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Resumo

O Physarum polycephalum é um bolor limoso acelular que se desenvolve como uma rede de veias alta-

mente adaptativa onde circula o protoplasma. À medida que procura nutrientes, o Physarum mostra uma

contínua reestruturação da sua rede como resposta a estímulos locais, otimizando assim as ligações entre

fontes de alimento. Este comportamento de alto nível já foi explorado para resolver vários problemas

de otimização. Este trabalho foca-se na construção de um modelo para a formação da rede adaptativa

do Physarum que resolve algumas inconsistências de modelos anteriores. Começamos por derivar uma

classe de equações que descrevem a adaptação e o fluxo de redes estáticas, compostas por canais elás-

ticos que transportam um fluido incompressível submetido a um escoamento de Hagen-Poiseuille. Uma

parametrização específica do modelo é obtida através da minimização da potência dissipada pela rede.

Considerando uma parametrização mais genérica, descobrimos uma transição de fase no sistema. O mod-

elo é aplicado à resolução de labirintos, e na construção de redes eficientes e robustas numa geometria que

representa Portugal continental. Comparando as redes resultantes com o sistema ferroviário português,

verificou-se que o modelo produz redes mais eficientes quando são consideradas flutuações nos fluxos dos

canais. Finalmente, o modelo de adaptação é estendido para incorporar o crescimento da rede na pre-

sença de múltiplas fontes de alimento. O acoplamento dos processos produz redes semelhantes a vários

sistemas encontrados na natureza. Os resultados revelam que, quando as fontes de alimento operam

alternadamente, o modelo consegue replicar as conexões diretas entre fontes de alimento observadas no

Physarum.

Palavras-chave: Physarum polycephalum, Rede adaptativa, Optimisação de redes, Cresci-

mento de redes, Hagen-Poiseuille
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Abstract

Physarum polycephalum is an acellular slime mould that grows as a highly adaptive network of veins filled

with protoplasm. As it forages, Physarum dynamically rearranges its network structure as a response

to local stimuli information, optimising the connection between food sources. This high-level behaviour

was already exploited to solve numerous optimisation problems. We develop a flow-based model for the

adaptive network formation of Physarum, which solves some inconsistencies of previous models. We

first derive a general class of equations describing the adaptation and flow dynamics of a static network

comprised of elastic channels filled with an incompressible fluid undergoing a Hagen-Poiseuille flow.

An explicit form of the model is obtained by minimising the total power dissipated by the network.

Considering a more general functional form of the adaptive equations, a phase transition in the system is

also found. The model is used for maze-solving and to build efficient and resilient networks in an arena

mimicking mainland Portugal. By comparing the resulting networks with the real Portuguese railway

system, we found that the model produced networks with a better overall performance when considering

fluctuations in the network flows. Finally, the adaption model is extended to incorporate the network

growth in the presence of multiple food sources. The coupling of both processes produces networks

with similar traits to several network systems found in nature. We found that when the food sources

operate alternately, the model can replicate the direct connections between the food sources observed in

Physarum.

Keywords: Physarum polycephalum, Adaptive network, Network optimisation, Network growth,

Hagen-Poiseuille
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Chapter 1

Introduction

1.1 Motivation

Transport networks appear in a variety of forms in nature, from river networks to the organ systems

of multicellular organisms. Examples of the latter include the leaf venation in plants, composed by the

xylem and phloem; the vascular system in animals made up of arteries, veins and capillaries; the mycelial

cords of fungi, and the plasmodial veins of slime moulds. In all these cases, the networks play a key role

in distributing resources and information throughout the entire organism in a rapid and efficient manner,

overcoming the size limitations of purely diffusive transport. These flow systems are thus indispensable

for the organisms’ development, fitness and survival.

These flow networks are composed of tubular vessels with different lengths and thicknesses which

are typically organised in a hierarchical tree fashion. In general, they contain redundant connections,

forming loopy structures that make them more robust and tolerant to damage and also improve transport

efficiency under fluctuating loads [1, 2]. The architecture of the networks depends on its functionality and

generally has a decentralised nature, in the sense that it emerges from local responses to environmental

stimuli. The vessel dimensions and hierarchical organisation have a profound impact on the transport

efficiency of the nutrients and other resources by affecting the local fluid flow.

Transport networks are also present in different aspects of human life, from road, railway and com-

munication networks, to irrigation systems and power grids, which are crucial for industrial development

and to satisfy human needs.

Recently, attention has focused on the acellular slime mould, Physarum polycephalum, as an ideal

model organism to study the interplay between structure and function in biological transport networks,

and to understand the mechanism underlying several complex behaviours displayed by simple organisms,

such as the adaptive network formation. Physarum is a single-celled amoeboid organism that grows

as an extensive and highly adaptive network of protoplasmic veins. As it forages and progressively

accommodates new food sources, Physarum dynamically optimises the connections between them, by

adapting the thickness of the network veins. The adaptation is believed to be related to local changes

in the flux flow, driven by rhythmical contractions of the veins walls whose frequency and amplitude are
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regulated by food sources and other external stimuli [3]. However, the main biochemical and physical

oscillator underlying the rhythmic behaviour and mobility of Physarum has not been yet identified [4].

Despite lacking any kind of neural circuit, Physarum displays high-level behaviours, arising from the

network adaptation. For instance, it can solve mazes [5], and in the presence of multiple food sources,

it can build networks with a trade-off between total length, transport efficiency and fault tolerance,

comparable with real human-made networks [6]. In this regard, different toy models have been proposed

to describe the network optimisation, based on the current-reinforcement principle [6, 7], where the flow

modifies the network architecture, which in turn affects the flows. But in general, they reveal to be

inconsistent with their own assumptions and don’t incorporate the network formation.

Understanding the basic rules underlying its complex behaviours is of interdisciplinary interest. Not

only as a guide to design efficient decentralised networks in different domains, but the slime mould

computational abilities have been already proved useful to solve more complex network optimisation

problems [8, 9], design bioelectronic circuits and unconventional computing devices [10]. Furthermore,

network formation and amoeboid locomotion are intrinsic features to processes of wound healing and

metastasis formation. The study of these mechanisms in Physarum may thus reveal possible insights into

cancer research. Until now, there isn’t a single model which can capture all the features of Physarum’s

network self-organisation, as it’s a complex task and the mechanism underlying its behaviour is not clear

yet.

1.2 Objectives

The goal of this thesis is to build a generic model for the network formation and optimisation as observed

during the growth of Physarum polycephalum. The current state-of-the-art models lack many of the

Physarum’s biological features, such as growth, or violate some basic physical principles [6]. Some

modelling approaches are even purely phenomenological [11], lacking, therefore, any biological insights.

We aim to construct a more realistic flow-based model which addresses these issues.

Physarum will be modelled as a flow network composed of adaptive channels filled with an incom-

pressible and viscous fluid (protoplasm) and whose diameters change in response to the flux flowing

through them. The flow is assumed to have a Hagen-Poiseuille profile and is driven by a set of flux

sources and sinks which mimic stimulated regions of the organism. The model is inspired by a previous

flow-based model, but takes the conservation of volume of the circulating fluid into account, as required

by a Hagen-Poiseuille flow. Previous models [6] describe the channels’ adaptation through ad hoc local

evolution laws which violate the above physical assumptions.

We will begin by modelling the adaptation of static organisms, where the network growth is at first

neglected. Afterwards, we explore some of the model’s main features and applications. Finally, we attempt

to mimic the Physarum’s dynamic adaptive network formation, by incorporating a growth mechanism

into the adaptation model explicitly dependent on nutrients supplied by food sources.
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1.3 Thesis Outline

This thesis is organised into six chapters. In chapter 2 we begin with a biological description of Physarum

and discuss its main high-level behaviours. The two seminal models proposed to describe the adaptive

network formation are also explained in detail.

In chapter 3, we formulate the new model for the network optimisation, founded on physical principles

of a Hagen-Poiseuille flow. As a first insight, we start by performing simple tests on the model, considering

a fixed set of terminals and present some of its main features. In particular, we study the adaptation

dynamics for a particular functional form of the model on a configuration of terminals mimicking the

case of Physarum.

In chapter 4, we explore some applications of the model to path-finding and network design. We first

test its ability to solve mazes and to find the shortest path between two nodes in an arbitrary graph. Then,

on an arena with the shape of mainland Portugal, we study the importance of flux fluctuations to build

efficient and resilient networks similar to those of Physarum by considering time-dependent distributions

of sources and sinks. The terminals represent the geographic location of major Portuguese cities. The

performance of the resultant networks is compared with that of the real railway system connecting those

cities.

In chapter 5, we extend the adaptation model to include the network formation, giving a better

representation of Physarum’s foraging behaviour. In particular, we simulate the growth and optimisation

in the presence of one or more food sources.

Finally, in chapter 6, we give a general overview of the results and discuss some of the main conclusions

made and possible improvements to the model.
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Chapter 2

Phenomenology of Physarum

polycephalum

2.1 Life-cycle

Physarum polycephalum is a macroscopic slime mould of the family Physaraceae, order Physarales, class

Myxomycetes. Despite their name, slime moulds are not fungi, but rather amoeboid protists (phylum

Amoebozoa, infraphylum Mycetozoa), sharing, therefore, common traits with plants, fungi and animals.

These organisms exhibit a complex life cycle (Figure 2.1), which provide them with great adaptability to

environmental changes [10, 12].

Figure 2.1: The life-cycle of Physarum polycephalum. The life-cycle begins with a haploid phase, followed
by a diploid phase where Physarum reaches its main stage, the plasmodium. Source: [13].
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In the main vegetative phase of their life cycle (plasmodium), the slime moulds of class Myxomycetes,

commonly known as the true or plasmodial slime moulds, exist as a syncytium, i.e., a giant cell enclosed by

a single membrane which contains typically millions of diploid nuclei. The Physarum plasmodium consists

of an amorphous yellow mass endowed with an amoeba-like behaviour. While foraging, it spreads as a

network of vein-like protoplasmic tubes in the direction of the food source, being able to move at speeds

higher than 1 cm/h [10]. The food source is covered by extensions of its protoplasm, and it’s digested

with the help of enzymes. Typical foodstuffs include bacteria, fungal spores and decaying matter. The

spreading fronts adopt a fan-like shape, and the number of fronts increases with the nutrient level of the

environment, providing it with a larger and more efficient area of absorption.

(a) (b)

Figure 2.2: Physarum polycephalum’s plasmodium phase. (a) Physarum growing radially from a central
food source. As it grows, a highly ramified network is formed, which is subject to continuous optimisation.
Some veins are reinforced while others shrink, resulting in a hierarchical and reticulated structure of veins.
(b) Close look at Physarum’s growth fronts with a fan-like shape. Images adapted from [14].

Under extreme adverse environmental conditions, the plasmodium changes into an inactive dormant

state, forming a hard compact mass know as sclerotium. This hibernation state can be sustained for

several years, and when moist, the plasmodium state is gradually recovered [10].

Like all true slime moulds, Physarum reproduces by sporulation. Certain stimuli like starvation and

light irradiation trigger the plasmodium to grow sporangia: clusters of black globulose enclosures that

produce and protect the spores (haploid cells), that are then released. When the conditions become

favourable, a spore hatches into an amoeba-like single-cell (myxamoeba), or, if in the presence of water,

into a flagellated version of the former (swarm cell), being these two forms exchangeable [10]. Each of

these cells can mate with another through the fusion of their protoplasm, forming a diploid zygote, which

after successive nuclear divisions develops into a new plasmodium.
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2.2 Network Flows Dynamics

The most commonly observed form of Physarum is the plasmodium. The network tubes are made of a

gel-like outer layer (ectoplasm) that contains the cytoskeleton and encloses the endoplasmic fluid. The

cytoskeleton consists of a system of proteins, essentially composed of actin and myosin. The filaments of

actin provide the structural support of the tube walls, and, together with the myosin, the motor protein,

are responsible for the unique mobility and growth of Physarum [10, 12].

2.2.1 Shuttle streaming

The interactions between actin and myosin generate relaxation-contraction cycles of the walls, which

result in a rhythmic back-and-forth propulsion of the endoplasm over the entire network within a period

of around two minutes [3, 4]. This type of periodic back-and-forth streaming, known as shuttle streaming,

enables the transport and distribution of food supplies, organelles and other substances throughout the

organism. Furthermore, these oscillations are locally well-coordinated in such a manner that allows the

net movement of the slime mould as it forages. Collectively, they establish a gradient of pressure so that

the flow is driven towards the leading edges (anterior margin), where the growth of structural proteins

occurs simultaneously. The amplitude and frequency of contractions are regulated according to external

stimuli: attractants (e.g., food source) increase them, swelling the stimulated edges which thrive the

network, while repellents (e.g., light exposure) decrease both, resulting in the shrinkage of the affected

tubes to avoid those negative stimuli [15]. In this way, Physarum can dynamically rearrange the structure

of its network and optimise it, in response to local stimuli information. The timescale of morphological

rearrangements (∼ 1 h) is much larger than the timescale of flow generation (∼ 2min) [3].

2.2.2 Physarum Oscillator

It’s clear that the rhythmic contractions and force generation are produced by the interactions between

the actin and myosin. However, the underlying mechanism which regulates these interactions isn’t well

understood. Synchronous oscillations of the membrane potential, intracellular Ca2+ and other chemicals,

like ATP, NADH, H+, are observed in real organisms along with the contraction-relaxation cycles. But

the set of essential and independent variables responsible for generating the rhythm and the collective

movement of Physarum hasn’t been identified [4]. What is certain is that Ca2+ plays a prominent role in

the contraction-relaxation cycle, like in smooth muscles contraction. The plasmodium contains vesicles

capable of sequestering and releasing calcium through stretch-activated channels, and data confirms that

a rise in Ca2+ concentration can trigger the contractions [4, 12, 16].

2.3 Physarum’s Intelligent Behaviours

Despite lacking any kind of neural circuit, the morphological adaptation displayed by Physarum provides

it with high-level behaviours. For instance, the slime mould can find the shortest path between two food

sources in a maze [5], and to replicate optimised, man-made transport networks [6]. In contrast to animals,
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where complex behaviours can be assigned to their evolved nervous system, this type of intelligence

displayed by many brainless organisms, like other species of slime moulds and even fungi, is still poorly

understood. In particular, in the case of Physarum, the means of communication through its entire body,

and how it processes that information to coordinate its movement and growth remain unknown. Recent

studies [17] suggest that the transport of signalling molecules is involved in the coordination of the fluxes.

The control of the internal fluid flow is likely crucial to the coordination of its behaviour, including the

continuous network self-organisation [3].

2.3.1 Maze-Solving

Nakagaki et al. [5] were the first to report the maze-solving skills of Physarum, showing its ability to find

the shortest path between two food sources. The maze (Figure 2.3) consisted of an agar substrate with

plastic films as walls, which are dry surfaces that the slime mould tends to avoid.

(a) (b) (c)

Figure 2.3: Physarum polycephalum maze solving experiment. (a) The slime mould (yellow) was let
cover all the maze. Brown blocks correspond to the maze walls and blue lines indicate the segments of
the possible solutions of the maze, α1 (41± 1 mm), α2 (33± 1 mm), β1 (44± 1 mm), β2 (45± 1 mm).
(b) After placing the agar blocks (AG), it explored all possible routes and shrank the vessels which led
to dead ends. (c) Four hours later, only the shortest path remained. Source: [5].

Initially, a sample of plasmodium was allowed to fill the entire maze (Figure 2.3a), and only then, two

nutrient-rich agar blocks were placed on the endpoints (Figure 2.3b). There were four possible routes

connecting the two, α1 − β1, α1 − β2, α2 − β1, α2 − β2, being α2 (β1) about 22% (2%) shorter than α1

(β2). The slime mould quickly restructured its network, removing the redundant vessels and the ones

branching along the dead ends, and reinforcing the optimal ones, until only one path connecting the food

sources remained. The path that survived was different between experiments, but the shortest segment

α2 was always selected. The segments β1 and β2 were chosen about the same number of times, due to

their negligible difference in length, which is lost by the natural undulations of the tubular trajectory.

This means that in all the experiments, the path selected was always approximately the shortest one.

2.3.2 Network Optimisation

In later experiments, Tero et al. [6] studied the robustness of the slime mould network adaptability

when it distributes itself over several food sources. From an evolutionary perspective, this appears as a
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competitive advantage for organisms that forage as large contiguous networks, since, to optimise their

strategy, they must be able to balance the network efficiency with the cost of producing it.

(a) (b) (c)

(d) (e) (f)

Figure 2.4: Physarum polycephalum Tokyo Experiment. (a) Initially a plasmodium sample (yellow)
was placed at Tokyo location in an area surrounded by Pacific coastline (white border) and filled with
other 35 food sources representing the neighbour major cities (white dots). (b to f) The plasmodium
progressively colonised each food source, and simultaneously optimised the connections between them.
Adapted from [6].

Thirty-six food sources were arranged in a substrate, portraying the geographic locations of the

surrounding cities of Tokyo (Figure 2.4). The plasmodium grew out from Tokyo’s food source and

explored gradually the surroundings with a contiguous front until it accommodated all food sources,

and simultaneously optimised its network in a way that only the more efficient food source connections

survived.

In a more realistic setting, the geographical constraints, namely, high-altitude areas, lakes and the

Pacific Ocean, were replicated by increasing the luminosity of those regions, restricting the growth of

the plasmodium to shaded areas that it tends to prefer. The resultant minimal networks achieved by

Physarum were compared to the real rail network of Tokyo in terms of cost-efficiency and fault tolerance.

Here an optimal cost-efficiency means a low total length of vessels with a short average minimum distance

between the food sources, whereas fault tolerance is defined as the probability of disconnecting part of

the network when a single link is removed, evaluating, therefore, its robustness.

As shown in Figure 2.5, the shape of the optimised network displayed by the Physarum is quite similar
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(a) (b)

(c)

(d)

Figure 2.5: Comparison of the Physarum networks with the Tokyo rail network. (a) Resultant network
without geographical constraints. (b) In another experiment, an illumination mask was applied to sim-
ulate the geographical constraints of the Japan rail network. (c and d) The resultant network (c) was
compared with the real rail network (d). Adapted from [6].

to the actual man-made railway system. Surprisingly, the authors concluded that Physarum networks

showed a slightly better cost-efficiency, yet marginally lower robustness. This is an astonishing achieve-

ment given that Physarum builds the networks without centralised control, in contrast to human-made

infrastructure networks. Since then, other real-world transportation networks have also been approxi-

mated by Physarum, such as the highways of the UK, Germany and USA [18, 19].

2.4 Modelling Physarum’s Network Adaptation

Until now, there is no single model which can describe the whole behaviour of Physarum, even considering

only the plasmodium stage. Due to the complexity of the task, current approaches focus on modelling

a specific issue at a time, namely the growth mechanism, the contraction patterns of the actin-myosin

cortex, and the network formation and adaptation. Naturally, these mechanisms are all inter-connected,

and together are responsible for the complex behaviours exhibited by Physarum. In particular, the

coordination of the flows arising from the synchronisation of the contractions, as a response to external

stimuli, seems to be a key feature underlying the network optimisation.

This work focuses on modelling the network formation and optimisation. In this respect, different

modelling techniques were proposed, including cellular automaton models [20], agent-based models [11],

and mathematical flow-based models [6]. Each one assumes that the optimisation is achieved through

a different set of simple rules and, in general, don’t take the coordination of contractions into account.

Some are even purely phenomenological models or bio-inspired algorithms designed to solve complex

graph problems [8, 9], lacking therefore meaningful biological insight. In the following, we describe the

two main models found in the literature.
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2.4.1 The Multi-Agent System Model

Jones [11] proposed a multi-agent bottom-up approach to model the formation and the optimisation of

Physarum transport networks. According to this method, the macroscopic network adaptation arises

as an emergent phenomenon from simple microscopic interactions between small portions of the plas-

modium. The plasmodium is represented by a hypothetical population of mobile particle-like agents,

each occupying a single cell of a two-dimensional lattice. The lattice stores the current agent positions

and local concentrations of stimuli which diffuse through the environment and may evaporate. Positive

stimuli, referred to as chemoattractants, are released by food sources and by moving agents. Hazardous

stimuli that agents tend to avoid may be also considered. Each agent uses three forward sensors (FL,

F, FR) to sense the local concentration of these stimuli in three regions in front of its position, and re-

sponds to this information by moving towards the strongest local source of chemoattractant. The sensed

regions are parametrized by the width of the sensors, SW (usually one cell), the distance from the agent,

SO (sensor offset), and the angle relative to the direction of the agent, SA (Figure 2.6). By depositing

stimuli while they move, the agents not only adapt to the environment but also influence each other’s

behaviours. A minimum SO of 3 cells is required for strong local coupling to occur and for complex

patterns to emerge. Increasing the SO value results in thicker networks, faster network adaptation, and

coarser-grained networks.

Figure 2.6: Agent morphology. An agent con-
sists of three sensors and a body. Source: [11].

Algorithm 1 Multi-Agent Algorithm
1: procedure MotorStage
2: Attempt move forward in the current direction
3: if (moved successfully) then
4: Deposit trail in new location
5: else
6: Choose random new orientation
7: end procedure

8: procedure SensoryStage
9: Sample trail map values
10: if (F > FL) and (F > FR) then
11: Stay Facing Same Direction
12: else if (F < FL) and (F < FR) then
13: Rotate randomly left or right by RA
14: else if (FL < FR) then
15: Rotate right by RA
16: else if (FR < FL) then
17: Rotate left by RA
18: else
19: Continue facing the same direction
20: end procedure

The simulation starts with a chosen number of agents placed at random unoccupied locations and with

random orientation (from zero to 360 degrees). At each time step, based on perceived sensory information,

an agent rotates itself towards the direction covered by the sensors with the highest chemoattractant

concentration. The agent is allowed to move one step forward in that direction, only if the new site is

not already occupied, and deposits a constant concentration of chemoattractant, which attracts nearby

agents. Otherwise, if the movement isn’t allowed, the agent remains in its current position without leaving

any trail, and in the next step, a new orientation is randomly selected. In this way, mobile agents can be

interpreted as the endoplasmic flux, while immobile agents represent the actin-myosin cortex. A time step

is concluded when every agent is given a change move. The update of the agents is performed randomly at

each step to avoid any correlation from sequential ordering. After a long run, a stable collective pattern of
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the positions of agents may arise, forming a continuous network that connects the food sources. Typical

simulations of the model in the absence and the presence of external positive stimuli are shown in Figure

2.7 and Figure 2.8, respectively.

Figure 2.7: Formation and self-organisation of the multi-agent networks in the absence of external positive
stimuli. Simulation on a 200×200 lattice, with 15% of the area filled with agents initially placed at random
locations. Simulation parameters: RA = 45◦ , SA = 22.5◦ , SO = 9. Adapted from [11].

However, the model is biologically unrealistic, since the agents act autonomously and not as a con-

tinuous network, especially in the first stages when they randomly fill the lattice. Even ignoring this

issue, the agents are always biased towards gradients of positive stimuli, which doesn’t depict the true

foraging behaviour of the slime mould. Nevertheless, the model has been successfully applied to solve

several graph problems [9, 10].

Figure 2.8: Formation and self-organisation of the multi-agent networks under the influence of external
positive stimuli (black dots). Simulation on a 200 × 200 lattice, with 2% of the area filled with agents
initially placed at random locations. Simulated with RA = 45◦ , SA = 22.5◦ , SO = 9. In the case of two
stimuli sources (top row), the optimisation process converges to the shortest path connecting them. In the
presence of multiple stimuli, the final network closely approximates the Steiner minimum tree solution.
Adapted from [11].
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2.4.2 Physarum Solver

Tero et al. [7] proposed a flow-based model known as Physarum Solver, initially to describe the maze-

solving ability of the slime mould [5] (Figure 2.3). According to the model, the path-finding is achieved

through feedback loops between the thickness of the tube and the rate of internal flows: higher fluxes

trigger an increase of the tube radius, while lower fluxes lead to their shrinkage.

The plasmodium is modelled as a graph, where the edges represent the tubes in which endoplasm

flows, and the nodes the connections between them. The nodes i and j are kept at pressures pi and

pj , and are linked by a cylindrical tube of constant length Lij and a variable radius rij . The problem

is reduced to finding the shortest path between two special nodes, N1 and N2, that represent the food

sources (FS). It’s assumed that the flow in each tube is laminar and follows the Hagen-Poiseuille Law,

and so the flux through tube (i, j) is given by

Qij =
πr4ij(pi − pj)

8ηLij
=
Dij(pi − pj)

Lij
, (2.1)

where η is the viscosity of the fluid and Dij = πr4ij/8η is the conductivity of the tube.

Experimental observations show that most of the plasmodium lies over the FS and that the fluid is

rhythmically exchanged between those regions through the network. Hence, it’s assumed that only the FS

nodes can drive the flow and that the tubes are passive elements that regulate their thickness accordingly

[7]. One of the FS always acts like the source (N1) and the other as the sink (N2).

At each time step, a constant flux I0 flows from the source and into the sink. Since the total flux

must be conserved, the inflow and outflow at each node must be balanced, which implies

∑
j

Qij =


0 for i 6= 1, 2

−I0 for i = 1

I0 for i = 2 .

(2.2)

Letting the pressure at the sink node be 0 and knowing the tube lengths, Lij , and conductivities, Dij ,

the flux through each one can be computed in each step by solving the linear system (2.2) together with

the equation (2.1).

The plasmodium adapts its network through the change of the tubular thickness, rij , in response to

the magnitude of the flux |Qij | flowing through each vessel. In the model, this adaptation is captured by

the conductivities Dij ∝ r4ij , which are updated at each step according to

dDij

dt
= f(|Qij |)− µDij , (2.3)

where f is a monotonously increasing function, satisfying f(0) = 0, that describes the tubes’ expansion

response to the flux, and µ is a positive constant. The second term represents the rate of tube shrinkage,

implying that in absence of flux the tube disappears at an exponential rate µ. Together this implies

that conductivities tend to increase in edges with big flux. New conductivities are fed back to (2.1) to

calculate new fluxes and pressures. The network’s flux conversation induces competition between edges
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for more flux. Shorter tubes are favoured through a positive feedback loop: shorter tubes carry more

flow, and therefore grow, which in turn increases their flow in subsequent iterations and so on. This

iterative process continues until the network finally converges to a steady state.

This algorithm was readily extended to include the network adaptation in the presence of multiple FS

[6], as an attempt to explain the Tokyo experiments (Figure 2.4). In this case, the plasmodium network is

initialized as a random graph, and at each time the source and sink are randomly chosen from FS nodes.

Regarding the update rule (2.3) two functional forms of f are mainly used in literature:

f(|Q|) = |Q|γ

f(|Q|) =
Qγ

1 +Qγ

(γ > 0) . (2.4)

While the first performs better on maze solving (i.e., when there is only one source and one sink), the

second one is more adequate to design efficient networks in the presence of multiple FS. Note that the

latter describes a sigmoid response of the tube diameter to the flux flowing through. Biologically this is

more realistic since the saturation mimics the maximum distensibility of the tubes.

A typical simulation of the Physarum solver is presented in Figure 2.9. Despite the resulting networks

resembling the ones produced by Physarum (Figure 2.4), the model breaks some physical principles,

namely the conservation of volume of the circulating fluid, which will be discussed in more detail in the

following chapter. Furthermore, the model only describes the network optimisation behaviour of full-

grown plasmodium, represented by the initial random mesh, and thus, can’t account for the formation of

the network itself.

(a) (b) (c) (d)

Figure 2.9: Simulation of the Physarum Solver (γ = 1.8, I0 = 2.). Food sources are represented by blue
dots. (a) Initially the space was populated with a finely meshed network of thin tubes. (b,c) Over time,
many of these tubes died out, and the other few were selectively thickened resulting in a stable optimised
network (d). Adapted from [6].

Nevertheless, the basic principle of the feedback mechanism between the flux and the veins thickness

in which the model is based seems to agree with the experimental observations. Also, the modelling

approach of Physarum as a flow network is naturally more biologically realistic comparing to agent-based

models which are in general purely phenomenological. For these reasons, in the following chapter, we

propose a new flow-based model for the network optimisation, inspired by the Physarum Solver principles,

as an attempt to solve some of its problems.
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Chapter 3

Physarum’s Network Adaptation

Model

In this chapter, we formulate a new flow-based model to describe Physarum’s network optimisation. As

a starting point, we ignore the network growth and begin to model the network adaptation of static

individuals. Note that we don’t attempt to model the contractile activity of Physarum, which is outside

the scope of this work. This new model is inspired by the previous Physarum Solver model, but we

propose a generic class of evolution laws for the channels conductivities consistent with the assumptions

of a Hagen-Poiseuille flow, namely the volume conservation of the circulating fluid. We start by showing

how this is violated in the previous model, and from there we derive the new class of adaptation rules.

Then, based on the principle of least dissipation of energy, we derive an explicit form of the adaptive

equations. Finally, we explore some of the model features as a first overview.

3.1 Hagen-Poiseuille Flow

Physarum can be naturally modelled as a flow transport network made of hydraulic-coupled channels

with adapting radius inside which the protoplasm flows. The Physarum Solver model presented in the

last chapter, and other similar flow-based models, typically assume that the protoplasm follows a Hagen-

Poiseuille flow.

The Hagen-Poiseuille equation describes the steady-state laminar flow of incompressible, Newtonian

fluids through a channel with a constant, and much smaller than its length, cross-section. The flow

through the channel is driven by a pressure drop between the two ends and the friction between the

fluid layers due to the viscosity of the fluid, η. The counterbalance between the two forces results in a

parabolic velocity profile of the flow. For a cylindrical channel (i, j) with radius rij and length Lij , the

Hagen-Poiseuille equation states that the relation between the volumetric flux flowing through it, Qij ,

and the pressures at both ends, pi and pj , is given by

Qij =
πr4ij(pi − pj)

8ηLij
=
Dij(pi − pj)

Lij
, (3.1)
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where Dij = πr4ij/8η is the conductivity of the channel.

A laminar flow is characterised by a low Reynolds number (Re), which is defined as the ratio of

the inertial forces to the viscous forces acting on the fluid. The protoplasm is well described as a low-

Reynolds-number incompressible fluid, i.e., with a constant density. Recent measurements [21] estimate

that the maximum Reynolds number of protoplasmic flow, obtained using the top speed of the shuttle

streaming inside large veins of Physarum, is Re ∼ 0.1, which is four orders of magnitude lower than that

required for the onset of turbulence in a cylindrical tube. Furthermore, the results of the last study and

of former experiments [22, 23] show that the flow velocity profile across the diameter of the vein is always

parabolic regardless of the speed of shuttle streaming. These findings indicate that the protoplasm viscous

forces dominate over the inertial forces, and the flow is indeed laminar, thus supporting the assumption

of a Hagen-Poiseuille flow.

3.1.1 Derivation

In the following, the Hagen-Poiseuille equation is derived from first principles [24, 25].

Consider a cylindrical fluid element of radius r and length dz. The surrounding fluid exerts pressure

on the end faces of the cylinder, which is assumed to be constant over any chosen cross-section of the pipe

(i.e., p = p(z)). At one end is acted a pressure p and at the other, the same pressure lower by dp > 0,

p− dp. The resultant force on the volume element arising from the pressure, responsible for driving the

flow, is given by

dFp =
[
pπr2 − (p− dp)πr2

]
ẑ

= πr2dp ẑ .
(3.2)

The flow is assumed to be laminar, meaning that can be described as the relative motion of thin

concentric cylindrical layers of fluid that slide over each other in the axial direction, without the occurrence

of lateral mixing. The velocity of the fluid is then v = v ẑ. Due to the viscosity of the fluid, η, there

is friction between the fluid layers, which acts as flow resistance. The viscous drag force, dFvis, is

proportional to the area of contact between the layers, 2πrdz, and to the shear stress, which for a

Newtonian fluid varies linearly with velocity gradient perpendicular to the flow direction,

dFvis =

(
−η dv

dr

)
2πrdz(−ẑ) = η

dv

dr
2πrdz ẑ . (3.3)

The velocity gradient can be derived from the steady-flow condition, which requires the balance of

the two counteracting forces,

dFp + dFvis = 0 ⇔

⇔ −πr2dp = η
dv

dr
2πrdz ⇔

⇔ dv

dr
= − 1

2η

dp

dz
r .

(3.4)

It’s assumed that the flow is fully developed
(
dv

dz
= 0

)
and axisymmetric

(
dv

dθ
= 0

)
. The former
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implies that right-hand side of the above equation can’t depend on z, and thus pressure gradient,
dp

dz
,

is a constant. For a channel of length L, and denoting the pressure difference between the two ends by

∆p > 0 (high pressure minus low pressure), follows that
dp

dz
=

∆p

L
. By integrating the above equation,

we find that the velocity profile, v(r), is given by

v(r) =

∫
dv

dr
dr = −

∫
1

2η

∆p

L
rdr

= − 1

4η

∆p

L
r2 + C .

(3.5)

The constant of integration C is found by imposing no-slip boundary conditions at the wall. In other

words, it’s assumed that the fluid particles adhere to the wall, and thus, there is no relative motion

between the two, i.e., v(R) = 0. This implies that

v( r = R ) = − 1

4η

∆p

L
R2 + C = 0 ⇔

⇔ C =
1

4η

∆p

L
R2 .

(3.6)

Substituting C back in equation 3.5 leads to

v(r) =
1

4η

∆p

L
(R2 − r2) , (3.7)

which shows that the velocity of the fluid displays a parabolic profile, being zero at the wall, and attaining

its maximum at the center of the pipe, vmax = v(0) =
1

4η

∆p

L
R2.

To compute the volumetric flow rate, consider a ring of fluid with thickness dr at a distance r from the

centre of the pipe. Within a time dt, the fluid flowing through the ring covers a volume dV = 2πrdrv(r)dt.

The flow rate dQ of the ring fluid element is therefore

dQ =
dV

dt
= 2πrv(r)dr . (3.8)

The total flow rate is finally obtained by integrating 3.8 over the entire cross-section of the pipe,

yielding

Q =

∫
dQ =

∫ R

0

2πrv(r)dr

=
2π

4η

∆p

L

∫ R

0

r(R2 − r2)dr

=
π

2η

dp

dz

[
R2 r

2

2
− r4

4

]∣∣∣∣r=R
r=0

=
πR4

8η

∆p

L
.

(3.9)

3.2 Model Motivation

As seen in section 2.4.2, the Physarum Solver model assumes that the flow inside Physarum networks

can be described by the Hagen-Poiseuille equation 3.1. A fluid undergoing a Hagen-Poiseuille flow is
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assumed to be incompressible, which means that it has a constant density. Since the amount of fluid

flowing through the network remains constant, this implies that no changes of the network’s total volume

may occur during the optimisation process. Therefore the adaptation dynamics proposed by Tero,

dDij

dt
= f(|Qij |)− µDij , (3.10)

should ensure that the volume of the network is conserved over time.

Each vessel is approximated by a cylindrical tube with radius rij and length Lij , corresponding to

a volume Vij = πr2ijLij . Given that Dij = πr4ij/8η, the volume of each vessel can be rewritten as

Vij =
√

8πηLij
√
Dij . Hence, the conservation of the network’s total volume reads

V =
∑

(i,j)∈E

Vij = β
∑

(i,j)∈E

√
DijLij = const , (3.11)

where β =
√

8πη.

According to the model (3.10), the change of the network volume over time is given by

dV
dt

= β
∑

(i,j)∈E

1

2
√
Dij

dDij

dt
Lij ∝

∑
(i,j)∈E

[
f(|Qij |)− µDij

] Lij√
Dij

. (3.12)

Since the choice of f(|Qij |) is arbitrary, as long as f(0) = 0 and f ′(|Qij |) > 0, one can expect that

not every choice results in (3.12) being identically zero, and thus doesn’t guarantee that the volume of

the fluid is conserved.

This is confirmed by the results of Figure 3.1, showing four simulations of the Physarum Solver in a

small graph, for different distributions of sources and sinks, and different choices of adaptation functions,

f , like the ones typically found in literature (2.4). In the first two (Figure 3.1a and Figure 3.1b) we

have considered fixed configurations of sources and sinks, while in the other two (Figure 3.1c and Figure

3.1d), in each time step a source and a sink are randomly picked from the set of terminals, as described

in section 2.4.2. In each case, it’s shown the plot of the network volume over the simulation time. As

the plots show, the volume isn’t conserved throughout the simulation, but rather tends to decrease over

time, converging to a much lower value than the initial one, which corresponds to the volume of the

steady-state solution. Note that in the last two simulations the volume exhibits some fluctuations due to

the stochastic choice of the source-sink pair in each step, but the asymptotic behaviour is the same.

We conclude that the adaptation dynamics proposed by Tero violates the volume conservation of

the fluid, and thus the assumption that the fluid is incompressible. Therefore the model is physically

inconsistent. This contradiction has been already reported in [26]. In the following, we propose a more

realistic evolution law for the channels conductivities that takes this assumption into account.
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(a) Simulation with fixed terminals: 1 source (yellow circle) and 1 sink (red triangle) with intensities qsource =
−qsink = 1. Adaptation function: f(|Qij |) = |Qij |.
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(b) Simulation with 5 fixed terminals: 2 sources (yellow circles) and 3 sinks (red triangles), with intensities
qsource = −qsink = 1. Adaptation function: f(|Qij |) = |Qij |1.5/(1 + |Qij |1.5).
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(c) Simulation with 5 terminals (blue) and random choice of a source-sink pair in each step (qsource = −qsink = 1)
like the original algorithm. Adaptation function: f(|Qij |) = |Qij |1.8/(1 + |Qij |1.8).
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(d) Simulation with 6 terminals (blue) and random choice of a source-sink pair in each step (qsource = −qsink = 1)
like the original algorithm. Adaptation function: f(|Qij |) = |Qij |1.2.

Figure 3.1: Simulations of the Physarum Solver for different choices of the adaptation function f in
(3.10), different distribution of sources and sinks, considering µ = 1 and a total flux flowing through
the network I0 = 1. The simulations were carried out in planar graphs with 5 × 5 nodes, considering
initial homogeneous conductivities, Dij(0) = 1. In each case, the left image depicts the initial network
geometry, the middle image corresponds to the steady state of the adaptation mechanism, and the right
plot represents the volume of the network over time, V, normalised to the initial volume, V0. The thickness
of the black lines is proportional to the radius of the edges (∼ D1/4

ij ). The plots show that the volume is
not conserved throughout any simulation, which implies that the Hagen-Poiseuille flow can no longer be
applied as the fluid is compressible.
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3.3 Model Formulation

3.3.1 Physarum as a Flow Network

Similarly to the previous model, the geometry of Physarum’s vein network is described as an undirected,

planar and connected graph, G = (V,E), embedded in the Euclidean plane, where V is the set of N nodes

or vertices with coordinates (xi, yi) for i ∈ V , and E is the set of M straight edges (i, j), connecting the

node i and j. The edges represent the network veins (channels), and the nodes the junctions between

them.

Each node i is characterised by a pressure pi. An edge (i, j) is assumed to be a cylindrical elastic

channel with a fixed length Lij , and a radius rij which can change in response to the magnitude of the

flux flowing through it. The fluid in the network is viscous and incompressible, and undergoes a Hagen-

Poiseuille flow, being the channel fluxes Qij given by 3.1. If Qij > 0, then the fluid flows from i to j,

while Qij < 0 means that the flow is from j to i.

We assume that the network flows are driven by a set of sources and sinks (terminals), located at

fixed nodes, which mimic stimulated regions of Physarum. Each node i is thus characterised by a net

flux qi. If a node i is a source, it injects flow in the system, and qi > 0. If the node is a sink, it removes

flow from the system, and qi < 0; otherwise qi = 0. The volume conservation of the fluid imposes that

∑
i∈V

qi =
∑

i∈sources

qi +
∑

i∈sinks

qi = 0 . (3.13)

The channel fluxes can be determined by the conservation of the flux at each vertex i, which is also

a direct consequence of the incompressibility of the fluid,

∑
j∈N (i)

Qij =
∑

j∈N (i)

Dij(pi − pj)
Lij

= qi , i ∈ V (3.14)

where N (i) = {j : (i, j) ∈ E} is the set of the neighbour nodes of the node i, and Dij = Dji is the

conductivity of the channel (i, j).

3.3.2 Adaptation Dynamics

Experimental observations seem to support the current-reinforcement optimisation principle behind the

Physarum Solver model, i.e., the feedback between the flux and the vessel thickness. The conservation of

the fluid’s volume should play a crucial role in this regard, since it implies that vessels with higher flow

rates expand at the expense of vessels with lower flow rates, which consequently shrink and eventually

collapse. In this way, the volume conservation acts as a global constraint which enables the adaptation

dynamics at one part of the network to affect the dynamics across the whole network. Therefore, the

optimisation can’t be described by a local mechanism, as in Physarum Solver, and the role of volume

constraint in the process must be acknowledged in the model.

In general, this problem is overlooked in the literature, so we aim to construct a more realistic model

which tackles this issue by deriving a general adaptation rule which intrinsically conserves the volume
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(3.11). According to our knowledge, the only solutions found in literature consist in projecting in each

time step the solution of the adaptive equation (3.10) onto the surface defined by the volume constraint

[27], or through a simple global rescaling of the conductivities in each time step [28]. These constitute

mathematical ad hoc solutions which obfuscate the physical interpretation of the adaptation mechanism,

and introduce unpredictable changes in the dynamics.

The new adaptation rule should be able to capture the same current-reinforcement feedback dynamics

as that of Physarum Solver, but with the constraint that the total volume of the network must remain

constant over time. This suggests basing our model on an adaptation rule very similar to the one proposed

by Tero et al. (3.10). However, since we assume that the adaptation is described by variations of the

vessels cross-section, πr2ij ∝
√
Dij , in response to the flux flowing through, it’s more meaningful to derive

an equation for the
√
Dij rather than for the conductivities Dij . Therefore we make the ansatz that

d

dt

√
Dij = f(Q)− µ

√
Dij , (3.15)

where f(Q) is an unknown function of all the network fluxes Q, with f(0) = 0, which generically describes

the channel expansion due to the flux. The second term represents the tube shrinkage at a rate µ > 0 in

the absence of flux. Below, following equation (3.35), we discuss the consistency of expression (3.15).

Now we can ask under what conditions this adaption rule conserves the volume. Naturally, this limits

the choice of the function f , in contrast to Tero’s model, where the choice is roughly arbitrary. By

differentiating both sides of (3.11), the conservation of the volume can be described by the following

constraint

dV
dt

= β
∑

(i,j)∈E

Lij
d

dt

√
Dij = 0 . (3.16)

Replacing (3.15) in the last equation and using (3.11) yields

∑
(i,j)∈E

Lijf(Q) = µ
∑

(i,j)∈E

Lij
√
Dij︸ ︷︷ ︸

V/β

= µ
V
β
. (3.17)

To satisfy this condition, it’s sufficient to define f in terms of a new function g by the relation

f(Q) :=
µ

β
V g(|Qij |)∑

(k,m)∈E
Lkmg(|Qkm|)

. (3.18)

By introducing the last expression into the ansatz (3.15), and redefining the time scale τ = µt we

obtain
d

dτ

√
Dij =

V
β

gij∑
(k,m)∈E

Lkmgkm
−
√
Dij , (i, j) ∈ E (3.19)

where gij ≡ g(|Qij |). Therefore, we conclude that for any choice of the function g, the volume of the

fluid in a network with adaptive channel conductivities evolving according to (3.19) is conserved over

time. Thus, it correctly describes an optimisation process of a network filled with an incompressible fluid
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subjected to a Hagen-Poiseuille flow.

Note that, the adaptation rule (3.19) depends on the overall structure of the flows through the

term Z ≡
∑

(k,m) Lkmg(|Qkm|), making the adaptation explicitly a non-local process, in contrast to the

Physarum Solver model (3.10), where the coupling of the system’s dynamics stems only from conservation

of the flux at the nodes (3.14). This global coupling factor can be seen as a measure of an effective network

length, where the contribution of each channel is weighted by a function of its local flux, g.

For a better comparison with the previous model (3.10), given that d
√
Dij = (2

√
Dij)

−1dDij , the

expression (3.19) can be rewritten in terms of the conductivities Dij as

dDij

dτ
= 2
V
β

√
Dij

gij∑
(k,m)∈E

Lkmgkm
− 2Dij , (i, j) ∈ E . (3.20)

3.4 Minimisation of Energy Dissipation

In the previous section, we have derived a general class of adaption models describing the flow of incom-

pressible fluids in networks of elastic channels with arbitrary geometry. However, to analyse the temporal

evolution of a network following the adaptation dynamics (3.19), the function g must be chosen. The

choice of g can’t be completely arbitrary in order to preserve the physical meaning of f in (3.15). By

(3.18) it’s required that g(0) = 0 so that f(0) = 0. Also, g should be such that ∂f/∂|Qij | ≥ 0 for a given

channel (i, j), since a channel should expand if its local flux is increased until it eventually saturates.

This last condition is harder to ensure, given that f now depends on all the channel fluxes, which are

inherently coupled through the conservation laws (3.14).

Here, the choice of g is made by introducing the criterion of minimisation of the total power dissipated

during the flow (dissipation), subject to the constraint of the fixed volume of fluid, assuming a steady flow

imposed by a fixed set of sources and sinks [29]. When a fluid flows through a channel some energy is lost

due to friction. The energy dissipation rate depends on parameters such as the fluid’s speed and viscosity,

and for a steady-state flow through a channel (i, j) is given by Pij = ∆pijQij . The total dissipation of a

flow network, P, is the sum of the dissipation at each channel,

P =
∑

(i,j)∈E

∆pijQij =
∑

(i,j)∈E

Q2
ij

Dij
Lij . (3.21)

The principle of least energy dissipation is widely used in the context of the optimisation of biological

transport networks, such as vascular systems, leaf venation in plants, and river networks. The notion of

optimal network is typically defined as the one which minimises the energy dissipation under an optional

set of constraints, e.g., a limited amount of resources [2, 29, 30], or other cost functionals involving the

energy [31]. The functional being minimised and the constraints to which it is subject have a profound

impact on the structure and properties of the optimal networks [30].

In the case of Physarum, although the mechanism underlying the network adaptation is not well-

understood, and is certainly more complex than that, it’s reasonable to admit that is somehow related to

the optimisation of its network’s energy consumption. However not in a straightforward way as we assume
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here since the organism is far from a state of equilibrium. Physarum displays a continuous adaptation

to the environmental stimuli mediated by the shuttle streaming, which introduces fluctuations in the

flux. This means that the fluctuations should be accounted for in the minimisation process [2], but

for simplicity, we ignore that and consider the minimisation under a steady flow regime generated by a

constant set of sources and sinks.

We seek to minimise the dissipation rate, P, of a steady flow network with respect to
√
D ≡ {

√
Dij :

(i, j) ∈ E}, subject to the local constraints of flux conservation (3.14), and the additional global con-

straint of a constant volume, V (incompressible fluid). The problem consists of minimising the following

Lagrangian

L = P − λ(V − β
∑

(k,m)∈E

√
DkmLkm)

=
∑

(k,m)∈E

Q2
km

Dkm
Lkm − λ(V − β

∑
(k,m)∈E

√
DkmLkm) ,

(3.22)

where λ is a Lagrangian multiplier. Note that the channel fluxes can’t be regarded as independent

variables in the minimisation process as they are uniquely determined for a given distribution of the

nodes’ fluxes, q, and channels conductivities through (3.14). The set of conductivities that minimises L

is the solution of

∂L
∂
√
Dij

= 0 for (i, j) ∈ E ,
∂L
∂λ

= 0 . (3.23)

We start by considering the derivative with respect to
√
Dij . Using the chain rule we have that

∂L
∂
√
Dij

= 2
√
Dij

∂L
∂Dij

, (3.24)

where

∂L
∂Dij

=
∂P
∂Dij

− λ ∂

∂Dij
(V − β

∑
(k,m)∈E

√
DkmLkm)

=
∂P
∂Dij

+ λβ
Lij

2
√
Dij

.

(3.25)

Expanding the first term of the last expression yields

∂P
∂Dij

=
∂

∂Dij

∑
(k,m)∈E

Q2
km

Dkm
Lkm

= −
Q2
ij

D2
ij

Lij + 2
∑

(k,m)∈E

Qkm
Dkm

∂Qkm
∂Dij

Lkm .

(3.26)

Denoting the adjacency matrix of the network by A = [Aij ], i.e., the matrix with entries Aij = 1 if

(i, j) ∈ E and Aij = 0 otherwise, the second term of (3.26) can be written as

2
∑

(k,m)∈E

Qkm
Dkm

Lkm︸ ︷︷ ︸
pm−pk

∂Qkm
∂Dij

=
∑
k∈V

∑
m∈V

Akm(pm − pk)
∂Qkm
∂Dij

.
(3.27)
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Using the symmetry of the adjacency matrix, Aij = Aji, (undirected graph), and the antisymmetry

of the flux matrix, Qij = −Qji, this can be further simplified to (cf. Lemma 2.1 in [32])

∑
k∈V

∑
m∈V

Akm(pm − pk)
∂Qkm
∂Dij

=
∑
k∈V

∑
m∈V

Amkpk
∂Qmk
∂Dij︸ ︷︷ ︸

k↔m

−
∑
k∈V

∑
m∈V

Akmpk
∂Qkm
∂Dij

=
∑
k∈V

∑
m∈V

Akmpk
∂(−Qkm)

∂Dij
−
∑
k∈V

∑
m∈V

Akmpk
∂Qkm
∂Dij

= −2
∑
k∈V

pk
∑
m∈V

Akm
∂Qkm
∂Dij

= −2
∑
k∈V

pk
∂

∂Dij

∑
m∈N (k)

Qkm

= −2
∑
k∈V

pk
∂qk
∂Dij

,

(3.28)

where the conservation of the flux (3.14) was used in the last step.

For fixed sources and sinks,
∂qk
∂Dij

= 0, which implies that the second term in (3.26) is zero. Therefore,

within the assumption of constant sources and sinks, the derivatives of L with respect to
√
Dij are given

by

∂L
∂
√
Dij

=

(
−
Q2
ij

D2
ij

Lij + λ′
Lij

2
√
Dij

)
2
√
Dij . (3.29)

where we’ve redefined the Lagrangian multiplier λ′ = βλ. The minima of L satisfy

∂L
∂
√
Dij

= 0 ⇔


Dij =

(
2

λ′

)2/3

Q
4/3
ij

Dij = 0 .

(3.30)

The constant of proportionality of the non-trivial minima, α ≡
(

2

λ′

)2/3

, can be determined by direct

substitution in the constraint equation (3.11), resulting from
∂L
∂λ

= 0,

∂L
∂λ

= 0 ⇔ α =

 V/β∑
(k,m)∈E

Q
2/3
kmLkm


2

. (3.31)

Therefore the non-trivial values of conductivities that minimise the total dissipation of the network

are

Dij =

Vβ Q
2/3
ij∑

(k,m)∈E
Q

2/3
kmLkm


2

. (3.32)

This scaling relation between the conductivities and the fluxes in the minimal configuration of energy

24



is very similar to the one obtained in [29].

On the other hand, we find that the non-trivial steady states of the volume-preserving adaptation law

(3.19) satisfy

d

dτ

√
D∗ij = 0 ⇔ D∗ij =

V
β

gij∑
(k,m)∈E

Lkmgkm


2

. (3.33)

Comparing the results (3.32) and (3.19), we conclude that for the choice of gij = Q
2/3
ij , the total

dissipation of the network at the steady state is minimal, assuming a constant distribution of nodes flux,

q, during the adaptation process. With these choices, we obtain the following dynamics which preserves

the volume and converges to a state of minimal dissipated energy,

d

dτ

√
Dij =

V
β

Q
2/3
ij∑

(k,m)∈E
LkmQ

2/3
km

−
√
Dij , (i, j) ∈ E . (3.34)

As a side note, for the simplest case of a single elastic channel with length L12 and conductivity D12,

the equation (3.19) reduces to

d

dτ

√
D12 =

V
β

1

L12
−
√
D12 , (3.35)

which is independent of the choice of the function g. This differential equation has a unique stable fixed

point for
√
D∗12 = V/(βL12) which coincides with (3.32). Therefore, according to our model (3.19), for

a Hagen-Poiseuille flow on a single elastic tube, the radius of the tube at the steady state minimises

the power dissipated by the flow, regardless of the choice of g. This property is consistent with the

distribution of channel fluxes arising from the Kirchhoff Law (3.14), which is by definition the one which

minimises the total energy dissipated [33], and thus justifies the ansatz made in (3.15) by adding the

term
√
Dij .

3.5 Methods

3.5.1 Algorithm

The algorithm used to simulate our model is described in the following. First, we generate a planar

graph, G, embedded in the two-dimensional Euclidean space, which represents the initial geometry of

Physarum’s network, or of any other transport network. The edges lengths Lij are obtained based on the

node positions. These two remain fixed throughout the simulation, and only the conductivities Dij are

the target of adaptation. Some of the nodes are assigned as sources or sinks and have a net flux different

from zero, such that the constraint 3.13 is verified. The initial conditions of our dynamical system are

the initial edges conductivities, Dij(0). Usually, we consider an initial homogeneous distribution, and if

they aren’t specified, it’s assumed Dij(0) = 1 for all edges (i, j) ∈ E. The initial conductivities are used

to compute the total volume of fluid through (3.11), where we always consider the parameter β = 1.
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Given the distribution of the nodes’ net fluxes, q, and the initial set of edge conductivities, the temporal

evolution of the system starts with the computation of the channel fluxes Qij by solving the linear system

(3.14). Then, based on those fluxes, the conductivities of all the channels are updated according to (3.34),

or more generally, according to (3.19) given a predefined function g. The new channel conductivities are

used to compute the new channel fluxes in the next time step of the algorithm. These steps are repeated

over time until a steady state of channel conductivities is eventually reached.

From the numerical point of view, we consider that a steady state is reached when the change in the

conductivity of all channels from one step to another is lower than 10−6. This can be translated into the

following stopping condition

max
(i,j)∈E

|Dij(n∆τ)−Dij((n− 1)∆τ)| ≤ 10−6 . (3.36)

where n is the first integer for which the inequality is verified, and ∆τ is the time increment used to

solve numerically the adaptation rule (3.19). The time of convergence of the adaptation algorithm is thus

τ∗ = n∆τ <∞.

The simulations were all done in Python, exploiting in particular the modules NetworkX for mesh rep-

resentation and graph analysis; SciPy and NumPy for numerical computations; and Matplotlib and seaborn

for the graphical interface and plotting. More exotic initial meshes were generated using Mathematica.

3.5.2 Computation of the network flows

The network can be seen as an edge-weighted graph, where the edge weights are given by Cij =
Dij

Lij
,

measuring the degree of ease with which a channel can carry flow. The channel fluxes in each time step

can be computed by first finding the pressures of the nodes. The linear system (3.14) can be rewritten as

∑
j

Qij =
∑
j

Cij(pi − pj)

=

∑
j

Cij

 pi −
∑
j

Cijpj

=

(∑
k

Cik

)∑
j

δijpj −
∑
j

Cijpj

=
∑
j

[(∑
k

Cik

)
δij − Cij

]
pj

=
∑
j

`ijpj .

(3.37)

where δij denotes the Kronecker delta function. Let p be the N -dimensional vector whose ith element is

the pressure pi of the ith node, and q the N -dimensional vector whose ith element is the net current qi

through the ith node. If we define L as the N ×N symmetric matrix with entries

`ij =

(∑
k

Cik

)
δij − Cij , (3.38)

26



the system of conservation laws (3.37) can be written in matrix form as

Lp = q . (3.39)

The matrix L is the generalisation of the Laplacian matrix for a weighted graph with edge weights Cij .

For a simple undirected graph, the Laplacian matrix is defined as L = D −A, where D is the degree

matrix 1 and A the adjacency matrix of the graph. In Figure 3.2 it’s depicted the calculation of the

Laplacian matrix for a small weighted graph.

Note that the Laplacian matrix is singular since all the rows sum to zero, meaning it has an eigenvector

1 = (1, 1, ..., 1) with a zero eigenvalue (L1 = 0). In fact, it can be shown the dimension of the nullspace

of the Laplacian and algebraic multiplicity of the zero eigenvalue is equal to the number of connected

components of the graph [34]. In the particular case of connected graphs that we are interested in, the

former implies that rank(L) = N −1. This is related to the fact that the linear system (3.14) is invariant

to translations in the pressure, which implies that the pressures are defined up to an additive constant.

The physical explanation is that one can only measure pressure differences, as with potential differences

in electrical circuits. However, the fluxes are uniquely determined since the additive term is cancelled.

This means that we can arbitrarily choose the pressure of one node as the reference pressure, p = 0.

This can be done indirectly by adding a small arbitrary constant to one diagonal element of the Laplacian,

which makes the Laplacian invertible (cf. section 2.4 of [25]). In our case, in each time step, we randomly

perturb the diagonal entry of (3.38) corresponding to one of the sink nodes. Finally, once the pressures

of the nodes are determined, the channel fluxes can be computed by direct substitution of the former in

(3.14).

Figure 3.2: Example of the calculation of the Laplacian matrix for a small weighted graph. On the left,
the circles represent the nodes, labelled by their index, and lines represent the edges labelled by the
corresponding weight.

3.5.3 Numerical Scheme

Some caution must be taken regarding the choice of numerical scheme used to solve the differential

equation (3.34), or more generally the equation (3.19), since it has to guarantee that the volume is

1The degree matrix of a simple undirected graph G = (V,E) with N = |V | nodes is a N × N diagonal matrix D =
diag(deg1, ..., degN ) where degi is the number of neighbour nodes (degree) of the node i.
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conserved from one step to another. In this work, we adopt a simple explicit Euler numerical scheme

with time step ∆τ , which results in the following discretisation of (3.19),

√
Dn+1
ij =

√
Dn
ij + ∆τ

V
β

gnij∑
(k,m)∈E

Lkmgnkm
−
√
Dn
ij

 , (i, j) ∈ E . (3.40)

where Dn
ij denotes the conductivity of the edge (i, j) at the time τ = n∆τ , i.e Dn

ij ≡ Dij(n∆τ) and

similarly gnij ≡ g(|Qij(n∆τ)|). According to the discretisation (3.40), the volume of the network in the

time step n+ 1 is

Vn+1 = β
∑

(i,j)∈E

Lij

√
Dn+1
ij

= β
∑

(i,j)∈E

Lij
√
Dn
ij︸ ︷︷ ︸

Vn

+∆τ

V − β ∑
(i,j)∈E

Lij
√
Dn
ij


︸ ︷︷ ︸

0

= Vn ,

(3.41)

which implies that, for any choice of g, the Euler method conserves the volume.

Most of the simulations were carried out with a relatively large time increment, ∆τ = 0.1, due to

computational power limitations. It should be noted however that we’ve performed some tests with

different time increments, while maintaining the remaining parameters fixed, and in some cases the final

networks reached by the algorithm were different.

3.5.4 Mesh Generation

The geometry of the initial networks was generated through a Delaunay Triangulation of a set of points

representing the nodes. Given a discrete set of points (nodes) V arbitrarily placed in a plane, a two-

dimensional Delaunay triangulation of V , DT (V ), is a triangulation such that no point in V is inside the

circumscribed circle of any triangle in DT (V ). This type of triangulation results in planar graphs where

nodes can have an arbitrarily high degree depending on how they are initially distributed.

To generate the underlying initial networks we first considered an L× L square lattice of side length

1, with a total of N = L× L nodes. Then, the position of the interior nodes of the lattice was randomly

perturbed with Gaussian noise, with a given standard deviation which controls the distortion of the final

mesh. Finally, a Delaunay triangulation is performed on perturbed lattice points, resulting in a graph

network G with edge lengths, Lij , randomly distributed in the interval [1/(N − 1) − ε, 1/(N − 1) + ε],

where ε is a small constant. We’ve performed tests on lattices of linear sizes ranging from L = 2 up to

L = 40.

The method used to distribute the points over the plane resulted in networks with an average degree

typically around 5 or 6. This high number of node neighbours increases the set of possible paths that

the adaptation process can select from, which makes the results more robust. Furthermore, by using a

Delaunay triangulation of a random set of points to represent the underlying Physarum network instead

of a structured mesh (rectangular, triangular, hexagonal), we also avoid that eventual lattice symmetries
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introduce some bias on the results. Some tests were also performed with these types of meshes as

underlying networks, although they are not presented here. In these cases, some noise was added to

the position of the vertices to break the lattice symmetries. However, as the simulations showed, the

optimised networks obtained weren’t in general as natural as the ones obtained from an initial Delaunay

mesh, which resembled more closely the networks displayed by Physarum.

3.6 Exploration of the Model

We start by performing simple tests on the model. First, a brief insight into the typical network temporal

evolution is given. Then it’s investigated how the choice of sources and sinks and the initial distribution

of edge conductivities affect the shape of the final network. Finally, it’s studied the general adapta-

tion dynamics (3.19) for the class of functions gγ(|Qij |) = |Qij |γ , where we analyse the final network

dependency on the parameter γ > 0.

3.6.1 Network temporal evolution

In Figure 3.3, it’s shown snapshots taken at different time steps of two simulations of the model (3.34),

depicting the typical evolution of the networks over time, considering a fixed set of terminals. The

simulations were carried out on a network resulting from a Delaunay triangulation of 900 randomly placed

nodes, with uniform initial channel conductivities, Dij(0) = 1. Figure 3.3a represents the case of only one

source and one sink, while Figure 3.3b represents the case of the adaptation in the presence of multiple

terminals, where we’ve considered two sources and three sinks. In both cases, the sources give the same

amount of flux qsource = 1/Nsources, which is evenly distributed between the sinks, qsink = −1/Nsinks,

where Nsources and Nsinks are the number of sources and sinks respectively.

In this work we adopt the following conventions: the sources are represented by yellow circles, the

sinks are represented by red triangles, and the thickness of the lines representing the edges is proportional

to their radius ( D1/4
ij ). The initial network is also shown in light red.

From the simulations, we observe that the channels farther away from the straight lines connecting

each source-sink pair gradually shrink and eventually vanish, while the closest to those paths are thickened

due to the volume conservation. The farthest they are the faster they disappear. On the bottom right of

each figure, it’s plotted the volume of the networks over time, which confirms that the volume is conserved

throughout the simulations.

In Figure 3.4 we’ve simulated the adaptive mechanism on a more realistic setting mimicking the

Physarum scenario. We’ve considered an organism with a circular shape in the presence of a central

food source which acts as a source of nutrient flux with intensity qsource = 1. The nutrients are equally

distributed between all the nodes at the boundary, which behave like sinks, simulating regions where

there is a continuous uptake of nutrients so that the eventual growth of the organism may occur (which

is for now neglected). The final network shows a preferential radial orientation consistent with the flux

direction and resembles to some degree the networks displayed by Physarum depicted in Figure 2.2.

However, the key difference is that Physarum’s networks have some redundancy which is not observed
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(a) Simulation for one source (yellow) and one sink (red) placed at diagonally opposite corners of a square. The
intensity of the terminals are related by qsource = −qsink = 1.
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(b) Simulation for multiple terminals aligned in an M-shaped configuration: 2 sources (yellow) and 3 sinks (red).
The intensity of the sources is qsource = 1/2 and the intensity of the sinks is qsink = −1/3.

Figure 3.3: Simulation examples of the model (3.34), depicting the network optimisation process at
different time steps, for two different choices of terminals. The simulations start from an initial Delaunay
triangulation of 900 nodes, shown in red, where the edges start with homogeneous conductivities, Dij(0) =

1. The thickness of the black lines is proportional to the radius of the channels (∼ D1/4
ij ). At the bottom

right of each group, it’s plotted the networks’ volume throughout the simulation, which shows that the
volume is conserved in both cases.
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in the simulations. Thinner secondary veins branch from thicker primary veins and connect on the other

end to other main veins, and this pattern is repeated for even thinner veins, resulting in the formation

of loopy structures. Those loops and redundant paths are important in the sense that they provide

robustness and tolerance to damage to the network, and are characteristic of other biological systems as

well like the leaf venation in plants.

Based on extensive simulations considering different configurations of fixed terminals, we couldn’t

reproduce the formation of loops and redundant connections. In all the simulations, the adaptation

dynamics (3.34) resulted in steady-state networks which looked like trees, i.e., acyclic connected graphs

where any two vertices are connected by exactly one path. This is partly due to assuming fixed sources

and sinks and thus neglecting flux fluctuations that are believed to be important for the formation of

those redundant paths [1, 2]. The impact of the flux fluctuations will be explored in the next chapter.
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mesh = disk
noise = 0.0
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Figure 3.4: Simulation of the model (3.34) replicating the Physarum’s network adaptation, starting from
initial homogeneous conductivities, Dij(0) = 1. The labels t designate the iteration number in which the
snapshots were taken. The flux is driven by a central source (yellow) and the sinks (red) placed at the
boundary of the organism, which represent stimulated regions with high metabolic activity. The source
gives qsource = 1, which is evenly distributed between the sinks. The adaptation dynamics results in a
tree-like steady-state network (cf. Figure 2.2).

3.6.2 Choice of sources and sinks

We now investigate how the choice of terminals and their intensity affect the geometry of the optimal

networks. For that, we’ve considered a fixed Y-shaped arrangement of 4 terminal nodes, and tested the

adaptation mechanism (3.34) for all the different combinations of source and sink states of the 4 nodes

(Figure 3.5). Since the all-sinks and all-sources aren’t valid states, as they don’t satisfy (3.13), for 4

terminals there are 24 − 2 = 14 possible states. To make a fair comparison, the same initial mesh and

same initial conductivities (Dij(0) = 1) were used in the simulations (Figure 3.5a), and the nodes net

fluxes were chosen according to

qi =


I0/Nsources , i ∈ sources

−I0/Nsinks , i ∈ sinks

0 , otherwise

, i ∈ V (3.42)

where I0 = 1, which implies that the same amount of flux flows through the network in each case.
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The resultant optimised networks obtained for each state are depicted in Figure 3.5. The results show

that for a given set of terminals the geometry of the steady-state network depends greatly on which of

those are sources and which ones are sinks.

iterations = 0

 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = 42
I0 = 1 
D0

ij  = 1
dt = 0.1

(a) iterations = 330

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 2.4865

L = 0.7039
= 39.4912 %

 config 1: 1110

(b) iterations = 330

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 2.4865

L = 0.7039
= 39.4912 %

 config 14: 0001
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ij Dt
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 config 2: 1101

(d) iterations = 358
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Dij : |Dt + 1

ij Dt
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 config 13: 0010

(e) iterations = 326
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ij Dt
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L = -0.0000
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 config 4: 1011

(f) iterations = 326
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ij Dt
ij|  1e-06
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Lnetwork = 1.7825

L = -0.0000
= -0.0000 %

 config 11: 0100

(g)

iterations = 319

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 2.8561

L = 1.0735
= 60.2235 %

 config 7: 1000

(h) iterations = 319

Steady state reached 
Dij : |Dt + 1

ij Dt
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 config 8: 0111

(i) iterations = 323
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ij Dt
ij|  1e-06
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L = -0.2127
= -11.9320 %

 config 5: 1010

(j) iterations = 323

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 1.5699

L = -0.2127
= -11.9320 %

 config 10: 0101

(k)

iterations = 314

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 1.5444

L = -0.2381
= -13.3572 %

 config 6: 1001

(l) iterations = 322

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 1.5444

L = -0.2381
= -13.3572 %

 config 9: 0110

(m) iterations = 320

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 1.5444

L = -0.2381
= -13.3572 %

 config 3: 1100

(n) iterations = 320

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 1.7825
Lnetwork = 1.5444

L = -0.2381
= -13.3572 %

 config 12: 0011

(o)

Figure 3.5: Dependency of the optimal network geometry on the choice of sources and sinks. (a) Several
simulations of the adaptation dynamics (3.34) were carried on an initial network (red mesh) withDij(0) =
1, considering a fixed Y-shaped arrangement of 4 terminals (blue circles). (b-o) steady-state networks
reached considering all the different combinations of sources (yellow circles) and sinks (red triangles)
states of the arrangement of terminals (a). The thickness of the black lines is proportional to the radius
of the channels. In each case, the distribution of node fluxes follows (3.42) (I0 = 1). The geometry
of the steady-state network varies greatly with the choice of sources and sinks. By interchanging the
sources with the sinks, the same steady state is obtained. Some configurations can lead to apparently
disconnected solutions (j-o).
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An interesting observation is that symmetrical configurations, i.e., configuration with the opposite

choice of sources and sinks, lead to the same final network. This isn’t due to the particular choice of the

Y-shape arrangement, but it’s a general result confirmed by numerous simulations, which is related with

the choice of the nodes net fluxes distribution (3.42). To demonstrate this, let a given configuration of

sources and sinks be represented by a source vector q, and let the symmetrical configuration be described

by the source vector q′, both following (3.42). Since the number of sources in one is equal to the number

of sinks in the other, i.e., Nsources = N ′sinks and Nsinks = N ′sources, we have that

qsource −→ q′sink =
I0

N ′sinks
= − I0

Nsources
= −qsource

qsink −→ q′source =
I0

N ′sources
= − I0

Nsinks
= −qsink .

(3.43)

Opposite configurations can thus be seen as a transformation q′ → −q in the system. Given the

linearity of the conservation laws (3.14), this is translated into a global flow reversal, i.e., Q′ij → −Qij
for (i, j) ∈ E. However, since the adaptation dynamics (3.34) depends only on the magnitude of the flux

in each vessel, the flow reversal has no effect on the dynamics. Therefore, we conclude that opposite

configurations yield the same final network.

More generally, following a similar approach, we can demonstrate that the adaptation dynamics 3.19

is invariant for scale transformations of the nodes’ net fluxes, q → αq, with α ∈ R, as long as the

function g satisfies g(|αQij |) = |δ|g(|Qij |) for some non-zero constants α and δ (e.g., g polynomial). This

means that the parameter I0 > 0 in (3.42) has no effect on the conductivities of the steady-state optimal

networks. These observations are supported by the results of Figure 3.6, where different choices of the

parameter I0 were tested for the same geometry and initial conditions.

Figures 3.5j to 3.5o also reveal that for certain choices of sources and sinks the adaptation mechanism

can lead to apparently disconnected networks, where each “disconnected component” adapts almost in-

dependently from the others. Note, however, given the nature of adaptation dynamics (3.34), technically

the components are not truly disconnected from each other, but are weakly coupled through edges with

very small conductivities which asymptotically approach zero. Further simulations showed that, in gen-

eral, this may happen for distributions of the nodes’ fluxes, q, which allow for a partition of the graph

G such that the sum of the nodes’ fluxes of every subgraph is (non-trivially) zero. For instance, when

the number of sources and sinks is equal and for each source there is a sink with a symmetric intensity,

allowing the terminals to be grouped in pairs. Although this is a necessary condition, it’s not sufficient

to guarantee that the steady-state graph is apparently disconnected, otherwise, it would be the case of

all the steady-state networks of Figure 3.7. In the context of Physarum, these apparently disconnected

solutions are unrealistic, since the organism grows and adapts as a single contiguous network.

It’s not clear what is the most appropriate choice of sources and sinks in the case of Physarum.

Naturally, food sources are sources of nutrients, but other stimulated regions can also be sources of

signalling molecules [17]. However, it’s certain that they aren’t static as we are assuming here, since the

flow is not steady, and periodically changes direction. Only fluctuations of the sources and sinks may

replicate this shuttle streaming behaviour.
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I0 = 0.1 I0 = 1 I0 = 10 I0 = 100

iterations = 331
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 = 0.67 

L = 30
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noise = 0.5
G seed = 2
I0 = 0.1 
D0

ij  = 1
D0 seed = 42
dt = 0.1
fs_seed = 2

Steady state reached 
 max|Dt + 1

ij Dt
ij|  1e-06

(a) iterations = 331

 Parameters
 = 0.67 

L = 30
mesh = d
noise = 0.5
G seed = 2
I0 = 1 
D0

ij  = 1
D0 seed = 42
dt = 0.1
fs_seed = 2

Steady state reached 
 max|Dt + 1

ij Dt
ij|  1e-06

(b) iterations = 331

 Parameters
 = 0.67 

L = 30
mesh = d
noise = 0.5
G seed = 2
I0 = 10 
D0

ij  = 1
D0 seed = 42
dt = 0.1
fs_seed = 2

Steady state reached 
 max|Dt + 1

ij Dt
ij|  1e-06

(c) iterations = 355

 Parameters
 = 0.67 

L = 30
mesh = d
noise = 0.5
G seed = 2
I0 = 100 
D0

ij  = 1
D0 seed = 42
dt = 0.1
fs_seed = 2

Steady state reached 
 max|Dt + 1

ij Dt
ij|  1e-06

(d)

Figure 3.6: Dependency of the steady states of the dynamics (3.34) on a global scaling of the nodes’
net fluxes, considering the same configuration of terminals (3 sources and 4 sinks), initial conditions
(Dij(0) = 1) and initial mesh. The images show the steady states obtained considering the nodes flux
distribution (3.42) for different choices of the parameter I0. The dynamics converged to the same steady-
state conductivities regardless of the value of I0, which implies that it’s invariant for scaling transformation
of q.
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Figure 3.7: (a-b) Examples of (apparently) disconnected steady-state networks of the dynamics (3.34)
for two different choices of the nodes’ net flux distribution. The labels near each terminal represent their
net flux, while the remaining nodes have q = 0. (c-d) Examples of connected steady states for the same
configurations of (a) and (b), although disconnected solutions would be possible in principle. Note that
the nodes fluxes are identical in cases (a) and (c), apart from a permutation of the sources, and the
same goes for the cases (b) and (d), apart from a permutation of the sinks. All the simulations were
done considering initial conductivities Dij(0) = 1. The thickness of the black lines is proportional to the
radius of the channels.

3.6.3 Initial Conditions

We now study the uniqueness of the steady-state solutions of the dynamics (3.34). If the steady state

is unique, given a distribution of sources and sinks, q, and an initial mesh geometry, the system should

converge to the same final network regardless of the initial conductivities, Dij(0). Note that until now

we have only considered homogeneous initial conditions, Dij(0) = 1 for all (i, j) ∈ E.

To check if that is the case, several simulations were repeated on the same configuration, but consid-

ering different sets of initial conductivities, which were drawn each time from a uniform distribution in

the interval [0,2], i.e., Dij(0) ∼ U(0, 2). Figure 3.8 represents the steady states reached for two different

configurations: one considering 2 sources and 5 sinks, and the other considering 3 sources and 5 sinks.

The results show that for both cases, the geometry of the final network is highly sensitive to the initial
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conditions, and therefore we conclude that for a given setting the dynamics (3.34) may have multiple

steady-state solutions, as one could have expected. Further simulations suggested that, in general, the

higher the number of terminals, the easier it is for the system to converge to a different steady state.

The multiplicity of the steady states can be explained through the positive feedback loop between

the flux and veins thickness inherent to the model’s dynamics (3.34). Edges that start with higher

conductivities in principle will carry more flow, and therefore are thickened at the expense of channels

with initial lower conductivities, where the flow rate is likely lower, due to the volume conservation. This

idea is repeated in the following time steps, which implies that the initially thinner channels are likely

to shrink faster, while initially thicker channels are likely to thrive. Therefore, if the initial discrepancy

of conductivities is considerable, some connections are initially favoured, which may affect the ultimate

fate of the system.
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ij Dt
ij|  1e-06
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L = 30
mesh = d
noise = 0.5
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D0 =  (0, 2)

iterations = 290

Steady state reached 
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ij Dt
ij|  1e-06

 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = None
I0 = 1 
D0

ij  = (0, 2)
dt = 0.1

D0 =  (0, 2)

(a) 2 sources (yellow) with intensities qsource = 1/2, and 5 sinks (red) with intensities qsink = −1/5.

iterations = 315

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = 42
I0 = 1 
D0

ij  = (0, 2)
dt = 0.1

D0 =  {D0}

iterations = 337

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = 42
I0 = 1 
D0

ij  = (0, 2)
dt = 0.1

D0 =  {D0}

iterations = 349

Steady state reached 
Dij : |Dt + 1

ij Dt
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 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = 42
I0 = 1 
D0

ij  = (0, 2)
dt = 0.1

D0 =  {D0}

iterations = 311

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

 Parameters
L = 30
mesh = d
noise = 0.5
G_seed = 42
I0 = 1 
D0

ij  = (0, 2)
dt = 0.1

D0 =  (0, 2)

(b) 3 sources (yellow) with intensities qsource = 1/3, and 5 sinks (red) with intensities qsink = −1/5.

Figure 3.8: Dependency of the geometry of the optimal network on the initial conductivities of the
channels. Each group of simulations, (a) and (b), contains examples of the steady-state networks of
(3.34) for a given configuration of terminals and same initial mesh (red lines). Each steady state was
obtained by considering a different set of initial random conductivities uniformly distributed in the interval
[0, 2]. In both cases, the geometry of the final networks is highly sensitive to the initial conditions, which
implies that the system may have multiple steady states. The thickness of the black lines is proportional
to the radius of the channels.

Another interesting thing to test is how the system behaves under scaling transformations of the initial

conductivities. If all the conductivities are scaled by a factor α > 0, i.e., Dij → D′ij = αDij , the channel

fluxes are scaled by the same amount (Qij → Q′ij = αQij) due to the linearity of the Hagen-Poiseuille

flow (3.1), while by (3.11) the volume of the network scales as V → V ′ =
√
αV . Consequently, the

adaptation dynamics (3.34) is transformed as
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(3.44)

implying that it remains invariant under the transformation Dij → αDij with α > 0. This means that

if D(τ) is solution of (3.34), so is D′(τ) ≡ αD(τ). As the solution of (3.34) is unique given an initial

condition, this further implies that the only effect on the system of scaling the initial conductivities by

a global factor (D(0) → αD(0)) is that the conductivities of the steady state are also scaled by the

same factor, but the geometry of the network shouldn’t change ( lim
τ→∞

D(τ) → α lim
τ→∞

D(τ)). Note that

these observations can be generalised for the generic adaptation dynamics (3.19), as long as the function

g satisfies g(|αQij |) = δg(|Qij |) for some constants α > 0 and δ > 0, which is the case of (3.34), as

|αQij |2/3 = α2/3|Qij |2/3.

The scaling of the initial conditions was tested by performing repeated simulations on the same

configuration, starting from different sets of initial homogeneous conductivities, Dij(0) = D0, where

D0 > 0 is the only parameter which was varied between runs. In Figure 3.9 are depicted the steady

states obtained for different values of D0, considering the same configurations of Figure 3.8. The results

confirm the observations, since for both cases, only the thickness of the channels of the steady-state

networks changes when the initial conductivities are scaled by a given global factor, but the networks’

geometry remains the same.
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(b) 3 sources (yellow) with intensities qsource = 1/3, and 5 sinks (red) with intensities qsink = −1/5.

Figure 3.9: Dependency of the optimal network geometry on the scaling of the initial conductivities.
The images correspond to the steady states of (3.34) obtained for a different set of homogeneous initial
conductivities, Dij(0) = D0, with D0 ∈ {0.1, 1, 5, 15}, considering the same configurations of Figure 3.8.
A scaling of the initial conductivities is reflected in a scaling of the steady-state conductivities by the
same factor. In each group of simulations, only the thickness of the channels (∼ D1/4

0 ) is increased as D0

increases, but the geometry of the network is left unchanged.

3.6.4 Phase Transition

The choice of g(|Qij |) := |Qij |2/3 in (3.19) used until now led us to study the more general class of

polynomial functions, gγ(|Qij |) := |Qij |γ , where γ > 0 is a new parameter. In the following, we analyse

the evolution of the system subject to the adaptation dynamics

d

dτ

√
Dij = V |Qij |γ∑

(k,m)∈E
Lkm|Qkm|γ

−
√
Dij (3.45)

as a function of the parameter γ, assuming β = 1 once more. Note that the steady state of (3.45) for γ = 0

is always homogeneous,
√
D∗ij = V/

∑
E Lkm, regardless of the initial conductivities, as g0(|Qij |) = 1.

Furthermore, if the initial conductivities are also homogeneous, Dij(0) = D0, the steady state corresponds

to the initial network, since V = D0

∑
E Lkm, and therefore,

√
D∗ij = D0 = Dij(t = 0).

Considering the same Physarum scenario of the simulation in Figure 3.4, we have simulated the

dynamics (3.45) for different values of γ ∈ [0, 2] starting from random initial conductivities, Dij(0) ∼

U(1/2, 3/2). Some examples of the steady-state networks reached by the system for a given γ are shown

in Figure 3.10.

The drastic change in the topology of the network suggests the existence of a phase transition in the
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system near γ = 1/2. For γ < 1/2, the steady-state networks have a very redundant structure, and are

characterised by having a high density of loops and many veins with similar radius. By contrast, for

γ > 1/2, no loops remain as the conductivities of most vessels converge to zero. The steady states are

trees spanned by the central source and the boundary sinks, with a clear hierarchy of vein thickness. As γ

increases, fewer primary veins remain, and it’s more evident the hierarchy of the veins, with thinner veins

as we move away from the central source. However, once more we haven’t found steady-state networks

with a reticulated hierarchical structure for any value of γ, as observed in the real networks produced by

Physarum (Figure 2.2), or in leaf venation networks. This is related to the choice of fixed sources and

sinks previously discussed [2].

The differences in the topology of the networks can be better quantified by the histograms of the

steady-state conductivities Dij for 4 different values of γ, presented in Figure 3.11. Each one has a very

unique profile.

The phase transition was quantified through the evaluation of four metrics at the steady-state of each

γ. The first two are the total power dissipation of the network (3.21) and its total length,

L =
∑

(i,j)∈E

Lij =
∑

(i,j)∈E

√
(xi − xj)2 + (yi − yj)2 , (3.46)

where (xi, yi) are the coordinates of the node i. The third is the flux coupling factor of the adaptation

dynamics (3.45)

Z =
∑

(i,j)∈E

Lij |Qij |γ , (3.47)

which can be seen as a measure of an effective network length, where the contribution of each channel

is weighted by a function of its flux, |Qkm|γ . Finally, we have considered the loop density, LD, as

a simple measure of the network’s redundancy, defined as the number of independent loops 2 of the

steady-state network, normalised by the number of independent loops of the initial network, which in our

case, corresponds to the number of triangles of the initial Delaunay triangulation. Since the networks

are connected and planar, the number of loops or faces, f , can be determined using Euler’s formula

f = 1 +M −N , where M = |E| is the number of edges, and N = |V | the number of vertices, yielding [2]

LD =
1 +Mfinal −Nfinal

1 +Minitial −Ninitial
. (3.48)

Note that only edges with conductivities above a threshold (Dthr = 5 × 10−4) were considered in the

computation of the total length and the number of loops of the final networks.

The dependency of these quantities on γ is plotted in Figure 3.12. The change in the slope of the

total network’s dissipation, P(γ), observed at γ = 1/2, suggests the existence of a discontinuity on its

first derivative with respect to γ, which may correspond to a first-order phase transition, according to

the Ehrenfest classification. For γ & 1 the power dissipated at the steady state starts to notably increase,

2By number independent loops it’s meant the number of graph faces. Faces of a planar graph are regions enclosed by a
set of edges that don’t contain any other node or edge.
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which can be understood based on the results of Figure 3.10. As γ increases, the number of channels

connecting the sinks to the main branches decreases, and the channels are very thin, meaning they have

low conductivities. This implies that they are associated with a large pressure drop ∆pij to reach the

significantly high channel flux (the flux from the source is split between few channels). Therefore the

power dissipated by each one, Pij = ∆pijQij is very large.

Figure 3.12b represents a closer look at the plot of the power dissipated near γ = 2/3. Contrary to

expectations, the minimum of the power dissipated is not reached for γ = 2/3, as derived in (3.32). This

is most likely explained by the error propagation in the computation of the dissipation. By (3.21), the

uncertainty of the dissipation, ∆Pij is related to the uncertainties of the conductivities, ∆Dij and the

fluxes ∆Qij by

∆P
P

=
∑

(i,j)∈E

(
2

∆Qij
Qij

− ∆Dij

Dij

)
. (3.49)

Therefore, the sum of all the edge contributions with low conductivities and low fluxes can be con-

siderably large. Other configurations of terminals were also tested, and in most cases, the minimum was

indeed reached at γ = 2/3.

The transition is even more clear in the graphs of the total length (Figure 3.12c) and loop density

(Figure 3.12d). In particular, the loop density starts and stays at its maximum for γ . 0.3, meaning

that the adaptation doesn’t change the topology of the network for low values of γ, and progressively

decreases as γ increases, becoming zero for γ > 0.5, implying the absence of loops. This confirms that the

steady-state networks for γ > 0.5 are spanning trees assuming the threshold Dthr = 5×10−4. Conversely,

as Figure 3.12e shows, the quantity Z decreases with γ and displays a smooth transition near γ = 1/2.

In Figure 3.12f it’s plotted the volume of the steady-state network normalised to the volume of the

initial one as a function of γ, showing that the volume is always conserved. Further simulations revealed

that the phase transition is independent of the initial distribution of conductivities and of the distribution

of sources and sinks.

39



iterations = 105

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 3.5976
Lnetwork = 87.2377

L = 83.6401
= 2324.8586 %

= 0.00

(a) γ = 0.0 iterations = 587
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(c) γ = 0.47
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(d) γ = 0.51 iterations = 699
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Lsteiner_approx = 3.5976
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(e) γ = 0.59 iterations = 356
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(g) γ = 0.78 iterations = 240
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(h) γ = 0.98 iterations = 208
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ij Dt
ij|  1e-06
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(i) γ = 1.18

iterations = 217

Steady state reached 
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ij Dt
ij|  1e-06
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(j) γ = 1.41 iterations = 228

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 3.5976
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L = 9.9006
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= 1.76

(k) γ = 1.76 iterations = 246

Steady state reached 
Dij : |Dt + 1

ij Dt
ij|  1e-06

Lsteiner_approx = 3.5976
Lnetwork = 12.8827

L = 9.2850
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= 2.00

(l) γ = 2

Figure 3.10: Dependency of the steady-state networks of the dynamics (3.45) on γ, for the same configu-
ration of Figure 3.4. Note the transition in the network topology from γ = 0.47 to γ = 0.51. For γ < 1/2
the networks have a redundant structure with loops and no hierarchical organisation, while for γ > 1/2
the networks have a tree-like structure with a clear hierarchy of tubes.
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(b) γ = 0.47
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(c) γ = 0.51
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(d) γ = 2/3
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Figure 3.11: Histogram of frequencies of the steady-state conductivities, for different values of γ, consid-
ering the same settings as in Figure 3.10. The distributions are different from each other. For γ = 0.1,
the distribution is very similar to the initial one. In the remaining cases, most of the conductivities
are concentrated near zero, as most of the edges disappear. For clarity, the histograms focus on lower
probabilities.
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(a) Power dissipated by the steady-state networks,
P(γ), normalised by P0 ≡ P(γ = 0).
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(b) Detailed view of the normalised power dissipated,
P/P0, near γ = 2/3.
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(c) Total Length of the steady-state networks, L,
normalised by L0 ≡ L(γ = 0).
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(d) Loop density of the steady-state networks defined
as (3.48).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
γ

0.0

0.2

0.4

0.6

0.8

1.0

Z
/
Z

0

 Z of the final network, Z, normalized by Z0 =Z(γ= 0) 

(e) Flux coupling factor of the steady-state networks,
Z(γ), defined as (3.47), normalised by Z0 ≡ Z(γ = 0).
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(f) Volume of the steady-state networks, V(γ), nor-
malised by the volume of the initial network, V0 ≡
V(t = 0).

Figure 3.12: Plots of different metrics as functions of gamma γ, evaluated at the steady state of the
simulations presented in Figure 3.10. The vertical dashed line marks the transition at γ = 1/2. Note the
discontinuity of the slopes of the network’s dissipation, total length and loop density. The correspondent
graphs for other choices of initial conductivities and distribution of terminals showed the same tendency,
thus supporting the universality of the phase transition.
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Chapter 4

Applications

In this chapter, we explore some applications of the model, namely, maze solving and optimal network

design. In the first case, we replicate the maze setting considered in [5], where it was reported for the first

time the Physarum maze-solving abilities (Figure 2.3). In the second case, inspired by Physarum Tokyo

experiments [6] (Figure 2.4), we simulate the model in an arena mimicking the Portuguese mainland.

In this regard, we study the importance of flux fluctuations to build efficient and resilient networks,

by introducing time-dependent distributions of sources and sinks in the model. The performance and

topology of the resulting networks are then compared with those of the real Portuguese railway system.

4.1 Maze Solving

The famous maze experiments performed by Nakagaki et al. [5] showed that Physarum can solve mazes

when two food sources are placed at both ends (Figure 2.3). We now demonstrate that our model can

reproduce this phenomenon.

We have simulated the adaptation dynamics 3.34 over a graph describing approximately the same

maze used in [5]. The maze was generated from a 15× 16 square lattice, where some edges were removed

and only the edges which outline the possible routes were left out. Like in the experiments, four possible

routes connect the maze entrances (Figure 2.3a). The only difference is that all the possible paths have

the same length due to the symmetry of the underlying square lattice, while in [5] the lengths of the

α1, α2, β1, β2 segments which made up the paths were slightly different. The initial state represents

the Physarum plasmodium filling the entire maze. The food source stimuli which drive the optimisation

in the experiments is mimicked by simulating the model considering a source and a sink placed at the

entrances of the maze.

In Figure 4.1, it’s shown snapshots of two simulations considering homogeneous and non-homogeneous

initial conductivities. In both simulations, the paths which lead to dead ends are the first to vanish

since there is no flux along those channels, and only paths connecting the source and sink survive. For

homogeneous initial conditions (Figure 4.1a), the steady state is a compromise between the four possible

solutions. The adaptation mechanism can’t select only one of the paths, as they both have the same
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length, and no channel conductivities are initially favoured. In contrast, when considering random initial

conductivities (Figure 4.1b), only one path remains at the end, since the symmetry of the system is broken.

In this case, the simulations showed that after the dead-end cutting, the system seems to converge to the

same degenerated steady state, but soon two of the redundant branches starts to disappear, and only one

path survives. The path which is selected depends exclusively on the initial distribution of conductivities

(Figure 4.2).

t = 0 t = 20 t = 130
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 = 0.67 

L = 10
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noise = 0.0
G seed = 42
I0 = 1 
D0

ij  = 1
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dt = 0.1
fs_seed = 2

iterations = 19
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 = 0.67 

L = 10
mesh = maze
noise = 0.0
G seed = 42
I0 = 1 
D0

ij  = 1
D0 seed = 42
dt = 0.1
fs_seed = 2

iterations = 129
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 = 0.67 

L = 10
mesh = maze
noise = 0.0
G seed = 42
I0 = 1 
D0

ij  = 1
D0 seed = 42
dt = 0.1
fs_seed = 2

(a) Simulation with initial homogeneous conductivities, Dij(0) = 1.

t = 0 t = 20 t = 130 t = 250

iterations = 1

 Parameters
 = 0.67 

L = 10
mesh = maze
noise = 0.0
G seed = 42
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = None
dt = 0.1
fs_seed = 2

iterations = 19

 Parameters
 = 0.67 

L = 10
mesh = maze
noise = 0.0
G seed = 42
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = None
dt = 0.1
fs_seed = 2

iterations = 129

 Parameters
 = 0.67 

L = 10
mesh = maze
noise = 0.0
G seed = 42
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = None
dt = 0.1
fs_seed = 2

iterations = 249

 Parameters
 = 0.67 

L = 10
mesh = maze
noise = 0.0
G seed = 42
I0 = 1 
D0

ij  = (0.5, 1.5)
D0 seed = None
dt = 0.1
fs_seed = 2

(b) Simulation with initial random conductivities, Dij(0) ∼ U(1/2, 3/2).

Figure 4.1: Simulation of the model (3.34) in a maze similar to that of Figure 2.3, starting from different
sets of conductivities. The snapshots were taken at different iterations t of the algorithm. (a) All possible
solution paths are selected since they have the same total length and the initial conditions are the same.
(b) First the dead ends disappear like in (a), but due to the initial uneven distribution of conductivities,
only the path which is initially favoured remains.
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(c) iterations = 346
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Figure 4.2: Maze solving considering non-homogeneous initial conductivities, Dij(0) ∼ U(1/2, 3/2). The
images represent the final networks for different initial random states. The system converges to the
initially favoured path, i.e., the path which has the highest average conductivity. All four possible paths
can be reached by changing the random seed.
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Further simulations showed that if the square symmetry is broken by perturbing the position of the

nodes, only one path remains regardless of the initial conditions since the path lengths are different. The

dynamics of the model can thus account for the Physarum maze solving ability. Another interesting

thing to test would be to simulate the model on a 2D discretisation of the maze, by not ignoring the

width of the maze segments. This would introduce more variability in the possible solutions and could

accommodate the natural meandering of the Physarum networks observed in Figure 2.3.

4.2 Finding the Shortest Path

Miyaji and Ohnishi [35] proved mathematically that for any initial planar graph embedded in a two-

dimensional surface, the Physarum Solver model (3.10) with the particular choice of f(|Qij |) = |Qij |

and µ = 1 always converges to the shortest-path connecting the two terminals regardless of the initial

conductivities. This result was later generalised by Bonifaci et al. [36] for any graph topology, considering

the same choice of parameters. We investigated if this holds for our model. For that, we have considered

the adaptation dynamics with the choice of gγ(|Qij |) = |Qij |γ , i.e., the class of models (3.45), and tested

if, in the case of only two terminals, the system converges always to the shortest path for a certain value

of γ.

Extensive simulations were carried in planar graphs with 300 nodes resulting from a triangulation of a

square region, for 20 different values of γ in the range [0.55, 2]. No values below γ = 1/2 were considered

since the previous analysis of the phase transition showed that for those values the steady states have

redundant connections, and therefore can never correspond to the shortest path solution. In each case,

the source and the sink were placed in the diagonally opposite corners of the square bounding region, to

maximise the variability of paths, the dynamics could choose from. To prevent that any path is initially

favoured, the simulations started always from an initial state of homogeneous conductivities, Dij(0) = 1.

In Figure 4.3a, it’s plotted the probability of the system to converge for the shortest path as a function

of γ, based on 150 realisations for each γ, each corresponding to a different initial mesh. The results

show that the probability tends to decrease as γ increases. In particular, for γ = 2/3 the probability is

near 85%. However, there isn’t a single value of γ which guarantees that the final solution is always the

shortest path. Nevertheless, for all values of γ the deviations of the total length of the steady state from

the length of the shortest path solution are on average very small. This is shown by the results of Figure

4.3b, where it’s plotted the relative error of the total length as a function of γ, averaged between the

simulations where the system didn’t converge to the shortest path. One can observe that the deviations

tend to increase with γ, but are always below 1%, showing the solution is on average very close to the

shortest path. More tests should be performed to validate the high values of probabilities and small

deviations obtained, by considering larger graphs, smaller time steps and a higher number of realisations.

In particular, it would be interesting to test values near γ = 0.55, where the probability is above 90%.
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Figure 4.3: (a) Probability of the system converging to the shortest path that connects two terminals
as a function of the parameter γ, considering the dynamics (3.45). (b) Average percentage error of the
steady-state total path length, L, relatively to the length of the shortest path solution, LSP , as a function
of γ, i.e., εSP = (L − LSP )/LSP . The computation of the average error only includes the final states
different from the shortest path. The blue shaded region corresponds to the 95% confidence interval of the
mean error. The results are based on 150 realisations for each γ value, each realisation corresponding to a
different initial mesh with 300 nodes. The source and the sink were always placed in diagonally opposite
corners of the square. In all the cases, the system starts from homogeneous distribution of conductivities,
Dij(0) = 1.

4.3 Approximating Portugal’s Rail System

The topology of a biological network has a great impact on its performance and vulnerability, and thus

on the chances of survival of the organism. The network structure should provide an effective distribution

of the resources (transport efficiency) by ensuring a small average path length between any two points.

However, the total cost to build the network, which is proportional to its overall length, should be

minimised due to the limited amount of available resources. Thus, the transport efficiency should be

maximised under the constraint of low cost. On the other hand, the network must be robust enough,

by providing secondary paths that ensure its normal functioning in case of damage or random failure of

some links. Once again, the number of redundant pathways have to be balanced with the additional cost

of producing them. Therefore, the design of an optimal network requires a complex trade-off between the

production cost, transport efficiency and fault tolerance.

As seen in the section 2.3.2, a famous experiment carried by Tero et al. in 2010 showed that Physarum

builds networks with a good compromise between these three metrics and whose values are comparable

to those of real-world infrastructure networks, in particular, to the Tokyo railway system. Motivated by

this experiment, we have simulated the adaptation dynamics (3.45) considering a mesh with the shape of

mainland Portugal, for different values of γ and other model parameters, and compared the results with

the Portuguese railway system.

The boundary of Portugal was approximated by a polygon, followed by a triangulation of the enclosed

region which resulted in an initial network with 1005 nodes and 2817 edges. We have considered a

configuration of 25 terminals, representing the geographical locations of the 18 Portuguese district capitals

and 7 additional major cities, except for the Viseu district which was represented by the city Mangualde
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for convenience. The optimised networks resulting from the dynamics (3.45) were compared with the

section of the Portuguese rail network which connects those cities [37] as depicted in Figure 4.4. Note

that the rail lines connecting Bragança to Tua (Linha do Tua, 1887–2008) and Vila Real to Régua (Linha

do Corgo, 1906-2009) are no longer active, but were included for comparison purposes.

Valença

Viana do 
Castelo Braga

Bragança

Vila Real

Mangualde
(Viseu) Vilar 

Formoso
Guarda

Castelo 
Branco

Porto

Aveiro
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Leiria

Portalegre

Elvas

Santarém

Évora

Beja

Lisboa

Setúbal

Sines

Lagos Faro Vila Real de 
Santo António

Pocinho

Figure 4.4: Approximation of the part of the real Portuguese rail network used in this study, which
connects all the 18 district capitals (green nodes) and 5 additional terminal cities (red nodes). Note that
Mangualde was used to represent the capital district Viseu. Some rail lines are no longer active but were
included for consistency.

The initial graph is assumed to be embedded in the Earth’s surface, meaning that the position of the

node i is defined by its geographical coordinates: latitude Φi and longitude λi. Consequently, the length

of the edge (i, j), Lij , is given by the geodesic distance between the two end-node positions, which can

be approximated using the Haversine formula, yielding

Lij = 2RE arcsin

(√
sin2

(
Φi − Φj

2

)
+ cos(Φi) cos(Φj) sin2

(
λi − λj

2

))
, (4.1)

where RE = 6371 km is the Earth’s radius.

The performance of the optimised networks was evaluated in terms of cost, transport efficiency and

fault tolerance. The total cost of producing the network is measured by its total length (TL)

TL =
∑

(i,j)∈E

Lij , (4.2)

where the lengths of the edges, Lij , are given by (4.1). Note that in the case of biological networks

the cost of producing the networks should be defined more accurately by the total section area of the

channels. However, here we are interested in applications to road and rail transportation, where the costs

for the construction company are proportional to the total network length.

On the other hand, from the perspective of a traveller, an optimal network should ensure a fast travel

between two destinations by minimising the distance between them. Thus, the transport efficiency (TE)
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is defined as the inverse of the average minimum distance (MD) between all the distinct pairs of terminal

cities. If dSP (i, j) denotes the length of the shortest path in the graph connecting the nodes i and j, and

T is the set of the |T | terminals, then

TE = MD−1 =

 2

|T |(|T | − 1)

∑
i<j
i,j∈T

dSP (i, j)


−1

. (4.3)

Lastly, the robustness of the networks is measured by its fault tolerance (FT), which is defined as

the probability of the network remaining connected after a single edge is removed. The probability of

disconnecting the network equals its fraction of edges which are bridges1. Thus, FT is given by

FT = 1− b

|E|
, (4.4)

where b is the number of bridges of the final network. Note that, as before, only the edges with conduc-

tivities above the threshold, Dthr = 5 × 10−4 are considered in the computation of the three metrics of

the steady-state networks.

Besides the actual railway system (Figure 4.5a), the performance of the final networks was also

compared with those of the minimal spanning tree (MST) and the complete graph (CG) spanned by the

city nodes. The MST2 (Figure 4.5b) is by definition the graph that connects all the city positions with

minimal possible total cost (4.2), while the CG (Figure 4.5c) is the graph that connects every pair of cities

by a distinct edge, maximising, therefore, the transport efficiency (4.3) and the fault tolerance (FT= 1)

at the expense of a tremendous cost. The cost (TL), transport efficiency (TE) and fault tolerance (FT) of

the final networks were normalised to the corresponding values for the CG, yielding TLCG, TECG, FTCG.

A comparison between the metrics of these graphs is presented in Table 4.1. To compare the overall

performance, the trade-off between the transport efficiency, fault tolerance and the cost was captured by

two benefit-cost measures, defined as the ratios BCRTE= TECG/TLCG and BCRFT= FTCG/TLCG.

Graph TL (km) TLCG TLMST TLrailway TE (km−1) TECG TEMST TErailway FT

mesh 31482 0.46 22.75 17.04 0.0042 0.95 1.75 1.31 1.00
railway 1848 0.03 1.34 1.00 0.0032 0.73 1.33 1.00 0.45
MST 1384 0.02 1.00 0.75 0.0024 0.55 1.00 0.75 0.00
CG 68009 1.00 49.14 36.80 0.0044 1.00 1.83 1.38 1.00

Table 4.1: Comparison between the initial mesh (mesh), real railway (railway), minimum spanning tree
(MST) and complete graph (CG) in terms of the total length (TL), transport efficiency (TE) and fault
tolerance (FT). The columns XG denotes the metric X of the graph of each row normalised by the one
of the graph G.

Until now we have been always considering the adaptation under a fixed set of sources and sinks.

The previous analysis revealed that this either resulted in tree-like networks (γ > 1/2) with zero fault
1In graph theory, a bridge is any edge whose removal increases the number of connected components of the graph.
2The (geometric) minimum spanning tree (MST) spanned by a set of points (terminals) embedded in a manifold is the

graph that connects all the terminals together by geodesic lines, without any cycles, such that the total length of the lines
is minimised. Note, however, if other additional nodes are allowed (Steiner points), the graph with the minimum total
length which connects all the terminals, either directly or via the Steiner points, is in general different, and it’s known as
the (geometric) minimum Steiner Tree.
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(a) Railway
(1384, 313, 0.45)

(b) MST
(1848, 417, 0.00)

(c) CG
(68009, 227, 1.00)

Figure 4.5: (a) Graph of Portugal’s rail system (Figure 4.4) with all the city nodes (terminals) marked
in blue. (b) The minimum spanning tree (MST) connecting the same set of cities, i.e., the tree graph
spanned by the city nodes with the minimal possible total length (4.2). (c) The complete graph (CG)
connecting every pair of cities by a distinct edge. The legend of each graph refers to the metrics (TL,
MD, FT), where TL and MD are given in kilometres.

tolerance, or poorly-optimised networks similar to the initial mesh, (γ < 1/2) which aren’t cost-efficient.

In both cases, this means that networks have an overall low performance, conversely to the ones built by

Physarum. To tackle this issue, we now introduce fluctuations in the flux by considering time-dependent

sources and sinks, similar to the original model [6]. At each step of the algorithm, two nodes are randomly

selected from the set of terminals to drive the flow: one acts as a source with intensity qsource = I0 (I0 > 0)

and the other as a sink qsink = −I0, while the remaining terminals have q = 0. This emulates more closely

the shuttle streaming characteristic of Physarum networks, by changing the flux direction in each vessel

over time, although not in an exactly periodic way.

Due to the high fluctuations of the channel fluxes induced by the stochastic choice of the terminals,

the stopping condition considered in the case of fixed terminals (3.36) is hardly ever met. Simulations

showed that although the system converges to a stable network topology, the channel conductivities

display unceasing oscillations which are larger the greater is the time step used, ∆τ , being hard to

establish their bounds beforehand. Therefore for the stochastic case, we have considered a different

stopping criterion. As we are mostly concerned with the topology of the steady state, we consider

that the algorithm converges when the topology of the network remains unchanged in a period of 500

iterations, meaning that the set of edges with conductivities above a given threshold (Dthr = 5× 10−4)

doesn’t change over that period. To regularise the effect of the fluctuations on the adaptation, a smaller

time step was used, ∆τ = 0.02, corresponding therefore to a period of 10 time units without any changes

in topology. This stopping criterion has some limitations since it depends on the choice of the number

of iterations, which was carefully chosen according to the ∆τ used and the overall the time scale of the

adaptation mechanism.
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4.3.1 Dependence of the performance on γ

It was first analysed the dependency of the topology and performance of the final networks on the

parameter γ of the adaptation dynamics (3.45). Numerous simulations were carried out for different

values of γ, considering the same mesh, initial conditions (Dij(0) = 1) and seed.

Some examples of the different networks reached by the system are given in Figure 4.6. For low values

of γ, the flux fluctuations result in the formation of stable redundant paths that improve the network’s

robustness. In particular, for γ < 1/2, similarly to the case of fixed terminals, most of the initial mesh

remains and very few preferential pathways are formed, resulting in networks with a huge cost. A drastic

change in the topology is observed near γ = 1/2, characterised by a substantial reduction in the network’s

total length yet some alternative routes remain, leading to a a better compromise between cost and fault

tolerance. A good trade-off between the cost and the transport efficiency is also reached for low values of

γ due to the formation of additional bifurcation points, which resemble Steiner tree type of connections.

As γ is increased the redundant paths progressively disappear, and the system slowly converges towards

the MST solution (Figure 4.5b). The minimisation of the cost is achieved with the inevitable complete

loss of the network’s robustness. Simulations also showed that for a given γ, the structure of the final

network depended slightly on the random seed used, however these observations remain always valid.

The trade-off between the network’s cost, transport efficiency and fault tolerance can be better quan-

tified by the plots of Figure 4.7. As the Figures 4.7a and 4.7b confirm, the transport efficiency and

fault tolerance tends to decrease as γ increases. Interestingly, most of the simulation results of the first

plot lie in a well-defined curve that resembles the Pareto front [38–40] associated with the compromise

between maximising the efficiency while minimising the overall cost. By definition, the networks lying

on the Pareto front can’t achieve a better transport efficiency without an increase of the cost, neither

can have a lower cost without a decrease in the efficiency. The real railway is quite far from this fron-

tier. In particular, one can observe that for γ ∼ 0.8, the simulations achieve significantly better fault

tolerance and a higher transport efficiency comparing to the real railway, with a slightly smaller cost,

implying a much better benefit-cost trade-off. The overall performance, captured by the two benefit-cost

ratios, BCRTE= TECG/TLCG and BCRFT= FTCG/TLCG, is depicted in Figure 4.7c, as a function of

γ. For γ ≤ 0.6, the excessive cost doesn’t compensate the increase of the network’s robustness and

transport efficiency, resulting in worse performance than the MST and the real railway. However, in the

interval γ ∈ [0.7, 1[, the situation completely changes, and simulations result in networks with a much

better compromise between the three metrics than any other graph. For higher values of γ, the networks

still achieve a slightly better efficiency-cost trade-off than the real railway, although the network’s re-

silience is completely lost. The graph with the worst compromise is naturally the complete graph, due

to the tremendous cost (Table 4.1) of connecting all the pairs of cities individually. In conclusion, for

γ ∈ [0.7, 1[, the model results in networks with the overall best performance and, in general, higher than

the performance of the real railway, MST and CG.
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Parameters

 = 0.45 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 7500

Metrics
Steady-State 

TL = 30031.277
MD = 236.492
FT = 0.0
TL_mesh = 0.954
TL_railway = 16.244
TL_steiner = 20.359
TL_MST = 21.685
TL_CGpy = 0.423
TL_CGmat = 0.442
MD_mesh = 1.0
MD_railway = 0.75
MD_steiner = 0.538
MD_MST = 0.574
MD_CGpy = 1.0
MD_CGmat = 1.043
avg_deg = 5.453
is_connected = 1
n_loops = 1693
LD = 0.934

New Model (poly  = 0.45)

(0.45, 30031, 237, 1.00)

Parameters

 = 0.55 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 5000

Metrics
Steady-State 

TL = 2803.787
MD = 274.655
FT = 0.0
TL_mesh = 0.089
TL_railway = 1.517
TL_steiner = 1.901
TL_MST = 2.025
TL_CGpy = 0.04
TL_CGmat = 0.041
MD_mesh = 1.161
MD_railway = 0.994
MD_steiner = 0.625
MD_MST = 0.667
MD_CGpy = 1.161
MD_CGmat = 1.212
avg_deg = 2.156
is_connected = 1
n_loops = 20
LD = 0.011

New Model (poly  = 0.55)

(0.55, 2803, 275, 1.00)

Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 3000

Metrics
Steady-State 

TL = 2124.12
MD = 293.168
FT = 0.025
TL_mesh = 0.067
TL_railway = 1.149
TL_steiner = 1.44
TL_MST = 1.534
TL_CGpy = 0.03
TL_CGmat = 0.031
MD_mesh = 1.24
MD_railway = 1.061
MD_steiner = 0.667
MD_MST = 0.712
MD_CGpy = 1.24
MD_CGmat = 1.293
avg_deg = 2.062
is_connected = 1
n_loops = 7
LD = 0.004

New Model (poly  = 0.67)

(2/3, 2124, 293, 0.98)
Parameters

 = 0.75 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 2000

Metrics
Steady-State 

TL = 1816.822
MD = 305.386
FT = 0.12
TL_mesh = 0.058
TL_railway = 0.983
TL_steiner = 1.232
TL_MST = 1.312
TL_CGpy = 0.026
TL_CGmat = 0.027
MD_mesh = 1.291
MD_railway = 1.106
MD_steiner = 0.695
MD_MST = 0.742
MD_CGpy = 1.291
MD_CGmat = 1.347
avg_deg = 2.024
is_connected = 1
n_loops = 3
LD = 0.002

New Model (poly  = 0.75)

(0.75, 1817, 305, 0.88)

Parameters

 = 0.95 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 1500

Metrics
Steady-State 

TL = 1667.228
MD = 323.441
FT = 0.13
TL_mesh = 0.053
TL_railway = 0.902
TL_steiner = 1.13
TL_MST = 1.204
TL_CGpy = 0.023
TL_CGmat = 0.025
MD_mesh = 1.368
MD_railway = 1.171
MD_steiner = 0.736
MD_MST = 0.785
MD_CGpy = 1.368
MD_CGmat = 1.427
avg_deg = 2.013
is_connected = 1
n_loops = 2
LD = 0.001

New Model (poly  = 0.95)

(0.95, 1667, 323, 0.87)

Parameters

 = 1.05 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 1000

Metrics
Steady-State 

TL = 1566.12
MD = 358.95
FT = 0.651
TL_mesh = 0.05
TL_railway = 0.847
TL_steiner = 1.062
TL_MST = 1.131
TL_CGpy = 0.022
TL_CGmat = 0.023
MD_mesh = 1.518
MD_railway = 1.299
MD_steiner = 0.816
MD_MST = 0.872
MD_CGpy = 1.518
MD_CGmat = 1.583
avg_deg = 2.0
is_connected = 1
n_loops = 1
LD = 0.001

New Model (poly  = 1.05)

(1.05, 1566, 359, 0.35)
Parameters

 = 1.35 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 1500

Metrics
Steady-State 

TL = 1499.98
MD = 379.32
FT = 1.0
TL_mesh = 0.048
TL_railway = 0.811
TL_steiner = 1.017
TL_MST = 1.083
TL_CGpy = 0.021
TL_CGmat = 0.022
MD_mesh = 1.604
MD_railway = 1.373
MD_steiner = 0.863
MD_MST = 0.921
MD_CGpy = 1.604
MD_CGmat = 1.673
avg_deg = 1.986
is_connected = 1
n_loops = 0
LD = 0.0

New Model (poly  = 1.35)

(1.35, 1500, 379, 0.00)

Parameters

 = 1.55 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 1000

Metrics
Steady-State 

TL = 1499.98
MD = 379.32
FT = 1.0
TL_mesh = 0.048
TL_railway = 0.811
TL_steiner = 1.017
TL_MST = 1.083
TL_CGpy = 0.021
TL_CGmat = 0.022
MD_mesh = 1.604
MD_railway = 1.373
MD_steiner = 0.863
MD_MST = 0.921
MD_CGpy = 1.604
MD_CGmat = 1.673
avg_deg = 1.986
is_connected = 1
n_loops = 0
LD = 0.0

New Model (poly  = 1.55)

(1.55, 1500, 379, 0.00)

Parameters

 = 1.95 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 1 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = 42
fs_seed = 42
D0 seed = 42

nodes = 1005
edges = 2817

iterations = 1000

Metrics
Steady-State 

TL = 1488.565
MD = 384.954
FT = 1.0
TL_mesh = 0.047
TL_railway = 0.805
TL_steiner = 1.009
TL_MST = 1.075
TL_CGpy = 0.021
TL_CGmat = 0.022
MD_mesh = 1.628
MD_railway = 1.394
MD_steiner = 0.876
MD_MST = 0.935
MD_CGpy = 1.628
MD_CGmat = 1.698
avg_deg = 1.986
is_connected = 1
n_loops = 0
LD = 0.0

New Model (poly  = 1.95)

(1.95, 1489, 385, 0.00)

Figure 4.6: Topology of the networks resulting from the adaptation dynamics (3.45) as a function of the
parameter γ, considering a stochastic choice of the source-sink pair from the set of terminals in each step
of the algorithm (I0 = 1 and Dij(0) = 1). For γ < 1/2 the dynamics result in poorly-optimised networks
very close to the initial mesh, similar to the case of fixed terminals. As γ is increased, the networks slowly
evolve towards the minimum spanning tree (Figure 4.5b), losing all the redundant paths which provide
robustness to the network. The legend of each image refers to the network metrics (γ, TL, MD, FT),
where TL and MD are given in kilometres. The top 3 networks with the best overall performance are
highlighted in green.
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(a) (b)

(c)

Figure 4.7: Network performance of the adaptation dynamics (3.45) as a function of the parameter γ,
with the other parameters fixed, including the random seed. (a-b) Transport efficiency (4.3) and fault
tolerance (4.4) plotted against the total length of the network (4.2) (cost). The metrics are normalised to
those of the complete graph (CG) connecting the city nodes, yielding TLCG, TECG, FTCG. The coloured
circles represent the simulation results as γ was varied from 0.55 to 2.00, considering the stochastic choice
of the source-sink pair with I0 = 1, and initial conditions Dij(0) = 1. The results were compared with
the same normalised metrics of the real railway (green triangles) and MST network (red squares). (c)
Plots of the benefit-cost ratios, defined as BCRTE= TECG/TLCG and BCRFT= FTCG/TLCG, as the
function of γ, compared with the ones of the real railway, MST and CG. The proposed optimal models
(i.e., which result in networks with the best performance trade-off) are highlighted in green.
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4.3.2 Dependence of the performance on the stochastic choice of terminals

The introduction of the flux fluctuations in the system opens numerous possibilities for the criterion of

selecting the sources and sinks in each step. One can consider a deterministic time-dependent distribution

of the nodes flux, q, or a purely stochastic one based on some hypothesis, as we have considered in the

previous analysis.

The choice of a specific set of sources and sinks in a given step tends to reinforce preferentially the

channels along the shortest paths connecting them at the expense of the remaining ones. Consequently, the

final network results from a compromise of averaging out the selected routes in all time steps. Therefore,

different methods of choosing the driving terminals in each step lead in principle to distinct network

topologies, ultimately affecting their fitness. In the context of Physarum, it’s not straightforward to

decide what is the more adequate criterion based on the available experimental data, and due to the

limitations of the model in describing through simplistic terms the complex and not-well-understood

mechanism underlying the network optimisation.

We now compare different stochastic methods of choosing the sources and sinks in each step and

study their impact on the topology and performance of the optimised networks. Five different cases

were studied. The first one considered was the original method proposed by Tero et al. [6] of randomly

choosing in each step one source-sink pair from the set of terminals, such that qsource = −qsink = I0.

This method is referred to as the “Random pair” method.

From the perspective of a traveller who wants to move from one city (the source) to any other the

fastest way possible, the network should be a good compromise of all the shortest paths between the cities.

A similar argument can be applied to Physarum, which seeks to transport the nutrients throughout the

network in a fast and efficient way, by establishing multiple short connections between the available food

sources, enabling an effective management of the food consumption and distribution. Therefore, it makes

sense to consider that at each time step, one terminal is randomly assigned as the source while all the

remaining terminals are sinks, receiving an equal amount of fluid, i.e., qsink = −qsource/(|T | − 1) where

qsource = I0. This method is designated by “Random source”, and should in principle maximise the

transport efficiency.

However, biologically speaking, there is no specific argument that sustains the hypothesis of only one

pair of food sources being “activated” at a given moment, or one food acting as a source while all the

remaining act like sinks. At a given step, all the food sources can be actively pumping nutrients, so any

possible source-sink state should be possible. For this reason, we consider the case where the nodes’ net

fluxes of all the terminals (qi with i ∈ T ) are time-dependent random variables subject to the constraint

∑
i∈sources

qi = −
∑

i∈sinks

qi = I0 . (4.5)

In this way, at each step, a random combination of sources and sinks is generated. This method is

referred to as the “All random” case.

We also compare with the case of fixed terminals, where some cities were assigned as sources and

the others as sinks from the beginning (“Fixed Terminals” method). Different combinations of sources
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and sinks were tested. As seen before, the choice of fixed terminals can lead to disconnected solutions.

Thus, to ensure that the final network remained connected, in each case, we have considered a fixed

random distribution of node fluxes which satisfies (4.5). All the above methods were tested considering

the parameterisation of the model which minimises the power dissipated, i.e., γ = 2/3 in (3.45).

Finally, we also studied the networks produced by the Physarum Solver model (3.10), with the choice

of a sigmoidal response typically used in literature, f(|Qij |) = |Qij |γ/(1 + |Qij |γ), and considering the

stochastic choice of the source-sink pair as in the “Random pair” case. This method is designated by “PS

- random pair”. In this case, the simulations were performed using γ = 1.8 and I0 = 2, which according

to [6] are the parameters which yielded networks mimicking the Tokyo rail system with the best trade-off

between cost, efficiency and fault tolerance. To establish an even comparison, all the remaining methods

were also simulated considering the same total inlet flux, I0.

Examples of the typical networks produced by the different methods are represented in Figure 4.8.

As the images show, the different choices lead to steady states with distinct topological features. It’s also

interesting to note how thinner are the selected channels by the Physarum Solver model comparing to

any other case, which is explained by the adaptation mechanism not conserving the network’s volume in

this case.

To establish a comparison between the methods, the overall performance of the networks was again

quantified in terms of cost, transport efficiency and fault tolerance. The average performance of the

different methods, based on 10 realisations for each case, is summarised in Table 4.2. A more visual

quantification is given by the plots of Figure 4.10, depicting the trade-off between the different metrics

of all simulations.

The choice of fixed terminals is definitely the method that leads to networks with the worst perfor-

mance by far in every respect. In the plots of Figure 4.10, the points corresponding to this method are all

scattered, reflecting the great variety of tree topologies depending on the specific arrangement of sources

and sinks (Figure 4.9), but in every case, the performance metrics are consistently low. The characteris-

tic tree-like topology of the steady states entails a great cost without any benefit in terms of transport

efficiency, as the terminals are on average very distant from each other, and in terms of tolerance to

damage, as no redundant paths are formed (FT = 0). As a result, the average values of the metrics are

the lowest ones from all the methods by a large gap, in particular, the cost-benefit ratios. This justifies

the importance of the flux fluctuations to build efficient and resilient networks.

One could have expected that the “All random” method would lead to the highest diversity of topolo-

gies, due to being the most stochastic one. However, the proximity of the points in the plots of Figure

4.10suggests quite the opposite. Actually, this method imposes more restrictions on the topology of the

final network, as all the states of sources and sinks are possible, meaning that the connections between

the terminals must accommodate all these possibilities. However, there is still the possibility that the

method used to generate the random distribution of node fluxes in each step might have introduced some

bias in the states actually generated.

As expected, the “Random source” method is the one that results in the maximum transport efficiency

on average. However, the “All random” method reaches a slightly better trade-off between the efficiency
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Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = Tero
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 3000

Metrics
Steady-State 

TL = 2017.088
MD = 291.87
FT = 0.081
TL_mesh = 0.064
TL_railway = 1.091
TL_steiner = 1.367
TL_MST = 1.457
TL_CGpy = 0.028
TL_CGmat = 0.03
MD_mesh = 1.234
MD_railway = 0.925
MD_steiner = 0.664
MD_MST = 0.709
MD_CGpy = 1.234
MD_CGmat = 1.287
avg_deg = 2.067
is_connected = 1
n_loops = 7
LD = 0.004

New Model (poly  = 0.67)

(a) “Random pair”
(2017, 292, 0.92)

Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = 1_rand_source
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 3000

Metrics
Steady-State 

TL = 1790.029
MD = 289.792
FT = 0.399
TL_mesh = 0.057
TL_railway = 0.968
TL_steiner = 1.213
TL_MST = 1.293
TL_CGpy = 0.025
TL_CGmat = 0.026
MD_mesh = 1.225
MD_railway = 0.919
MD_steiner = 0.659
MD_MST = 0.704
MD_CGpy = 1.225
MD_CGmat = 1.278
avg_deg = 2.025
is_connected = 1
n_loops = 3
LD = 0.002

New Model (poly  = 0.67)

(b) “Random source”
(1790, 290, 0.60)

Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = all_random
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 2500

Metrics
Steady-State 

TL = 1713.726
MD = 304.026
FT = 0.087
TL_mesh = 0.054
TL_railway = 0.927
TL_steiner = 1.162
TL_MST = 1.237
TL_CGpy = 0.024
TL_CGmat = 0.025
MD_mesh = 1.286
MD_railway = 0.964
MD_steiner = 0.691
MD_MST = 0.738
MD_CGpy = 1.286
MD_CGmat = 1.341
avg_deg = 2.025
is_connected = 1
n_loops = 3
LD = 0.002

New Model (poly  = 0.67)

(c) “All random”
(1714, 304, 0.91)

Parameters

 = 0.67 
model = New
func = poly

stop = (
 method:on_edges
 N:500
 Dmin:0.0005
 max_frames:7000)

max_i = 7000

I0 = 2 
choose_fs = fixed I0
D0

ij  = 1
dt = 0.02

L_attr = L_hav

seed = None
fs_seed = None
D0 seed = None

nodes = 1005
edges = 2817

iterations = 2500

Metrics
Steady-State 

TL = 3166.413
MD = 390.659
FT = 1.0
TL_mesh = 0.101
TL_railway = 1.713
TL_steiner = 2.147
TL_MST = 2.286
TL_CGpy = 0.045
TL_CGmat = 0.047
MD_mesh = 1.652
MD_railway = 1.239
MD_steiner = 0.889
MD_MST = 0.949
MD_CGpy = 1.652
MD_CGmat = 1.723
avg_deg = 1.993
is_connected = 1
n_loops = 0
LD = 0.0

New Model (poly  = 0.67)
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Figure 4.8: Topology of the optimised networks considering different methods of choosing the sources
and sinks in each step. Note that the examples given are not fully representative, since the topology
may change significantly due the stochastic nature of the algorithm. (a) “Random pair” - Model
(3.45) with γ = 2/3, considering the choice of random source-sink pair from the set of terminals in each
step. (b) “Random source” - Model (3.45) with γ = 2/3, where in each step a random terminal is
chosen as the source, and the remaining terminals are sinks receiving the same amount of flux. (c) “All
random” -Model (3.45) with γ = 2/3, where in each step all the terminals are randomly chosen either as
sources or sinks. The terminals net flux are random variables subject to the constraint (4.5). (d) “Fixed
Terminals” - Model (3.45) with γ = 2/3, considering fixed sources and sinks from the beginning. In
this case, the capital Lisbon acts like a source (blue circle) of flux, while all the remaining cities are sinks
(blue triangles). (e) “PS - random pair” - Physarum Solver model (3.10) with the choice of a sigmoid
update function f(|Qij |) = |Qij |1.8/(|Qij |1.8 + 1) typically used in literature and µ = 1. The choice of
terminals in each step is the same as “Random pair” method. Note how much thinner are the channels of
the final network comparing to the remaining cases, due to the total volume not being conserved in this
case. In all the cases the total inlet flux is I0 = 2, and the same initial conditions were used, Dij(0) = 1.
The legend of each image refers to the network metrics (TL, MD, FT), where TL and MD are given in
kilometres.

and the cost, achieving the highest BCRTE. By contrast, from all the stochastic methods, “Random

source” is the one with the lowest fault tolerance and BCRFT, which is related with the characteristic
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Figure 4.9: Typical networks obtained when considering a static set of sources and sinks, for γ = 2/3.
Different choices of sources and sinks lead to completely different networks, which are always trees.
Clearly, these topologies are far from being optimal due to excessive cost of connecting all the terminals
and the zero fault tolerance, resulting in low transport efficiency. Only the adaptation subject to time-
dependent sources and sinks can result in efficient and resilient networks. The legend of each image refers
to the network metrics (TL, MD, FT), where TL and MD are given in kilometres.

topology of the resulting networks, as seen in Figure 4.8b – the cities closer to the border are connected

by tree-like branches to a robust core connecting the interior cities.

Although the Physarum Solver has the worst transport efficiency from the stochastic methods, it

achieves a similar BCRTE comparing to the “All random” and “Random source” cases, only because it

produces networks with the lowest total length of all the methods. In compensation, it attains the highest

fault tolerance, which together with this low-cost results in the best cost-robustness trade-off (highest

BCRTE).

The “All Random”, “Random source” and “PS - random pair” methods produced networks with better

metrics than the railway graph (Figure 4.5a). This is almost true for “Random pair” except for the total

length, which is considerably higher than that of the railway graph, leading to a slightly lower BCRTE.

All the stochastic methods also achieved a better overall performance than the MST graph (Figure 4.5b),

although the BCRTE of the latter is slightly higher than the “Random pair” case, only because it has the

lowest cost by definition. The discrepancy is even higher when comparing with the CG (Figure 4.5c).

Although the CG reaches the maximum efficiency and fault tolerance, it has the highest cost by a very

large margin, resulting in the worst cost-benefit ratios. In comparison, the stochastic methods achieve

more than 70% of the efficiency of the CG, for only less than 3% of the cost, resulting in at least 25 times

better cost-benefit relationship.

Note that, from the previous analysis, we can conclude γ = 2/3 is not the value of γ which results in

networks with the best overall performance. The plot of Figure 4.7c suggests that γ = 0.7 could have been

a better choice, since, from all the values of γ tested, it’s the one which achieves the highest BCRTE and

the second-highest BCRFT, reaching the best compromise between the three metrics. This would allow

a more reliable and fair comparison with the Physarum Solver method, whose parameters were cherry-
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picked to achieve the highest performance by extrapolating the results of the Tokyo experiments[6].

In conclusion, the results clearly show the importance of flux fluctuations in the design of low-cost,

efficient and robust flow networks [1, 2, 6, 40]. Due to the Pareto nature of the optimisation, the criteria

of choosing the best stochastic method to generate the driving terminals depends on the relevance of

these network features in a given context. Assuming we want the best overall trade-off between the three

metrics (TL, TE, FT), the results suggest that the “All Random” method is the best one, given that is

the method which achieved the highest BCRTE and highest BCRFT from all the tests of our model.

(a) (b)

(c) (d)

Figure 4.10: Performance of the networks for different methods of choosing the sources and sinks over
time, as described in Figure 4.8. (a-c) Plots showing the trade-off between the cost (total length),
transport efficiency and fault tolerance of the networks. The metrics are normalised to those of the
CG graph. Each type of marker corresponds to a different method. The results were compared with
the same normalised metrics of the real railway (green triangles) and MST network (red squares) (d)
The benefit-cost ratios, defined as BCRTE= TECG/TLCG and BCRFT= FTCG/TLCG, plotted against
each other, measuring the overall compromise between the three metrics for the different methods of
choosing the terminals. The simulations which achieved the best trade-off between each pair of metrics
are highlighted in green. Overall, the stochastic networks are more robust and efficient than any other
network, especially comparing to the case of fixed terminals.
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Method TLCG (×10−5) TECG (×10−3) FT (×10−3) BCRTE (×10−1) BCRFT (×10−1)

All random 2523 ± 3 751 ± 3 896 ± 5 298 ± 1 355 ± 2
Random source 2648 ± 20 777 ± 4 620 ± 27 294 ± 3 234 ± 10
PS - random pair 2471 ± 22 718 ± 8 909 ± 4 291 ± 4 368 ± 4
Random pair 3086 ± 44 768 ± 3 960 ± 7 249 ± 4 312 ± 5
Fixed terminals 3645 ± 178 449 ± 27 0 ± 0 125 ± 10 0 ± 0

MST 2036 551 0 270 0
railway 2718 719 455 264 167
CG 100000 1000 1000 10 10

Table 4.2: The mean and corresponding standard error of the performance metrics for different methods
of choosing the sources and sinks in each step of the algorithm. The methods are described in Figure
4.8. The metrics are normalised to the corresponding values of the CG (Figure 4.5c). The results are
based on 10 runs for each method and are sorted by the benefit-cost ratio of the network’s transport
efficiency, BCRTE. At the bottom is presented the same metrics of the MST, railway graph and CG for
comparison. The stochastic methods produce networks with much better performance than the case of
fixed terminals. Overall, the stochastic networks also have a better benefit-cost relationship than the
MST, CG and the real railway.
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Chapter 5

Modelling Physarum’s Growth

Physarum grows and progressively rearranges its network structure as it forages. So far we have only

considered the network optimisation of static organisms, and neglected the growth mechanism. We have

developed a generic model describing the adaptation dynamics of a static flow network of distensible

channels filled with an incompressible fluid, and applied to the particular case of Physarum. In this

chapter, we extend the previous model to accommodate the formation of new channels, connecting the

growth to the network optimisation, as an attempt to describe the foraging behaviour of Physarum,

neglecting its body mobility.

A simple stochastic model of cellular growth was proposed by Eden in 1961 [41], which is described

as follows. The cells are represented by square lattice sites and growth can only occur at the boundary

i.e., from one occupied cell to one adjacent free cell. Initially, only one cell is occupied. At each time

step, a random boundary cell is selected to reproduce to a neighbour empty cell with a given probability

that may depend on different factors, leading to different types of cluster formations.

Different variations of the Eden model applied to the growth of Physarum were recently studied by

Ferreira and Dilão [26]. In this case, the network development is simulated by tracing the linage that

connects the starting cell to a given cell at the boundary. Each edge of the graph connects the father

to the daughter cell. In particular, it was considered a flow-based growth version which shares some

similarities with the one proposed here. The flow was driven by the starting cell (food source) and the

outside perimeter cells which behave like sinks with fixed pressures, p = 0. After computing the channel

fluxes, the probability that a sink is occupied in the current step is proportional to the amount of flux

received, q. However no coupling between the growth and the adaptation mechanisms was explicitly

considered, and the formation of channels is merely probabilistic. Here we propose a simple growth

model which solves these two issues.

5.1 Growth Model

To incorporate the growth into the previous adaptation model, Physarum is now represented by a dynamic

graph. The growth is regarded as the formation of new channels at the boundary of the organism when
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there are enough nutrients in the neighbourhood to build them. The nutrients are supplied by active

food sources, initially placed at certain nodes, and transported to the nodes at the boundary where they

are stored until they are used in the veins’ development. In this way, the boundary nodes behave like

sinks of the nutrients flux, mimicking simulated regions where the growth occurs (growth fronts).

For simplicity, it’s assumed that the dynamics take place on top of a pre-existing mesh resulting from

a Delaunay triangulation, which means that the Physarum’s network at a given time is a subgraph of the

underlying mesh. This implies that all the channels have already a pre-determined orientation and fixed

length, Lij , but ensures that the organism grows as a planar graph. The formation of the new channels

is simulated by the progressive activation of the edges of the underlying mesh when the cost of producing

it is overcome. Each edge of the mesh is thus associated with a nutrient cost of activation, which in

principle should depend on its length, and can have two possible states:

• Active: the edge represents a vein of the Physarum’s network.

• Inactive: the edge is not currently part of the network.

Similarly to the previous model, each active channel is considered as a cylindrical elastic tube whose

diameter can change in response to the flux flowing through it. They are characterised by a conductivity,

Dij , which is subject to the same adaptation dynamics (3.19). If the channel (i, j) is inactive, Dij = 0,

otherwise Dij > 0. A newly formed channel is initialised with an arbitrary conductivity value Dij(0) =

D0 > 0.

On the other hand, each node i is characterised by an amount of nutrients, mi, and can have three

possible states:

• Empty state: inactive nodes that are not yet part of the Physarum network.

• Growing state: nodes located at the growing margins of Physarum (boundary) that store tem-

porarily nutrients from the sources and participate in channels formation. These nodes are referred

to as “boundary nodes”. Active nodes are in the growing state as long as they contain at least one

inactive neighbour node.

• Transport state: nodes that can’t give rise to new channels anymore, and serve only as interme-

diaries to transport nutrients to the boundary, where the formation of new channels can occur.

In addition, any given node can have a food source, which is “activated” from the moment that the

node is activated i.e., it’s changed to the growing state.

5.1.1 Algorithm

The algorithm compromises three main steps which are described as follows. Initially, the Physarum is

represented by a single node containing a food source.
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Computation of the fluxes

In each time step, the nutrients flow from the active food sources to the current boundary sinks via the

active channels, where they are accumulated. In the simplest case, there is only one food source with

magnitude qsource = I0, which supplies an equal amount of nutrients to all the boundary sinks, although

other distributions of node fluxes can be considered as well. In any case, the conservation of the mass

(3.13) requires that the input flux from the active food sources balances the flux of the boundary sinks.

For simplicity, it’s assumed that the food sources never run out. Given the current sets of boundary

nodes and of active food sources, the fluxes of the active channels are computed through the conservation

laws (3.14), as described in section 3.5.2.

Then, the nutrient reserves of the boundary nodes are increased according to the flux that each

receives i.e., |qi| with i ∈ boundary. Assuming the fluid has a unitary density, the amount of nutrients

that a given node accumulates per time step is

dmi = |qi|∆τ , i ∈ boundary (5.1)

where ∆τ is the duration of the time step. In the beginning, while Physarum is a single node covering a

food source and no channels are yet formed, only the last step is applied.

Growth stage

The next step is the network’s growth. For each boundary node, it’s computed the set of the incident

edges which are currently inactive, i.e., edges where new channels can be formed. The nutrient reserves

of the node are equally distributed among those neighbour inactive edges where they are accumulated,

mimicking the formation of the channel tips. In practice, the production cost of each inactive edge is

reduced by the amount of nutrients given. If the nutrients transferred to an edge exceeds its production

cost, the excess is kept stored on the boundary node. When the cost of producing the channel reaches

zero, the edge is activated, and a new channel is created with a conductivity Dij(0) = D0. If the other

end node of the edge is inactive (empty state), the node is activated on the “growing state”, and the

boundary is extended with the new sink node. Note that every time a new channel with length Lij

is formed, the total network’s volume, V, is increased by
√
D0Lij . It’s also assumed that the cost of

producing a channel is proportional to its initial volume.

Finally, for every boundary node, it’s checked if they contain any inactive neighbour node. In case

they don’t, the node state is changed to the “transport state”, and growth can no longer occur starting

from that node. The eventual nutrient reserves of the node are evenly distributed between the neighbours

on the “growing state” which give continuity to the network development.

Network adaptation

Finally, the conductivities of the active channels are adapted according to the dynamics (3.19) for a

given choice of the function g. In the following we consider the polynomial choice used previously,

gγ(|Qij |) = |Qij |γ . Note that, although the total volume of the network, V, in (3.19) increases over time
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due to the continuous network growth, it’s still conserved in the adaptation process.

5.2 Results

5.2.1 One food source

We start by analysing the simplest case of the individual growing from a food source, without any

more food sources available in the surroundings. In each step, the food source with intensity qsource = I0

supplies an equal amount of nutrients to all the current boundary sinks. In Figure 5.1 it’s shown snapshots

of a simulation for the choice of parameters I0 = 0.1 and γ = 2/3, and considering that channels are

formed with a conductivity D0 = 0.1.
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Figure 5.1: Physarum growing from a food source considering the adaptation dynamics (3.45) with
γ = 2/3. The growth is driven by a central food source (yellow) which pumps nutrients to the moving
boundary (red) where there is a constant uptake of nutrients to create new channels (with an initial
conductivity D0). In each time step, an amount of I0∆τ nutrients given by the source is distributed
evenly between the boundary sinks. As Physarum grows, the channels adapt their thickness according
to the flux of nutrients flowing through. Simulation carried out with D0 = 0.1, ∆τ = 0.02, I0 = 0.1.
The dynamics result in a tree-like network that resembles the networks produced by the real organism
(Figure 2.2), although no stable cross-links between the main veins are formed. The labels t designate
the time step in which the snapshots were taken.

As the images show, the growth occurs in a more or less isotropic fashion and the growth fronts

are circular. Furthermore, the growth slows down as time passes, since the boundary is progressively

extended, and thus less food is supplied per time step to each boundary sink. These two features of the

growth mechanism are biologically consistent. Note that the former is related to the underlying irregular

mesh used, resulting from a Delaunay triangulation. Other types of meshes were tested as well, namely
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square, triangular and hexagonal lattice graphs. However, even when adding a small noise to the node

positions to break the lattice symmetries, simulations have shown that the growth fronts weren’t circular

due to the regularity of the underlying graph, meaning the lattice symmetries were still quite noticeable.

The dynamics resulted in tree-like networks which share some similarities with the networks produced

by the real organisms (Figure 2.2). In particular, as the network grows the inner channels are highly

optimised, leading to the formation of distinct fan-shaped growth fronts with a more dense branching as

we move away from the source. This is especially noticeable as time increases. However, an important

feature is still missing, the interconnections between the main veins which result in a loopy architecture

that provides robustness to the network. In the simulations for γ = 2/3, these redundant connections are

not stable and ultimately disappear.

By contrast, similar to the static cases, for γ < 1/2 the networks end up being highly redundant,

as Figure 5.2 shows. However, they are poorly optimised and there isn’t a clear hierarchy of veins as

observed in the real Physarum networks, where the thicker main veins branch into progressively thinner

ones.
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Figure 5.2: Physarum growing from a food source considering the adaptation dynamics (3.45) with
γ = 0.45. Same settings as in Figure 5.1. For γ < 1/2 the dynamics result in highly redundant networks
very close to the underlying mesh. Despite the redundancy, due to the lack of optimisation and a clear
hierarchy of vein thickness, the networks don’t resemble the ones produced by the real organisms. The
labels t designate the time step in which the snapshots were taken.

Previous results of the static optimisation revealed that fluctuations of the nodes fluxes have a great

impact on the topology of the final networks, and thus could be at the origin of the stable redundant

paths. Until now, we assumed a radial growth driven by a central source and uniform boundary sinks. As

discussed previously, the adaptation tends to reinforce the channels along the shortest paths connecting
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the sources and sinks, which in this case correspond to the connections along the radial direction, as

the flux develops preferentially in that direction. Therefore the angular connections end up being the

first ones to disappear. As an attempt to prevent this behaviour, we considered the hypothesis of each

boundary sink receiving a random fraction of the source flux in each time step. In principle, this would

create perturbations in the direction of the flow, which could lead to the formation of stable angular

connections between the main branches. However, as the Figure 5.3 shows, the network evolution is very

similar to the case of the sinks receiving uniformly (Figure 5.1), and redundant paths are still not formed.

We conclude that the hypothesis of random sinks is still not sufficient to explain the loops observed in

the real Physarum networks.
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Figure 5.3: Physarum growing from a food source considering the adaptation dynamics (3.45) with
γ = 2/3 and the sinks receiving a random amount of flux over time. Same settings as in Figure 5.1,
except that in each time step, the amount of nutrients given by the source is distributed randomly
between the boundary sinks. The network evolution is nearly identical to the case of the nodes receiving
uniformly, and therefore a random distribution of nutrients can’t explain the formation of stable loops
observed in Physarum networks.

5.2.2 Multiple food sources

Finally, we simulated the case of the Physarum accommodating new food sources as it grows, which is a

better representation of its foraging behaviour. However, it’s not clear how real organisms manage food

consumption when they acquire multiple food sources. We studied two different methods considering

the growth in the presence of two food sources. In both cases, the nutrients supplied by the active food

sources are evenly shared among the boundary sinks, and the simulations were performed with γ = 2/3,

I0 = 0.1, D0 = 0.1 and ∆τ = 0.02.
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In the first case, we considered that as soon as the second food source was reached, both food sources

were constantly operational and injected the same amount of nutrients into the network. This means that

from that moment, the amount of flux received by each boundary node was doubled. Snapshots of the

simulation are depicted in Figure 5.4. As the images show, after the second food source is accommodated,

the short connections between the two are weakened and ultimately collapse. We conclude that the

synchronous and continuous operation of both food sources leads to their repulsion. This is the opposite

of the true Physarum’s behaviour, which tends to connect the food sources through short paths to optimise

the transport of nutrients and minimise the costs (Figure 5.5).
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Figure 5.4: Physarum growing in the presence of two food sources with constant input flux. Same
parameters as in Figure 5.1. Starting from the left food source, Physarum accommodates a second food
source (blue circle) as it forages. From that moment, both sources are always active, each injecting a
constant I0∆τ amount of nutrients per time step, which is evenly distributed between the boundary sinks
(red circles). Yellow circles represent active food sources in a given moment. The synchronous activation
of both food sources leads to their “repulsion”, meaning that no direct connection is formed between them.
This is unrealistic in the context of Physarum.

In the second case, we considered that after the second food source was activated, only one of them

was operational at a time. In each time step, one of the food sources was randomly selected to supply the

nutrients to the boundary nodes. The results can be found in Figure 5.6. The asynchronous operation

of the food sources generates flow reversals which are a better approximation of the shuttle streaming

behaviour of Physarum. Conversely to the previous case and similar to what is observed in the real

organism, this mechanism results in the formation of short connections between the food sources (Figure

5.5).
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Figure 5.5: Real Physarum growing in a presence of two food sources (agar blocks). A direct connection
is established between them. Adapted from [42].
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Figure 5.6: Physarum growing in the presence of two food sources supplying nutrients alternately. Same
settings as in Figure 5.4, but once the second food source is covered, at a given time step only one of
them is randomly selected to supply the nutrients to the boundary sinks (red circles). The yellow circles
represent the activated food source in a given instant, while the blue circles represent the inactive one.
This asynchronous operation of the food sources allows the formation of a short direct connection between
them, similarly to what is observed in Physarum (Figure 5.5).

5.2.3 Discussion

The results for one food source showed that the simple growth-optimisation model introduced cannot

fully reproduce the observed network topology of Physarum. Besides the distribution of node fluxes,

this could be also related to the relative timescales between the growth and optimisation mechanisms,

which are controlled by the channels’ production cost, the choice of the update function, g, and the time

increment ∆τ . The model should be carefully parametrised so that an eventual equilibrium between the

processes could be achieved that would allow the persistence of the redundant connections.
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Regarding the simulations of the growth in the presence of two food sources, the results suggest that

the asynchronous operation of the food sources is far more biologically reasonable than the synchronous

pumping of both.

Further improvements to the model can be also made. One can consider a more realistic distribution

of the nodes fluxes, instead of an even distribution or a purely stochastic as considered here. For instance,

the sinks can receive a fraction of nutrients proportional to the distance they are from the sources, as the

farther away a region is from the source, the longer the nutrient will take to reach it. Alternatively, a more

realistic approximation to the shuttle streaming might be achieved if the sinks (sources) receive (give)

unequal amounts of nutrients which vary periodically in time. In addition, some interior nodes could

be also treated as sinks, as those regions also require nutrients. The cost of producing a channel could

also include a second term describing the metabolic costs inherent to the channels formation. Finally, it

would be also interesting to test the dynamics with finite food sources which eventually run out.
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Chapter 6

Concluding remarks

6.1 Achievements

In this work, we studied the network development and adaptation of Physarum polycephalum. It was

first analysed the adaptation of static organisms, i.e., neglecting the network growth. We have derived a

general class of equations describing the adaptation dynamics of a network comprised of elastic channels

filled with an incompressible fluid subject to a Hagen-Poiseuille flow. The adaptation mechanism models

the evolution of the channels’ radii as a response to the flow flowing through them at a given moment,

which is described by an arbitrary function g. This adaptation dynamics was inspired by the previous

model proposed by Tero et al. [6], but is more physically realistic, as it provides a correct description of

a Hagen-Poiseuille flow by ensuring the conservation of the volume of the fluid over time.

Following a Lagrangian approach, we proved that the particular choice of g(|Qij |) = |Qij |2/3 minimises

the total power dissipated by the network at the steady-state assuming a fixed set of sources and sinks.

Considering these choices, it was shown that the final networks were trees connecting the set of terminals,

whose geometry is highly dependent on the specific distribution of the nodes’ flux. In particular, some

configurations led to apparently disconnected solutions which are unrealistic in the context of Physarum.

It was also observed that the same configuration of terminals could result in different steady-states

depending on the initial conductivities.

The previous choice of the function g led us to study the adaptation dynamics of the general class

of polynomial functions, gγ(|Qij |) = |Qij |γ , as a function of the parameter γ. This analysis revealed the

existence of a first-order phase transition in the system near γ = 1/2, marked by the discontinuity of the

derivative of dissipated power at the steady state with respect to γ and a drastic change in the network

topology.

Some applications of the model were also tested. For graphs describing mazes, with a source and a

sink placed at both entrances, it was shown that the adaptation dynamics converged to a single path

connecting them, and therefore can reproduce the maze solving abilities of Physarum [5]. However, for

a general planar graph, the system doesn’t always converge to the shortest path connecting the two

terminals.
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Simulations have shown that typical tree topologies resulting from the adaptation under fixed sources

and sinks are not optimal, as they entail high costs to connect all the terminals and no redundancy,

leading to a low transport efficiency. By contrast, the networks displayed by Physarum show a good

compromise between these metrics, and thus can’t be mimicked by constant distribution of nodes fluxes,

which naturally can’t account for the periodical flow reversals (shuttle streaming). This justified the

need of considering the adaptation subject to time-dependent sources and sinks to produce efficient and

resilient networks, and as a better approximation to Physarum’s shuttle streaming behaviour.

The influence of flux fluctuations on the network fitness was studied using a configuration of terminals

that mimicked the geographical locations of major Portuguese cities. Since it’s not clear what is the most

appropriate choice, different stochastic methods of selecting the driving terminals in each time step were

considered. The introduction of flux fluctuations enabled the formation of redundant connections which

provided robustness to the network. As expected, compared to the case of fixed terminals, the stochastic

methods achieved a far better performance in every respect. In general, all the stochastic cases also

achieved a better overall performance than the MST and the real Portuguese railway. The results also

suggest that the choice of a completely random distribution (“All random”) might be a better alternative

to the original method proposed by Tero et al. [6] of choosing a source-sink pair (“Random pair”), as

it achieved the best overall cost-benefit relationship. Regarding the dependence on γ, it was observed

that the network resolves towards the MST solution and progressively loses all its redundancy as γ is

increased. For values of γ ∈ [0.7, 1[, the simulations resulted in networks with better overall performance

than the MST and the real railway. A more rigorous analysis should be performed to support these

results. In particular other values of gamma and stochastic distributions can be considered.

Lastly, we extended the adaptation model to incorporate the network growth, coupling both processes

and providing a better description of Physarum’s foraging behaviour. The growth is driven by a nutrient

flux from the food sources to the boundary of the organism where the nutrients are accumulated and

later used in the formation of new channels. Considering only one source, we observed that this simple

mechanism could mimic to some degree the natural growth of Physarum, in particular the formation of

the fan-shaped fronts. We have also considered the accommodation of new food sources as the organism

grows. Since it’s not clear how food consumption and distribution is managed in this case, we tested

two hypotheses. We concluded that the synchronous operation of the food sources couldn’t explain the

observed behaviour, as the network optimisation leads to their repulsion, and no short connection between

them remains. Conversely, when the food sources operate alternately, a strong direct connection between

the two is established, similarly to what is observed in Physarum. This suggests that the second method

is a closer approximation to the real mechanism.

The general form of the adaptation dynamics enables the introduction of different choices for the

function g, depending on the specific application, allowing the simulation of other physical and biological

network systems such as fungi networks. It should be noted that the polynomial g adopted here may lead

to high conductivity values which are only constrained by the network’s fluid volume. In this regard, it

would be interesting to test other adaptation functions that saturate for large flux values [6, 43]. In the

context of graph theory, the model can be applied to several network optimisation problems [8, 9] and
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as a guide network construction in different domains. Some benchmarks should be carried against the

Physarum Solver to assess which is the fastest algorithm.

6.2 Future work

The model proposed here couldn’t fully mimic the characteristic loopy structure of Physarum networks,

although different hypotheses of its origin were tested. In particular, when growth is considered, the

dynamics doesn’t result in the formation of stable traversal interconnections of the main veins. Never-

theless, the resultant networks share some similarities with the real ones and with other network systems

found in nature, such as tumour vascularisation and leaf venation. As an attempt to replicate the loopy

patterns, more realistic time- and space-dependent distributions of terminals and other choices of adap-

tation functions can be considered. The functional form of the latter should be derived from theoretical

expectations of the flow dynamics and the model parameters should be calibrated based on available

experimental data.

The contractile activity should also play a prominent role on the channels selection, which isn’t

explicitly accounted for in the model. The incorporation of the contractions would provide a more

realistic description of the shuttle streaming and ultimately explain the self-organisation of the flows

[3], without relying on an arbitrary distribution of terminals as the driving mechanism which the model

assumes. This self-organised pulsating behaviour may be the key for the observed network structure.

Hypothetically, this could be achieved by introducing the transport of signalling molecules released in

stimulated regions that would drive the flow and the channels’ adaptation based on a similar feedback

dynamics [17].

As an improvement to the growth mechanism, one can also consider a reaction-diffusion process at the

boundary of the organism to describe the vessel development. The interplay between the nutrients sup-

plied by the food sources and chemical regulators released at the boundary would provide a more realistic

growth mechanism from where the fan-shaped fronts could naturally emerge. Finally, the introduction of

chemical agents into the model would also open doors to model the migration of the plasmodium which

was not here addressed. The mobility should be mediated and directed by chemical stimuli [44] in order

to explain the chemotatic behaviour of Physarum.

Fully modelling Physarum remains a challenging and exciting task, due to the complexity of its

behaviour and lack of understanding of the underlying mechanism. The search for a unified model that

can reproduce all the network features and explain the intelligent behaviours of this fascinating brainless

organism is still ongoing.
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