
Reaction Calorimetry and Thermodynamic & Kinetic
Modelling towards a faster Chemical Development

Mariana Casquilha Castelo Pereira
mariana.casquilha@tecnico.ulisboa.pt
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Abstract

The present work is in the scope of chemical process development in pharmaceutical industry. Phar-
maceutical industry has been shifting to a predictive process development industry. However, there is
still a lack of information on chemical systems in the early stages of the process development. Besides,
some analytical tools in use do not suit the industry needs on the required information in an expedited
manner. In this work, it is presented a systematic study on how to use isothermal reaction calorimetry
to address kinetic and thermodynamic reaction modelling with a view to scale up. After generating
simulated calorimetry and concentrated data, several modelling experiments were performed. This
study demonstrates the power of reaction calorimetry on chemical process optimization and scale-up.
From the present work it was possible to suggest recommendations for a preliminary methodology
to use calorimetric data as a tool for kinetic and thermodynamic modelling towards a faster chemical
development: (1) the use of at least 2-runs of the reaction at two different temperatures (2) how to
combine calorimetry data with on-line concentration data and (3) pre-fitting of the model to the data
before iterative estimation having chemical principles in mind. Overall, the objectives of the thesis
were accomplished, although further studies should be conducted to widen the conclusions to more
complex mechanisms and to validate the methodology on manufacturing scale. Keywords: Kinetics,
Thermodynamic, Modelling, Reaction Calorimetry

1. Introduction

In the pharmaceutical industry, there is a consis-
tent need to ensure that clinical supplies are man-
ufactured and delivered in a timely manner. Deliv-
ering clinical supplies when they are needed re-
quires the use of expedited technology. On an-
other hand, manufacturers are constantly facing
the question of the best use of the limited finan-
cial resources available. Further, process devel-
opment, optimization and scale-up historically tend
to be an iterative approach. This approach entails
time and high costs/wastes, therefore, the industry
has been shifting toward predictability at lab scale
[1, 2]. All things considered, it is needed to fill the
lack of information on chemical reactions, in the ini-
tial stages of the process development. This knowl-
edge is essential to an expedited reaction optimiza-
tion process to predict its scale up design.

Process development and chemical reaction
optimization depend on an appropriate reaction
model. For a large number of pharmaceutical re-
actions such model is not available or it is difficult
to develop within the available time [3]. Despite, it
should be possible to describe the majority of the

chemical reactions using an empirical model that
describes the main and side reactions, with a mini-
mum number of reactions parameters [4, 3]. These
models will allow the kinetic parameters to be esti-
mated by fitting the model to experimental data.

There are many existing analytical techniques
to follow reaction kinetics. Nevertheless, some of
them are time-consuming, specially if calibration
and sampling is needed (e.g. HPLC) – sometimes
sampling in a form different from the original matrix.
Besides, some of these techniques require a so-
phisticated mathematical knowledge to determine
the parameters [5, 6].

Although there are many analytical tools to follow
the reaction kinetics, calorimetry (measurement of
the heat flow) implies that both kinetic and ther-
modynamics contribute to the observed signal, in-
cluding phase changes and heat and mass transfer
phenomena [7] (see Section 2).

For all the mentioned reasons, calorimetry has
become a standard analytical tool for simultaneous
kinetic and thermodynamic measurements. [5, 4,
8, 9, 10, 11, 12, 13].

In this work it is intended to formulate a method-
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ology using reaction calorimetry to study reac-
tion kinetics and thermodynamics, in the scope of
chemical optimization towards its scale-up predic-
tion in fed-batch mode.

2. Background
Reaction calorimetry requires conducting an en-
ergy balance to the semi-batch reactor – eq. (1)
[14]. In a fed-batch reactor, the accumulated heat
energy (q̇ac, W) is equal to the sum of all heat trans-
fer sources: the jacket (q̇flow), the reaction (q̇r) and
the feed (q̇in).

q̇ac = q̇flow + q̇r + q̇in

= mCp
dTr
dt

= U A (Tj − Tr)

+r V (t) ∆Hr + ṁCp (T in − Tr)

(1)

Where, m,Cp, Tr, U,A, Tj , r, V (t),∆Hr, ṁ, T
in

are reaction mixture mass, reaction mixture heat
capacity, reactor temperature, overall heat-transfer
coefficient, heat-transfer area, jacket temperature,
reaction rate, reactor volume, reaction enthalpy,
inlet mass flow rate, inlet stream heat capacity,
temperature of inlet stream, respectively.
If there is another tangible heat phenomena (as
mass or heat transfer) the respective terms should
be included on the balance equation. In this case,
it will only be addressed homogeneous reaction
systems, with negligible enthalpy of mixing.
According to Equation (1), it is easily noted that
the reactor heat transfer capacity has to be char-
acterized – through experimental determination
(solvent test) or estimation by modelling to the data
(without the reaction) [10] or even using empirical
equations [15].

The reaction rate depends on the kinetic con-
stant(s) linked to the mechanism at hand. The ki-
netic constant dependence with the temperature is
expressed with Arrhenius equation – eq. (2).

k = k0 e
− Ea

RT (2)

Where k, k0, Ea,R, T represent kinetic constant1,
the pre-exponential factor1, activation energy (J
K-1), gas constant (J mol-1 K-1) and temperature
(K), respectively.

The heat balance – Equation (1) shows mathe-
matically the dependence of the heat signal of the
reaction calorimeter with the kinetic and thermody-
namic phenomena.

1Kinetics dependent units

As the heat flow rate during a chemical reaction
is proportional to the rate of conversion, calorime-
try represents a differential kinetic analysis method
(eq. (3)) [8]:

q̇r(t) ∝ r(t)V (3)

This relation implies that subtle changes in con-
centration profiles are magnified in heat flow
measurements.
In contrast with calorimetry, other analytical
techniques applied in this context, such as con-
centration measurements, online measurement of
reaction spectra can be compared to an integral ki-
netic analysis methods: the signal/measurements
(si) is proportional to the concentration profiles
(Ci(t)) in mol L-1 – eq. (4)).

si(t) ∝ Ci(t) (4)

This is why it has been defended that combi-
nations of both calorimetry and an integral kinetic
analysis techniques lead to a significant improve-
ment on the kinetic analysis [8, 5, 4, 16, 3, 14, 17].

On another hand, pharmaceutical reactions are
often followed by significant heat release, therefore
they must be truly understood to be properly man-
aged on a factory scale, as thermal instability and
explosive behaviour can be extremely destructive
and costly events [18]. Reaction calorimetry can
help to predict the likely behaviour of chemicals
when reactions, transport and storage are con-
cerned [6].
All things considered, it is worth to include reaction
calorimetry on the chemical development in phar-
maceuticals, to expedite this process. The issue to
be regarded is how should it be established. This
work is addressing this matter by developing a sys-
tematic study of the modelling experiments.

3. Methodology
The systematic study developed during this work
was based on modelling experiments based on
generated data experiments. In these section the
data generator will be described, followed by the
chemical reaction parameters used and the ex-
perimental conditions simulated. Afterwards, the
model will be briefly described.

3.1. Data Generator
The data generator is presented in this section, fol-
lowed by the experiments conditions. The referred
data generator was developed using Microsoft® Of-
fice Excel ® and it was applied to generate concen-
tration and heat flow data profiles.

The system simulated in this study comprises a
fed-batch, lab-scale reaction calorimeter, with vol-
ume V, where an homogeneous reaction is con-
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ducted, in isothermal mode. The reactant A is
fed to the reactor, during a determined time (feed
time), starting at the moment labeled start of feed,
see Figure 1. The reaction taking place in the

Figure 1: Schematic representation of the simulated system:
semi-continuous reaction calorimeter.

calorimeter is described by a two step mechanism.
The generic reaction system represents any series
mechanism composed by two steps of first-order
kinetics eq. (5), where the corrected kinetic con-
stants, k1 and k2, are described by the Arrhenius
equation rearrangement, eq. (6).

A
k1−−→ B

k2−−→ C (5)

k (Tr) = k (Tref ) exp

{
−EA

R

(
1

Tr
− 1

Tref

)}
(6)

Where Tr and Tref represent the reactor temper-
ature and the reference temperature respectively
(K); k (Tr) and k (Tref ) are the kinetic constants
correspondent to each of the temperatures (min-1);
R represents the gas constant (kJ mol-1 K-1) and
Ea is the activated energy, kJ mol-1.

Therefore, the rate law of each step (r1, r2) in
mol min-1 is defined by eqs. (7) and (8).

r1(t) = −k1 CA(t)V (7)

r2(t) = −k2 CB(t)V (8)

Once the mechanism was described, it was
possible to write the mass balances of the three
generic components – eqs. (9) to (11).

V
dCA(t)

dt
= CAQv − r1(t) (9)

V
dCB(t)

dt
= r1(t)− r2(t) (10)

V
dCC(t)

dt
= r2(t) (11)

Where V is the solution volume (mL), CA, CB ,
CC are A, B, and C molar concentrations (mol
mL-1) and Qv is the feed flow-rate (mL min-1). The
mass balance equations allow the generation of

the concentration profiles with time. On another
hand, the heat released (positive) or consumed
(negative) by the reaction (q̇r) can be calculated by
the eq. (12).

q̇ = q̇r = −
∑

(riV∆Hri)

= −(r1V∆Hr1 + r2V∆Hr2).
(12)

Note that the heat flow rate q̇ (W) is equal to the
reaction heat (q̇r, (W). To simplify the heat balance,
the inlet stream was considered to be at the same
temperature than the solution (q̇in = 0). Addition-
ally, in these chemical system there is no phase
change or tangible mixing phenomena. Also, this
generator does not include stirring heat (q̇stirrer),
dissipated heat (q̇loss) or the heat transferred by the
calorimeter jacket (q̇flow). The heat associated to
these calorimeter inner components was consid-
ered to be negligible.
The differential equations were solved numerically,
using the Euler method.
Once the data was generated through the balance
equations, MS Excel® random function was used
in order to add noise to the generated data, repli-
cating the noise associated to the lab equipment
measuring sensors/scales. For that, the random
generated numbers uniformly distributed between
0 and 1 were transformed into a complex normal
distribution f(µ, σ) with mean µ = 0 and variance
σ2 = 1, by applying the following equation system,
eq. (13).

z1 =
√
−2 lnx1 cos (2πx2)

z2 =
√
−2 lnx1 sin (2πx2)

(13)

The result of this transformation represented by
z1 and z2 was added to the data.

3.2. Reaction Parameters
Since the data generator math fundamentals are
already described, the parameters chosen for the
generic reaction may be presented. Table 1 sum-
marizes the kinetic and thermodynamic parame-
ters of the reaction (eq. (5)).

Table 1: Kinetic and thermodynamic parameters of each step
of the reaction system.

Reaction Step ki (Tref = 313.15 K) Eai ∆Hri

i min-1 kJ mol-1 kJ mol-1

1 0.2 80 -120
2 0.4 80 60

The reaction starts with a slow exothermic step,
followed by a faster endothermic step. The reader
may notice that the kinetic constants have the
same order of magnitude, although step 2 is two
times faster than step one (k2

k1
= 2). On another

hand, both steps have the same dependence of
the temperature, expressed by identical Ea value.
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3.3. Virtual experiments
Based on the Equation (5) reaction, several experi-
ments were generated, for instance, by changing
Tr. Further experimental conditions were main-
tained and they are described in Table 2.

Table 2: Experiments description: common condition parame-
ters.

Parameter Unit Value

V0 mL 400
Qv mL min-1 10
Cin

A M 1
Feed time min 2
Start of feed min 1

4. Modelling
Two experiments were used for the systematic
study, at 25 °C and 55 °C. The modelling exper-
iments were performed using DynoChem. The
program model uses the same kinetic, thermody-
namic and math fundamentals. This model com-
prises Rosenbrock integration solver and a Leven-
berg Marquardt fitting solver.

5. Results & discussion
The systematic study is comprised by several mod-
elling experiments using calorimetry data only and
alternatively using calorimetry data combined with
concentration data. Both approaches were tested
stemming from different initial iteration numbers.
The systematization of the initial iteration values al-
lows the direct comparison of the different results
and the analysis of the working range of the model.
The initial iteration values tested are presented in
Table 3 against the reference numbers – the pa-
rameters used on the simulation.

The results are presented following Table 3 se-
quential alignment, increasing the distance of the
iteration initial value to the reference: simulating
decreasingly foreknowledge of the reaction.

For all the modelling experiments the fit was per-
formed 2 times in order to avoid misleading results
resulting from local minimums.

Stemming from initial iteration values (I) – 10%
of deviation – calorimetry data was used to fit the
model. Followed by the same modelling exper-
iment yet using combined data (A concentration
+ heat rate). Both results are summarized in Ta-
ble 4. Figure 2 illustrates the heat rate fitting re-
sults, where it can be verified the model represent-
ing the experimental data. Since the results were
similar, the outcome of the second experiment is
not shown. In fact, according to Table 4, using
both approaches model it was possible to estimate
the kinetic and thermodynamic parameters – max-
imum error of 5.5% using simulated calorimetry
data and 3.7% using the combined approach. Nev-
ertheless, it is worth noting that with the addition of

Figure 2: Model prediction (line) against the experimental data
(points), stemming from 10% deviated initial iteration values us-
ing calorimetry data (σ = 0.02) at (a) 25 °C (b) 55 °C

a concentration profile, the accuracy of the results
increased slightly (Table 4).

The results using calorimetry data stemming
from initial iteration values 50% below the refer-
ence values (II) are presented in Figure 3. Ac-
cording to the Figure 3, the model heat profile is
accurate, although it indicates that such informa-
tion is not sufficient to estimate the concentration
profiles. The modelling outcome while using both
concentration and heat rate data is similar to Fig-
ure 2, therefore it is not presented in this docu-
ment. Table 5 summarizes the analytical results
of the calorimetric and combined approach. Stem-
ming from 50% deviated values, the concentration
profile was revealed to be significant information for
the kinetic and thermodynamic parameters estima-
tion. In fact, the addition of one concentration pro-
file decreases the maximum error associated to the
parameters from 105% to 4%. In due course, the
same modelling experiments were performed from
initial iteration numbers one order of magnitude be-
low the reference parameters (initial iteration num-
ber set III). According to Figure 4, heat rate pro-
file does not comprise sufficient information for the
model to converge accurately. Although there is no
room for improvement in the fit of the heat data,
the concentration profiles show this results are not
reliable. The reaction calorimetry data does not al-
low the correct differentiation of the first and sec-
ond step kinetics. The addition of the concentra-
tion profile does not solved this limitation. In fact
the program was not able to converge when using
calorimetric and concentration data to the param-
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Table 3: Systematic study arrangement: reference kinetic and thermodynamic values against the initial iteration values tested and
corresponding deviation.

Parameter Reference Value Initial Iteration Number
I II III IV

k1 (min-1) 0.2 0.22 0.1 0.02 0.01
k2 (min-1) 0.4 0.44 0.3 0.04 0.01
Ea1 (kJ mol-1) 80 72 40 8 60
Ea1 (kJ mol-1) 80 72 40 8 60
∆Hr1 (kJ mol-1) -120 -132 -60 -12 -120
∆Hr2 (kJ mol-1) 60 66 30 -12 -120

Deviation 10% 50% 90% -

Table 4: Analytical results of the systematic study using
calorimetry data and the combined approach (σ = 0.02): stem-
ming from 10% deviated initial iterative numbers (I)

Parameter Calorimetry Combined
Result Error (%) Result Error (%)

k1 (min-1) 0.195 2.6 0.202 1.1
k2 (min-1) 0.400 0.1 0.400 0.1
Ea1 (kJ mol-1) 81.6 2.0 81.2 1.5
Ea2 (kJ mol-1) 81.5 1.9 79.0 1.3
∆Hr1 (kJ mol-1) -123.2 2.7 -117.4 2.2
∆Hr2(kJ mol-1) 63.3 5.5 57.8 3.7

Table 5: Analytical results of the systematic study using
calorimetry data and the combined approach (σ = 0.02): stem-
ming from 50% deviated initial iterative numbers (II)

Parameter Calorimetry Combined
Result Error (%) Result Error (%)

k1 (min-1) 0.401 100.5 0.202 1.1
k2 (min-1) 3.72E-4 99.9 0.400 0.2
Ea1 (kJ mol-1) 81.7 2.1 81.2 0.1
Ea2 (kJ mol-1) 81.9 2.1 78.9 1.3
∆Hr1 (kJ mol-1) -59.9 50.0 -117.4 2.2
∆Hr2(kJ mol-1) -3.0 105.0 57.8 3.7

eters estimation. Thus, such results are only pre-
sented in the extended version of the thesis. These
initial values are not plausible, showing the fitting
stage of the process development requires expe-
rience and chemical knowledge to obtain reliable
results.

Afterwards, generic initial values were tested (V),
such results are presented in Figures 5 and 6 while
using calorimetry data or combined data, respec-
tively. These experiments were performed to re-
produce the scenario where there is no foreknowl-
edge on the reaction kinetics or its energy produc-
tion/consumption. The corresponding analytical re-
sults are presented in Table 6. Overall, these re-
sults show no accuracy on the kinetic and thermo-
dynamic parameters. The fit of the model to the
heat data (Figure 5) can not assure the correct de-
termination of the parameters (accuracy error up to
300%). In fact, the parameters which have minor
error values associated are calculated from closer
initial iterative values (Eai and ∆Hr1), and that is
consequence of a coincidence. When A concen-
tration is added to the fitting window, it produces

Figure 3: Model prediction (line) against the experimental data
(points), stemming from 50% deviated initial iteration values us-
ing calorimetry data (σ = 0.02) at (a) 25 °C (b) 55 °C.

a slight improvement on the first step correspond-
ing parameters determination, as expected. Nev-
ertheless, this addition does not solve the lack of
information on the second step. Although, this is
not a recommended practice, sometimes it is ap-
plied. This study shows that reagent concentration
and heat profiles of two experiments at two differ-
ent temperatures do not comprise sufficient infor-
mation for modelling from generic values.

Overall, the results prove that calorimetry is a

Table 6: Analytical results of the systematic study using
calorimetry data and the combined approach (σ = 0.02): stem-
ming from generic initial iterative numbers (IV)

Parameter Calorimetry Combined
Result Error (%) Result Error (%)

k1 (min-1) 0.408 103.7 0.231 15.5
k2 (min-1) 3.06E-5 100.0 0 100.0
Ea1 (kJ mol-1) 82 3.0 81.7 2.1
Ea2 (kJ mol-1) 60 25.0 60 25.0
∆Hr1 (kJ mol-1) -60 50.2 -70 41.1
∆Hr2(kJ mol-1) -120 300.0 -120 300.0
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Figure 4: Model prediction (line) against the experimental data
(points), stemming from 90% deviated initial iteration values us-
ing calorimetry data (σ = 0.02) at (a) 25 °C (b) 55 °C

Figure 5: Model prediction (line) against the experimental data
(points), stemming from generic initial iteration values using
calorimetry data (σ = 0.02) at (a) 25 °C (b) 55 °C

Figure 6: Model prediction (line) against the experimental data
(points), stemming from generic initial iteration values using
combined data at (a) 25 °C (b) 55 °C

powerful tool for kinetic and thermodynamic mod-
elling, although this modelling experiments should
be conducted prudently. The chemical behaviour
of the species at hand should always be consid-
ered and pre-fitting of the data is recommended.

These experiments also revealed the importance
of on-line concentration data on the parameters
estimation, specially when the foreknowledge of
the reaction is limited. In order to understand if the
on-line tools ensure advantages to the kinetic and
thermodynamic modelling, the same experiments
were carried out yet simulating discrete sampling
instead of full progress concentration profiles: 6
concentration points instead of 3201 (at 25 °C)
and 4 points instead of 5455 (55 °C). The off-line
simulated samples were chosen in order to cover
the different phases of the reaction: the initial point
before the addition, after the addition and in the
stationary phase.

Table 7: Analytical results of the systematic study using the
combined approach (σ = 0.02): discrete off-line samples vs
on-line continuous concentration profiles, stemming from 10%
deviated initial iterative numbers (I).

Parameter Off-line On-line
Result Error (%) Result Error (%)

k1 (min-1) 0.228 14.0 0.202 1.1
k2 (min-1) 0.443 10.7 0.400 0.1
Ea1 (kJ mol-1) 88.3 10.4 81.2 1.5
Ea2 (kJ mol-1) 89.3 11.6 79.0 1.3
∆Hr1 (kJ mol-1) -88.8 26.0 -117.4 2.2
∆Hr2(kJ mol-1) 28.3 52.9 57.8 3.7

6



Figure 7: Model prediction (line) against the experimental data
(points), stemming from 10% deviated initial iteration values us-
ing calorimetry data combined with discrete concentration data
(σ = 0.02) at (a) 25 °C (b) 55 °C

The modelling experiments using discrete con-
centration points and stemming from 10% deviated
initial values (I) are presented in Figure 7. The cor-
responding analytical results are presented in Ta-
ble 7. According to fig. 7 it is possible to verify the
fit of model to the calorimetry data is not 100% ac-
curate, although the fit to the concentration seems
right. Table 7 presents the previous simulation an-
alytical results and their respective accuracy error
values, against the previous corresponding analyti-
cal results using the continuous concentration pro-
files. Note the previous study has taken into ac-
count only one concentration profile (reagent A),
in opposition to this one with concentration sam-
pling of three different species: reagent A, inter-
mediate B and product C. Even though the three
species were taken into the simulation, the results
are more accurate while using only A concentra-
tion complete profile: 14.6 in opposition to 1.1%
(k1), 10.7 in opposition to 0.1% (k2), 10.4 in oppo-
sition to 1. 5% (Ea1), 11.6 in opposition to 1.3%
(Ea2), 26.0 in opposition to 2.2% (∆Hr1) and 52.9
in opposition to 3.7% (∆Hr2). As expected, the
use of continuous on-line concentration data im-
plies significant improvement on the accuracy of
the results, over discrete sampling. This type of
data improves not only the accuracy of the results,
as it would save time on the parameters determi-
nation process: at the experimental stage and at

Figure 8: Model prediction (line) against the experimental
data (points), stemming from generic initial iteration values us-
ing calorimetry data combined with discrete concentration data
(σ = 0.02) at (a) 25 °C (b) 55 °C

the modelling stage. Nevertheless, off-line limited
sampling methods are currently in use, for instance
off-line HPLC (vide Section 1)
Afterwards, the generic initial iteration values were
tested IV (Table 3). Figure 8 represent the visual
outcome of the simulation, while Table 8 presents
the results from discrete against continuous con-
centration data.

Table 8: Analytical results of double experiment study: stem-
ming from generic initial iterative numbers, using calorimetry
data with or without concentration data with noise associated
(σ = 0.02).

Parameter Off-line On-line
Result Error (%) Result Error (%)

k1 (min−1) 0.235 17.6 0.231 15.5
k2 (min−1) 0.459 14.8 0 100.0
Ea1 (kJ mol−1) 82 9.4 81.7 2.1
Ea2 (kJ mol-1) 88.6 10.7 60.0 25.0
∆Hr1 (kJ mol-1) 71.2 159.4 -70.6 41.1
∆Hr2(kJ mol-1) -107.3 278.9 -120.0 299.9

Stemming from generic values, the difference
between the accuracy error is smaller, since the
results using continuous profiles were already not
satisfactory (error up to 300%). The addition of
data about B and C has favored the estimation of
the second step kinetic parameters with reason-
able margin (error up to 18%). Regarding the ther-
modynamic parameters, the accuracy is still not ac-
ceptable (error up to 279%). These results sustain
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the previous conclusion: the data should be anal-
ysed before modelling. Nevertheless, this estima-
tion becomes harder with less data.

These brief study comparing discrete with con-
tinuous concentration data combined with reaction
calorimetry shows the improvement on the results,
when using for instance spectroscopic probes over
discontinuous sampling methods. Even though
these study compares 1 concentration profile with
3 sample sets, the results are leaning on the
probes over the classical methods. In fact the on-
line technique is more expedite and allows one to
follow the reaction in real time and without sam-
pling. Additionally, when the modelling experi-
ment has more points as in this case, the experi-
mental noise possibly becomes more insignificant.
However, it should be taken into account that not
all species are identifiable through spectroscopic
probes and it is different from probe to probe de-
pending on the radiation detected, which is why
only one concentration profile was used in the pre-
vious study. On another hand, it would be possi-
ble to increase the number of samples taken dur-
ing the reaction. In fact, in the future, it would
be interesting to test this approach with different
sample quantities to find the minimum samples re-
quired according to different initial iteration num-
bers. However, one should bare in mind HPLC
sampling and data treatment are more laborious,
even if it is installed on-line.

6. Conclusions
This work was based on simulated data used to
perform different modelling experiments in order to
study how to implement reaction calorimetry in the
chemical reaction optimization process. The study
was limited to a consecutive 2-step reaction. Two
simulated isothermal reaction calorimetry experi-
ments were used to estimate ki Eai and ∆Hri. The
modelling experiments comprised heat rate data
only, heat rate combined with progress concentra-
tion profile and heat rate combined with discrete
sampling. This study supports a scientific base in
which the final methodology could be built and pos-
sibly extended to different reactions.

To begin with, the modelling experiments even
if they are done in a chemical-specific programs
should be run with caution, having chemical prin-
ciples in mind. Pre-fitting the data is highly recom-
mended instead of the iterative estimation of the ki-
netic and thermodynamic parameters. To that end
a molecular modelling tool could be combined[19].
These recommendations for the modelling stage
should avoid misleading, non-reliable results from
math optimization lacking chemical validity.

This study conclusion corroborate the previous
ones (see Section 1): the concentration data is
important for a faster and more accurate param-

eter determination, therefore, chemical develop-
ment. In fact, the calorimetry data has the limitation
of not differentiating the heat sources. To address
this limitation, concentration data should be com-
bined. On another hand, the concentration based
measurements do not give information on the en-
ergy associated to the chemical phenomena. This
information is crucial for safe and optimal scale-up,
as explained in Section 1.

Regarding the comparison study between the
discrete samples (simulating for instance off-line
HPLC samples, widely used in Pharmaceutical
Industry) and progress based measurements, for
a more descriptive knowledge and faster devel-
opment the on-line are better suited analytical
techniques. For that reason, they are already
being used for kinetic modelling, as described in
Section 1.

This approach was revealed to be efficient to
study the methodology without experimentation.
Therefore, it would also be interesting to extend
this study to different 2-step reactions with differ-
ent kinetic and thermodynamic parameters. For
instance, to simulate different k1

k2
and assess if

this relation as an impact on the experiments that
should be carried out to accomplish an accurate
parameter estimation. Likewise, different combina-
tions (order and magnitude) of ∆Hri could be as-
sessed. The studied reaction has a simple mech-
anism. It would be interesting to address different,
gradually more complex mechanisms. Probably,
with increasingly complex systems, increasingly
experimentation and/or data would be needed.

The generator built during this work would allow
all these possibilities by simply changing the kinetic
rate law, for instance, adding more steps involved
on the kinetics or changing to a parallel mecha-
nisms, among others. Furthermore, it can be also
added mixing phenomena to the heat balance to
simulate more complex mixtures.

The methodology of safe and optimal scale
up based on the reaction kinetics and thermody-
namics should include the reactor heat transfer
characterization and its scale up prediction, as
demonstrated in the extended version.

Overall, the aims of the thesis were achieved:
some recommendations for the methodology were
extracted from this study, contributing to an pre-
dictive chemical reaction development. Neverthe-
less, more studies should be conducted to widen
the conclusions to more complex cases.
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