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We construct a flow-based model for the adaptive network formation of Physarum, which solves
some inconsistencies of previous models. We first derive a general class of equations describing
the adaptation and flow dynamics of a static network comprised of elastic channels filled with an
incompressible fluid undergoing a Hagen-Poiseuille flow. An explicit form of the model is obtained
by minimising the total power dissipated by the network. Considering a more general functional
form of the adaptive equations a phase transition in the system is also found. The model is used
to build efficient and resilient networks in an arena mimicking mainland Portugal by considering
fluctuating loads. Finally, the adaption model is extended to incorporate the network growth in the
presence of multiple food sources. The coupling of both processes produces networks with similar
traits to several network systems found in nature. We found that when the food sources operate
alternately, the model can replicate the direct connections between the food sources observed in
Physarum.
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Hagen-Poiseuille

I. INTRODUCTION

Recently, attention has focused on the acellular slime
mould, Physarum polycephalum, as an ideal model organ-
ism to study the interplay between structure and function
in biological transport networks, and to understand the
mechanism underlying several complex behaviours dis-
played by simple organisms, such as the adaptive net-
work formation. Physarum is a single-celled amoeboid
organism that grows as an extensive and highly adaptive
network of veins filled with endoplasmic fluid. As it for-
ages and progressively accommodates new food sources,
Physarum dynamically optimises the connections be-
tween them, by adapting the thickness of the network
veins. The adaptation is believed to be related to local
changes in the flux flow, driven by rhythmical contrac-
tions of the vein walls whose frequency and amplitude
are regulated by food sources and other external stimuli
[1]. Despite lacking any kind of neural circuit, Physarum
displays high-level behaviours, arising from the network
adaptation. For instance, it can solve mazes [2], and in
the presence of multiple food sources, it can build net-
works with a trade-off between total length, transport
efficiency and fault tolerance, comparable to real human-
made networks [3].

Different flow-based models have been proposed to de-
scribe the network optimisation of Physarum. These
models describe the organism as a Hagen-Poiseuille flow
network with adaptive channel conductivities. The op-
timisation is described by ad hoc local evolution laws
for the conductivities based on the current-reinforcement
principle [3, 4], where the flow modifies the network archi-
tecture, which in turn affects the flows. However, these
models violate some basic physical principles, such as
the conservation of volume of the circulating fluid, as as-
sumed by a Hagen-Poiseuille flow. Furthermore, in gen-

eral, they don’t incorporate network growth.
The goal of this work is to build a generic model for

the network formation and optimisation as observed dur-
ing the growth of Physarum polycephalum that addresses
these two issues.

II. MODEL FORMULATION

The geometry of Physarum’s vein network is described
as an undirected, planar and connected graph, G =
(V,E), embedded in the Euclidean plane, where V is the
set of N nodes with coordinates (xi, yi) for i ∈ V , and E
is the set ofM straight edges (i, j), connecting the node i
and j. The edges represent the network veins (channels),
and the nodes the junctions between them.

Each node i is characterised by a pressure pi. An edge
(i, j) is assumed to be a cylindrical elastic channel with
a fixed length Lij , and a radius rij which can change in
response to the magnitude of flux |Qij | flowing through
it. The fluid in the network is viscous and incompress-
ible, and undergoes a Hagen-Poiseuille flow, being the
channels fluxes Qij given by

Qij =
πr4ij(pi − pj)

8ηLij
=
Dij(pi − pj)

Lij
(1)

where Dij is the conductivity of the channel (i, j), and
Dij = Dji. If Qij > 0, then the fluid flows from i to j,
while Qij < 0 means that the flow is from j to i. The
ratios Dij/Lij can be seen as edge-weights.

The volume of a channel (i, j) is Vij = πr2ijLij . As
Dij = πr4ij/8η, we have Vij =

√
8πηLij

√
Dij . As the

fluid is incompressible, the volume of fluid in the network
is constant and is
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V =
∑

(i,j)∈E

Vij = β
∑

(i,j)∈E

Lij
√
Dij , (2)

where β =
√

8πη. We assume that the network flows
are driven by a set of sources and sinks (terminals), lo-
cated at fixed nodes, which mimic stimulated regions of
Physarum. Each node i is thus characterised by a net flux
qi. If a node i is a source, it injects flux in the system,
and qi > 0. If the node is a sink, it removes flows from
the system, and qi < 0; otherwise qi = 0. The volume
conservation of the fluid imposes that

∑
i∈V

qi =
∑

i∈sources
qi +

∑
i∈sinks

qi = 0 . (3)

The channel flux can be determined by the conserva-
tion of the flux at each vertex i∑

j∈N (i)

Qij = qi , i ∈ V , (4)

where N (i) = {j : (i, j) ∈ E} is the set of the neighbour
nodes of the node i.

Regarding the adaptation dynamics of the network,
we assume that the area of channels, πr2ij ∝

√
Dij , can

change in response to the fluxes, and make the ansatz

d

dt

√
Dij = f(|Q|)− µ

√
Dij , (5)

where f(Q) is an unknown function of all the network
fluxes Q, with f(0) = 0, which generically describes the
channel expansion due to the flux. The second term rep-
resents the tube shrinkage at a rate µ > 0 in the absence
of flux. Below, we discuss the consistency of the ansatz.

By differentiating both sides of (2), the conservation of
the volume can be described by the following constraint

dV
dt

= β
∑

(i,j)∈E

Lij
d

dt

√
Dij = 0 . (6)

Replacing (5) in the last equation and using (2) implies
that

∑
(i,j)∈E

Lijf(|Q|) = µ
∑

(i,j)∈E

Lij
√
Dij = µ

V
β

(7)

is constant. In order to satisfy this condition, it’s suf-
ficient to define f in terms of a new function g by the
relation

f(|Q|) :=
µ

β
V g(|Qij |)∑

(k,m)∈E
Lkmg(|Qkm|)

. (8)

By introducing the last expression into the ansatz (5),
and redefining the time scale τ = µt we obtain

d

dτ

√
Dij =

V
β

gij∑
(k,m)∈E

Lkmgkm
−
√
Dij , (i, j) ∈ E

(9)
where gij ≡ g(|Qij |). Therefore, we conclude that for
any choice of the function g, the volume of the fluid in a
network with adaptive channels’ conductivities evolving
according to (9) is conserved over time. Thus, it may
correctly describe the adaptation of a Hagen-Poiseuille
flow network. Note that the adaptation rule (9) depends
on the global structure of the flows through the term Z ≡∑

(k,m) Lkmg(|Qkm|), making the adaptation explicitly
a non-local process, in contrast to previous models [3]
where the coupling of the system’s dynamics stems only
from conservation of the flux at the nodes (4).

III. MINIMISATION OF ENERGY
DISSIPATION

In order to analyse the temporal evolution of a net-
work following the adaptation dynamics (9), the function
g must be chosen. Here, the choice of g is made by intro-
ducing the criterion of minimisation of the total power
dissipated during the flow (dissipation), subject to the
constraint of the fixed volume of fluid and assuming a
steady flow imposed by a fixed set of sources and sinks
[5].

When a viscous fluid flows through a channel, some
energy is lost due to friction. The total power dissipated
by a Hagen-Poiseuille flow network is

P =
∑

(i,j)∈E

∆pijQij =
∑

(i,j)∈E

Q2
ij

Dij
Lij . (10)

We seek to minimise the dissipation rate, P, of a steady
flow network with respect to

√
Dij with (i, j) ∈ E, sub-

ject to the local constraints of flux conservation (4), and
the additional global constraint of a constant volume, V
(incompressible fluid). The problem consists of minimis-
ing the following Lagrangian

L = P − λ(V − β
∑

(k,m)∈E

√
DkmLkm) (11)

where λ is a Lagrangian multiplier. The set of conduc-
tivities that minimises L is the solution of
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∂L
∂
√
Dij

=

−Q2
ij

D2
ij

Lij + 2
∑

(k,m)∈E

Qkm
Dkm

∂Qkm
∂Dij

Lkm

+λβ
Lij

2
√
Dij

)
2
√
Dij = 0

∂L
∂λ

= V − β
∑

(k,m)∈E

Lkm
√
Dkm = 0.

If we assume time-independent sources and sinks, one
can show that the second term on the right-hand side of
the first equation is zero (cf. Lemma 2.1 in [6]). Solving
these equations with respect to Dij and λ, we find that
the non-trivial values of conductivities that minimise the
total dissipation of the network flow are

Dij =

Vβ Q
2/3
ij∑

(k,m)∈E
Q

2/3
kmLkm


2

. (12)

On the other hand, we find that the non-trivial steady
states of the volume-preserving adaptation law (9) satisfy

d

dτ

√
D∗ij = 0 ⇔ D∗ij =

V
β

gij∑
(k,m)∈E

Lkmgkm


2

.

(13)
Comparing (12) with (13), we conclude that for the

choice of gij = Q
2/3
ij , the total dissipation of the network

at the steady state is minimal, assuming a constant dis-
tribution of nodes flux, q, during the adaptation process.
This specific choice led us to consider the more general
class of polynomial functions, gγ(|Qij |) := |Qij |γ , where
γ > 0 is a new parameter, and the absolute value in
Qij emphasises that conductivities are independent of
the flow direction. In the following, we analyse the evo-
lution of the system subject to the adaptation dynamics

d

dτ

√
Dij =

V
β

|Qij |γ∑
(k,m)∈E

Lkm|Qkm|γ
−
√
Dij (14)

as a function of the parameter γ.
As a side note, for the simplest case of a single elastic

channel with length L12 and conductivity D12, the equa-
tion (9) reduces to d

dτ

√
D12 = V/(βL12) −

√
D12, which

has a unique stable fixed point for
√
D∗12 = V/(βL12),

coinciding with (12). Therefore, according to our model
(9), for a Hagen-Poiseuille flow on a single elastic tube,
the radius of the tube at the steady state minimises the
power dissipated by the flow, regardless of the choice of
g. This property is consistent with the distribution of

channel fluxes arising from the Kirchhoff Law (4), which
is by definition the one which minimises the total power
dissipated [7], and thus justifies the ansatz made in (5)
by adding the term

√
Dij .

IV. METHODS

A. Algorithm

The algorithm used to simulate our model is described
in the following. First, we generate a planar graph, G,
embedded in the two-dimensional Euclidean space, which
represents the initial geometry of Physarum’s network.
The edge lengths Lij are obtained based on the nodes’
positions. These two remain fixed throughout the sim-
ulation, and only the conductivities, Dij are the target
of the adaptation. Some of the nodes are assigned as
sources or sinks and have a net flux different from zero,
such that the constraint (3) is verified. The initial condi-
tions of our dynamical system are the initial edges con-
ductivities, Dij(0). Usually, we consider an initial ho-
mogeneous distribution, and if they aren’t specified, it’s
assumed Dij(0) = 1 for all edges (i, j) ∈ E. The initial
conductivities are used to compute the total volume of
fluid through (2), where we always consider the parame-
ter β = 1.

Given the distribution of nodes’ net fluxes, q, and the
initial set of edge conductivities, the temporal evolution
of the system starts with the computation of the channel
fluxes, Qij by solving the linear system (4). Then, based
on those fluxes, the conductivities of all the channels are
updated according to (14), or more generally, according
to (9) given a predefined function g. The new channel
conductivities are used to compute the new channel fluxes
in the next time step of the algorithm. These steps are
repeated over time until a steady state of channel conduc-
tivities is eventually reached. From the numerical point
of view, we consider that a steady state is reached when
the condition max

(i,j)∈E
|Dij(n∆τ)−Dij((n−1)∆τ)| ≤ 10−6

is verified, where n is the first integer for which the
inequality is verified, and ∆τ is the time increment
used to solve numerically the adaptation rule (9). The
time of convergence of the adaptation algorithm is thus
τ∗ = n∆τ <∞.

The geometry of the initial networks was generated
through a Delaunay Triangulation of a set of points rep-
resenting the nodes, in order to avoid the influence of
lattice symmetries in the results.

B. Computation of the network flows

The channel fluxes in each time step are computed by
first finding the pressures of the nodes. If we define p
and q as the N -dimensional vectors whose ith elements
are respectively the pressure pi and the net current qi of
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the ith node, then the linear system (4) can be rewritten
in the matrix form as Lp = q, where L is a N × N
symmetric matrix with entries

`ij =

(∑
k

Cik

)
δij − Cij , (15)

with Cij = Dij/Lij . Finally, once the pressures of the
nodes are determined, the channel fluxes can be com-
puted through (1).

C. Numerical Scheme

In this work, we adopt a simple explicit Euler numer-
ical scheme with a time step ∆τ , which results in the
following discretisation of (9)

√
Dn+1
ij =

√
Dn
ij + ∆τ

V
β

gnij∑
(k,m)∈E

Lkmgnkm
−
√
Dn
ij

 ,

(16)
where Dn

ij denotes the conductivity of the edge (i, j) at
the time τ = n∆τ , i.e Dn

ij ≡ Dij(n∆τ) and similarly
gnij ≡ g(|Qij(n∆τ)|). It’s straightforward to show that
the Euler method conserves the volume of the channels
from one step to another, as required.

Most of the simulations were carried out with relatively
a large time increment, ∆τ = 0.1, due to computation
power limitations.

V. EXPLORATION OF THE MODEL

We started by performing simple tests on the model.
In this work we adopt the following conventions: the
sources are represented by yellow circles, the sinks are
represented by red triangles, and the thickness of the
lines representing the edges is proportional to their ra-
dius ( D1/4

ij ). The initial network is also shown in light
red.

A. Network temporal evolution

In Figure,1 we’ve simulated the adaptive mechanism
on a setting mimicking the Physarum scenario. We’ve
considered an an organism with a circular shape in the
presence of a central food source which acts as a source
of nutrients flux with intensity qsource = 1. The nu-
trients are equally distributed between all the nodes at
the boundary, which behave like sinks, simulating regions
where there is a continuous nutrient uptake so that the
eventual growth of the organism may occur (which is ne-
glected for now).

The final network shows a preferential radial orienta-
tion consistent with the flux direction and resembles in
some degree the networks displayed by Physarum. How-
ever, the key difference is that Physarum networks have
some redundancy and hierarchy of veins, which is not
observed in the simulations.

In all the simulations, the adaptation dynamics (14) for
γ = 2/3 resulted in steady-state networks which looked
like trees, i.e. acyclic connected graphs where any two
vertices are connected by exactly one path. This is partly
due to assuming fixed sources and sinks, and thus neglect-
ing flux fluctuations that are believed to be important for
the formation of those redundant paths [8, 9]. The im-
pact of the flux fluctuations will be explored later.

B. Initial Conditions

We have studied the uniqueness of the steady state so-
lutions of dynamics (14) for γ = 2/3. Considering the
same configuration, we simulated the dynamics starting
from tested different sets of initial conductivities, draw
each time from a uniform distribution in the interval
[0,2], i.e. Dij(0) ∼ U(0, 2). Figure 2 shows the steady-
state networks of two simulations on a configuration of
3 sources and 5 sinks. We can conclude that for a given
setting the system may have multiple steady-state solu-
tions, as one could have expected.

One can also show that the adaptive equations (14)
are invariant under scaling transformations of the initial
conductivities. This implies that if the latter are scaled
by a global factor, the conductivities of the steady state
are also scaled by the same factor, but the topology of the
steady-state graph remains the same. This was confirmed
by numerous simulations.

C. Phase Transition

Considering the same Physarum scenario of the simu-
lation in Figure 1, we have simulated the dynamics (14)
for different values of γ ∈ [0, 2] starting from random ini-
tial conductivities, Dij(0) ∼ U(1/2, 3/2). Two examples
of the steady-state networks reached by the system for
different values of γ are shown in Figure 3.

Extensive simulations revealed a drastic change in the
topology of the steady-states for γ = 1/2, the existence
of a phase transition in the system. For γ < 1/2, the
steady-state networks have many loops and channels with
similar radius. By contrast, for γ > 1/2 no loops remain,
and the steady states are trees spanned by the central
source and the boundary sinks, with a clear hierarchy of
veins thickness. However, once more we haven’t found
networks with a reticulated hierarchic structure for any
value of γ, as observed in the real networks produced by
Physarum.

The phase transition at γ ' 1/2 was quantified
through the evaluation of different network metrics at the
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t = 0

iterations = 1

 Parameters
 = 0.67 

L = 30
mesh = disk
noise = 0.0
G seed = 2
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = 42
dt = 0.1
fs_seed = 2

t = 60

iterations = 55

 Parameters
 = 0.67 

L = 30
mesh = disk
noise = 0.0
G seed = 2
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = 42
dt = 0.1
fs_seed = 2

t = 120

iterations = 115

 Parameters
 = 0.67 

L = 30
mesh = disk
noise = 0.0
G seed = 2
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = 42
dt = 0.1
fs_seed = 2

t = 300

iterations = 295

 Parameters
 = 0.67 

L = 30
mesh = disk
noise = 0.0
G seed = 2
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = 42
dt = 0.1
fs_seed = 2

FIG. 1: Snapshots of a simulation replicating Physarum’s network adaptation for γ = 2/3. The flux is driven by a central
source (yellow) and the sinks (red) placed at the boundary of the organism, which represents stimulated regions with high

metabolic activity. The source gives qsource = 1, which is evenly distributed between the sinks.

iterations = 315

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = 42
I0 = 1 
D0

ij  = (0, 2)
dt = 0.1

D0 =  {D0}

iterations = 311

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = 42
I0 = 1 
D0

ij  = (0, 2)
dt = 0.1

D0 =  (0, 2)

FIG. 2: Dependence of the steady states’ topology on the
initial conductivities (qsource = 1/3, qsink = −1/5, γ = 2/3).
Each steady state was obtained by considering a different
random set of initial conductivities, Dij(0) ∼ U(0, 2).

iterations = 2067

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 3.5976
Lnetwork = 54.4237

L = 50.8261
= 1412.7608 %

= 0.47

(a) γ = 0.47 iterations = 208

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 3.5976
Lnetwork = 15.9723

L = 12.3747
= 343.9658 %

= 1.18

(b) γ = 1.18

FIG. 3: Dependency of the steady states of the dynamics
(14) on γ, for the same configuration of Figure 1.

steady-state of each γ. The first two are the total power
dissipated by the network (10) and its total length, L.

Finally, we have considered the loop density [8], LD,
as a simple measure of the network’s redundancy, defined
as the number of independent loops of the steady-state
network, normalised by that of the initial network , which
in our case, corresponds to the number of triangles of the
initial Delaunay triangulation. Since the networks are
connected and planar, the number of loops or faces, f ,
can be determined using Euler’s formula f = 1+M −N ,
where M = |E| is the number of edges, and N = |V | the
number of vertices.
Note that only edges with conductivities above a thresh-
old (Dthr = 5×10−4) were considered in the computation
of the total length and the number of loops of the final

networks.
The dependency of these quantities on γ is plotted in

Figure 4. The change in the slope of the network dissipa-
tion, P(γ), observed at γ = 1/2, suggests the existence
of a discontinuity on its first derivative with respect to γ,
which may correspond to a first-order phase transition,
according to the Ehrenfest classification.

Contrary to expectations, Figure 4b shows that the
minimum of P(γ) is not reached for γ = 2/3, as derived
in (12). This is most likely due to the large contributions
of the channels with very low conductivities and fluxes to
the uncertainty of the power dissipated, which are added
from one step to another. Other configurations of termi-
nals were also tested, and in most cases, the minimum
was indeed reached at γ = 2/3.

The transition is even more clear in the plots of to-
tal length (Figure 4c) and loop density (Figure 4d). In
particular, the absence of loops for γ > 1/2, confirms
that the steady-states are trees, assuming the threshold
Dthr = 5 × 10−4. Further simulations revealed that the
phase transition is independent of the initial distribution
of conductivities and of the configuration of terminals.

VI. APPROXIMATING PORTUGAL’S
RAILWAY SYSTEM

The design of an optimal network requires a com-
plex trade-off between the production cost, transport effi-
ciency and fault tolerance. As the Tokyo experiments [3]
showed, Physarum produce networks with a good com-
promise between these three metrics, and comparable to
those of real-world infrastructure network, in particular,
to the Tokyo railway system.

Inspired by those experiments, we have simulated the
adaptation dynamics (14) for different values of γ consid-
ering a mesh with the shape of mainland Portugal. We
have considered a configuration of 25 terminals, repre-
senting the geographical locations of the 18 Portuguese
district capitals and 7 additional major cities, except
for the Viseu district which was represented by the city
Mangualde for convenience. The resulting networks were
compared with the section of the Portuguese rail network
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(d) LD
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FIG. 4: Plots of different metrics of the steady-state networks, as function of γ. (a) Network power dissipated normalised by
P0 ≡ P(γ = 0), P/P0. (b) Detailed view of P/P0 near γ = 2/3 (c) Network length, L, normalised by L0 ≡ L(γ = 0). (d)
Network loop density, LD. The vertical dashed line marks the transition at γ = 1/2. Note the discontinuity of the slopes of

the network’s dissipation, total length and loop density.

which connects those cities [10] as depicted in Figure 5.

Valença

Viana do 
Castelo Braga

Bragança

Vila Real

Mangualde
(Viseu) Vilar 

Formoso
Guarda

Castelo 
Branco

Porto

Aveiro

Coimbra

Leiria

Portalegre

Elvas

Santarém

Évora

Beja

Lisboa

Setúbal

Sines

Lagos Faro Vila Real de 
Santo António

Pocinho

(a) Railway
(1384, 313, 0.45)

(b) MST
(1848, 417, 0.00)

FIG. 5: (a) Approximation of the part of the Portuguese
rail network, which connects all the 18 district capitals

(green nodes) and 5 additional terminal cities (red nodes.
(b) The MST spanned by the city nodes.

The performance of the optimised networks was evalu-
ated in terms of cost, transport efficiency and fault toler-
ance. The total cost of producing the network was mea-
sured by its total length (TL). The transport efficiency
(TE) is defined as the inverse of the average minimum
distance (MD) between all the distinct pairs of termi-
nal cities in the final graph. Lastly, the fault tolerance
(FT) is defined as the probability of the network remain-
ing connected after a single edge is removed. Note that,
as before, only the edges with conductivities above the
threshold, Dthr = 5× 10−4 are considered in the compu-
tation of the three metrics of the steady-state networks.

The final networks were also compared with the mini-
mal spanning tree (MST) and the complete graph (CG)
spanned by the city nodes. The MST is by definition the
graph that connects all the city positions with minimal
possible cost (TL), while the CG is the graph that con-
nects every pair of cities by a distinct edge, maximising,
therefore, the transport efficiency and the fault tolerance
(FT= 1) at the expense of a tremendous cost. The cost,
transport efficiency and fault tolerance of the final net-

works were normalised to the respective values for the
CG, yielding TLCG, TECG, FTCG. To compare the over-
all performance, the trade-off between the three was cap-
tured by two benefit-cost measures, defined as the ratios
BCRTE= TECG/TLCG and BCRFT= FTCG/TLCG.

Until now we have only considered the adaptation un-
der a fixed set of sources and sinks. The previous analy-
sis revealed that this either resulted in tree-like networks
(γ > 1/2) with zero fault tolerance, or poorly-optimised
networks (γ < 1/2) with large costs. Therefore, in both
cases, the networks have an overall low performance, con-
versely to the ones built by Physarum. To tackle this is-
sue, we now consider time-dependent sources and sinks.
At each step of the algorithm, two nodes are randomly
selected from the set of city nodes to drive the flow: one
acts as a source with intensity qsource = I0 (I0 > 0) and
the other as a sink qsink = −I0, while the remaining ter-
minals have q = 0 [3]. This emulates more closely the
shuttle streaming characteristic of Physarum networks,
by changing the flow direction in each vessel over time,
although not in a periodic way.

We consider that the algorithm converges when the
topology of the network remains unchanged in a period
of 500 iterations. In this case, a smaller time step was
used, ∆τ = 0.02.

A. Dependence of the performance on γ

Numerous simulations were carried out for different
values of γ, considering the same mesh, initial conditions
(Dij(0) = 1) and seed. Some examples of the different
networks reached by the system are given in Figure 6. For
γ < 1/2, most of the initial mesh remains and very few
preferential pathways are formed, resulting in networks
with a huge cost. As γ is increased the redundant paths
progressively disappear, and the system slowly converges
towards the MST solution (Figure 5b). The minimisa-
tion of the cost is achieved with the inevitable complete
loss of the network’s robustness.

The trade-off between the network’s cost, transport
efficiency and fault tolerance can be better quantified by
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Parameters

 = 0.45 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 7500

Metrics
Steady-State 

TL = 30031.277
MD = 236.492
FT = 0.0
TL_mesh = 0.954
TL_railway = 16.244
TL_steiner = 20.359
TL_MST = 21.685
TL_CGpy = 0.423
TL_CGmat = 0.442
MD_mesh = 1.0
MD_railway = 0.75
MD_steiner = 0.538
MD_MST = 0.574
MD_CGpy = 1.0
MD_CGmat = 1.043
avg_deg = 5.453
is_connected = 1
n_loops = 1693
LD = 0.934

New Model (poly  = 0.45)

(0.45, 30031, 237,
1.00)

Parameters

 = 0.95 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 1500

Metrics
Steady-State 

TL = 1667.228
MD = 323.441
FT = 0.13
TL_mesh = 0.053
TL_railway = 0.902
TL_steiner = 1.13
TL_MST = 1.204
TL_CGpy = 0.023
TL_CGmat = 0.025
MD_mesh = 1.368
MD_railway = 1.171
MD_steiner = 0.736
MD_MST = 0.785
MD_CGpy = 1.368
MD_CGmat = 1.427
avg_deg = 2.013
is_connected = 1
n_loops = 2
LD = 0.001

New Model (poly  = 0.95)

(0.95, 1667, 323,
0.87)

Parameters

 = 1.95 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 1000

Metrics
Steady-State 

TL = 1488.565
MD = 384.954
FT = 1.0
TL_mesh = 0.047
TL_railway = 0.805
TL_steiner = 1.009
TL_MST = 1.075
TL_CGpy = 0.021
TL_CGmat = 0.022
MD_mesh = 1.628
MD_railway = 1.394
MD_steiner = 0.876
MD_MST = 0.935
MD_CGpy = 1.628
MD_CGmat = 1.698
avg_deg = 1.986
is_connected = 1
n_loops = 0
LD = 0.0

New Model (poly  = 1.95)

(1.95, 1489, 385,
0.00)

FIG. 6: Topology of the networks resulting from the
adaptation dynamics (14) as a function of the parameter γ,

considering a stochastic choice of the source-sink pair
(I0 = 1 and Dij(0) = 1). The network with the best overall
performance is highlighted in green. Labels: (γ, TL, MD,

FT), where TL and MD are given in kilometres.

the plots of Figure 7. As the Figures 7a and 7b confirm,
the TE and FT tends to decrease as γ increases, and are
always higher than the corresponding values for the MST,
at the expense of a higher cost. Interestingly, most of the
simulation results of the first plot lie in a well-defined
curve that resembles the Pareto front [11, 12] associated
with the compromise between maximising the TE while
minimising the TL. The real railway is quite far from
this curve. The overall performance, captured by the two
benefit-cost ratios, BCRTE= TECG/TLCG and BCRFT=
FTCG/TLCG, is depicted in Figure 7c, as a function of γ.
For γ ∈ [0.7, 1[, the simulations result in networks with a
much better compromise between the three metrics than
any other graph. For higher values of γ, the networks still
achieve a slightly better BCRTE than the real railway,
although the network’s resilience is completely lost. In
conclusion, for γ ∈ [0.7, 1[, the model results in networks
with the overall best performance and, in general, higher
than the performance of the real railway, MST and CG.

B. Dependence of the performance on the
stochastic choice of terminals

We studied the impact of the method of choosing the
driving terminals in each step on the topology and perfor-
mance of the networks. Five different cases were studied.
The first one considered was the original method pro-
posed by Tero et al. [3] of randomly choosing in each
step one source-sink pair from the set of terminals, such
that qsource = −qsink = I0. This method is referred to as
the “Random pair” method. In the second case (“Ran-
dom source” method) , one city is randomly assigned
as the source, with qsource = I0, while all the remain-
ing cities are sinks. The third method, (“All random”)
considers that the nodes’ net fluxes of the terminals (qi
with i ∈ T ) are time-dependent random variables subject
to the constraint

∑
i∈sources qi = −

∑
i∈sinks qi = I0. We

also compare with the case of fixed terminals, where some
cities were assigned as constant sources and the others
as constant sinks (“Fixed Terminals” method). All these
methods were tested considering γ = 2/3 in (14). Fi-
nally, we simulated the Physarum Solver model [3], with
the choice of a sigmoidal response typically used in lit-
erature, f(|Qij |) = |Qij |γ/(1 + |Qij |γ), and considering
the “Random pair” stochastic choice of driving terminals
(“PS - random pair” method). In this case, the simula-
tions were performed using γ = 1.8 and I0 = 2, which
according to [3] are the parameters that yielded networks
mimicking the Tokyo rail system with the best overall
performance. To establish an even comparison, the same
inlet flux, I0, was used in the other cases.

As the Figure 8 shows, different methods of choice lead
to steady states with distinct topological features. Note
how worse is the performance of the network produced
by “Fixed Terminals” compared to the ones of stochas-
tic methods. A more visual quantification of the perfor-
mance is given by the plots of Figure 9.

The choice of fixed terminals is definitely the method
that leads to networks with the worst performance by far
in every respect. The simulation points are all scattered,
but in every case, the performance metrics are consis-
tently low. The characteristic tree-like topology of the
steady states entails a great cost without any benefit
in terms of transport efficiency, as the terminals are on
average very distant from each other, and in terms of
tolerance to damage, as no redundant paths are formed
(FT = 0).

The results clearly show the importance of flux fluc-
tuations in the design of low-cost, efficient and robust
flow networks [3, 8, 9, 12]. All the stochastic methods re-
sulted in networks on average much more efficient and re-
silient than any other network, including the railway and
the MST. They also achieve better overall performance,
i.e., benefit-cost relationship. Only the “Random pair”
method produced networks with a slightly lower cost-
efficiency compromise (BCRTE) than the railway and
the MST, due to having the highest cost from all the
stochastic methods. However, they achieve a far better
cost-resilience trade-off.

Due to the Pareto nature of the optimisation, the cri-
teria of choosing the best stochastic method to generate
the driving terminals depends on the relevance of each
metric in a given context. Assuming we want to max-
imise the overall trade-off between the three metrics, the
results suggest that the “All Random” method is the best
choice, given that is the method which achieved the high-
est BCRTE and highest BCRFT from all the tests of our
model.

VII. GROWTH MODEL

So far we have only modelled the network optimisa-
tion of static organisms and neglected the continuous
network formation displayed by Physarum. To incor-
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(a) (b) (c)

FIG. 7: Network performance of the adaptation dynamics (14) as a function of the parameter γ. (a-b) Transport efficiency
and fault tolerance plotted against the total length of the network. The metrics are normalised to those of the complete graph
(CG). The coloured circles represent the simulation results as γ was varied from 0.55 to 2.00, considering the stochastic choice

of the source-sink pair The results were compared with the same metrics of the real railway (green triangles) and MST
network (red squares). (c) Plots of the benefit-cost ratios as the function of γ, compared with the ones of the real railway,

MST and CG. The proposed optimal models are highlighted in green.

Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = 1_rand_source
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 3000

Metrics
Steady-State 

TL = 1790.029
MD = 289.792
FT = 0.399
TL_mesh = 0.057
TL_railway = 0.968
TL_steiner = 1.213
TL_MST = 1.293
TL_CGpy = 0.025
TL_CGmat = 0.026
MD_mesh = 1.225
MD_railway = 0.919
MD_steiner = 0.659
MD_MST = 0.704
MD_CGpy = 1.225
MD_CGmat = 1.278
avg_deg = 2.025
is_connected = 1
n_loops = 3
LD = 0.002

New Model (poly  = 0.67)

(a) “Random source”
(1790, 290, 0.60)

Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = all_random
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 2500

Metrics
Steady-State 

TL = 1713.726
MD = 304.026
FT = 0.087
TL_mesh = 0.054
TL_railway = 0.927
TL_steiner = 1.162
TL_MST = 1.237
TL_CGpy = 0.024
TL_CGmat = 0.025
MD_mesh = 1.286
MD_railway = 0.964
MD_steiner = 0.691
MD_MST = 0.738
MD_CGpy = 1.286
MD_CGmat = 1.341
avg_deg = 2.025
is_connected = 1
n_loops = 3
LD = 0.002

New Model (poly  = 0.67)

(b) “All random”
(1714, 304, 0.91)

Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = fixed I0
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 2500

Metrics
Steady-State 

TL = 3166.413
MD = 390.659
FT = 1.0
TL_mesh = 0.101
TL_railway = 1.713
TL_steiner = 2.147
TL_MST = 2.286
TL_CGpy = 0.045
TL_CGmat = 0.047
MD_mesh = 1.652
MD_railway = 1.239
MD_steiner = 0.889
MD_MST = 0.949
MD_CGpy = 1.652
MD_CGmat = 1.723
avg_deg = 1.993
is_connected = 1
n_loops = 0
LD = 0.0

New Model (poly  = 0.67)

(c) “Fixed terminals”
(3166, 391, 0.00)

FIG. 8: Topology of the optimised networks considering
different methods of choosing the sources and sinks in each
step (I0 = 2, Dij(0) = 1). Legend: (TL, MD, FT), where

TL and MD are given in kilometres.

porate the growth into the previous model, Physarum
is now represented by a dynamic graph. Growth is re-
garded as the formation of new channels at the boundary
of the organism when there are enough nutrients in the
neighbourhood to build them. The nutrients are sup-
plied by active food sources, initially placed at certain
nodes, and transported to the nodes at the boundary
where they are stored until they are used in the veins’
development. In this way, the boundary nodes behave
like sinks of the nutrient flux, mimicking simulated re-
gions where the growth occurs (growth fronts).

It’s assumed that the dynamics take place on top of
a pre-existing planar mesh. The formation of the new
channels is simulated by the progressive activation of the
edges of the underlying mesh when the cost of producing
it is overcome. Each edge of the mesh is thus associ-

ated with a nutrient cost of activation, and can have two
possible states: inactive ( Dij = 0) or active (Dij > 0).

On the other hand, each node i is characterised by an
amount of nutrients, mi, and can be in one of three pos-
sible states. Nodes that are not yet part of the network
are said to be inactive. Nodes in the growing state are
located at the boundary and participate in channels for-
mation. Active nodes are in this state as long as they
contain at least one inactive neighbour node. The re-
maining interior active nodes are said to be in the trans-
port state and serve only as intermediaries to transport
nutrients to the boundary. In addition, any given node
can have a food source, which is “activated” from the mo-
ment that the node is activated i.e., it’s changed to the
growing state. For simplicity, it’s assumed that the food
sources never run out.

A. Algorithm

The algorithm compromises three main steps which
are described as follows. Initially, the Physarum is rep-
resented by a single node containing a food source.

In each time step, the nutrients flow from the active
food sources to the current boundary sinks via the ac-
tive channels, where they are accumulated. Each ac-
tive source injects qsource = I0 nutrients, which are dis-
tributed between the boundary sinks, in such a way that
(3) is satisfied. Given the current sets of boundary nodes
and of active food sources, the fluxes of the active chan-
nels are computed through the conservation laws (4),
as described before. Then, the nutrient reserves of the
boundary nodes are increased according to the flux that
each receives i.e., |qi| with i ∈ boundary. Assuming
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(a) (b) (c)

FIG. 9: Performance of the networks for different methods of choosing the sources and sinks over time.(a-c) Trade-off
between the cost, transport efficiency and fault tolerance of the networks. Each type of marker corresponds to a different

method. The networks are compared with the railway (green triangles) and MST network (red squares) (c) The benefit-cost
ratios are plotted against each other, measuring the overall compromise between the three metrics. The optimal simulations

for each trade-off are highlighted in green.

the fluid has a unitary density, the amount of nutrients
that a given boundary node accumulates per time step
is dmi = |qi|∆τ , where ∆τ is the duration of the time
step. In the beginning, while Physarum is a single node
covering a food source, only the last step is applied.

The next step is the network’s growth. For each bound-
ary node, it’s computed the set of the incident edges
which are currently inactive, i.e., edges where new chan-
nels can be formed. The nutrient reserves of the node
are equally distributed among those neighbour inactive
edges, and the production cost of each inactive edge is
reduced by the amount of nutrients given. If the nutri-
ents transferred to an edge exceeds its production cost,
the excess is kept stored on the boundary node. When
the cost of producing the channel reaches zero, the edge
is activated, and a new channel is created with a conduc-
tivity Dij(0) = D0. If the other end node of the edge
is inactive, the node is activated on the “growing state”,
and the boundary is extended with the new sink node.
Note that every time a new channel with length Lij is
formed, the total network’s volume, V, is increased by√
D0Lij . It’s also assumed that the cost of producing a

channel is proportional to its initial volume.
Finally, if all the neighbour nodes of a given boundary

node are activated, the node is changed to the “transport
state”, and growth can no longer occur starting from it.
The eventual nutrient reserves of the node are evenly dis-
tributed between the neighbours on the “growing state”
which give continuity to the network growth.

Finally, the conductivities of the active channels are
adapted according to the dynamics (9) for a given choice
of the function g. In the following we consider the same
adaptation dynamics as before (14).

B. Results

We started by analysing the simplest case of the in-
dividual growing from a food source, without any more

food sources available in the surroundings. We simu-
lated the growth-adaption model for different values of
γ, considering an even distribution of the source nutri-
ents between the boundary sinks. Although the dynamics
produced a natural isotropic growth mechanism, and the
resultant networks shared some traits with real Physarum
networks, the characteristic loopy hierarchical structure
of veins couldn’t be reproduced.

We then tested the hypothesis of this structure arising
from fluctuating loads, by considering a random distribu-
tion of nutrients between the sinks in each step. However,
we concluded that it still wasn’t sufficient to explain the
observed reticulated structure.

Finally, we simulated the case of Physarum accommo-
dating new food sources as it grows, which is a better
representation of its foraging behaviour. Since it’s not
clear how real organisms manage food consumption in
this case, we tested two possible mechanisms, consid-
ering the growth in the presence of two food sources.
In both cases, the nutrients supplied by the active food
sources are evenly shared among the boundary sinks, and
the simulations were performed with γ = 2/3, I0 = 0.1,
D0 = 0.1 and ∆τ = 0.02.

In the first case, we considered that as soon as the
second food source was reached, both food sources were
constantly operational and injected the same amount of
nutrients into the network. Snapshots of the simulation
are depicted in Figure 10. As the images show, after
the second food source is accommodated, the short con-
nections between the two are weakened and ultimately
collapse. This is the opposite of the true Physarum’s be-
haviour, which tends to connect the food sources through
short paths to optimise the transport of nutrients and
minimise the costs.

In the second case, we considered that after the sec-
ond food source was activated, only one of them was
operational at a time. In each time step, one of the food
sources was randomly selected to supply the nutrients to
the boundary nodes. The results can be found in Figure
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11. The asynchronous operation of the food sources gen-
erates flow reversals which are a better approximation of
the shuttle streaming behaviour of Physarum. Similar to
what is observed in the real organism, this mechanism
results in the formation of short connections between
the food sources. In conclusion, the results suggest that
the second mechanism is far more biologically reasonable
than the first one.

t = 300

iterations = 290

 Parameters
    
 = 0.67 
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noise = 0.5
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I0 = 0.1 
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ij  = 0.1
dt = 0.02
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FIG. 10: Physarum growing in the presence of two food
sources with constant input flux. The synchronous activation
of both food sources leads to their “repulsion”.

t = 300
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 Parameters
    
 = 0.67 

L = 35
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noise = 0.5
seed = 42

I0 = 0.1 
D0

ij  = 0.1
dt = 0.02
thick = 3
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e cost = V
cost f = 1
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 Parameters
    
 = 0.67 

L = 35
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noise = 0.5
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noise = 0.5
seed = 42
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 = one
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FIG. 11: Physarum growing in the presence of two food
sources supplying nutrients alternately. The asynchronous
operation of the food sources results in a short connection
between them.

VIII. CONCLUDING REMARKS

In this work, we studied the network development
and adaptation of Physarum polycephalum. We first
derived a general class of equations that correctly de-
scribes the adaptation dynamics of a network comprised
of elastic channels filled with an incompressible fluid sub-
ject to a Hagen-Poiseuille flow. Then, following a La-
grangian approach, we proved that the particular choice
of g(|Qij |) = |Qij |2/3 minimises the total power dissi-
pated by the network at the steady-state assuming a
fixed set of sources and sinks. It was also observed that
the same configuration of terminals could result in dif-
ferent steady-states depending on the initial conductivi-
ties. The analysis of the adaptation dynamics under the
general class of polynomial functions, gγ(|Qij |) = |Qij |γ ,
revealed the existence of a first-order phase transition in
the system near γ = 1/2, marked by the discontinuity of
the derivative of dissipated power at the steady state with
respect to γ and a drastic change in the network topology.
The simulations on the arena mimicking the Portuguese
mainland revealed the importance of fluctuating loads to
build efficient and resilient networks. In general, all the
stochastic distributions produced networks with overall
better performance than any other case. Lastly, we ex-
tended the adaptation model to incorporate the network
growth, coupling both processes and providing a better
description of Physarum’s foraging behaviour. In partic-
ular, we found that in the presence of two food sources,
when they operate alternately, a strong direct connec-
tion between the two is established, similarly to what is
observed in Physarum.
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