image.

Figure 2.5: Padding
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The pooling layers performs downsampling in feature maps by summarizing the presence of features

in patches. This way, the most relevant features are extracted with invariance to local translations. The

pooling can be applied using filters with fixed dimensions (M rows by N columns) and a stride value,

similarly to a convolution layer, or be applied in full to the whole image performing a global pooling.

There are two types of pooling, the Max and the Average Pooling. Max Pooling returns the maximum

value from the patch of the image covered while the Average Pooling returns the average of them. Figure

2.6 illustrates the two types of pooling using a 2 x 2 filter and a stride of 2.

Figure 2.6: Pooling

2.1.3 Weakly Supervised Learning

Deep convolutional neural networks have achieved great success in several computer vision tasks. Their

performance is directly related to the quantity and quality of the data the networks are trained with.

The best performance is achieved on fully-supervised methods where it is used the most informative

supervisory data possible. In a segmentation problem, the use of fully supervised data means the use of

pixel-level labels. This type of labels work as an attention mechanism since only relevant parts are retained

for analysis and all irrelevant parts of the image are ignored. However, collecting large-scale accurate pixel-

level annotation is very time-consuming requiring expensive human effort. Therefore, weakly supervised

methods try to perform the same computer vision tasks but only using weakly annotated data. So, weakly

supervised segmentation aims to create segmentation masks with only image-level labels. Unlabeled and

weakly-labelled visual data can be collected in large amounts in a relatively fast and cheap manner. Also,

the process of labelling the unlabeled data at the image level is almost effortless.

2.2 State of the Art

This section is divided in two parts: subsection 2.2.1 highlights relevant works on weakly supervised

segmentation methods and subsection 2.2.2 reviews the current state of the art in fire and smoke detection

using classic and deep learning methods.
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2.2.1 Weakly Supervised Segmentation

Most of the weakly supervised segmentation approaches are based on the Class Activation Mapping

(CAM) method [1], which will be detailed in Section 3, since it will also be an important component of

this work. From this starting point, various techniques can be used either to improve this approach by

making it more robust and accurate or integrating it with other methods.

When doing a Weakly Supervised Segmentation (WSS) the output mask is obtained using the features

in the image that the classification model used to make the prediction. Sometimes, these features will

only contain the most relevant and distinguishable parts of the object. Several authors proposed different

approaches to attenuate this issue and create a mask containing the whole extension of the object to

detect and not only its most discriminative part. On [8] they proposed to use a Hide-and-Seek approach

where they randomly occlude patches in the training images so that each image can be used for training

multiple times but with none or different patches occluded. This way they force the network to learn

different features that characterize an object. Also using Hide-and-Seek, the authors of [9] train a siamese

network where one of its sides only uses the normal images and the other side used the images with the

patches occluded. On [10] an adversarial complementary learning approach is proposed. After the network

backbone, they divide it into two branches. The first branch selects the most discriminative feature maps

and feeds them to the classifier. On the second branch, chosen feature maps from the first branch are

removed and the remaining feature maps are feed to the classifier. By doing so, they force the classifier

to use less relevant features to classify the object. The final mas will be a combination of the selected

feature maps from both branches.

Instead of performing architectural changes to attenuate that issue, the authors in [11] proposed

to create a data augmentation by mixing up images and then create two additional losses besides the

normal classification loss so that the model can be trained to have localization capabilities and not only

classification.

A more complex alternative to the CAM is the Grad-CAM proposed in [12]. The authors propose

an approach to obtain the object localization using the gradients of the predicted class in the final

convolutional layer and not only the layer information. The method can be applied on a wide variety

of CNN without the need of performing any architectural changes or re-training. The main objective

is the creation of an object detector on typical classification networks by producing visual explanations.

However, they show that the method can be adapted to a wide range of applicabilities as textual image

explanations, image captioning and visual question answering. For a sake of simplicity, in this thesis it

will only be used the simpler CAM method.

18



2.2.2 Fire and smoke Detection

The need to create new and wiser methods of monitoring, detecting and fighting fire has led to the

development of recent research. The detection part is the one that has powered the largest amount of

approaches, through the use of vision-based systems. The different approaches can be separated in two

ways, one based on the type of vision system used and the other on the type of techniques used [13].

Regarding the type of vision system, the approaches can be separated into terrestrial and aerial. The

terrestrial systems use fixed-frame cameras [14] and present a major drawback which is the coverage they

achieve. On the other hand, aerial systems using manned or unmanned aerial vehicles [15] [16] [17] allow

a much greater coverage and can even cover inaccessible areas or areas considered too dangerous for the

combat teams.

Regarding the type of techniques used, the approaches can be separated into classic and deep learning

methods. The classic methods rely on typical computer vision techniques [18], where the detection is

made based on the image characteristics, such as the colour patterns, texture and others. With the deep

learning methods [19], the prediction is done using the features that ANN extract from several examples

of similar images.

2.2.2.A Classic methods

The work done on fire and smoke detection based on computer vision presents a wide variety of methods.

The big majority of them are based on colour, spatial and temporal features. These characteristics are

very specific for fire compared to other objects. However, the same does not happen with smoke since

it can get high similarities with other objects like clouds. Most of the approaches follow a common

pipeline, first find moving pixels using background subtraction and then apply a colour model to find

fire regions [20]. The base approach is to create a mathematical based model, defining a sub-space on a

colour space that represents all the fire-coloured pixels in the image [21]. On this line, Wang et al. [22]

proposed a method based on a Gaussian model learned in the YCbCr colour space. The major drawback

of only colour based fire detection models is the high false alarm rates since single-colour information is

insufficient in most cases so, on [23], the authors added texture analysis to create Bowfire.

By adding the temporal component to fire detection algorithms, video sequences [24] can be used

instead of single frames. The authors in [25] added to the common baseline of finding the fire pixels

with moving pixel detection and colour-space analysis, a wavelet analysis in the spatial and temporal

domain. They make use of fire’s frequency signature, with the idea that flames flicker with a characteristic

frequency. So, they use the oscillation of the R component in the RGB image during a set of frames to

create a wavelet. After filtering the wavelets and once all the components are fused, they can create a

fire mask.

In a forest fire, the fixed cameras are placed on high altitude spots from which they can cover large
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areas of forest terrain. One example operating in Portugal is CICLOPE proposed in [26]. The authors

present a system of a tele-surveillance system that can perform remote monitoring and automatic fire and

smoke detection. They use three algorithms for the detection. First, they use adaptive backgrounds for

the background subtraction and detect potential targets. Then, they do another background subtraction

but now comparing with past images to detect fire/smoke incidents. Finally, they do a statistical analysis

of the RGB components in the image over time.

2.2.2.B Deep Learning methods

All of the previous methods depend heavily on the features delimited by the authors, which may make

them too specific for a certain situation as concluded in [27]. Also, methods using motion tracking

with background subtraction are limited to work properly only with fixed cameras. On the other hand,

methods using deep learning methods, automatically learn which features are best for the given problem.

This is why deep learning methods can outperform the classic methods. On [28] the authors do a

comparative analysis between colour-model based methods versus deep learning methods. They use a

logistic regression model, which is a very simple deep learning method and yet it is the one that obtains

the best overall performance compared to all colour-based models. They also prove the robustness of

these methods for colour changes and the presence of smoke. Thus, considering the superiority of the deep

learning methods compared to those based on colour, several authors presented methods using CNNs to

detect fire and/or smoke.

Still using surveillance cameras but now with deep learning methods, the authors in [29] present a

solution for real-world surveillance scenarios using a computationally efficient CNN based fire detection

system.

The authors from [30], use a CNN to first detect and localize, with a bounding box, regions in the

image that can be fire candidates. Then, the regions are divided into patches that are classified by

analyzing their spatial texture. This way, they can reduce the number of false positives on objects with

similar colour patterns as fire.

In the most basic way, Q. Zhang et al. [31] propose a method where they do an image patch division

and then classify them using a CNN. The final output is a set of patches in which fire is present which

might not represent fire very well. The set of images of their dataset used for training does not even

reach the two hundred images mark.

Q Zhang et al. [32] due to the lack of forest fire smoke images, created a dataset where they added

two kinds of smoke, real smoke and simulative smoke, into forest background. Then they have used that

to train a Faster R-CNN [33] that was later tested on real forest smoke images. The results seem to

improve the detection performance even though the simulative smoke was not very realistic.

The lack of a good public accessible dataset for fire and smoke makes it hard to develop a good
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deep learning technique. This problem is transversal and strongly highlighted by the vast majority of

authors. The few existing datasets are highly biased towards the fire or smoke class and this does not

portray the real situation wherein the vast majority of cases these events are not present. So, on [34]

the authors created a small dataset highly unbalanced by including fewer fire images and more non-fire

images. They have trained and tested two deep CNN, a VGG16 [35] and a ResNet50 [36] for classification

both providing good performance.

The number of works carried out in the area of segmentation in fire and smoke situations are quite

rare. This is due not only to the scarcity of datasets but also to the fact that these datasets are mostly

annotated only at the image level. To develop a segmentation network, it is necessary to have annotations

at the pixel level. If this type of annotation is already considerably expensive for normal objects, for the

case of fire and smoke, which have a very irregular shape, it becomes even more expensive. That said,

the number of weakly supervised segmentation approaches has been growing lately. In the big majority

of these approaches, the authors make use of the information learned from the classification models to

produce considerable accurate segmentation maps.

In [37] the authors create a CNN in which the final convolutional layer is a fuse of the 16 feature map

from the previous layer into a single feature map. Then, by using a sliding window on that final feature

map they can predict the presence of fire and smoke on each window and consequently create a detection

mask in the whole image. The model has shown good classification performance, however, the detection

masks are not precise and cannot correctly resemble the shape of fire and smoke.

In [38], the authors fuse the information from 3 selected feature maps of a convolutional layer, from

a classification model, to create a mean activation map and then apply a binarization to it and create

a segmentation mask. The resulting masks are not very precise, containing a considerable number of

uncorrected classified pixels. In the end, they feed the image that was classified as fire to a SqueezeNet

model [39] to predict the environment in which the fire is burning.

The scarcity of datasets in this area of work makes deep learning methods quite limiting. For the

case of segmentation, this scarcity becomes even greater since the number of datasets with annotations

at the pixel level is even smaller. The process of creating such labels is highly expensive. Therefore, in

most works with this type of data, it is difficult to develop a robust method. Therefore, in this thesis,

it is proposed to overcome this problem using weakly supervised supervised methods for fire and smoke

segmentation. This way, one can use the few existing datasets and complete them with a large number

of examples only annotated at the image level. This type of annotation has a minimal cost allowing to

expand the datasets to acceptable levels for deep learning methods. However, all the works in this area

using weakly supervised methods present a final detection with little precision and lack of detail. This

work overcomes such limitation by combining weakly-supervised methods with post-processing, creating

a segmentation mask with great detail that closely resembles the shape of fire and smoke.

21



22



3
Methodology

Contents

3.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Class Activation Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

23



24



This chapter introduces and describes the proposal approach used to achieve the proposed objectives.

It starts with an overall description of the system and how the information flows in the pipeline. Then,

each method of the different system components is explained in a more detailed way.

3.1 Proposed Approach

The proposed approach intends to develop a system capable of detecting and localizing areas of fire and

smoke in images using weakly supervised methods. The system is divided into two similar systems, one

for fire and one for smoke. Both systems follow the same pipeline described in Figure 3.1 with the only

difference being the parameters used in the different components.

The images will be taken from aerial vehicles equipped with visual-based equipment and will then

be transmitted to the proposed system. Then, the image starts by being fed to a classification model

the presence of fire/smoke in the whole image will be analyzed. If fire/smoke is detected then it goes on

to the next phase, otherwise, the system ends here. The next phase consist in using the CAM method

to extract the information that the classification model used to make the classification prediction and

create a probabilistic heatmap. In this heatmap, areas with higher probabilities correspond regions where

fire/smoke are likely to be present. Then, a binarization is applied to the heatmap to create a binary

mask that can locate the fire/smoke location but cannot correctly represent it in terms of its shape.

Therefore, a post-processing phase is then required. For that, the CRF method is used which takes

as input the coarse and blob-like binary mask and the original image. By combining both inputs and

analyzing the spatial and colour correlations, the method can create a segmentation mask at the pixel

level that represents the location of the fire/smoke as well as its shape in a detailed way. In the following

sections the methods used in each of the main blocks of proposed system will be describe in detail .

Figure 3.1: Overall proposed approach
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3.2 Classification Model

For the classification model, the choice was to use the VGG network architecture proposed in [35] as a

starting point. There are different VGG configurations according to the number of layers used, ranging

from 11 weight layers to 19 weight layers. Figure 3.2 illustrates the largest architecture, the 19 weight

layers version with the representative legend of the different layers.

Figure 3.2: On top is the original VGG19 architecture and below is the corresponding legend for the different
types of layers used

The network is composed of 5 main blocks of convolutional layers and then has 3 fully-connected layers.

Each of the blocks contains a series of convolutional layers with kernels with a very small receptive field (3

× 3). The size of this kernel is the minimum size in which is possible to capture the notion of left/right,

up/down, centre. The convolution stride is fixed to 1 pixel. In the end, each block has a max-pooling

layer that downsamples the feature maps by summarizing the presence of features in patches. The pooling

is performed over a 2 × 2 pixel window, with stride 2. This way on the next block, the size of the feature

maps will be half of the previous one. Following the fifth block, the feature maps on the last convolutional

layers are flattened to a vector with dimension one. The next two fully-connected layers contain the same

size, corresponding to the number of pixels in the last max-pooling layer times the number of filters. All

the previous layers are equipped with ReLU activation. The final layer is another fully-connected layer

but with Softmax activation which is responsible to do the classification. The size of this layer is equal

to the number of classes the model is designed to predict.
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However, to apply the CAM algorithm, which will be explained in the next Section, it was necessary

to perform some changes in the network. First, it is necessary to remove all fully-connected layers since

they disrupt the spatial integrity maintained in the convolution layers. So, only the backbone is kept,

all the layers after block5-pool were removed. Next, a global average pooling (GAP) layer is added to

calculate the spatial average of each feature map in the last convolutional layer. In the end, one final

fully connected layer with size two and Sigmoid activation function as in Equation (2.6) is added. Every

image is first normalized to range in [0 : 1] before entering the Input Layer. Figure 3.3 illustrates the

adapted VGG19 model to the proposed approach.

Figure 3.3: Adapted VGG19

For the fire model, the 19 weight layer version - VGG19 - was used while for the smoke model the

16-layer version - VGG16 - was used. In the end, for the VGG16 there is a mapping resolution of 16 × 16

and for the VGG19 a mapping resolution of 15 × 15. Table 3.1 and 3.2 describe the final architectures

for the smoke and fire model respectively.
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Table 3.1: Smoke model, using the backbone of VGG16

Layer Type
Feature
maps

Kernel
size

Stride Activation Input Output

Input Image 3 - - - - 256 x 256 x 3
conv1 Convolutional 64 3 x 3 1 Relu 256 x 256 x 3 256 x 256 x 64
conv2 Convolutional 64 3 x 3 1 Relu 256 x 256 x 64 256 x 256 x 64block1
pool Max Pooling 64 2 x 2 2 - 256 x 256 x 64 128 x 128 x 64

conv1 Convolutional 128 3 x 3 1 Relu 128 x 128 x 64 128 x 128 x 128
conv2 Convolutional 128 3 x 3 1 Relu 128 x 128 x 128 128 x 128 x 128block2
pool Max Pooling 128 2 x 2 2 - 128 x 128 x 128 64 x 64 x 128

conv1 Convolutional 256 3 x 3 1 Relu 64 x 64 x 128 64 x 64 x 256
conv2 Convolutional 256 3 x 3 1 Relu 64 x 64 x 256 64 x 64 x 256
conv3 Convolutional 256 3 x 3 1 Relu 64 x 64 x 256 64 x 64 x 256

block3

pool Max Pooling 256 2 x 2 2 - 64 x 64 x 256 32 x 32 x 256
conv1 Convolutional 512 3 x 3 1 Relu 32 x 32 x 256 32 x 32 x 512
conv2 Convolutional 512 3 x 3 1 Relu 32 x 32 x 512 32 x 32 x 512
conv3 Convolutional 512 3 x 3 1 Relu 32 x 32 x 512 32 x 32 x 512

block4

pool Max Pooling 512 2 x 2 2 - 32 x 32 x 512 16 x 16 x 512
conv1 Convolutional 512 3 x 3 1 Relu 16 x 16 x 512 16 x 16 x 512
conv2 Convolutional 512 3 x 3 1 Relu 16 x 16 x 512 16 x 16 x 512
conv3 Convolutional 512 3 x 3 1 Relu 16 x 16 x 512 16 x 16 x 512

block5

pool Max Pooling 512 2 x 2 2 - 16 x 16 x 512 8 x 8 x 512

GAP
Global

Average Pooling
512 - - 8 x 8 x 512 1 x 1 x 512

Output Fully connected 2 - - Sigmoid 1 x 1 x 512 2

Table 3.2: Fire model, using the backbone of VGG19

Layer Type
Feature
maps

Kernel
size

Stride Activation Input Output

Input Image 3 - - - - 250 x 250 x 3
conv1 Convolutional 64 3 x 3 1 Relu 250 x 250 x 3 250 x 250 x 64
conv2 Convolutional 64 3 x 3 1 Relu 250 x 250 x 64 250 x 250 x 64block1
pool Max Pooling 64 2 x 2 2 - 250 x 250 x 64 125 x 125 x 64

conv1 Convolutional 128 3 x 3 1 Relu 125 x 125 x 64 125 x 125 x 128
conv2 Convolutional 128 3 x 3 1 Relu 125 x 125 x 128 125 x 125 x 128block2
pool Max Pooling 128 2 x 2 2 - 125 x 125 x 128 62 x 62 x 128

conv1 Convolutional 256 3 x 3 1 Relu 62 x 62 x 128 62 x 62 x 256
conv2 Convolutional 256 3 x 3 1 Relu 62 x 62 x 256 62 x 62 x 256
conv3 Convolutional 256 3 x 3 1 Relu 62 x 62 x 256 62 x 62 x 256
conv4 Convolutional 256 3 x 3 1 Relu 62 x 62 x 256 62 x 62 x 256

block3

pool Max Pooling 256 2 x 2 2 - 62 x 62 x 256 31 x 31 x 256
conv1 Convolutional 512 3 x 3 1 Relu 31 x 31 x 256 31 x 31 x 512
conv2 Convolutional 512 3 x 3 1 Relu 31 x 31 x 512 31 x 31 x 512
conv3 Convolutional 512 3 x 3 1 Relu 31 x 31 x 512 31 x 31 x 512
conv4 Convolutional 512 3 x 3 1 Relu 31 x 31 x 512 31 x 31 x 512

block4

pool Max Pooling 512 2 x 2 2 - 31 x 31 x 512 15 x 15 x 512
conv1 Convolutional 512 3 x 3 1 Relu 15 x 15 x 512 15 x 15 x 512
conv2 Convolutional 512 3 x 3 1 Relu 15 x 15 x 512 15 x 15 x 512
conv3 Convolutional 512 3 x 3 1 Relu 15 x 15 x 512 15 x 15 x 512
conv4 Convolutional 512 3 x 3 1 Relu 15 x 15 x 512 15 x 15 x 512

block5

pool Max Pooling 512 2 x 2 2 - 15 x 15 x 512 7 x 7 x 512

GAP
Global

Average Pooling
512 - - 7 x 7 x 512 1 x 1 x 512

Output Fully connected 2 - - Sigmoid 1 x 1 x 512 2
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3.3 Class Activation Mapping

Image Segmentation is a demanding process that involves assigning a class to every pixel in an image.

The typical methods of segmentation rely on a large set of images and the corresponding fully-supervised

ground-truth (GT) masks. The creation of a fully-supervised dataset is time-consuming and can be quite

ambiguous. Detailed image annotations such as bounding boxes or pixel-level masks are both subjective

and very expensive to gather or create.

For these same reasons it was decided to use weakly supervised methods, in which there is only

the need for image-level labels indicating if the class is present somewhere in the whole image. More

specifically, the CAM algorithm proposed by [1] was used. It is based on the idea that a classification

CNN develops localization capabilities, despite being trained only with image-level labels.

So, taking an off the shelf classification CNN, it is necessary to understand which are the features of

the image that the model uses to classify it into the predicted class. Then, translating those features into

zones in the image, one can produce an estimate of the localization prediction.

For that, only the backbone of the CNN will use and the classifier with fully-connected layerswill be

discarded since they remove the spatial integrity maintained in the convolution one. Next, a GAP layer

is added to calculate each feature map’s spatial average in the last convolutional layer. The use of a GAP

like in [1] instead of a global max pooling, as proposed in [40], is because the first one encourages the

network to identify the whole extent of the object while the latter one only encourages the network to

identify only the most discriminant part. In the end, a final layer is added for the prediction.

The idea of adding a GAP layer after the convolutional layers is to summarize each feature map in

the last layer into a node. So, each node represents a feature map that represents a region in the image.

To perform the classification, each node will be weighted according to the relevance of the feature map

it represents for the prediction. A feature map can be weighted positively if the visual pattern that it

represents is relevant for the output or negatively if not. So, one can make a weighted sum of each feature

from the last convolutional layer to produce a heatmap as:

Hc(x, y) =

n∑
i=1

wci fi(x, y). (3.1)

Where H represents the CAM heatmap with the predicted location and wci is the weight of the activation

of the ith feature map f(x, y) for the predicted class c.

The heatmap will highlight the zones in the image that the model has used for the prediction and

thereby those are the zones where the class is more probable to be present. Figure 3.4 illustrated the

overall method. For that example, the model has predicted the presence of the class ”Australian terrier”

in the image and then with the use of the features from the last ”conv” layer it is possible to get a

heatmap highlighting where the class ”Australian terrier” is more probable to be present in the image.
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Figure 3.4: CAM approach from [1]

3.4 Conditional Random Fields

Conditional Random Fields (CRF) are a class of discriminative models that are used for prediction using

information from the neighbouring samples. It models the data into a graphical model and does the

prediction through an iterative energy minimization process.

CRF can be used for segmentation tasks [41] [42] either by itself or in combination with other seg-

mentation techniques for example with deep learning neural networks [43] [2]. When by itself the CRF

uses traditional hand-crafted features as a prior and when conjugated with other techniques it relies on

them to provide the features and then act as post-processing. In the latter, the goal is for CRF to help

creating a more detailed segmentation as illustrated in Figure 3.6.

In a post-processing situation, the image can be seen as a graph, as in Figure 3.5, where each pixel

is perceived as a node and the nodes are connected with edges ξ. Each node can have a finite set of

states corresponding to the possible classes and each state has a unary cost ψu(xi) for each pixel. The

pairwise cost ψp(xi, xj) between nodes is determined by the spatial and color distance within the two

pixels i and j. The graph may be built as a grid where only adjacent pixels are connected to each other,

or fully-connected, as in this case, where each pixel is connected to all other pixels in the image. Finally,

the assignment of each pixel to label is treated as an energy minimization problem where the energy

corresponds to the sum of the total unary and pairwise costs as in Equation (3.2). It is an iterative

process wherein at each inference step the energy is progressively minimized.

The Fully Connected Conditional Random Fields (FCCRF) uses neighbouring context to predict the

class of a pixel. In a fully connected situation every pixel in an image can be used to determine the class

of one pixel. The energy function can be described as:
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Figure 3.5: CRF graphical model

E(x) =
∑
i

ψu(xi) +
∑
i,j

ψp(xi, xj), (3.2)

where x represents the set of labels corresponding to each pixel, i and j range from 1 to N being N the

size of the image, ψu(xi) is the unary potential and ψp(xi, xj) is the pairwise potential.

The unary potential ψu(xi) sets a cost of assigning a label xi to pixel i with a probability P (xi). This

probability is provided by the classification model. The probability decides how much weight the unary

mask should have in the energy function E(x). The potential is then described as:

ψu(xi) = −log(P (xi)), (3.3)

where P (xi) is the pixel probability at pixel i.

The pairwise potential ψp(xi, xj) sets a cost to assign the label to pixel i in pairs, i.e. the cost of pixel

i will be according to pixel j. It will analyze the neighbouring pixels to predict the class for pixel i. This

potential has the form of a linear combination of Gaussian kernels as:

ψp(xi, xj) = µ(xi, xj)

K∑
m=1

w(m)k(m)(fi, fj)︸ ︷︷ ︸
k(fi,fj)

, (3.4)

where the term µ(xi, xj) is a label compatibility function which is responsible for introducing a penalty for

nearby pixels that are assigned different labels: µ(xi, xj) = 1 if xi 6= xj . Each k(m)(fi, fj) is a Gaussian

kernel between the feature vectors fi, for pixel i, and fj for pixel j. The w(m) acts as a weight factor

defining the importance of each Gaussian in the linear combination.

For image segmentation the k(fi, fj) is a contrast-sensitive two-kernel potentials as:

k(fi, fj) = w(1) exp

(
−|pi − pj |

2

2θ2α
− |Ii − Ij |

2

2θ2β

)
︸ ︷︷ ︸

appearance kernel

+ w(2) exp

(
−|pi − pj |

2

2θ2γ

)
︸ ︷︷ ︸
smoothness kernel

. (3.5)

It consists of a weighted sum of a position and colour sensitive double Gaussian with weight w(1) with

31



a position-sensitive single Gaussian with weight w(2). The first Gaussian is the appearance kernel and it

controls the degrees of nearness and similarity with the idea that nearby pixels with similar colours are

likely to belong to the same class. The first term depends on both pixel positions pi and pj and the scale

of the Gaussian is controlled by the spatial standard deviation θα. The larger the standard deviation,

the flatter the Gaussian and furthest pixels will be taken into account. The second term depends on

both pixel colour intensities Ii and Ij and the scale of the Gaussian is controlled by the colour standard

deviation θβ . As before, the larger the standard deviation, the flatter the Gaussian and wider is the range

of colours that will be taken into account. The second Gaussian is the smoothness kernel and it removes

small isolated areas giving a sharper boundary delimitation. It only depends on both pixel positions and

is controlled by the smoothness standard deviation θγ . This standard deviation is a similar behaviour as

the first one.

Figure 3.6 illustrates the overall process of the CRF algorithm as a post-processing technique. As

inputs, it takes a segmentation mask that will be used for the unary potential and the Original image.

Then by conjugating both, it sets the energy function. After minimizing the function, the output is a

mask with plenty of detail, thus showing how CRF can improve segmentation.

Figure 3.6: Example of the use of the CRF as a post processing technique from [2]
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This chapter starts by introducing the weakly-supervised dataset used for model development as

well as the description of a small fully-supervised dataset used for the segmentation tests. It is also

introduced the metrics used to evaluate the classification and segmentation. Furthermore, it analyzes

and states the setup procedures taken to develop and optimize the methods that compose the proposed

system. Additionally, it is described the work environment in which the system was develop regarding

both hardware and software. In the end, it is listed all the experimental results that will be done to

validate and evaluate the overall performance of the system.

4.1 Dataset

The first and most important step for computer vision and deep learning approaches is the creation of a

complex and diverse dataset of images. This way and applied to the wildfire situation, it is possible to

create a robust method capable of classifying and subsequently segmenting various forest fire scenarios.

Different models will be trained, one for fire detection and the other for smoke detection. Thus, it is

necessary to have a dataset that can cover both situations.

Two datasets were created, one with annotations at the image-level to train, validate and test the

classification model and another with annotations at the pixel-level to validate and test the segmentation

approach.

4.1.1 Image-level dataset

Given that the number of publicly available forest fires datasets is quite scarce, one had to be created.

As a starting point for the fire examples, the dataset [44] was used considering that it contains good

examples of forest fires as well as controlled fires. Since this dataset only contained positive images of

fire, it was necessary to augment it with negative examples such as samples of forest images without fire

as well as strong negatives like sunsets. All the negative examples were gathered manually from the web.

For the smoke examples, the data from [45] and from [46] was used as starting point and it was then

augment it with individual images gathered from the web. As described in Table 4.1, in total, only 40%

of dataset images were from free available datasets and the remaining 60% were gathered by hand which

shows the scarcity of good and freely available datasets

Table 4.1: Dataset images source description

Dataset source Percentage [%]

Available online 40
Manually gathered 60

The models are exclusively trained for classification purposes at the image-level so the dataset used

for training is exclusively labelled at this level. With image-level labels is important to have examples
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with a single class present so that the net can learn by itself what is fire and what is smoke independently.

The models behave as a one-vs-all classifier and so there will be an individual label for each class. In

neither case is there any indication of its location. Therefore, an image can be labelled independently as

containing fire and smoke. Figure 4.1 shows some examples of labelled images. Figure 4.1(a) does not

contain neither fire nor smoke so is labelled as negative for fire and negative for smoke. Figure 4.1(b)

contains only fire and so is labelled as positive for fire and negative for smoke, and the same in Figure

4.1(c) but for smoke. Finally, 4.1(d) contains both fire and smoke and so is labelled as positive for both

labels.

(a) Fire: Negative, Smoke: Negative (b) Fire: Positive, Smoke: Negative

(c) Fire: Negative, Smoke: Positive (d) Fire: Positive, Smoke: Positive

Figure 4.1: Dataset examples and the corresponding labels

All the images in the dataset were labelled at the image-level by hand by the author of this thesis.

The image gathering and the consecutive labelling process is almost effortless and very fast. Collecting

annotations at the image level has a much lower cost than trying to do it at the pixel level, in which one

has to highlight the regions of interest by hand.

Table 4.2 presents an overview of the created dataset. The labelling method used, made it possible to

divide the whole dataset into two classes separately. In this way, the presence of each class in the image

can be assessed independently.

Table 4.3 summarizes the split of the dataset for the classification model training, validation and

testing. The class percentages are also shown for each one of them.
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Table 4.2: Dataset composition

# Images Label Percentage [%]

Positive 70
Fire

Negative 30
Positive 70

1807
Smoke

Negative 30

Table 4.3: Dataset split percentages

Fire Smoke
Set Split [%]

Positive [%] Negative [%] Positive [%] Negative [%]

Train 78 69 31 71 29
Val 12 70 30 69 31
Test 10 75 25 65 35

4.1.2 Pixel-level dataset

In addition to previous dataset, there was the need to create a smaller dataset with labels at the pixel

level to validate and test the weakly supervised segmentation approach. This dataset was never used to

train any model.

This set is composed of images from both classes and their ground truth, as in Figure 4.2, and its

composition is described in Table 4.4. For the fire examples, the starting point was once again the dataset

of [44] since it also contains the ground truth masks of the images. Regarding the smoke examples, the

starting point was [45], to which there had to be some post-processing to get simple binary masks. Both

datasets were augmented with an internal dataset created by the team of the Firefront project. It should

be noted that the number of images annotated at the pixel level is approximately half of the images of

the previous dataset. Furthermore, the number of examples of this set would be significantly smaller

without the segmentations performed by the Firefront team. This emphasizes the limited amount of

quality datasets in this area of work, which becomes even scarcer with pixel-level annotations.

Table 4.4: Annotated dataset description

Class # Images and GT

Fire 600
Smoke 260
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(a) Fire image (b) Fire image ground truth

(c) Smoke image (d) Smoke image ground truth

Figure 4.2: Dataset examples annotated at the pixel level

4.2 Metrics

The performance of a classification model is analysed by comparing the predicted values and the actual

values in a test set. In binary classification, this performance can be summarized by using a confusion

matrix as the one in Table 4.5. In a confusion matrix, there are four possible events.

Table 4.5: Confusion matrix

Actual
Positive Negative

Predicted
Positive true positive (TP) false positive (FP)
Negative false negative (FN) true negative (TN)

A detection is considered to be TP if the prediction is positive and it is equal to the ground truth

or FP if it is also positive but differs from the ground truth. The same happens for negative examples,

where a TN is when the prediction and the ground truth matches being both negatives and a FN when

they differ, the prediction is negative but the ground truth not.

With all the events defined, one can estimate different metrics to evaluate the model:

• Accuracy - it is the ratio between the number of correct predictions and the total number of
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samples. It simply measures how often the classification model makes the correct prediction.

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

• Precision - it represents the ratio between correctly predicted positives and the total number of

predicted positives. It quantifies from all the positive predictions, how many are actually positive.

Precision =
TP

TP + FP
(4.2)

• Recall - it represents the ratio between correctly predicted positives and the total number of ground

truth positives. It shows the ability of the model to find all relevant instances in the test set, giving

the percentage of images that were predicted correctly.

Recall =
TP

TP + FN
(4.3)

The performance for a segmentation approach consists of comparing the ground truth mask with the

predicted mask at the pixel-level. A mask contains a label for each pixel separating the foreground class

from the background. The metrics to be used are:

• intersection over union (IoU) - also known as Jaccard Index and it is the intersection area

divided by the union area of the predicted and ground truth masks.

IoU =
areaOverlap

areaUnion
(4.4)

• mean intersection over union (mIoU) - is the mean of the IoU for the foreground and back-

ground classes.

Additionally to the aforementioned classic metrics, to evaluate the results in a different perspective,

one can analyse their distributions using a box plot as:

• Box Plot - useful to illustrate data distribution. It gives information on the variability or dispersion

of the data, giving a good indication of how the results are spread out. The interquartile range (IQR)

is defined as the distance between the first quartile Q1 (25th percentile) and the third quartile Q3

(75th percentile). Inside, there is the median of the data distribution. The top and bottom whiskers

are defined as functions of the first and third quartile. The bottom one is equal to Q1− 1.5 ∗ IQR

and the top one is equal to Q3 + 1.5 ∗ IQR. Any value outside of these whiskers is considered to be

an outlier.
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Figure 4.3: Box plot

4.3 Model Development

Two models were used, one to detect fire and one to detect smoke. The models were trained only for

classification but were used later for weakly supervised segmentation. In this way, it is necessary that

when training and validating the model its results in terms of localization are also monitored.

Therefore, during training and validation, several hyperparameters were tested until the best config-

urations were found. The chosen models represent the best classification and localization results. In the

following subsections we provide a detailed description of the training strategies adopted to develop the

various components of our model.

4.3.1 Classification Stage

The classification stage is a crucial part of the proposed approach, since it is the entry point of the

proposed approach and it will decide which image should be analyzed for segmentation. So, the image

will only move forward to the weakly supervised segmentation and then to the post-processing stage if

it is classified as positive. Any image that is classified as negative will be discarded. Therefore, it is

necessary to have a good classification phase to prevent any FP or FN. For example, one wants to avoid

situations where the image contains fire but the model classifies it as negative and consequently, the fire

would not be detected through the following stages. Also, one does not want to have a FN where there

will be the risk of segmenting non-fire or non-smoke zones as being fire or smoke.

Both fire and smoke models have an output similar to the labels in the dataset which means that for

both models the output of the network is fire or not fire and smoke or not smoke. It is important to

have this two classes into consideration for the classification so that the model can learn to differentiate

both classes during training and do not correlate them as a single class since they occur together very

frequently. However, it was noticed that small changes in the training phase would result in different

localization performances with the CAM method. So, the best performance is achieved with two different

models and parameters. For the fire model it is only taken into account the fire output class and identical

for the smoke model.
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The classification phase proved to be a great challenge due to the labelling method used. The images

are labelled at the image-level and not at the pixel level neither using bounding boxes so it becomes

harder for the network to collect class-specific features. When training the network with this dataset

using labels at the image level, each image is telling the network that the class for which it is labelled

is present in the entire image. Thus, the network will learn features of the entire image itself, and not

just the specific class as one would expect in a typical classification situation. Considering that we are

working on an aerial image setting, there will always be much more information in a single image than

just the class itself. Especially, in aerial images of fire and smoke, there will be common co-occurring

objects such as vegetation, clouds, etc. To meet this challenge, it is necessary to collect a very diverse

and complex dataset. Only this way it is possible for the network to distinguish class-specific features of

fire and smoke that are common alongside the images in the dataset.

For both models, the pre-trained weights on the ImageNet [47] were used as a base point. This way

the network training time is reduced and the training performance is typically better.

Table 4.6 shows the model parameters that lead to the best results, taking into account the classifi-

cation results and visual perception of the localization results after applying the CAM method.

Table 4.6: Models parameters

Parameter Fire Model Smoke Model

Base Model VGG19 VGG16
Optimizer Adam Adam

Learning Rate 1e-05 1e-06
Loss Binary Crossentropy Binary Crossentropy

Batch size 32 32
Early Stopping patience = 10 patience = 10

Monitor Validation Loss Validation Loss

The choice of optimiser will have an impact not only in the classification but also in the localisation

results. The optimizer, during training, minimizes the cost function by successively changing the weights

of the network and each optimizer does this change in a different way, as explained in Chapter 2, resulting

in different final weights. Thus, one must choose an optimizer that can not only correctly minimize the

cost function but also do a good job of assigning weights to feature-maps that contain features specific

to fire/smoke and not to other surrounding objects. This correct assignment will be critical for the CAM

algorithm. The one that produced better results on both models was the Adam optimizer with a learning

rate of 1e−5 and 1e−6 for the fire and smoke model respectively.

The loss function used only takes into account the performance in terms of classification at the image-

level. Considering that the dataset used has only two classes fire or smoke, a Binary Cross Entropy was

used and the output of the models indicates the image probability to contain fire and/or smoke. So,

the problem is separated into two binary classification problems, one for each class. The loss function is
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therefore the average of two binary losses.

For both models, early stopping was used with a patience of 10 and the monitoring factor was the

validation loss. That is, during the training, if the validation loss does not decrease during 10 epochs,

the training is stopped and the weights are saved. This way it avoids overfitting the training data.

Figure 4.4 shows the progress during the training process in terms of accuracy and loss for the training

and validation set. Both graphs show a good evolution in terms of accuracy and loss since the accuracy

increases while the loss decreases. The smoke model achieved higher values in terms of accuracy and

lower loss values than the fire model. However, the gap between the training and validation set is a little

bigger. It is also notorious that, especially for the fire model, the accuracy values are not as high as

expected in a normal classification situation, however, this can be explained by the fact that the model

is performing classification in the whole image and thus, the number of class-specific features might not

as high as normal. Also, the lack of fully connected layers makes the classification a harder challenge.

(a) Fire model accuracy (b) Smoke model accuracy

(c) Fire Model loss (d) Smoke Model loss

Figure 4.4: Models training progress with accuracy and loss
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The class prediction is done at the image-level so, the result of passing an image to the models is a

simple probability if there is fire/smoke in the whole image. To this probability, it is necessary to apply

a classification threshold to consider the result as positive or negative. This way any prediction with a

probability above the threshold τ is considered positive and in the same way, if it is below it is considered

negative:

p(I) =

{
0, if p(I) < τ
1, if p(I) > τ

, (4.5)

where I is the image given to the model, p(I) is the resulting model output probability of image I and

τ is the threshold value. For both models, τ was set to 0.7. In Experiment B in Section 5.2 it is done a

more detailed experiment to evaluate both classification models including the classification threshold.

Figure 4.5 and 4.6 illustrates six examples of predictions for the fire and smoke model at the image

level. On 4.5(a), 4.5(b), 4.6(a) and 4.6(b) are demonstrated four TP examples where the models correctly

predict the presence of fire/smoke. On 4.5(c) and 4.6(c) are FP examples where the models predict

positive for fire and smoke while the ground truth is negative. These examples illustrate one issue with

the image-level labels for the fire and smoke scenario. Fire and smoke are phenomenons that occur in

their great majority coupled with each other, so it is a major challenge for the model to distinguish them

when using image-level labels. On 4.5(d) and 4.5(e) are two TN examples that are very important to

correctly classify since they co-occur very frequently in a fire situation, forest and firefighting airplanes.

On 4.5(f) is also an TN example, illustrated with a sunset which contains a very similar colour pattern as

fire. Similarly for the smoke situation, 4.6(d) and 4.6(e) represent TN examples on common co-occurring

objects, forests and clouds. 4.6(f) can be considered as a FN, even though a very demanding one, where

there is a small presence of smoke but the models predicted it as negative. It is a good example to show

that the model can still distinguish smoke from fire since in this case the image clearly contains fire.
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(a) Probability = 1.0 (b) Probability = 1.0 (c) Probability = 0.77

(d) Probability = 0.0 (e) Probability = 0.0 (f) Probability = 0.0

Figure 4.5: Examples of images classification and their respective probability of containing fire according to the
Fire Model: (a) and (b) are TP examples, (c) is a FP example, (d) and (e) are TN examples and
(f) is a FN example.

(a) Probability = 1.0 (b) Probability = 1.0 (c) Probability = 0.6

(d) Probability = 0.0 (e) Probability = 0.0 (f) Probability = 0.0

Figure 4.6: Examples of images classification and their respective probability of containing smoke according to
the Smoke Model: (a) and (b) are TP examples, (c) is a FP example, (d) and (e) are TN examples
and (f) is a FN example.
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4.3.2 Weakly Supervised Segmentation stage

To extract the location of fire and smoke from the Classification model described in Section 4.3.1, the

CAM algorithm explained in Chapter 3 was used. By summing representative features and subtracting

unrepresentative ones, it is possible to highlight the image regions that the network used to predict the

class. Consequently, these are the image regions where fire/smoke is more probable to be located. Figure

4.7 illustrates the overall CAM process for the fire model. In the end, there is illustrated the final heatmap

for the input image.

Figure 4.7: Overall CAM approach for the fire model

The probability heatmap is obtained by doing a weighted sum of the feature maps from the last

convolutional layer (block5-conv4 for the fire model and block5-conv3 for the smoke model) as in Equation

(3.1) and is illustrated for the fire situation in Figure 4.8. The jet colourmap, as in Figure 4.9, was chosen

to illustrate the probabilities, where a red colour corresponds to a high probability and the blue to a low

probability. So, in the heatmap, a high probability represents an area in the image very probable to

contain fire/smoke

Figure 4.8: CAM weighted feature maps sum

For the fire case, and following what was proposed in [48], all feature maps with negative associated

weight were discarded since these were being associated with fire zones rather than background. In

Experiment C in Section 5.3 a more detailed analysis is done about the influence of feature maps with
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Figure 4.9: Jet colourmap

negative weight to obtain the CAM mask. So, there will be no subtraction of feature maps, only those

with positive weights were used for Equation (3.1), resulting:

Hc(x, y) =

n∑
i=1

wci fi(x, y), if wci > 0 (4.6)

For smoke, the subtraction of feature maps with negative weights is beneficial.

The heatmap is created with the same mapping resolution of the last convolutional layer and is then

upsampled to the original image size using bilinear interpolation. The final heatmap behaves as an object

detector despite no supervision on the location was provided. Figure 4.10 shows some examples of the

CAM heatmap for the fire model and Figure 4.11 for the smoke model. In both figures, it can be seen

that the heatmaps assign a high probability in the correct location of fire and smoke and their respective

extent despite the model has never been trained for that task.

The following step consists on transforming the heatmaps into a binary mask. So, the probabilistic

heatmap was thresholded according to its maximum values as:

θ = α max(H), (4.7)

where θ is the thresholding value, α is a real between 0 and 1 and H is the probabilistic heatmap. Every

pixel in the heatmap that has a probability superior to the threshold was set to 1 and below set to 0, as:

M(x, y) =

{
1 if H(x, y) ≥ θ
0 if H(x, y) < θ

, (4.8)

where H(x, y) is the pixel probability value on the heatmap H at position (x, y) and M is the resulting

segmentation mask after thresholding.

For the fire model, the α was set to 0.5 while for the smoke one was set to 0.2. In Experiment D in

Section 5.4 it will be done a comparison of different types of thresholding and their respective results.

Also in Figure 4.10 and 4.11, there are represented the resulting segmentation mask after applying the

threshold method. The brighter areas illustrate a positive label for fire/smoke.

Nevertheless, these heatmaps lack detail, representing rather rounded shapes. For smoke, these shapes

can easily resemble its shape. However, for fire, it becomes more challenging since fire has very detailed

and complex shapes. Therefore, it is necessary to do some post-processing on these heatmaps as detailed

in the following Section.
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(a) Original Image 1 (b) CAM heatmap 1 (c) Binary mask 1

(d) Original Image 2 (e) CAM heatmap 2 (f) Binary mask 2

(g) Original Image 3 (h) CAM heatmap 3 (i) Binary mask 3

Figure 4.10: CAM output heatmaps fire examples

4.3.3 Post-processing Stage

In order to address the lack of detail in the masks produced by CAM, there was the need to do some

post-processing. These masks hardly resemble the shape that fire and smoke take, especially fire, since

it has a very detailed and irregular shape, which in turn is one of the reasons why it is so expensive to

create pixel-level fire labels.

For these reasons, the CRF with fully connected nodes [41] was used to transform the binary masks

created by CAM (with little detail), into masks that could actually resemble the shapes needed with well-

defined boundaries and with much more detail. To achieve this, the CRF minimizes an energy function as

in Equation (3.2). It is divided in two potentials, the unary described by Equation (3.3) and the pairwise

described by Equation (3.4).

The unary potential, as in Equation (3.3), is responsible for assigning a cost to each pixel, according
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(a) Original Image 1 (b) CAM heatmap 1 (c) Binary mask 1

(d) Original Image 2 (e) CAM heatmap 2 (f) Binary mask 2

(g) Original Image 3 (h) CAM heatmap 3 (i) Binary mask 3

Figure 4.11: CAM output heatmaps smoke examples

to its probability in the CAM mask. As the CRF takes information from all the pixels in the image, it is

needed a unary potential for the foreground as well as the background and for that reason, every pixel in

the CAM mask that is not considered to be positive for fire/smoke is considered to be background. So,

the two possible states for each pixel are fire/smoke and background. The background mask Mb(x, y) is

the opposite of the foreground mask Mf (x, y) as:

Mb(x, y) = 1−Mf (x, y), (4.9)

In the foreground mask, every positive pixel is set to 0.8 since CAM masks are not extremely precise.

The pairwise potential will then be responsible for analyzing each pixel and compare it with the

neighbours in terms of nearness and similarity. It is a weighted combination of Gaussian kernels and it

is divided into two kernels, as described in Equation (3.5), the appearance kernel and the smoothness
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kernel. The w(1) and w(2) are set to assign an importance for each kernel.

The first kernel, the appearance kernel, uses the information of the pixel colour (RGB values) and

the distance to their neighbours to assign the cost of the pixel. It is divided into two parts. One that is

responsible to analyse the degree of nearness controlled by the spatial standard deviation θα and for both

fire and smoke scenarios, since CAM binary masks cannot correctly delimit their boundaries, it should

be set to a high value. Therefore, each pixel is compared with a wide range of pixels around it, allowing

to create a segmentation of the whole area of the fire or smoke. The second part is responsible to analyse

the degree of similarity controlled by the colour standard deviation θβ . For the fire situation and taking

into account that fire has a very specific and limited colour range, the θβ should be set to a low value.

Therefore, only pixels with very identical colour ranges are considered to be in the same class. Regarding

smoke, the θβ cannot be as low as fire since smoke colours can range a little more depending on the type

of material burning, but it must be set low, too.

The second kernel, smoothness kernel, uses pixel proximity to remove small isolated regions and give

the mask a much sharper boundary, controlled by the smoothness standard deviation θγ . For both

situations, the value should be chosen to remove some miss-detected areas and give the fire and smoke

the correct boundary limits. For both situations, a total of 5 inference steps are performed to get the final

mask. Table 4.7 list the best parameters achieved to produce the final masks. To understand better the

influence of each parameter in the CRF final output and the number of inference steps needed to create

a good mask, different parameters were tested, as presented in the Experiment E in Section 5.5. Figure

4.12 and Figure 4.13 shows examples of the overall approach of the CRF using the best parameters for

fire and smoke respectively .

Table 4.7: CRF best parameters

Parameter Fire Smoke

w(1) 10 8
θα 250 100
θβ 10 5
w(2) 5 5
θγ 20 10

Iterations 5 5
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CAM binary mask

Original image

Fully Connected CRF CRF mask

Figure 4.12: Fully connected CRF overall approach for fire

CAM binary mask

Original image

Fully Connected CRF CRF mask

Figure 4.13: Fully connected CRF overall approach for smoke

4.4 Work Setup

To develop, validate and test the proposed approach two machines were used as described in Table 4.8.

The frameworks used to develop the ANN were Keras and Tensorflow.

Table 4.8: System setup

Component Machine 1 Machine 2

Processor Intel i7-9700 3.00GHz Intel i7-8700 @ 3.20GHz
GPU Nvidia GeForce GTX 2080 Nvidia GeForce GTX 1070

GPU memory 12 Gb 8 Gb
RAM 64Gb 64Gb
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4.5 Experiments list

The following list describes the experiments created to validate and test the proposal system and each of

its’ components individually.

• Experiment A - Comparing the proposed approach with a fully-supervised one

The goal of this experiment is to state the pros and cons of using a weakly supervised approach

versus a fully supervised. One wants to evaluate the gain or loss in performance with respect to

the labelling effort.

• Experiment B - Assesing the Classification Model

In this experiment, only the performance of the classification stage will be evaluated. One wants

to test the overall robustness of the model with special attention to FP which can be very adverse

in a forest fires situation.

• Experiment C - Study the influence of negative feature maps on CAM

This experiment will evaluate if the weighting approach used in the CAM method is being used in

favour of the segmentation performance. It will be studied, for both models, if the subtraction of

negatively weighted feature maps is removing relevant information.

• Experiment D - Search the best thresholding technique for CAM heatmaps

This experiment will analyze which is the technique to threshold the probability heatmaps from

CAM, that lead to the top performance.

• Experiment E - Search for CRF optimized parameters

In this experiment, the parameters of the CRF method will be varied to understand the influence

of each one of them and what is the best combination that leads to the best optimization of the

segmentation masks.

• Experiment F - Evaluating the CRF influence

In this experiment, it will be evaluated how much the CRF improves the segmentation masks on

the post-processing stage.

• Experiment G - Comparing the Masks Areas

This experiment will serve to compare the masks in the different stages of the approach with the

GT ones. Moreover, it will also be useful to understand the CRF reduction factor and how close

the areas of the CRF masks get to the GT ones.
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This chapter details the experimental procedures to validate and test the proposed system. It is

divided in each of the experiments introduced in the previous section. It is presented not only the results

of the whole system but also the intermediate results on each stage: classification, weakly-supervised

segmentation and post-processing. A comparison between the proposed method and two fully supervised

ones evaluating the strengths and weaknesses of both approaches. It is also described some experiments

done to optimize the different stages.

5.1 Experiment A - Comparing the proposed approach with a

fully-supervised one

In this experiment, are compared two fully supervised segmentation methods (Method 1 and Method 2)

and the proposed one. For Method 1 is done an extensive comparison on both fire and smoke segmentation

while for Method 2 only the metrics for the fire case. Both models were developed in-house by members

of the Firefront team using similar datasets.

• Method 1 [49] - Originally the system was composed by three components. The first block an-

alyzes the image and scales down to the size of the network input, for detecting fire/smoke using

a classification model (SqueezeNet [50]). If the classification is positive the scaled image is fed to

a segmentation network, otherwise the unscaled image divided in 4 patches and the same process

is repeated for each patch. When an image/patch is classified as fire/smoke, it goes to the seg-

mentation network (U-Net [51]) to create a segmentation mask with the regions of the image that

contains fire/smoke. The obtained masks are then stitched in the right places to obtain the overall

segmented image. The objective of Method 1 is to be able to detect fire/smoke in high resolution

images even when the fire/smoke regions are just a few pixels. However, because the proposed

method only uses images scaled to the network input size, the comparison will be done using a

simpler version of the method without the recursive patch subdivision. This network was trained

with a dataset fully annotated at the pixel level.

• Method 2 - The second method consists in a Deeplab v3+ network [52] applied to the fire detection

and was also trained with a dataset fully annotated at the pixel level. For this second method we

only had access to the metrics values, we did not have access to the segmentation masks.

Both methods were tested using the Pixel-level dataset described in Section 4.1. In order to compare

them, the average mIoU was computed.

For fire, the performance is shown in Table 5.1. It can be seen that both fully-supervised methods

outperform the proposed one. However, it must be taken into account the effort that the authors had

to put to create the strong supervision on their training examples versus the effort of creating weakly
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supervised supervision. As concluded in Section 1.1 with the study done, creating pixel-level masks

can take 50 times more time than a image-level mask. So, it is natural that the performance of fully-

supervised methods is better than the weakly-supervised ones. Despite the difference in mIoU, the

proposed method can also achieve considerably good results as it can be seen on Figure 5.1. The fully-

supervised masks were obtained using Method 1 and the proposal masks are the output of the proposal

method. In Figure 5.1 is noticeable that the proposed method achieves very good final segmentation mask

and sometimes more identical to the GT masks than the ones provided by Method 1. The proposal masks

can even better represent the small details in the fire shape when compared with the fully-supervised

segmentation performed in the entire image. However, from the standard deviation results in Table 5.1 it

is concluded that the proposed method has a higher oscillation in the results compared to Method 1. In

Figure 5.3 there are some examples where this is illustrated. The proposed methods sometimes has some

discrepancies resulting in a degradation of the segmentation mask, while Method 1 is more coherent. This

is also reflected in the average mIoU values as these discrepancies in the proposed method results result

in lower values of this metric. In summary, the proposed weakly-supervised method can highly compete

with the fully-supervised ones with good fire segmentation results despite some small discrepancies.

Table 5.1: Performance of the tested fire models

Method Approach mIoU Standard Dev.

Method 1 fully-supervised 0.856 0.073
Method 2 fully-supervised 0.902 -
Proposed weakly-supervised 0.735 0.142

For smoke, the proposed approach will be only compared with Method 1 as Method 2 was not trained

to detect smoke. The average mIoU results are shown in Table 5.2. The results show that the proposed

method performs on par with the fully-supervised one, achieving a similar values of mIoU and standard

deviation. As concluded before, the proposed method can easily resemble the round and soft margins

of the smoke zones. Figure 5.2 represent some results where the proposed method outperforms the

fully-supervised one. Not only the proposed mask can represent the outer shape of the smoke but can

also outline objects that are inside the smoke area. The fully-supervised masks are more conservative

without much detailed margins. However, as expected, there are also some not fully successful examples

as illustrated in 5.4. These examples occur in images with areas with very similar colours to smoke, like

clouds, or when it is not clear the separation with common co-occurring objects and zones. In summary,

the proposed weakly-supervised method can perform almost as good as a fully-supervised segmentation

method, with the advantage that no pixel-level masks are needed which in the case of smoke can be very

ambiguous since smoke does not have sharp boundaries and can sometimes be very dim.

This experiment has shown that even by only using annotations at the image-level to train the

proposed method, it is possible to compete with methods that uses annotations at the pixel level. The
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Table 5.2: Performance of the tested smoke models

Method Approach mIoU Stantard Dev.

Method 1 fully-supervised 0.771 0.157
Proposed weakly-supervised 0.760 0.149

tedious and expensive process of creating pixel-level labels is not completely reflected in the segmentation

results, especially for smoke, where the proposed method performs as well. When considering the trade-

off between segmentation performance and the expensiveness of the creation of pixel-level labels the

proposed smoke segmentation method is the clear winner, while the fire segmentation model also wins if

the task at hand tolerates some distortions in the segmentation masks.

57



Figure 5.1: Fire masks comparison between a fully-supervised approach and the proposed approach.
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Figure 5.2: Smoke masks comparison between a fully-supervised approach and the proposed approach.
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Figure 5.3: Fire masks comparison between a fully-supervised approach and the proposed approach with failure
examples.

Figure 5.4: Smoke masks comparison between a fully-supervised approach and the proposed approach with
failure examples.
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5.2 Experiment B - Assessing the Classification Model

This experiment will evaluates the performance of both models regarding classification. For this stage it

was used the dataset labelled at the image-level.

First, and as mentioned in Section 4.3.1 it is necessary to threshold the output probabilities of the

network to classify a prediction as positive or negative. The thresholding is done as in Equation (4.5). To

choose the one that produces the best result, the classification threshold was varied in the range [0.4, 0.9]

with steps of 0.1. The resulting accuracy in the validation set is plotted in Figure 5.5 for the different

thresholds.
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Figure 5.5: Fire and Smoke model tresholding and the corresponding Accuracy.

For both models the best threshold was 0.7 leading to an accuracy of 0.814 and 0.878 for the fire and

smoke respectively. Table 5.3 shows the resulting accuracy, precision and recall in the test set with the

best thresholds in the test set.

Table 5.3: Classification Performance

Metric Fire Model Smoke model

Accuracy 0.854 0.911
Precision 0.834 0.937

Recall 0.901 0.907

From table 5.3, it can be observed that the fire classifier does not have a very high accuracy nor

precision value, but it presents a good recall value. This means that the number of FN is small, i.e., there

are few predictions in which there was indeed fire but the model did not predict it. This is a good in a real

situation when one does not want to neglect the presence of fire. On the other hand, the precision value is

lower, which means that there was a considerable number of FP, i.e., there are images that effectively do

not have fire but are being classified as fire. The vast majority of these images are smoke images without

fire, which demonstrates once again the high correlation between fire and smoke and the challenge that is
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to separate both by using labels at the image level. For the smoke situation, all the metrics are slightly

higher. Nevertheless, it is possible to perceive the same correlation situation as in fire. In this case, the

recall value is a little lower than the precision value since the number of FN is higher than the number of

FP. In other words, there are more cases where there was no smoke but the model predicted that there

was smoke than cases where there was smoke and the model predicted that there was not.

The models’ overall classification performance is good even though the smoke model is slightly superior

to the fire one. As expected, it is not easy for the network to correctly extract the class-specific features

which make fire and smoke classification at the image-level quite challenging.

5.3 Experiment C - Study the influence of negative feature maps

on CAM

In this experiment, it is studied how to optimize the identification of the regions of fire and smoke using

the CAM algorithm. For both models, it will be analyzed to what extent the addition of negatively

weighted feature maps affects the heatmaps.

According to Equation (3.1) the final CAM heatmaps is a weighted sum of the feature maps in the last

convolutional layer. These weights range from -1 to 1, where a -1 indicates that the corresponding feature

is not favourable for the output class classification and a 1 represents a favourable feature. This way,

all the positive feature maps should be added and all the negative ones should be subtracted, resulting

in a final heatmap highlighting the region associated with the predicted class. However, as mentioned

before, the model is only trained to perform a classification at the image level, so the feature-maps might

not always represent class-specific features. Ideally, the negative weights represent regions outside of the

object like background. Nonetheless, a negative weight could also represent a feature map of a not so

relevant part of the class and so, this way, this region would be removed from the final heatmap. Therefore,

the interpretation of the positive and negative values on the weights could not be so straightforward as

mentioned.

To understand if the standard CAM approach is missing information about regions relevant to the

output class, a new heatmap is created where all the negative weights will be neglected [48]. This means

that a negative feature-map will not take part in the sum as in Equation (4.6). So, there will be no

feature map subtractions, only additions. To compare between using the negative weights or not, a

set of 200 images from the Pixel-level dataset were used to compute the mIoU of the CAM raw output

(without post-processing via CRF). The probabilistic heatmaps are converted into binary mask according

to Equation (4.7) and Equation (4.8). For the fire model, the α is set to 0.5 and for the smoke, one is

set to 0.2. The results are shown in Table 5.4.

For the fire case, the improvement is quite noticeable when not using feature maps with negative weight
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Table 5.4: mIoU values for both models with and without the use of negative weighted feature maps

Model
mIoU

w/ negative
weigths

w/o negative
weigths

Fire model 0.4367 0.6076
Smoke model 0.7036 0.5693

as illustrated in Figure 5.6. Ideally, negative weight feature maps should be enabled in background areas.

However, this is not verified because one is working with image-level classification. This shows that these

negative feature maps correspond to fire zones, especially to not-so-relevant areas. By neglecting the

negative weights, it is ensured that the fire location is extended to almost the entire fire area, even in less

significant areas.

For the smoke case, there is no improvement in not using feature maps with negative weights as

illustrated in Figure 5.7. This suggests that, unlike the fire model, feature maps with negative weights

are being associated with background zones and not smoke zones. Thus, their subtraction is beneficial

for the construction of the heatmap.

(a) Original Image (b) With w0 (c) Without w0

(d) Original Image (e) With w0 (f) Without w0

Figure 5.6: CAM output heatmaps fire examples
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(a) Original Image (b) With w0 (c) Without w0

Figure 5.7: CAM output heatmaps smoke examples

5.4 Experiment D - Search the best thresholding technique for

CAM heatmaps

In this experiment, two different techniques are compared to threshold the probabilistic heatmaps pro-

duced by the CAM algorithm. In the standard CAM approach, the segmentation masks are created by

thresholding the heatmap according to its max value in Equation (4.7). However, [48] suggested a better

method using probability distributions in the heatmap:

τ = α perci(H), (5.1)

where α is still a real between 0 and 1, H is the probabilistic heatmap, and perci is the i− th percentile.

So, the heatmap will be thresholded according to the i− th percentile of the probabilistic distribution in

the heatmap. The idea is to attenuate situations in which a high activation largely overlaps in a series

of feature maps creating a probabilistic zone with high maximum value. In this situation the original

thresholding method will create a binary mask with a small region of the object to detect, discarding the

remaining extent of it.

Both thresholding approaches were tested in a set of 200 images of the Pixel-level dataset, using

different values for α.

Starting with the max thresholding approach, the α was ranged, for the fire case, in [0.3, 0.8] with

steps of 0.1 and for the smoke in [0.1, 0.6] with steps of 0.1. The mIoU and the corresponding standard

deviation were computed and the results are shown in Table 5.5 for both models.

For fire, the α value that presented a better results was 0.6 with an mIoU of 0.6076 and a standard

deviation of 0.1157. For smoke, the best α was 0.2 with an mIoU of 0.7036 and a standard deviation of

0.1214.

Then, for the percentile thresholding approach, the percentiles ranged in [80, 95] with steps of 5 and

the α ranged, for the fire case, in [0.5, 0.9] and for the smoke in [0.1, 0.5] both with steps of 0.1. Similar
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Table 5.5: Max tresholding for fire and smoke

Fire
α mIoU St. Dev.

0.3 0.4233 0.1160
0.4 0.5146 0.1119
0.5 0.5869 0.1077
0.6 0.6076 0.1157
0.7 0.5540 0.1259
0.8 0.5080 0.1234

Smoke
α mIoU St. Dev.

0.1 0.6920 0.1247
0.2 0.7036 0.1214
0.3 0.6581 0.1283
0.4 0.6043 0.1360
0.5 0.5457 0.1390
0.6 0.4896 0.1366

Table 5.6: Percentile tresholding for fire and smoke

Fire
α Perc. mIoU St. Dev.

80 0.489 0.115
85 0.519 0.115
90 0.554 0.117

0.5

95 0.578 0.120
80 0.492 0.115
85 0.526 0.116
90 0.560 0.117

0.6

95 0.590 0.122
80 0.520 0.114
85 0.550 0.115
90 0.574 0.116

0.7

95 0.588 0.121
80 0.539 0.113
85 0.562 0.114
90 0.577 0.117

0.8

95 0.576 0.121
80 0.552 0.112
85 0.567 0.114
90 0.573 0.120

0.9

95 0.557 0.131

Smoke
α Perc mIoU St. Dev.

80 0.659 0.142
85 0.665 0.139
90 0.673 0.136

0.1

95 0.6822 0.1317
80 0.673 0.136
85 0.682 0.132
90 0.689 0.128

0.2

95 0.696 0.123
80 0.680 0.132
85 0.686 0.128
90 0.690 0.124

0.3

95 0.6895 0.122
80 0.678 0.129
85 0.681 0.126
90 0.679 0.124

0.4

95 0.6671 0.125
80 0.671 0.127
85 0.669 0.125
90 0.659 0.127

0.5

95 0.633 0.128

metrics to the max thresholding approach were computed and the results are shown in Table 5.6 for both

models.

For fire, the parameters that lead to better results were an α of 0.6 and the 95th percentile with an

mIoU of 0.590 and a standard deviation of 0.122. For smoke, the best results were an α of 0.2 and the

95th percentile resulting in an mIoU of 0.696 and a standard deviation of 0.123.

It is observed that the results for the percentile approach converge to the higher percentile value,

being that a 100th percentile would correspond to the same as using the max approach. Additionally,

for both approaches the best alpha value is equal. For this α value and comparing the two approaches,

it turns out that the max approach produces a higher mIoU value with a lower standard deviation for

both models. In conclusion, it is not advantageous to use the thresholding method using the percentiles
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of the probability distributions in the CAM heatmap.

5.5 Experiment E - Search for CRF optimized parameters

In this experiment, is one an exhaustive search on all the parameters that compose the CRF algorithm

to optimize the CAM binary masks and consequently get a better final segmentation mask.

The post-processing phase consists of using the CRF algorithm with fully-connected nodes. As defined

in Equation (3.4), this method depends on some parameters. The search was performed by maximizing

the mIoU of the method in a set of 200 images of the Pixel-level dataset. We started by varying the

various parameters with a rough discretization to understand the orders of magnitude and range of use.

The number of inference steps started on 15, so that the evolution per step could be analyzed for a

significant number of steps. Next, the weights of each kernel of Equation (3.5), defined by w1 and w2,

were set. The first kernel incorporates a term that is colour dependent and he second kernel will be

responsible for giving the detail and sharpness. For the fire case, we assign colour a bigger importance

than sharpness, thus, w1 was set to 10 and w2 to 5. For the smoke case, the first kernel is not so important

since smoke is not so easily characterized by its colour while the second kernel will play an important role

in defining the edges of the smoke. Therefore, w1 is set to 8 and w2 to 5. Finally, an optimum value for

θy was set by the same logic previously explained concerning the second kernel. That is, a higher θy is

required for the fire case than for the smoke case. So, θy was set to 20 for fire and 10 for smoke. Finally,

an exhaustive search for the parameters of the appearance kernel, θα and θβ , was performed. For fire,

θα was ranged in [50, 450] with steps of 50 and θβ was ranged in [5, 35] with steps of 5 as illustrated in

Figure 5.8(a). For smoke, θα was ranged in [25, 300] with steps of 25 and θβ was ranged in [1, 25] with

steps of 5 as illustrated in Figure 5.8(b).
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Figure 5.8: θα and θβ variation for fire and smoke.
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Regarding the fire case, it is clearly evident the high dependence on the colour component controlled

by the θβ . Small variations in this parameter are directly reflected in the mIoU values, reaching an

optimum value of 10. Keeping this parameter fixed and varying the θα there is an increase up to about

250, after witch it stagnates. The higher this parameter, the higher the standard deviation of the results.

Therefore, the optimal parameters will be θα equal to 250 and θβ equal to 10. Figure 5.9 also concludes

this regarding θα. A value lower than 10 produces a mask containing small areas that do not correspond

to fire. Above 10, the algorithm gets too selective and actually removes fire zones.

Figure 5.9: CRF mask evolution according to θα for a fire example

For the smoke case, the situation is identical but the parameters have swapped. Now the results

are more sensitive to θα and less sensitive to θβ . That makes sense since smoke does not have such

a characteristic colour. The best parameters are θα equal to 100 and θβ equal to 5. Figure 5.10 also

concludes this regarding θβ . A value lower than 100 produces a masks containing some unwanted areas

and above it, it removes some smoke areas.

Finally, with the remaining parameters already configured, it was necessary to analyse the number

of inference steps that the algorithm would need to converge to a good value of the energy equation

(3.2) and consecutively a good segmentation mask. The higher the number of iterations the higher is

the computational time. It was verified that, with this set of parameters and in most of the cases, the

algorithm converges until the 5th iteration, as it can be seen on Figure 5.11. Beyond that, the energy curve

stays flatten and the changes were not visible. Figures 5.12 and 5.13 illustrate the algorithm iterations

till the 5th one.
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Figure 5.10: CRF mask evolution according to θβ for a smoke example

(a) Fire (b) Smoke

Figure 5.11: CRF energy convergence iteration by iteration.

5.6 Experiment F - Evaluating the CRF influence

This experiment evaluates how the CRF affects the system performance in the two phases of the pipeline:

weakly supervised segmentation (WSSegm.) and post-processing (Post.Process.). The first stage is

evaluated through the masks obtained by CAM while the second stage is evaluated through the masks

obtained after the application of the CRF. It will also be evaluated the trade-off between the use of the

post-processing stage and processing time. The results that follow were obtained using the Pixel-level

dataset.
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Figure 5.12: CRF mask iterations for a fire example

Figure 5.13: CRF mask iteration for a smoke example

Table 5.7 illustrates the performance of the two stages for both models in terms of the mIoU, the

corresponding standard deviation and the processing time.

Firstly, one must highlight the good performance of weakly supervised segmentation (WSSegm) taking

into account that the model was only trained for image classification at the image-level. It can be observed

that the mIoU values for the smoke case are higher than the fire values. This can be explained by the

fact that while the fire shape can be quite detailed, smoke usually has a non-detailed shape, sometimes
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Table 5.7: Segmentation Performance in both stages

Model Stage mIoU St.Dev. Proc.Time (s)

Fire
WSSegm. 0.607 0.115 0.068

Post.Process. 0.735 0.142 0.228

Smoke
WSSegm. 0.703 0.121 0.059

Post.Process. 0.760 0.149 0.229

resembling blobs. The processing time in this phase is considerably low since CAM works with small

mapping resolutions.

Secondly, after the application of the CRF, a great improvement in the mIoU is noticed. This

improvement is much more significant for the fire case since it is necessary to add all the detail and

sharpness of the fire shape. For fire, the improvement is about 20% while for smoke it is almost 10%.

There is a slight increase in standard deviations but it is not comparable to the improvements in mIoU.

Regarding the processing time, applying the 5 iterations of the CRF to each image took an average

computation time of 230ms for both cases.

Furthermore, Figure 5.14 illustrates the distribution of mIoU in both stages. The improvement in the

mIoU for both cases is quite remarkable, with the median and the IQR greatly improving. However, the

increase in the standard deviation is noticeable, not only for the increase in the IQR size but also for the

increase in the whiskers spread.

(a) Fire (b) Smoke

Figure 5.14: Box plot of the mIoU results

Figure 5.15 illustrates, for fire, some examples of the resulting masks in both stages of the approach

as well as the GT mask. At first, one can conclude that CAM can correctly predict the location of fire,

although the CAM masks are quite coarse, in the form of blobs. Thus, when comparing the CAM masks

70



with the GT masks, the mIoU difference is mostly due to lack of detail, rather than poor location. Then,

after applying the CRF, the improvements in terms of detail and sharpness are highly notorious. The

CRF can transform a coarse and blob-like mask roughly indicating the location of fire, into a mask very

similar to the GT. The CRF takes great advantage of the fact that the fire has a very representative and

limited colour space. The resulting masks are sometimes even more detailed than masks created on GT.

Figure 5.15: Fire masks in the different stages

Figure 5.16 illustrates, for the smoke case, some examples of the resulting masks in both stages of

the approach as well as the GT masks. Considering that smoke does not have shape as precise as fire,

it is easier to get a better segmentation mask using only CAM. This is also reflected in the mIoU values

in Table 5.7 using only CAM, which are already considerably good. However, it is still necessary to use

CRF to correctly delineate the smoke edges. This includes removing areas where CAM masks give overlay

between smoke and other non-smoke areas, for example, fire. After applying the CRF it turns out that

the masks are much more detailed and much more accurate. Similarly to what happened with the fire,

the masks after the application of the CRF can sometimes be more detailed than the ones created by

hand.
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Figure 5.16: Smoke masks along the stages

Despite all the aforementioned advantages, the CRF is still totally dependent on the input CAM

mask. So, when this mask gives an unreasonable segmentation, it can sometimes happen that the CRF

converges to non-fire/non-smoke zones.

5.7 Experiment G - Comparing the Masks Areas

In this experiment, is made a detailed analysis of the size of the masks obtained in the two phases of the

proposal n comparison with the GT using the Pixel-level dataset. In particular, we compare the areas of

the three masks: CAM mask, CRF mask and GT mask.

For the comparison a series of ratios were created:

• GT/Image - GT mask area divided the number of pixels in the image.

GT/Image =
#NonZeroP ixels(GT mask)

#Pixels(Image)
(5.2)
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• CAM/Image - CAM mask area divided by the number of pixels in the image.

CAM/Image =
#NonZeroP ixels(CAM mask)

#Pixels(Image)
(5.3)

• CRF/Image - CRF mask area divided by the number of pixels in the image.

CRF/Image =
#NonZeroP ixels(CRF mask)

#Pixels(Image)
(5.4)

• CAM/GT - CAM mask area divided by the GT mask area.

CAM/GT =
#NonZeroP ixels(CAM mask)

#Pixels(GT mask)
(5.5)

• CRF/GT - CRF mask area divided by the GT mask area.

CRF/GT =
#NonZeroP ixels(CRF mask)

#Pixels(GT mask)
(5.6)

• CRF/CAM - CRF mask area divided by the CAM mask area.

CRF/CAM =
#NonZeroP ixels(CRF mask)

#Pixels(CAM mask)
(5.7)

Using the first three ratios (GT/Image, CAM/Image and CRF/Image) the objective is to compare

the percentages of fire/smoke occupation in the image. In Table 5.8 there are listed the average values

for the three ratios for both fire and smoke, and on Figure 5.17 there are plotted the box plot of the

ratios’ distributions.

Starting with the fire situation in Figure 5.17(a), it can be seen that the dataset used has a somewhat

reduced distribution of fire occupation in the images, with the vast majority of values being below 30%.

However, there are still some outliers with high levels of occupancy. The occupancies in the CAM masks

are considerably higher, the vast majority of them being above the median GT values. This is explained,

once again, by the blob-like shapes covering the fire regions that CAM presents. Regarding the occupation

in the CRF masks, it can be observed that it presents a distribution of values very close to the GT values

with quite similar medians. Nevertheless, the presence of some outliers should be noted. These outliers

are because these masks depend not only on the success of the CAM but also on the success of the CRF

algorithm.

For the smoke situation in Figure 5.17(b), it can be seen that the images in the dataset have a rather

dispersed occupancy distribution, with the majority of the images being around 35%. Similarly to what

happened in the fire situation, it is observed that the CAM masks show a higher occupancy than the
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GT values for the same reasons, but in this case, the discrepancy is not so pronounced. As in the fire

situation, with the CRF masks, the smoke occupation distribution in the image becomes quite similar to

the GT values. It can also be seen that the reduction of occupancy of the CAM masks is not so large.

On average, one can conclude that the fire/smoke occupancy in the CAM masks is considerably

higher relative to GT values while for CRF masks the occupancy becomes quite similar, showing the

great importance of the CRF post-processing step in the performance of the full pipeline.

Table 5.8: Ratio with the percentages of occupancy for fire and smoke

Model Ratio Average

Fire
GT/Image 0.179

CAM/Image 0.269
CRF/Image 0.193

Smoke
GT/Image 0.322

CAM/Image 0.373
CRF/Image 0.347

(a) Fire (b) Smoke

Figure 5.17: Box plot of the mIoU for the fire test set

To compare the masks directly with the GT ones, one can use the ratios CAM/GT and CRF/GT

shown in Figure 5.18. The average values, in this case, are not fully representative of the distribution

due to considerable number of outliers. These ratios reinforce what was previously reported. It is again

highlighted the fact that the CAM masks are considerably bigger than those of GT. This is exacerbated

in the fire situation where most of the masks are about two times bigger. As expected, the CRF to GT

ratio is very close to 1 for both fire and smoke. It also demonstrates the great corrective factor of the

CRF algorithm.

Finally, to quantify the CRF algorithm’s reduction factor on the CAM masks, the CRF/CAM ratio
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(a) Fire (b) Smoke

Figure 5.18: Fire and smoke occupancy in the image

is used. It is noticeable, both by the average values of Table 5.9 and the distributions in Figure 5.19,

that the reduction in the size of the masks is quite significant. In the case of fire, this reduction is more

pronounced, being that CRF masks have on average a size that is 60% of the size of the CAM masks.

For smoke, this value is close to 84% since the CAM masks can almost define the shape of smoke.

Table 5.9: Ratio for comparison of CRF and CAM

Model Ratio Average

Fire CRF/CAM 0.6016
Smoke CRF/CAM 0.8463
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(a) Fire (b) Smoke

Figure 5.19: Box plot of the mIoU for the fire test set
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6
Conclusions and Future Work
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Reaching the end of this thesis, it is time to draw some conclusions on the study and work developed,

and state some proposals as future work to prevent failure cases and improve the system.

The lack of data in this field, namely the scarce amount of freely available datasets with pixel-level

annotations together with the expensiveness and subjectivity of manually creating the annotations, has

led to the creation of a system that relies only on weakly-supervised methods. The creation of labels at

the image-level for these methods can be almost effortless and makes the process of gathering new images

almost effortless.

The process of classifying and segmenting fire and smoke zones is already a great challenge using

fully-supervised methods based on deep learning since the shape that fire and smoke zones take can be

very irregular and sometimes very dim. When using weakly-supervised this challenge is even greater

because it is then up to the network to understand which are the class-specific features of fire and smoke

in the entire image. Thus, it was necessary to create a good and complex dataset with several different

examples. It was important to have several examples of fire and smoke individually in order to not

correlate both of them. Also, it was important to have various examples of negative images where none

of are present, to distinguish common co-occurring zones, for example, vegetation.

The proposed method makes use of the powerful capabilities of CNNs on image classification and

their ability to model patterns by finding representative class features. In addition, the method uses the

base of classic methods for fire/smoke detection which is the very characteristic colour pattern.

As a result, the system developed has shown to be able to detect and segment fire and smoke zones in an

accurate and precise way using only these type of methods. In particular, using the CAM method, it was

proven that it is possible to train a classification model only with image-level labels and by extracting

the features that the model uses for the classification prediction, one can construct a slightly rough

heatmap highlighting the fire/smoke zones. Subsequently, by using an energy minimization algorithm,

the CRF, it was possible to transform the rough heatmaps previously obtained into a considerably

accurate segmentation mask of fire/smoke.

Even so, some limitations were noted using these methods. First, it was noted that as the model

does classification in the whole image and the input image size must be small for computational reasons,

images with very small zones of fire/smoke could not be detected. As a suggestion, the use of methods

with a sliding window could be beneficial. Second, the several parameters in the post-processing stage are

static and were tuned in a more generalized way resulting in some undesired situations. In future works,

the tuning process may be done using a learning process, similar to the classification model, resulting in

dynamic parameters that can adapt to each image. Third, the system presents some small oscillations

in the performance results. In future studies, we suggest the use of semi-supervised methods where it

can be combined both fully and weakly supervised methods. This way one could use the few datasets

available annotated at the pixel level with the ease of gathering images to annotate at the image-level.
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By combining both approaches it could be possible to develop a more robust and very accurate method

for the fire and smoke segmentation.

The overall results show that when taking into account the heavy needs of a fully-supervised method,

the proposed weakly-supervised system can strongly compete with them in terms of segmentation per-

formance. For smoke, the proposed methods even achieve identical performance.

In conclusion, the thesis objectives can be considered fulfilled as the proposed system has proven to

be able to accurately generate segmentation masks to detect fire and smoke at the pixel-level using only

weakly-supervised methods at the image-level

A paper [53] from the initial stages of the work presented here was accepted and presented at the

RECPAD 20201 conference.

With this work, we hope to represent a great contribution to the Firefront project and help it to

support the brave firefight teams. We also hope that it will serve as motivation for future works in this

area since the problem of wildfires is still a real situation and represents a catastrophe that seriously

affects human beings and our planet.

1https://recpad2020.uevora.pt/
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[Online]. Available: https://www.pordata.pt/Portugal/Inc%c3%aandios+rurais+e+%c3%a1rea+

ardida+%e2%80%93+Continente-1192-9576

[4] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in

the brain,” Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

[5] S. Sharma, S. Sharma, and A. Athaiya, “Activation Functions in Neural Networks,” International

Journal of Engineering Applied Sciences and Technology, vol. 04, no. 12, pp. 310–316, 2020.

[6] S. Ruder, “An overview of gradient descent optimization algorithms,” pp. 1–14, 2016.

[7] W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image Classification: A Com-

prehensive Review,” Neural Computation, vol. 29, pp. 2352–2449, 2017.

[8] K. K. Singh and Y. J. Lee, “Hide-and-seek: Forcing a network to be meticulous for weakly-supervised

object and action localization.” 2017 IEEE international conference on computer vision (ICCV), pp.

3544–3553, 2017.

[9] C. Redondo-cabrera, M. Baptista-r, and J. L.-S. Roberto, “Learning to Exploit the Prior Network

Knowledge for Weakly-Supervised Semantic Segmentation,” CoRR, vol. abs/1804.04882, pp. 1–13,

2018.

[10] X. Zhang, Y. Wei, J. Feng, Y. Yang, and T. Huang, “Adversarial Complementary Learning for

Weakly Supervised Object Localization,” CoRR, vol. abs/1804.06962, pp. 1325–1334, 2018.

81

https://www.pordata.pt/Portugal/Inc%c3%aandios+rurais+e+%c3%a1rea+ardida+%e2%80%93+Continente-1192-9576
https://www.pordata.pt/Portugal/Inc%c3%aandios+rurais+e+%c3%a1rea+ardida+%e2%80%93+Continente-1192-9576


[11] Y.-t. Chang, Q. Wang, W.-C. Hung, R. Piramuthu, Y.-H. Tsai, and M.-H. Yang, “Mixup-CAM:

Weakly-supervised Semantic: Segmentation via Uncertainty Regularization,” British Machine Vision

Virtual Conference 2020, pp. 1–13, 2020.

[12] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Vi-

sual Explanations from Deep Networks via Gradient-Based Localization,” Proceedings of the IEEE

International Conference on Computer Vision (ICCV), vol. 128, no. 2, pp. 618–626, 2017.

[13] P. Barmpoutis, P. Papaioannou, K. Dimitropoulos, and N. Grammalidis, “A review on early forest

fire detection systems using optical remote sensing,” Sensors (Switzerland), vol. 20, no. 22, pp. 1–26,

2020.

[14] K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, and S. W. Baik, “Convolutional Neural Networks

Based Fire Detection in Surveillance Videos,” IEEE Access, vol. 6, no. c, pp. 18 174–18 183, 2018.

[15] C. Yuan, Y. Zhang, and Z. Liu, “A survey on technologies for automatic forest fire monitoring,

detection, and fighting using unmanned aerial vehicles and remote sensing techniques,” Canadian

Journal of Forest Research, vol. 45, no. 7, pp. 783–792, 2015.

[16] G. Hristov, J. Raychev, D. Kinaneva, and P. Zahariev, “Emerging Methods for Early Detection of

Forest Fires Using Unmanned Aerial Vehicles and Lorawan Sensor Networks,” 2018 28th EAEEIE

Annual Conference, EAEEIE 2018, pp. 1–9, 2018.

[17] R. S. Allison, J. M. Johnston, G. Craig, and S. Jennings, “Airborne optical and thermal remote

sensing for wildfire detection and monitoring,” Sensors (Switzerland), vol. 16, no. 8, 2016.

[18] T. H. Chen, P. H. Wu, and Y. C. Chiou, “An early fire-detection method based on image processing,”

Proceedings - International Conference on Image Processing, ICIP, vol. 3, pp. 1707–1710, 2004.

[19] Y. Zhao, J. Ma, X. Li, and J. Zhang, “Saliency detection and deep learning-based wildfire identifi-

cation in uav imagery,” Sensors (Switzerland), vol. 18, no. 3, 2018.

[20] T. Celik, “Fast and efficient method for fire detection using image processing,” ETRI Journal, vol. 32,

no. 6, pp. 881–890, 2010.

[21] H. Demirel and T. C-elik, “Fire detection in video sequences using a generic color model,” Fire safety

journal, vol. 44, pp. 147–158, 2009.

[22] D.-c. Wang, X. Cui, E. Park, C. Jin, and H. Kim, “Adaptive flame detection using randomness

testing and robust features,” Fire Safety Journal, vol. 55, pp. 116–125, 2013.

82



[23] D. Y. T. Chino, L. P. S. Avalhais, J. F. R. Jr, A. J. M. Traina, and S. Carlos, “BoWFire : Detection

of Fire in Still Images by Integrating Pixel Color and Texture Analysis,” 2015 28th SIBGRAPI

conference on graphics, patterns and images, 2015.
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[41] P. Krähenbühl and V. Koltun, “Efficient inference in fully connected crfs with Gaussian edge poten-

tials,” Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural

Information Processing Systems 2011, NIPS 2011, pp. 1–9, 2011.
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