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Resumo

Compreender o enigma da cooperação na Natureza foi declarado um dos grandes desafios do

século. A seleção natural, sendo o principal motor da evolução das espécies, promove a sobrevivência

dos mais aptos, porém interações cooperativas prevalecem nos sistemas vivos. As relações entre in-

divı́duos, seja como processos diádicos ou coletivos, são usualmente modeladas por jogos sociais,

que se baseiam nas recompensas relativas das estratégias. No entanto, estas interações podem nem

sempre ser impulsionadas por uma agenda egoı́sta, como maximização do fitness ou tomada de de-

cisões racionais. Nesta tese, analisamos diferentes regras de revisão de estratégia, que podem ocorrer

em sistemas sociais, recorrendo à análise de processos de Markov em larga escala. Primeiramente,

começamos por descrever analiticamente a dinâmica estocástica da população decorrente de proces-

sos de atualização sı́ncronos e assı́ncronos. Concluı́mos um impacto quase insignificante emergente

desta distinção. Seguidamente, descrevemos a dinâmica da cooperação emergente da interação de

diferentes paradigmas de revisão de estratégia: aprendizagem social (base), conformidade e pensa-

mento contrafactual. Mostramos que a conformidade cria uma dinâmica biestável, independentemente

dos dilemas que analisamos. Esse resultado só se altera quando aumentam os nı́veis de heterogenei-

dade da população. O pensamento contrafactual, por si, embora promova a cooperação em toda a

população, falha em promover a cooperação entre aqueles que também aprendem por esta heurı́stica.

Além disso, mostramos que, embora uma ligeira prevalência de indivı́duos recorrendo ao raciocı́nio

contrafactual seja suficiente para modificar a dinâmica natural de cada dilema, será necessária uma

quantidade significativa de agentes movidos pela conformidade para criar um impacto análogo.

Palavras-chave: Emergência de Cooperação, Teoria Evolutiva dos Jogos, Conformidade,

Pensamento Contrafactual, Processos Sı́ncronos
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Abstract

Understanding the conundrum of cooperative action in nature has been declared one of the cen-

tury’s grand challenges. Natural selection is the main engine of the evolution of species and promotes

the survival of the fittest, yet cooperative interactions prevail in living systems. Interactions between

individuals, either as dyadic or collective processes, are commonly modelled through the lens of game

theory, based on relative strategies payoffs. However, these interactions may not always be driven by

a selfish agenda such as fitness maximization or rational decision making. In this thesis, we analyze

different strategy revision rules that may take place in social systems resorting to the analysis of large-

scale Markov processes. Firstly, we start by describing analytically the stochastic population dynamics

arising from synchronous and asynchronous update processes. We conclude a nearly negligible im-

pact emerge from this distinction. Secondly, we describe the cooperation dynamics emerging from the

interplay of different strategy revision paradigms: social learning (our baseline), conformity and coun-

terfactual thinking. We show that conformity creates bistable dynamics irrespectively of the various

dilemmas we analyzed. This outcome is only altered whenever one increases the heterogeneity levels

of the population. Counterfactual thinking, in turn, while fostering cooperation in the entire population,

fails to promote cooperation among those that also learn through counterfactual reasoning. Moreover,

we show that, whereas a slight prevalence of individuals resorting to counterfactual thinking is enough to

modify the dynamical nature of each dilemma, a fair amount of conformity-driven agents will be required

to create an analogous impact.

Keywords: Emergence of cooperation, Evolutionary Game Theory, Conformity, Counterfactual

Thinking, Synchronous Processes
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Chapter 1

Introduction

”The only thing that will redeem mankind is cooperation.”

— Bertrand Russel, in Human Society in Ethics and Politics (1954)

1.1 Motivation

In this world of selfish individuals, when should we expect cooperation to emerge? This problematic of coop-

eration has been widely studied and yet it is still one of the biggest mysteries about animal behaviour [1]. In fact,

the understanding of cooperative behavior in societies has been declared as one of the grand scientific challenges

of the 21st century and has been intriguing the scientific community in various areas such as sociology, biology,

mathematics, physics and even computer science [2, 3].

In 1859, on his famous book On the Origin of Species, Charles Darwin has laid down the foundations of what

has come to be the most commonly accepted theory of the evolution of species. In his book, he brilliantly introduced

and popularized the concept of natural selection as one of the fundamental key mechanisms of evolution, which was

very surprising in light they were done in the absence of any genetics knowledge. In fact, the idea of hereditary

genetic mutation, as the main cause of diversity among organisms (species differentiation), came only long after

Darwin’s genius insights. This way, and as it is also a fundamental engine in the evolution of species, genetic

mutation becomes the second building block of evolution, next to natural selection.

Following the definition of survival as the continuous will to live, it is natural that individuals will focus mainly

on extending their life expectancy, in order to maximize the probability of propagation of their genes along future

generations. From a Darwinist perspective, this survival of individuals is highly dependent on their adaptability to

the demands of the environment and it may be understood as a competitive process, within a certain community,

where the most successful individuals and the best suited to their surroundings tend to dominate. Thereby, the fact

that natural selection favors the fittest individuals implies an innate selfishness that greatly challenge the concept of

cooperation. One should not expect any sign of cooperation among individuals, as it would involve an extraordinary

cost for the cooperator. In short, from a Darwinist point of view, cooperation is costly, and, as weird as it may sound

to us, humans, this means that cooperation is unnatural and rather odd than rational [4, 5].

However, in Nature one may find many evidences of cooperation in all different scales, from the transition of

protists to multi-cellular organisms, millions years ago, to the development of great human societies in the present,

as a result of million of years of our evolutionary struggles for survival. Even if in the first case cooperation is

1



not referred as a conscious decision, it is still an interaction between different elements, and thus following the

basic principles of cooperation. This evolutionary steps were only possible due to cooperation, and so it has been

identified as the third building block of evolution, next to selection and mutation.

So we now come across with this cooperation paradox: natural selection is the main engine of species evolution

and it promotes the survival of the fittest, yet we verify that cooperative interactions prevail in living systems [6]. How

can we then explain the emergence of cooperation? Naturally, human beings see cooperation as a very familiar and

beneficial concept. However, if one thinks more carefully, the idea of offering assistance to others is rather odd from

a purely rational point of view. So why do we, humans, alike many other animals, cooperate?

1.2 Topic Overview

Classical Game Theory was developed extensively in the 1950s, originally for application in economics and

social science, but later in the 70s a group of biologists started to recognize how similar the games that have been

studied were to the interactions within a community of individuals. The Evolutionary Game Theory (EGT) was then

born when John Maynard Smith and George Price laid its foundations, providing a powerful theoretical framework

to model Darwinian competition [7], usually know as social learning. Since then it has inspired sociologists, mathe-

maticians, biologists, physicists and computer scientists to investigate the evolution of traits under natural selection.

More specifically the evolution of cooperation has attracted wide attention in the last decades [1].

Inspired by the international research interest, some update rules of evolutionary game dynamics have been

introduced, where we stand with this hot issue: how did the human cooperative behaviour evolve? Methods of

statistical physics can be applied to solve this issue [4], where a comprehensive understanding of statistical physics

of human cooperation is given. In fact, to analyze an evolutionary process one can, for instance, adopt the Fermi

function distribution from statistical mechanics [8, 9].

The evolutionary dynamics of games are commonly studied through replicator equations [8], which provides a

convenient view for the evolutionary process, however assuming infinite populations and a deterministic dynamic

process [10]. The replicator equations show us the growth rate of the proportion of players using a certain strategy.

In this approach, the abundance of a strategy changes according to the its relative payoff, and hence, each player

will stochastically adapt their strategy prioritizing the one with the largest payoff. Therefore, this formalism allows us

to study both biological evolution, where individuals with higher fitness tend to reproduce more, and social learning,

where individuals with higher fitness will be imitated more often - imitation dynamics. The payoff for each strategy

will now depend on the evolutionary game we are dealing with, since each game has it own rules and payoffs.

However, besides the pursuit of the highest payoffs in evolutionary social dilemmas is risky, it is also a fact that

these interactions among individuals are not always driven by a selfish agenda such as fitness maximization [11], or,

even if they do, they may reason slightly different. In this sense, and formally from a pairwise comparison with social

learning, we bring up two new different learning rules that possibly may help us better understand the existence of

cooperation among rational individuals: conformity, where individuals focus on following the most common strategy

among the population [11, 12], and counterfactual thinking, where individuals reason about hypothetical past events,

specifically what would have happened if those events occurred [13].

Having this new rich and complex dynamics of evolutionary game theory, with multiple available learning rules,

we look to find the conditions for which the evolutionary process acts in order to promote higher cooperative stan-

dards. Optimistically, we ought to reach new conclusions and make interesting discoveries that would gradually help

us to formally understand and justify why do we, indeed, cooperate.

2



1.3 Objectives

This thesis aims to contribute to a better understanding of the emergence of cooperation in many different

scenarios. Concretely, we look to find, not only how the introduction of different learning rules, explicitly, conformity

and counterfactual thinking, in a social learning environment affects the overall dynamics of different populations,

but also what is the impact of population organization in the social dilemmas, in both dyadic contact processes, that

is, in the 2-person framework, and collective social action, or the N -person framework.

Moreover, and by generalizing the description of Evolutionary Game Theory, one may wonder about the updat-

ing process dynamism, more specifically, how more complex updating processes may influence the evolutionary

dynamics. In fact, rather than change population organization, we now look to investigate how modifying the evo-

lutionary updating process, from an asynchronous to a synchronous updating process, affects the population’s

dynamics. In addition, we will also be interested in studying how do populations involving different learning rules

dynamically evolve with synchronism in different levels, with particular concern to understand how a counterfactual

thinker, in its more conscious way to reason, will react to synchronism.

When introducing these new learning rules in the usual social learning framework, different possibilities arise

when it come to population’s organization. Even when focusing specifically on well-mixed populations, one may

either homogeneously mix agents resorting to different learning rule or heterogeneously separate the system into

different sub-populations of individuals resorting to one same learning rule. In this composition, one may wonder

how organizing the population in different ways may lead to different dynamics and what are the impacts of these

changes in terms of cooperative behaviour. Notice that, in all the performed studies, we keep a focus on searching

for the conditions and regimes for which cooperation is favoured, that is, we will focus on maximizing cooperation.

1.4 Thesis Outline

In order to properly study the emergence of cooperative action, and so achieving our objectives, we start by

laying down in Chapter 2 the foundations of the mathematical framework in a very generic yet detailed way, on

which we will base our entire study. We start by introducing Game Theory as a model to describe either dyadic or

collective interactions between agents, followed by the general description of Evolutionary Game Theory for social

learning. From a pairwise comparison with this latter framework, we explicitly provide all the models that describe the

different learning rules to be studied, either conformity and counterfactual thinking, as well as the whole framework

that is behind the different population’s organization.

Having the mathematics settled down, we are now in conditions to proceed with the analyses required to reach

our objectives. Regarding the impact of synchrony in the evolutionary updating process, in Chapter 3 we start

by presenting the framework developed to achieve different synchronism levels, followed by the evaluation of the

cooperation effects of increasing synchronism, first on a pure social learning dynamic, and followed by multi-learning

rule’s populations, homogeneously mixed. In this topic, the main challenge is to answer how does synchrony affects

the evolutionary dynamics of population.

Regarding the analysis of multi-learning rule populations, we will divide our study in two, according to the

different population’s organization. While in Chapter 4 we study the evolutionary dynamics of homogeneously

displayed populations, in Chapter 5 we perform the same investigation, but instead applied to heterogeneously

mixed populations. For either cases, the main challenge is to analyze the evolutionary dynamics, always looking to

find the conditions or regimes for which cooperation is fostered.

Finally, we emphasize the essential achievements and leave some notes on future work in Conclusions 6.
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Chapter 2

Mathematical Framework

To fulfil our goals, it is first necessary to lay the foundations of the work to be developed. In this chapter, we

present the mathematical framework used throughout this thesis. Most nomenclature and notation are explicitly

defined here. Starting with the basics of Game Theory and with the replicator dynamics, passing through the

general definition of the transition matrix, and finishing off on the gradient of selection, this chapter is an overview

of all essential topics in Evolutionary Game Theory.

We look not only to follow but also to improve some of the concepts of the already existing frameworks, built

on previous works, by generalizing them. With that, we aim to build a well structured and concise mathematical

framework that can answer our needs and provide a good and solid basis for any further studies.

2.1 Classical Game Theory

Game Theory (GT) is a field of mathematics that looks to provide a convenient framework to study, understand

and develop models of strategic interaction among intelligent rational decision-makers, namely models of conflict

and cooperation as competition problems. More specifically, it analyzes situations in which two or more agents

make decisions that will have an impact on one another’s welfare, and as such, the success of an individual will

depend on the decisions adopted by others [14]. These Game Theory models, commonly referred to as games, are

described by a very well defined set of rules that govern the outcome for the moves taken by individuals, as well

as by the possible outcomes, that are responsible for producing individuals earnings or losses - denoted as payoff.

Both game’s rules and resulting payoffs may be expressed either as decision trees or, more commonly, in a payoff

matrix. For more complex games, we may have to resort to a payoff table instead.

The agents involved in a game, usually called players, are theoretical entities that model uncertainty and, from

that, make a decision about its interaction strategy - one may understand the concept of strategy as the approach

a player takes in making his moves. As stated above, generally two basic assumptions are made about players:

they are rational and they are intelligent. Regarding the first one, a decision-maker is said to be rational whenever it

makes decisions consistently in the pursuit of its objectives [15]. Following the expected-utility maximization theorem

results from Decision Theory, we assume the rational player’s objective is to obtain the maximal expected outcome

from among all feasible actions, which may be measured on a utility-scale [14]. To summarizing, regarding strategy

dynamics, rational players are always expected to adopt the strategies that maximize their earnings (or losses).

Regarding the latter assumption, an agent is said to be intelligent whenever it has the whole knowledge about

the game and it can make the same inferences about the situation that we can do [14]. In other words, when
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describing a theory to model the behaviour of intelligent rational players, one shall expect individuals not only to

be perfectly rational but also aware of other’s equal rationality, and hence expect individuals to make predictions.

These intelligent players may also be regarded as Nash players [16] (see Section 2.1.1).

In this field of interactions, one may wonder how could this individual’s rationality go ”deeper”, as so to speak.

Applications of Theory of Mind (ToM) on Game Theory have been studied [16, 17] in attempts to build a good

framework to describe different levels of rationality and optimise mutual interactions. Following the model from [17],

we may consider ToM at multiple levels of rationality, where the higher the level, the deeper the individual’s rationality

goes. This depth of rationality is associated with the ability to reason about what would the opponent choose in the

current system configurations. Take, for instance, a player A that interacts with another player B, where each one of

them have a certain predictable set of possible actions. We say a player A lays in the first degree of ToM whenever

it takes into account the goals and intentions of agent B to make his strategic choice, i.e., whenever it makes a

decision biased by the opponent’s most likely decision. The second degree comes when the player’s reasoning is

aware of a first-degree agent’s reasoning, and so on for all other higher theory of mind levels.

In this framework, one may consider the typical rational and intelligent player as a level-zero ToM agent, as

individuals do not try to predict others actions. To predict an opponent move, an agent must first be aware of how

the other reasons, that is, what is the other’s learning rule. One may define the concept of learning rule as the

strategy updating mechanism that players follow, to which an updating function is associated, as we will later on.

Even if in most of our study we do not consider this Theory of Mind point of view, it would be interesting to formulate

a new dynamics that takes it into account.

2.1.1 Nash Equilibria

As stated above, rational and intelligent individuals, having a global knowledge about the game, can also be

denominated as Nash players. One of the greatest qualities of these kind of players is their capacity to predict

that other’s follow Nash equilibrium (NE) strategies [16]. This may eventually allow situations where no individual

has anything to gain by only changing their strategy, even for system configurations where many individuals don’t

necessarily have the highest possible payoff. The system has then reached a certain kind of equilibrium: the Nash

Equilibrium, which is the most common way to define the solution of a non-cooperative game. This equilibrium was

named after the mathematician John Forbes Nash Jr., who was awarded the 1994’s Nobel Prize in Economics for

his PhD Thesis entitled Non Cooperative Games [18]. In short, the concept of Nash equilibrium states that, for any

N -person game, a given set of strategies is said to be a Nash Equilibrium if no individual can increase its payoff by

unilaterally changing its strategy. In other words, any strategy in a Nash equilibrium is the best response to all the

N -1 others in that equilibrium [18].

Let us formalize this concept. Start by considering a game with Z ∈ N players, where we define Ψ as the strategy

profile space and S the set of available strategies. Let Si be the strategy adopted by a player i and S\i be the set of

strategies for all players except i, such that ψ = {Si, S\i} is strategy profile. Let Π(ψ) = (Π1(ψ), . . . ,ΠZ(ψ)) be the

payoff function evaluated at a strategy profile ψ ∈ Ψ. A given strategy profile ψ∗ = {S∗
i , S

∗
\i} is said to be a Nash

equilibrium if no unilateral deviation in strategy by any single individual is profitable for that player, that is:

Πi({S∗
i , S

∗
\i}) ≥ Πi({Si, S

∗
\i}) , ∀i ∈ {1, . . . , Z} (2.1)

One may notice that this concept has application to both pure strategies - where players always adopt the same

action - and to mixed strategies - where players probabilistically choose a strategy among the set of available pure
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strategies (equivalent to S) [19]. Besides defining a mixed-strategy Nash equilibrium for any game with a finite set

of actions, that is, for any game with a finite number of players and finite set of pure strategies, John Nash also

proved that at least one mixed-strategy Nash equilibrium should exist in such a game [18].

2.1.2 2-Person Games

The simplest of the Game Theory models are the 2-person games. In this games, individuals interact with one

another and, in terms of the simplest cooperation dynamics, they may adopt one of two pure strategies: coopera-

tion, C, or defection, D. This means our set of available strategies is S = {C,D}. While cooperative individuals

contribute to the collective welfare at a personal cost, c, in order to provide a certain benefit, b, to another individ-

ual (where we imply b > c), defectors choose not to contribute. The outcomes for the interactions following this

description may be summarized according to the matrix shown below:

C D( )
C (R,R) (S, T )

D (T, S) (P, P )

(2.2)

where the first and second elements of each entry represent, respectively, the payoffs obtained by the row’s and

column’s players. When both interacting individuals choose to cooperate, they will be awarded with a Reward, R,

while mutual defection will be awarded with a Punishment, P . If individuals adopt different strategies, the defector

receives Temptation, T , while the cooperator gets the Sucker’s Payoff, S. Taking into account the symmetry of the

game, the order of the players choosing each strategy is irrelevant, and hence, by solely taking the payoff of the row

player, we may simplify the above matrix into the most commonly used payoff matrix:

C D( )
C R S

D T P

(2.3)

As cooperator’s resulting payoff is lower, selection pressurizes them and defectors rise as the most favoured,

thus the evolution of cooperation stands as a dilemma on its own [20]. However, in all 2-person dilemmas mutual

cooperation is always favored when compared to mutual defection [8], that is R > P . Assuming this, from the

4-dimensional space of 2-person games, one may consider a 2-dimensional subspace, the T -S parameter plane,

in which R > P and define four different regions as a function of the relative values of R, S, T and P , represented

in the figure 2.1 below.

From all games shown in figure 2.1, in the Harmony Game (HG), also known as the Deadlock Game, cooperation

is always favored as it is the only rational decision to make regardless of the opponent’s choice. In this case, as

both players adopt C, we are lead to a maximum collective return R for all individuals. As we don’t have any type of

antagonism between strategies, the Harmony Game is not classified as a social dilemma [21, 22].

The remaining three games are listed below:

• Snowdrift Game (SG) (T > R > S > P )

When studying the logic of animal conflicts, John Mayard Smith and George Price have introduced the Snow-

drift Game, under the name of Hawk-Dove game [7], and also known as the Chicken Game. In its standard

version, it may be formulated as follows: two individuals are driving on a road blocked by a snowdrift and
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Figure 2.1: The T -S parameter plane for 2-Person games with two pure strategies, in terms of coopera-
tion. From all the presented games, only the Harmony Game is not classified as a social dilemma.

to proceed with their journey home, to get the benefit b, the snow must be removed, incurring a cost c, with

b > c > 0. In this scenario they have three different options: no one shovels, and hence no one gets home,

the two drivers cooperate and shovel, and both get home, each one sharing half the workload of shoveling

the snow, and finally, only one driver decides to shovel and so both get home, despite one driver getting the

whole workload from shoveling, while the other has no costs [23]. This metaphor can be translated in the

following payoff matrix:

C D( )
C b− c

2
b− c

D b 0

(2.4)

Assuming a pure strategy game, both (C,D) and (D,C) pairs are a Nash equilibria. Intuitively, each indi-

vidual is better of if the other player does the all the workload required so shovel the snow without investing

anything himself, and hence it becomes a coexistence problem (as we will see further). Here we may find

some traits of selfishness, characteristics of natural selection and hence the Snowdrift Game is one of the

most interesting games the study of the problem of the evolution of cooperation [24]. A third Nash equilibrium

appears when we consider strategies to be mixed, instead of pure. We will be discussing this topic later on,

but for now let us assume strategies are pure [19]. The values for b and c can be any, as long as we always

respect the Snowdrift condition T > R > S > P .

• Stag-Hunt Game (SH) (R > T > P > S)

The Stag-Hunt Game, also know as the Assurance Game or Trust Dilemma, constitute a prototypical ex-

ample of the social contract, discussed implicitly in some of the major transitions of evolution [25]. It was

originally metaphorically described as a conflict between safety and social cooperation by the philosopher

Jean-Jacques Rousseau in his work Discourse on the Origin and Basis of Inequality Among Men in 1755. In

its standard version, it may be formulated as follows: two individuals go on a hunt and each of them have the
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option to hunt a stag, that requires the partner’s collaboration, or to hunt a hare, that can be done by the self.

Hunting a stag will provides a reward b while hunting a hare only provides half of it, b
2
. For both cases, a cost

c associated with the hunting act is applied, with b > c > 0. This problem may be translated by the following

payoff matrix:

C D( )
C b− c −c

D b
2
− c 0

(2.5)

Unlike the Snowdrift Game, in the Stag-Hunt Game there is an equilibrium in which both players cooperate

as well as one in which both defect, that is, both (C,C) and (D,D) pure strategy pairs are a Nash equilibria

- the first being payoff dominant and the latter being risk dominant. This means that the whole population

tend to follow the most common strategy, whatever it is, and hence this problem is said to be a Coordination

problem [19]. The values for the benefit b and the cost c can be any, as long as we always respect the main

Stag-Hunt condition R > T > P > S.

• Prisoner’s Dilemma (PD) (T > R > P > S)

Finally, we have the Prisoner’s Dilemma, one of the most studied yet intriguing 2-Person games, as it repre-

sents the typical game-theoretical framework in which individual and group interests collide [26, 27]. Originally

framed by Merril Flood and Mervil Desher, and later formalized and named by Albert W. Tucker, the Prisoner’s

Dilemma may be presented as follows: two criminals that are arrested and imprisoned, with no means of com-

municating with each other, are interrogated separately and each one is given the opportunity either to remain

in silence or to testify against the other. If both cooperate and remain in silence, both will only serve one year

in prison, while if they betray each other, both will serve two years. If one testifies against the other, while

he remains in silence, the one who testified is set free and the other gets the full charge of three years in

prison. Both prisoner’s make a decision independently and simultaneously, not knowing what the other one

will choose [19]. One may translate this problematic in the payoff matrix on its canonical form by taking the

matrix 2.3 and the condition T > R > P > S. Another way to represent it is according to the special case

of the Donation Game, that is a form of the Prisoner’s Dilemma in which cooperation corresponds to offering

the other player a benefit b at a personal cost c, with b > c > 0, which may be represented as:

C D( )
C b− c −c

D b 0

(2.6)

where we imply that b− c = 1.

In this game, defectors receive the benefits without spending any costs and are therefore expected to have

an evolutionary advantage over cooperators [28]. This way, from a rational and evolutionary perspective, the

only profitable option is defection and hence the only Nash equilibrium is the (D,D) pure strategy pair. In

other words, in opposite to the Harmony Game, the Prisoner’s Dilemma leads to D-dominance, which can

drive the population into the Tragedy of the Commons [29] and thus PD represents the essence of conflict

between individuals and collective interest [19].

8



2.1.3 N-Person Games

We saw 2-Person games are the simplest models of Game Theory and provide a solid and simple description

for interactions between two individual. However, many real-life situations involve individual’s collective action, and

hence those interactions cannot be modelled in the same manner as in 2-person games. This is where we move to

the N-Person games framework, which provides a richer spectrum of evolutionary possibilities thus best describing

these collective action problems, even though more complex to analyze [27]. While in 2-Person games agents are

always aware of other individual’s choices, in the new N-Person framework there is the possibility of exploitation

of the common good by the defectors, that go unnoticed. Moreover, while in dyadic interactions the individual’s

action relies completely on his partner’s strategy, on multi-individual interactions all the members of the group share

responsibility for the action’s result [19].

As the new game dynamics become much more rich and complex, one must be equipped with new tools to

better study this dynamics. Namely, we look to find the best ways to reach a public good and for that one may

analyze the impact of the contributions of cooperators, or in other words, the relationship established between

the level of contributions and the amount of public good produced, which is given by the production function [19].

Depending on the game, different functions represent the evolution of public good as a function of the number of

cooperators, as one will see soon after, and hence one shall expect different dynamics. Furthermore, one may also

evaluate these new dynamics through the equilibria analysis. In N -Person games new internal equilibria emerge,

more specifically, it has been shown that, for n player games with d strategies, the maximum number of internal

equilibria is given by:

(N − 1)d−1 (2.7)

that is, the maximum possible number of internal equilibria increases as a polynomial in the number of players,

but exponentially in the number of strategies [27]. Note that for the cooperation dynamics in 2-Person games, i.e.,

having n = 2 and d = 2, we recover the expected at most single internal Nash equilibria [30].

Many different types of N -Person games may be defined by generalizing some of the 2-Person games, as those

previously described in Section 2.1.2. In this thesis, we will study four different N-Person games, enumerated below:

• N -Person Snowdrift Games (NSG)

The generalization of the Snowdrift Game to its N-Person version is very straightforward. Taking the same

formulation as in the 2-Person version, we can now imagine the snowdrift occurs in a road junction, where

N drivers meet. Once again, all objective is to go home, to get the benefit b, but it will require a collective

action. As shoveling demands a cost c, if all shovel, then each one is awarded with b− c
N

, but if only k shovel

(with k < N ) then each only gets b− c
k

, while the one who refuse to shovel get home for free, hence getting

b. In many NSG real examples, it is common that no benefit is produced unless its costs are shared by a

minimum threshold of cooperators [31]. Mathematically formalizing, for a population size Z, take a group of

size N ≤ Z where we define the threshold 1 ≤ M ≤ N such that we achieve a public good whenever the

number of cooperators in the group, k, is at least M , that is, k ≥ M . When this public good is achieved, the

benefit b is produced with a workload cost c that is divided by all k cooperators. Otherwise, if k < M , no

benefit is produced despite the current cooperators work, and hence the maximum cost each C expend is c
M

[31]. One can summarize this interpretation according to table 2.1.

Having this, it is clear how the NSG is characterized by a benefit that once obtained is fixed, and thus one

shall expect the production function to be a step-function [19]. Moreover, in terms of cooperation with 2

strategies, according to equation 2.7, we expect the number of internal equilibria to grow linearly with N ,
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Payoff Obtained C D

1 ≤ k < M − c
M 0

M ≤ k b− c
k b

Table 2.1: Payoff values for a N -Person snowdrift game.

more specifically, we will have at most N − 1 internal Nash equilibria. We shall then expect a much richer

dynamics when compared to the snowdrift 2-Person version.

• N -Person Stag-Hunt Games (NSH)

Taking the same analogy as in its 2-Person version, we can also describe the N -person stag-hunt game

(NSH) as a hunting problem. Let us consider a group sized larger than two that go on a hunt. Two of the

hunters invest in a group of prey from both sides to make them run away forward. On the other side, the

remaining hunters await for the preys to run straight into them, and this way, the group of hunters make a

successful hunt. It is not possible to do such a hunt with less than 3 participants, and the more, the better.

Unlike the Prisoner’s Dilemma, there is a cooperative equilibrium where if all others do their part, it is best for

the individual to do his as well [25]. In mathematical terms, for a group of size N , each individual is given a

chance to contribute with a cost c, that will be accumulated for all k cooperators, thus we have an investment

of kc. These accumulated contributions will be enhanced by a factor F to produce the total benefit of kFc,

to be distributed by all individuals in the group. Defectors, which did not contribute, will receive kFc
N

while

cooperators must discount the cost and receive kFc
N

− c. Like we mentioned in NSG, in most of real-world

games a minimum threshold of cooperators is required to achieve a public good. Defining this threshold again

as M , we can summarize this dynamics according to the table below:

Payoff Obtained C D

1 ≤ k < M −c 0

M ≤ k kFc
N − c kFc

N

Table 2.2: Payoff values for a N -person stag-hunt game.

Differently to the NSG, we find a characteristic benefit that once obtained grows linearly with the number of

cooperators, and hence one shall expect the production function to be linear. As we shall find later, the NSH

game leads to a much richer evolutionary dynamics when compared to the NPD game, mainly due to the fact

that in the latter game we do not have a threshold of individuals to produce a public good. Likewise on its

2-person version, but in a much wider scale, the NSH not only represents many wildlife hunting situations but

is also present in some international relations and macroeconomics [25]

• Public Good Games (PGG)

When focusing on the Public Good Games (PGG) framework, we take the most used metaphor to study

PGGs - the N -Person version of the Prisoner’s Dilemma, that is, the N -Person Prisoner’s Dilemma (NPD).

The description for this kind of games is fundamentally the same as for NSH, but with a major difference:

there is no threshold below which no public good is produced, or in other words, we have M = 0 [25]. This

way, we can define the payoffs for Cs and Ds according to the Table 2.3 below.

This kind of collective social dilemmas comes to be the best description for problems in which the outcome

obtained goes linearly with the number of cooperators in the group, as one can infer from the table 2.3. This
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Payoff Obtained C D

kFc
N − c kFc

N

Table 2.3: Payoff values for a public good game.

leads to a production function that grows linearly with the value of k, similar to the NSH, but unlike the previous

N -person games, it is not required a minimum number of cooperators to get a benefit. While in its 2-person

version the only rational move is defection, independently of the values of R, S, T and P , as long as the PD

condition is respected, the NPD dynamics relies mostly on the enhancement factor η ≡ F/N . For η < 1,

cooperators are at a disadvantage, and hence we have D-dominance, whereas if η > 1 we have a dynamics

similar to the Harmony Game’s dynamic, and hence we have C-dominance. When η = 1 we will have a

neutral selection, where no particular strategy is favoured [19].

• Collective Risk Dilemma (CRD)

Climate change is a very real game that we cannot afford to lose [32]. Governments have taken action

to reduce greenhouse gas emissions (GEE) to mitigate climate change, where new policies have been im-

plemented as GGE should be reduced to approximately 50% of the present level by 2050. This requires

international cooperation as no single country would be able to produce such a reduction by itself. And here

rises a climate dilemma: on one hand the new policies to reduce GEE are likely to have a negative short-term

impact on the country economy, but on the other hand failing to accomplish this goal may resulting, in the

worst possible case, in a dangerous climate catastrophe, which leads to a substantial human, ecological, and

economic losses [33]. This type of social dilemma is commonly called a collective-risk dilemma (CRD), and it

is the standard approach framework to deal with International Environment Agreements and other problems

of the same kind [32, 34–36]. It can be mathematically modelled as follows: all individuals have an initial

endowment b and are given the choice to contribute with a fraction c of their endowment, i.e., to cooperate,

or not, i.e., to defect. Once again, most of this collective games demand a minimum number of contributors

to come into practise, which, as before, we will define as M . If the group sized N does not contain at least

M cooperators, which would produce a collective effort of Mcb, all members of the group would lose their

remaining endowments with a probability of risk r. Otherwise, everyone would keep whatever they have [35].

The payoffs on each scenario may be translated according to the following table:

Payoff Obtained C D

1 ≤ k < M b(1− r)− cb b(1− r)

M ≤ k b− cb b

Table 2.4: Payoff values for a collective risk dilemma.

There are four main reasons to distinguish CRD from other social dilemmas: players make decisions repeat-

edly before knowing the outcome, investments are not refundable, the effective value of the public good is

unknown and the remaining of the private good is available with a certain probability if the target sum is not

collected [33]. The imposition of the threshold M in this situation comes from trying to mimic the most com-

mon situations of the public endeavors previously described, like in international environmental agreements

that demand a minimum number of ratifications to come into practice [37].
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2.2 Evolutionary Game Theory

In 1928, John von Neumann, generally regarded as the foremost mathematician of his time [38], published

the paper On the Theory of Games of Strategy, where he proved his minimax theorem, which establishes that

in zero-sum games with perfect information, i.e., in which players know at each time all moves that have taken

place so far, there exists a pair of strategies for both players that allows each to minimize his maximum losses.

Later, in 1944, Von Neumann improved and extended this theorem to include games involving imperfect information

and games with more than two players (N -person Games), publishing this result in his famous book Theory of

Games and Economic Behavior, co-written with the economist Oskar Morgenstern [39]. These were the first times

GT appeared as a unique field of mathematics [15], and since then it was extensively developed, originally for

application in economics and social science.

In the 1970s, a group of biologists started to recognize how similar the games from classical Theory of Games

were to the interactions within a community of individuals. They explicitly applied GT to evolving populations in

biology, and by getting rid of the static description of GT to transform it into a dynamical process, they gave rise to

the Evolutionary Game Theory (EGT). Officially it was born when John Maynard Smith and George Price laid its

foundations, providing a powerful theoretical framework to model Darwinian competition that has been widely used

to study dynamically evolving populations, and more particularly, for the study of cooperative behavior in animals

[40].

Typically, the problem of evolution of cooperation is addressed in well-mixed populations, that is, populations

in which every individual has the same probability of interaction with one another in the population. Despite real

populations are far from being well-mixed and infinite, these theoretical foundations bring us a very solid framework

for the analytic study of the impact of different population’s internal organization. This way, from this point on we will

assume populations are well-mixed, and not structured.

2.2.1 Evolutionary Stable Strategy

When John Maynard Smith and George R. Price laid EGT foundations, they introduced the concept of Evolu-

tionary Stable Strategy (ESS) as the corresponding to the Nash equilibrium but now applied to evolving populations.

However, there is a big difference: while Nash equilibrium comes as a consequence of individual’s rationality and

perfect awareness of the structure of the game in which they are playing, the ESS is the result of the application of

the concepts og GT to Biology, where players are assumed to not have any saying in their strategy, as strategies are

interpreted as inherited characteristics, and hence individuals play unconditionally his strategy against any oppo-

nent. We then may say a strategy is an ESS if, once adopted, it can’t be invaded by another strategy. It is important

to notice that, while the Nash equilibrium corresponds to a certain population configuration, that is, to a certain set

of strategies, an ESS is a single strategy. Moreover, while all ESSs correspond to a Nash equilibria, the opposite

may not be true [19].

One may formalize this concept following the same framework from Section 2.1.1. Again, for a game with Z

players, we consider a player i adopts a strategy Si while all other players strategies are organized in the set S\i.

A given strategy S∗
i in the strategy profile ψ∗ = {S∗

i , S
∗
\i} is said to be an ESS if it obeys either one of the following

conditions:

Πi({S∗
i , S

∗
\i}) > Πi({Si, S

∗
\i}) ,∀i ∈ {1, . . . , Z} (2.8)

Πi({S∗
i , S

∗
\i}) = Πi({Si, S

∗
\i}) and Πi({S∗

i , S\i}) > Πi({Si, S\i}) ,∀i ∈ {1, . . . , Z} (2.9)
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where Π(ψ) = (Π1(ψ), . . . ,ΠZ(ψ)) is the payoff function evaluated at a strategy profile ψ ∈ Ψ. The first condi-

tion corresponds to the definition of a strict Nash equilibrium, as presented in 2.1. The second condition may be

understood as follows: if Πi({S∗
i , S

∗
\i}) = Πi({Si, S

∗
\i}), we are allowing the strategy Si to invade the population

by random drift [19], however, by applying Πi({S∗
i , S\i}) > Πi({Si, S\i}) we ensure that an individual adopting S∗

i

still has advantage when playing against partners with different strategy, and thus we may avoid the strategy Si

invasion. Note that S\i corresponds to any other strategy set that is different from S∗
\i.

2.2.2 Strategies and Fitness

As mentioned earlier, in cooperation dynamics we typically assume two different strategies: cooperation, C,

and defection, D. However, individuals may adopt other different ways to make its moves, hence emerges the

need to have a general framework that is able to represent all the different strategies. This way, and as we will see

throughout this thesis, we will take a framework similar to the one presented in [41].

In this sense, for a population of size Z, we consider that individuals may adopt one of the s+1 available strate-

gies, that are grouped in the set S = {S1, . . . , Ss+1}. As we will see more in detail, the number of individuals of the

population following any strategy S ∈ S is variable over time, hence we must define the population configuration

(or state) as time dependent: i(t) = {i1, . . . , ik, . . . , is+1}. As the number of individuals Z is fixed, we must have∑s+1
k=1 ik = Z, meaning we can reduce the dimensionality of the system and transform the population’s configu-

ration onto i(t) = {i1, . . . , ik, . . . , is} (the frequency of players adopting strategy Ss+1 may be obtained through

normalization) [41]. In most of our cooperation dynamics study, as previously stated, we have S = {C,D} (s = 1),

and hence the system’s configurations comes as i(t) = {iC}, and we may get the number of Ds by normalization

iD = Z − iC . In this case, we only have to track one degree of freedom to get the the full dynamics population.

In EGT, the payoff individuals obtain from all interactions may be translated onto individual fitness as an average

payoff, that is characteristic for each strategy, that is fitness is a function f ≡ fS where S ∈ S. In a biological context,

one may see fitness as a quantification of the reproduction success: the more successful individuals are, the more

they can spread their strategy, which will then increase its frequency in the population. From a more cultural point

of view, one can also think of fitness as an evaluation of an idea, where more successful ideas and learning rules

tend to be more imitated and hence will spread across the whole population [19].

To generalize this fitness concept for any s+1 strategies scenario, let us take a population sized Z, with a given

configuration i(t) = {i1, . . . , ik, . . . , is}. Now, let j(t) = {j1, . . . , jk, . . . , js} be the configuration of the players in a

certain group of N individuals, such that
∑s+1

k=1 jk = N , and let (j : jk = q) designate any group configuration in

which there are specifically q players following strategy Sk. From this definitions we may write down the average

fitness of a strategy Sk ∈ S in a population with a composition i, or fSk (i), as follows [41]:

fSk (i) =

(
Z − 1

N − 1

)−1 (j:jk=N−1)∑
(j:jk=0)

ΠSk (j)

(
ik − 1

jk

)
s+1∏
l=1
l̸=k

(
il
jl

)
(2.10)

where ΠSk (j) stands for the payoff associated with the strategy Sk for a group with a configuration j.

From the equation above one may obtain the fitnesses for all different population setup. For instance, in coop-

eration dynamics we have S = {C,D} and hence s = 1. For any group sized N , we may write down the fitnesses
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for strategies C and D, respectively, fC and fD, according to Eq. 2.10 as:

fC(k) =

(
Z − 1

N − 1

)−1 N−1∑
j=0

ΠC(j + 1)

(
k − 1

j

)(
Z − k

N − j − 1

)
(2.11)

fD(k) =

(
Z − 1

N − 1

)−1 N−1∑
j=0

ΠD(j)

(
k

j

)(
Z − k − 1

N − j − 1

)
(2.12)

where we designate the number of cooperators, iC , as k, given that it is the most common nomenclature in literature

[23, 25, 31, 34, 35, 37]. This equations are valid for any N -person game, namely the ones that have been described

in Section 2.1.3, and more in specific, they are valid for games with N = 2, i.e., for 2-person games:

fC(k) =
k − 1

Z − 1
R+

Z − k

Z − 1
S (2.13)

fD(k) =
k

Z − 1
T +

Z − k − 1

Z − 1
P (2.14)

where we took the payoffs from the general 2-person payoff matrix in Eq. 2.3.

These basic equations could be seen as an evaluation of the average overall score for players following that

strategy. Knowing these values, as previously stated, individuals will revise their strategy, that is, individuals will

consider whether or not they should change their strategy - this defines the concept of revision. For individuals

following a social learning (SL) rule, this revision is only triggered by an interaction with another player. Even this

process is commonly designated as an imitation process or the pairwise comparison rule [8], in this thesis, we will

rather define it as a dynamic revision. Nevertheless, other different types of processes may occur depending on

the player’s learning rule [42]. For instance, individuals may proceed with their revision by autonomously evaluate

the overall configuration of the population in terms of strategy payoff, and hence there is no need for interaction

with another player. As such, one may define this process as a static revision, which is the case of counterfactual

thinking (CT), as we will see later.

We may generally formulate the imitation process as follows: two randomly picked individuals A and B, adopting

strategies SA and SB , respectively, will interact with one another. Intuitively, we assume that if SA = SB , then no

change will occur. However, if we have SA ̸= SB , the player A will replace its strategy by player’s B strategy with a

probability given by the Fermi function from statistical physics [31]:

pSA→SB (i) ≡ 1

1 + e−β(fSB
(i)−fSA

(i))
(2.15)

where β, which in physics corresponds to an inverse temperature, controls the intensity of selection. More specif-

ically, we will define β ≡ β[SL] to specify the individual’s learning rule (in this case SL). The equation above is

commonly designated the (strategy) updating function, or switching probability, and it is valid for any dynamic re-

vision, when the individual A is following the SL rule. We must, however, notice that, depending on the player’s A

learning rule, different strategy updating functions rise. We will discuss this topic later on.

2.2.3 Replicator Dynamics

Having replicated the dynamics of a single interaction, we now wonder how can we study the evolution of this

strategy dynamics in time, as players will tend to adopt different strategies. This is where we introduce to the

replicator dynamics, as it models the evolution of strategies [19, 42]. In cooperation dynamics, for large populations,

that is Z → ∞, we may write the fitness equations as a function of the frequencies (or fractions) of cooperators,
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xC , and of defectors, xD. As we saw earlier, attending that xD = 1− xC , we can even reduce the dimensionality of

the problem to one variable, x ≡ xC . The growth of x in time may be given by a first order differential equation, the

so-called replicator equation [19]:

ẋ = x(fC − ⟨f⟩) = x(1− x)(fC − fD) ≡ g(x) (2.16)

where ⟨f⟩ stands for the average fitness of the population. As one can infer from the equation above, the sign of

ẋ depends solely on the fitnesses difference fC − fD, that indicates the direction of selection: whenever ẋ > 0

cooperation is favored, otherwise defection is the preferred strategy. In this reasoning, we designate ẋ as the

gradient of selection, g(x), as it indicates the direction of selection, i. e., the most likely outcome of evolution. The

equation 2.16 will be of foremost importance in all the following discussion, as it is probably one of the strongest

tools to study population dynamics. Let us, for instance, take all 2-person games referred in section 2.1.2, for which

the fitnesses for cooperators and defectors are given, respectively, by equations 2.13 and 2.14, now as a function

of the fraction of cooperators, x. In this case, the replicator equation from 2.16 takes the form:

g(x) = x(1− x)[x(R− T ) + (1− x)(S − P )] (2.17)

In this polynomial one may infer the existence of one internal root, x∗int, besides the two trivial roots, x∗triv = 0

and x∗triv = 1, that only depends on the game’s configurations [19]:

x∗int =
P − S

R− S − T + P
(2.18)

Depending on the stability of this internal equilibria, different dynamics emerge. Equation 2.17 is the general

gradient of selection for any 2-person games, and from that four different scenarios are possible, depending on the

sign of both R− T and S − P , as one can identify in the image below.

Figure 2.2: Evolutionary scenarios for 2-person games in cooperation dynamics. Panels A to D show
the gradient of selection for all four different 2-person game regimes, previously described, where we
consider 2 strategies. These regimes are obtained as a function of the sign of both R − T and S − P .
The full dots represent stable equilibria of the system while the open dots represent unstable equilibria.
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From the image above, we can define the different regimes:

• Coexistence (panel A): characterized by R − T negative and S − P positive, this regime replicates the

Snowdrift Game dynamics, as we have a balance of both populations of C ’s and D’s, or in other words, the

internal equilibrium x∗int is stable while both trivial roots are unstable, and hence for x < x∗int (x > x∗int)

selection acts in order to increase (decrease) the number of cooperators;

• C-dominance (panel B): having both R− T and S − P positive, we enter a regime where cooperators have

always a higher fitness, regardless of the current fraction of cooperators, which replicates the Harmony Game.

This means that the population evolves towards achieving the full cooperative state, and hence we have an

unstable fix point at x∗triv = 0 and a stable fix point at x∗triv = 1;

• D-dominance (panel C): in opposite to the C-dominance, when both R−T and S−P are negative we enter

in a regime where defectors have the highest payoff regardless of the population’s configuration, that is, the

typical Prisoner’s Dilemma scenario. We expect the population to evolve toward achieving the full defection

state, thus we have a stable fix point at x∗triv = 0 and an unstable equilibrium at x∗triv = 1;

• Coordination (panel D): characterized by R − T positive and S − P negative, in this regime the internal

equilibrium x∗int is unstable while both trivial roots are stable, meaning that for x < x∗int (x > x∗int) selection

will act towards full defection (full cooperation);

2.3 Stochastic Processes

The replicator equation (2.16) is a very powerful tool that helps on describing the population’s evolutionary dy-

namics, however it relies on the system’s deterministic properties, which consequently implies continuity. To achieve

this, we would require an infinite population, which in many real world scenarios is an unrealistic approximation.

Moving to finite populations, we must consider fluctuations, and hence the population dynamics no longer can be

described in the deterministic formulation of the replicator dynamics. The evolutionary dynamics of the propagation

of strategies must now take into account the stochastic effects [19].

As we enter in a discrete domain, the description of the system may be given according to the formalism of the

Markov Processes, which are basically stochastic processes that respect the Markov property. This property may

be formulated as follows: let us suppose we have a system that at a time ta has a certain configuration ia, from

which we define the system state as the discrete random variable Xta = ia, where Xta is defined on a finite or

countably infinite space state X [43]. Here, we define a as the step in the Markov process, starting from the initial

state a = 0. A stochastic process {Xta}∞a=0 is said to have a Markov property whenever:

P{Xta = ia |Xt0 = i0, . . . , Xta−1 = ia−1} = P{Xta = ia |Xta−1 = ia−1} (2.19)

or, in other words, the state of the system at time ta+1 only depends on its state at a time ta and not of all the

previous history of the system starting from its initial configuration. This stochastic process is commonly called a

Markov chain [43]. As we saw previously, in cooperation dynamics we have i = {iC} = {k}, meaning we can

simplify our system representation to a Markov chain where each state is defined by the number of cooperators k.

Once we consider evolutionary dynamics, we must adopt an update mechanism that models the transitions

between different states of the system, and, for that, let us establish the foundations of our reasoning. For a

finite population sized Z, we have a system with Z + 1 states, where each state is represented by the number

of cooperators k. Starting at a time t0 with a certain initial state k, individuals start interacting with one another,
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Figure 2.3: Representation of a general Markov Chain for a finite system with Z+1 states in cooperation
dynamics, considering all transitions between states are possible.

triggering strategy revision, which consequently may lead to a change in the system’s configuration. Generalizing,

from a given state k at a time ta, we represent T n(k), known as the transition probability, as the probability that

at a time ta+1 the system moves to the state k + n, i.e., as the probability that the population varies its number of

cooperators by n (note that n may be either negative or positive). Obviously, we should always respect the limiting

conditions that 0 ≤ k + n ≤ Z. The above system’s description is well represented on Figure 2.3.

2.3.1 Transition Matrix and Transition Probabilities

All transition probabilities may be summarized in the general stochastic transition matrix T , which, according to

the matrix indexes i and j, may be given as Ti,j = T j−i(i− 1), and we may obtain the following:

T =
{
T j−i(i− 1)

}Z+1,Z+1

i=1,j=1
=



T 0(0) T +1(0) . . . T j−1(0) . . . T +Z(0)

T −1(1) T 0(1) . . . T j−2(1) . . . T +(Z−1)(1)

...
...

. . .
...

. . .
...

T 1−i(i− 1) T 2−i(i− 1) . . . T j−i(i− 1) . . . T Z−i(i− 1)

...
...

. . .
...

. . .
...

T −Z(Z) T −(Z−1)(Z) . . . T j−Z(Z) . . . T 0(Z)


(2.20)

The analytical study of the matrix T is very complex. To simplify, in most studies researchers adopt a birth-death

process, also know as one step process, that is, at each time-step in discrete time only one individual may revise

its strategy [19, 23, 31, 41]. In our model, this means we have T n(k) with at most |n| = 1, that is, n = {−1, 0, 1},

and hence the matrix T becomes tri-diagonal, allowing us to handle major dynamics tools, such as the gradient of

selection, in a very simple way, as we will see soon in Section 2.3.4.

Although we take birth-death process for the sake of simplicity, we know that in many real-world scenarios

multiple strategy revisions may occur simultaneously, giving rise to many new problems. For instance, as the

transition matrix becomes more complex, we are no longer able to evaluate the direction of selection as we did

for the birth-death process. We must now take into account the effects of the synchronous dynamics, as we start

moving away from the asynchrony. We will widely discuss the effects of synchronism later on Chapter 3. For the

rest of this chapter we will adopt the typical birth-death process.

Regarding the transition probabilities, as we only assume one revision, we may write T ±1 directly according

to the outcomes of interactions between individuals with different strategies (to simplify notation, from this point on

we assume T ±1 = T±). More specifically, and according to the Fermi’s switching probability in equation 2.15, one

may intuitively build the transition probabilities by following this reasoning: we take a defector (cooperator) from the
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existing Z individuals, x(Z)
C (x(Z)

D ), that will interact with a cooperator (defector), now from a population with Z − 1

individuals, x(Z−1)
D (x(Z−1)

C ). The transition probabilities T± are, then, given as a function of k:

T−(k) ≡ TC→D(k) = x
(Z)
C · x(Z−1)

D · pC→D(k) (2.21)

T+(k) ≡ TD→C(k) = x
(Z)
D · x(Z−1)

C · pD→C(k) (2.22)

where we define x(Z)
S = iS

Z
the fraction of individuals in the population following strategy S. In terms of cooperation,

we have x(Z)
C = iC

Z
= k

Z
and x(Z)

D = iD
Z

= Z−k
Z

. From these transition equations, we may also get the transition T 0

by normalization, that is, T 0 ≡ T0 = 1 − T− − T+. From this, one may compute the transition matrix and get the

system’s dynamics for all values of k, for the one step process.

Equations 2.21 and 2.22, above described, assume that individuals are only able to adopt a strategy if it has

already been adopted by one of the members of the population. In this case, the update method is said to be

non-innovative. As such, once the system reaches any of the boundary states k = 0 and k = Z, meaning we reach

full cooperation or full defection, respectively, it is impossible to move out. In terms of transition probabilities, this

means that both T+(0) and T−(Z) are null, and thus, whenever reached, the system would be stuck in those states.

Due to this absorption capacity, both states k = 0 and k = Z are said to be absorbing states.

If, on the other hand, we assume that individuals have access to the whole set of strategies, S, allowed by the

rules of the game, even if no individual in the population is currently adopting one of them, the update method is said

to be innovative and we no longer have absorbing states [19]. This update method may be formalized by adjusting

the equations 2.21 and 2.22 with the introduction of a small mutation rate µ, where the randomly chosen individual

may either mutate to the either strategy, with probability µ, or follow the standard update method, with probability

1− µ. The transition probabilities µT± of the transition matrix T µ, are now given as:

µT−(k) = (1− µ)T−(k) + µ · x(Z)
C (2.23)

µT+(k) = (1− µ)T+(k) + µ · x(Z)
D (2.24)

where, once again, x(Z)
C = k

Z
and x(Z)

D = Z−k
Z

. With this formulation, when the population reaches a monomorphic

state (either all Cs or all Ds), an individual revising his strategy can change to a different one. Some examples of

of innovative update methods are the Best-Response and the Reinforcement Learning [19].

2.3.2 Fixation Probability and Fixation Times

For non-innovative update mechanism, it may be relevant to compute the fixation probability, ϕi, that is, the

probability that i cooperators invade the population while the remaining Z − i individuals are defectors. For a

birth-death process, and always considering well-mixed populations, it may be given as [44, 45]:

ϕi =

1 +

i−1∑
k=1

k∏
j=1

γj

1 +

Z−1∑
k=1

k∏
j=1

γj

(2.25)

where we define γj =
T−(j)

T+(j)
. For neutral selection, we have T−(j) = T+(j), which results in γj = 1. In the case we

only have 2 absorbing states (k = 0 and k = Z), the probability 1 − ϕi defines the opposite to fixation probability,

the extinction probability, that is, the probability that cooperation goes extinct when we have i cooperators in a
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population sized Z.

Other quantity of interest in evolutionary dynamics of finite population is the average time until fixation occurs.

For a two strategy setup, S = {S1, S2}, two of the most relevant fixation times are:

• the unconditional fixation time, τj , is defined as the average time until either one of the two absorbing states

is reached when starting from state j. The average unconditional fixation time for a any j may be given as:

τj = −
Z−1∑
k=j

(
τ1

k∏
m=1

γm −
k∑

l=1

1

T+(l)

k∏
m=l+1

γm

)
(2.26)

where we have:

τ1 =
1

1 +
∑Z−1

k=1

∏k
j=1 γj︸ ︷︷ ︸

ϕ1

Z−1∑
k=1

k∑
l=1

1

T+(l)

k∏
m=l+1

γm (2.27)

One shall notice that these fixation times is usually quantitatively high, depending on the population param-

eters Z, β and the game. Particularly, in coexistence games, such as Snowdrift games, fixation times do

not only diverge with the population size and the intensity of selection, but they represent averages of a very

broad distribution [45]. The unconditional fixation time is independent of the strategy.

• the conditional fixation time, τS1
j , specifies the average time the system takes to reach the absorbing state

S1, starting from state j, knowing that S1 is eventually reached. If fixation of strategy S1 is almost certain

(ϕS1 ≈ 1), then it is clear that τS1
j ≈ τj , that is, the unconditional and conditional fixation times are very

similar. For a general j, the conditional fixation time may be given by:

τS1
j = −

Z−1∑
k=j

(
τS1
1

ϕ1

ϕj

k∏
m=1

γm −
k∑

l=1

ϕl

ϕj

1

T+(l)

k∏
m=l+1

γm

)
(2.28)

where we have:

τS1
1 =

Z−1∑
k=1

k∑
l=1

ϕl

T+(l)

k∏
m=l+1

γm (2.29)

As mentioned, one may verify that for certain fixation, that is, ϕ1 = ϕj = 1, the time τA1 is reduced to

the unconditional fixation time τ1. The same way, we can obtain the conditional fixation time for the other

absorbing state S2 starting from an arbitrary number of S1 individuals:

τS2
j = −

j∑
k=1

(
τS2
Z−1

ϕ̃Z−1

ϕ̃j

k∏
m=1

1

γZ−m
−

k∑
l=1

ϕ̃Z−l

ϕ̃j

1

T−(Z − l)

k∏
m=l+1

1

γZ−m

)
(2.30)

where we have:

τS2
Z−1 =

Z−1∑
k=1

k∑
l=1

ϕ̃Z−l

T−(Z − l)

k∏
m=l+1

1

γZ−m
(2.31)

Along with the fixation probabilities, both fixation times are relevant to characterize the evolutionary process,

as they give us insights that include information about all transition probabilities [45].

Note, however, this is only valid for non-innovative update mechanisms in birth–death processes. For more

complex processes, these quantities may be obtained following a different derivation, as done in Chapter 3.

2.3.3 Stationary Distribution

From the general transition matrix 2.20 one can compute the stationary distribution, which basically defines the

fraction of time the system spends on each state, or in other words, it defines the probability of finding the system
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at a certain state k at any time. Formalizing the concept, let us define the state distribution at a time t as the row

vector st ∈ RX
+ , which is the vector whose j-th coordinate indicates the probability of finding the system in a state j

at a certain time t, i.e., we have (st)j = P (Xt = j). This way, having st0 = P (Xt0) as the initial state distribution,

one may compute the state distribution at any point in time as:

sta = st0T
a , ∀a ≥ 0 (2.32)

where, once again, we define a as the step in the Markov process.

After a long period of time, there are many cases where the system reaches an equilibrium in which no better

system’s configuration leads to an increase on the individual’s payoff. In these situations, the Markov chain is said

to converge to a stationary distribution, s̄, which is given by:

s̄ = lim
a→∞

st0T
a

= lim
a→∞

st0T
a+1

=
(
lim
a→∞

st0T
a
)
T

=⇒ s̄ = s̄T

(2.33)

which means that s̄ is the left eigenvector of T for the eigenvalue 1 (the highest eigenvalue) [19]. Note that s̄ may

be written as a function of the systems configuration, that is, generally we have s̄ ≡ s̄(i), for any configuration i. It

should also be noted that not all Markov chains admit a stationary distribution but, however, if it is irreducible then it

will admit a unique stationary distribution, which is the case of the birth-death process [43].

Notice that, for non-innovative update mechanisms, one should expect a peak on each the two absorbing states,

as the system would stay there for a infinitely long time. This way, when studying the evolutionary dynamics of a

certain game, it would be advisable to adopt an innovative update mechanism, such as the one previously presented

in equations 2.23 and 2.24. In order not to lose the essence of the game’s dynamics, it would be better to use a

low value for µ, for instance, µ ∼ O
(

1
Z

)
or µ ∼ O

(
1
Z2

)
. The stationary distribution is, thus, a great tool that

stochastically predicts the outcome for infinitely long evolutionary games.

Having the fraction of time the system spends on each state, one may now obtain the expected fraction of

cooperators, EFC, that is, the fraction of cooperators one should expect to find in the system whenever evaluated

at a random moment in time. Noticing the stationary distribution may be explicitly defined as a function of the fraction

of cooperators, expressly s̄ ≡ s̄(x), we may define the EFC as:

EFC =

1∑
x=0

x · s̄(x) (2.34)

This quantity may be very important on a system’s evaluation, as it may be indicative of the system’s most

likely outcome at any point in time. However, it should only be used as an auxiliary tool for system’s evaluation, as

it may bring missleading conclusions. For example, suppose we have a system’s stationary distribution with two

peaks, respectively centered at the fractions of cooperators x1 and x2. Assuming the values for the rest of the

distribution are low enough to be negligible, one may expect an EFC ≈ x1+x2
2

, which is obviously missleading, as

the probability to find the system on this point is very low. It would be much more likely to find the system in one

of the two more probable peaks. Therefore, it is imperative to take into consideration the shape of the distribution.

More specifically, it would be more advisable to use this measurement solely for a single peak shaped distribution.

Another quantity of interest, will be the average group achievement, commonly designated by ηG, which is
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a measure of cooperation in a population. For each possible configuration i, we make use of the multivariate

hypergeometric sampling to compute the (average) fraction of groups that overcome the threshold of M contributors

(commonly defined as ηPG), which is designated as aG(i). Formally, this quantity may be obtained when replacing

the ΠSk (j) term by Θ(
∑s

k=1 jk − ηPG) in equation 2.10, for any general case [41]. Recall that, overcoming the

thresholdM is equivalent to achieving a contribution ofM cb, and hence successfully achieving the public good. The

average group achievement may then be computed by averaging over all possible configurations i, each weighted

with the corresponding stationary distribution [36]:

ηG =
∑
i

s̄(i) · aG(i) (2.35)

To summarize, the average group achievement provides the overall probability of achieving success, and hence

it becomes another very important tool to evaluate the game dynamics in the N -person framework.

2.3.4 Deterministic Gradient of Selection

Let us retake the previously defined Markov process {Xta}∞a=0, and more specifically, let us have Xta = ia,

and thus having the system defined as a Markov chain {ia}∞a=0. The study of a Markov process often subsist in

finding its probability density function (PDF) evolution [42]. The probability density function, pi(t), defined as the

predominance of configuration i at a (continuous) time t, evolves according to the Master equation [42]:

dpi(t)

dt
=
∑
i′

{Tii′Pi′(t)− Ti′iPi(t)} (2.36)

where Tii′ denotes the transition probability from configuration i to i′. This is known as the gain-loss equation - the

first term on the right-hand side is associated to the gain due to transitions from other states i′ to the state i while

the second term corresponds to the loss due to transitions from i to other states i′.

Solving the Master equation is, however, complicated. Following the derivation shown in [19, 42, 45], and as-

suming Z → ∞ and for two strategies, we will finally obtain the deterministic gradient of selection as a deterministic

differential equation:

G(x) ≡ ẋ = T+(x)− T−(x) (2.37)

which is equivalent to the replicator equation 2.16. It may also be addressed as drift. This procedure is extensible

for systems with more than two strategies although in this case, the mathematics is considerably more complex

[45]. Note, however, that we have only considered the limit Z → ∞, keeping all other variables fixed. To perform

the thermodynamic limit, or macroscopic limit, the intensity of selection, β, in the Fermi process from equation 2.15

should scale with Z, which means that, for finite populations, the approximation of the process is only valid for large

Z and can be used to address the evolutionary dynamics only under weak selection, that is, β ≪ 1 [45].

Notice that, until now, we have been representing the typical 2-dimensional cooperation dynamics, with 2 strate-

gies, C and D, for well-mixed populations, in a SL environment. However, and as we will see soon after, all these

concepts may be generalized for any other learning rules and strategies, independently of their formulation, most of

them through a direct pairwise comparison with social learning.
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2.4 Other Learning Rules

Until now, most of population dynamics in Evolutionary Game Theory had its mathematical framework based

on social learning. We assumed that decision-makers are rational and therefore they look to obtain the maximal

expected outcome from among all feasible actions. However, besides the pursuit of highest payoffs in evolutionary

social dilemmas is risky, it is also a fact that individual’s interactions are not always driven by a selfish agenda such

as fitness maximization [11]. In many real world scenarios, one may verify that some individuals will prefer to adopt

different ways of reasoning. For instance, individuals may opt to follow the most common strategy in the population

(conformity, C) or they may autonomously reason about a past event that did not occur yet (counterfactual thinking,

CT), as we will see later more in detail. These are just two examples from a great number of different updating

mechanisms that are yet to be profoundly studied.

As earlier mentioned, the concept of learning rule may be defined as the strategy updating mechanism that

some individuals follows at a certain point in time. In other words, we say an individual has a certain learning rule,

Lj , from the set of the l available learning rules in the system, L = {L1, . . . , Lj , . . . , Ll}, for a certain amount of

time, in which the individual will update its strategy according the update mechanism associated to that rule. If, for

instance, a player has a social learning (SL) rule for a certain time, as we assumed until now, then it will update its

strategy according to the Fermi function 2.15 during that period of time.

However, temporally speaking, the learning rule may be either inherent to the individual or not, that is, it charac-

terizes the individual and does not change over time - we say it is fixed - or it is a state of mind that varies over time

- it is flexible. In this latter case, one could assume the learning rule changes follow a certain distribution, where the

individuals would change their rule probabilistically according to that distribution, that could go as a function of the

cumulative period time the player has been following that learning rule. From this point, regarding learning rules,

many different population setups could be studied. In fact, for further studies, it would be interesting to investigate

different distributions for learning rule changing in flexible-rule populations, as we should expect a richer and more

complex dynamics. However, for the scope of this thesis, we will focus our study on populations where individuals

have one learning rule L ∈ L, with L = {SL,C,CT}, that is fixed and hence constant over time.

2.4.1 Conformity

As some individuals might not opt to imitate those with higher fitness, they may ignore the relative payoffs of the

game and focus on choosing the most common strategy among their partners. This learning rule may be defined

as conformity (C), and individuals following this learning rule are said to be conformity-driven or conformists. In

fact, there exists compelling evidence that favours the fact that conformity plays an important role in cooperation

dynamics, especially among humans and social animals [11]. Intuitively, conformists players tend to minimize their

risk while ensuring they still receive some kind of payoff, not much lower than the average. In this topic, previous

work have been done, mostly on structured populations [11, 12]. In most these studies it is adopted a framework

very similar to the one previously built for social learning, although specifically applied to structured populations.

To take into account well-mixed populations, one can very elegantly define a framework for conformity by simply

making a pairwise comparison with the previously defined SL dynamics. In the latter, we saw the switching prob-

ability goes as a function of the difference between the strategy fitnesses, fSB (i) − fSA(i), of the two interacting

individuals, A and B, for a certain configuration i. In this population, we will have nSA and nSB individuals following

strategies SA and SB , respectively. The difference between these number of individuals, nSB − nSA , will tell us

which of the strategies is the most common in that population, and this constitutes the base function of conformity.
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Formally, we can define the switching probability for individuals following the conformity rule, C, as:

p
[C]
SA→SB

(i) ≡ 1

1 + e−β[C](nSB
(i)−nSA

(i))
(2.38)

where we specifically define β[C] ̸= β[SL] as the intensity of conformity. Please notice this does not require individual

B to be conformist, only individual A must be identified as a conformist. Likewise as in SL interactions, we assume

individualA requires an interaction withB to trigger the strategy revision, that is, we assume the conformity behavior

is associated to dynamic revision processes. The function nSB − nSA may be normalized, which in this case leads

to the simple transformation on the intensity β[C] → Z ∗ β[C]. As an example, for the typical 2 strategy cooperation

dynamics, we will have the normalized functions nC(x) = x
(Z−1)
C (k) and nD(x) = x

(Z−1)
D (k).

From this new switching probability, we may define the other tools to study evolutionary dynamics of the popu-

lation. The conformity transition probabilities, again by analogy to equations 2.21 and 2.22, may be written as:

T
[C]
− (k) ≡ T

[C]
C→D(k) = x

(Z)
C · x(Z−1)

D · p[C]
C→D(k) (2.39)

T
[C]
+ (k) ≡ T

[C]
D→C(k) = x

(Z)
D · x(Z−1)

C · p[C]
D→C(k) (2.40)

which will define the deterministic gradient of selection for conformity:

G[C](k) ≡ T
[C]
+ (k)− T

[C]
− (k) (2.41)

This is the basis to define a framework for conformity, simply by a pairwise comparison with SL. In the previous

works, it was shown that the presence of conformity-driven players enhances network reciprocity, and thus aids

the favourable resolution of social dilemmas. The effectiveness of conformity to do so, however, depends on the

fraction of conformists within the population [12]. Later in this thesis, we will more profoundly investigate the impact

of conformity in non-structured populations.

2.4.2 Counterfactual Thinking

Another learning rule of interest is counterfactual thinking (CT), which is widely studied for an N -person game

scenario in [13]. Counterfactual thinking is a human cognitive ability where individuals capture the process of

reasoning about hypothetical past events, specifically what would have happened if those events occurred. This

reasoning would be take into account in the next player moves. Therefore, and recalling the ToM definition in section

2.1, the counterfactual thinker may be already considered a ToM level-one agent, contrary to a social learner or a

conformist, that stand at the lower level of ToM. For the simpler cases, as for the birth-death process currently in

study, this doesn’t bring much complexity to the transition probabilities, formally speaking. However, in chapter 3

we will see how synchronous processes may become more and more complex as we take into consideration the

implications of assuming CT individual as a first-degree ToM agent.

Differently to SL, individuals that are CT-driven evaluate all possible alternatives to their current returns, had

they chosen an alternative strategy to what actually took place. Players will reason about how the outcome could

have worked if their decision (strategy, in the case) would have been different. In its simplest form, this may be

modelled as an initial form of myopic best response rule at the population level, by considering the fitness of the

agent in a system configuration that did not, but could have occurred [13]. From a pairwise comparison to the SL
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framework, the switching probability may be given as:

p
[CT ]
SA→SB

(i) ≡ 1

1 + e
−β[CT ](f ′

SB
(i)−f ′

SA
(i))

(2.42)

where we specifically define β[CT ] as the intensity of counterfactual thinking. As one can see, the probability

increases non-linearly with the different between the fitness the individual would have had if it had chosen strategy

SB , designated as f ′
SB

(i), and the fitness it actually got by playing SA, designated as f ′
SA

(i). Specifically applying

this in the typical 2-strategy cooperation dynamics, one can easily rewrite equation 2.42 by considering the fitness

C players, or D players, would have had in a population having an extra cooperator, or extra defector, depending on

the alternative strategy the individual had chosen [13]. This way, we will have:

p
[CT ]
C→D(k) ≡ 1

1 + e−β[CT ](fD(k−1)−fC(k))
(2.43)

p
[CT ]
D→C(k) ≡

1

1 + e−β[CT ](fC(k+1)−fD(k))
(2.44)

From this we may define the other tools to study evolutionary dynamics of the population, just like we did before

for conformity. The CT transition probabilities may be obtain by analogy to equations 2.21 and 2.22, but now taking

into account that the revision process is static (see section 2.2.2), that is, individual A does not require an individual

B to revise its strategy. These equations may be written as:

T
[CT ]
− (k) ≡ T

[CT ]
C→D(k) = x

(Z)
C · p[CT ]

C→D(k) (2.45)

T
[CT ]
+ (k) ≡ T

[CT ]
D→C(k) = x

(Z)
D · p[CT ]

D→C(k) (2.46)

which will define the deterministic gradient of selection for counterfactual thinking:

G[CT ](k) ≡ T
[CT ]
+ (k)− T

[CT ]
− (k) (2.47)

Firstly, one shall note that, differently from SL or C learning rules, the the transition probabilities do not have a

second fraction of individuals term x
(Z−1)
S , with S ∈ {C,D}, hence a relative higher order of magnitude is expected

for CT. This effect will be clearly manifested in the later results, as we will be discussing in Chapters 4.

In previous works it is suggested that counterfactual reasoning fosters coordination in collective action problems

in large populations, with a limited impact on cooperation dilemmas in which coordination is not essential. Fur-

thermore, it is shown that a small prevalence of individuals following counterfactual thinking is enough to direct an

entire population towards an highly cooperative community [13]. It is now our intention to investigate the impact

of counterfactual thinking in other different and possibly more complex populations, not only for all the previously

defined games but also in the joint presence of conformity.

2.4.3 Multiple Learning Rules Populations

Setting all this learning rules together, one may define a new population dynamics based on how the different

individuals associated to each one of the heuristics. In real-world populations, all individuals, regardless of their way

to reason, may belong to one same community. In one first case, we may consider individuals are equivalent as

they may resort to any of the available heuristics to their strategies. They may resort to different learning rules, yet

all share the same probabilities of using each, and hence the equivalent characteristic between them. In this case,

we say individuals are arranged in an homogeneous population. In other case, individuals may adopt a different,

24



yet fixed, learning rule, displayed in separated sub-populations. In this case we say individuals are organized in

an heterogeneous population. It seems obvious that the overall dynamics for both cases won’t be the same and,

as that, a different framework shall be adopted. Even though these dynamics are general, along this thesis we will

focus on a frameworks with only two leaning rules.

Homogeneous Populations

When addressing a certain population as homogeneous, we are assuming the individual’s leaning rule does

not have an impact on the well-mixed characteristic of the population. In other words, we recover the well-mixed

concept definition: any individual in the population may interact with one another with equal probability, regardless of

the individual’s leaning rule. In this framework, we will assume the equivalent individuals resort to a certain learning

rule L ∈ L with a given fixed probability δ[L], in a way that
∑

L∈L δ
[L] = 1. Formally speaking, this is the same as

redefine the system’s transition probabilities to take into account all the different rules:

T±(k) =
∑
L∈L

δ[L]T
[L]
± (k) (2.48)

which can be applied for the case of study, with L = {SL,C,CT}, as:

T±(k) = δ[SL]T
[SL]
± (k) + δ[C]T

[C]
± (k) + δ[CT ]T

[CT ]
± (k) (2.49)

where, by normalization, we may rewrite δ[SL] = 1− δ[C] − δ[CT ].

Directly from this equation, one can write the novel gradient of selection as:

G(k) = δ[SL]G[SL] + δ[C]G[C] + δ[CT ]G[CT ] (2.50)

As we will see later on, this equation will be of foremost importance in the study of population’s dynamics, when

assuming the population is mixed homogeneously. Please notice that the redefinition of the transition probabilities

in 2.48 does not have a negative impact regarding the validity of the framework previously shown in section 2.3. It

becomes obvious that, taking both δ[C] = 0 and δ[CT ] = 0, one may recover the regular social learning dynamics.

Notice that we have been assuming populations with fixed leaning rules probabilities. If we, however, consider

flexible dynamics, some of the quantities above described should be defined also as flexible. For instance, we may

have to redefine all the heuristic probabilities as a function of time, that is, δ[L] ≡ δ[L](t). This could potentially lead

to a much richer population dynamics, that would be interesting to investigate. However, and for the scope of this

thesis, we will leave this for future work.

Heterogeneous Populations

When a population is organized in multiple smaller communities of same-rule individuals, a different approach

shall be taken. In this thesis, we will follow a framework similar to the one presented in [41], where a certain

population is divided into two sub-populations according to individual’s wealth classes (rich or poor). In our case,

we will divide our population according to each individual’s learning rule, that is fixed and unchangeable, treating

each sub-population independently, however always considering all interactions between different sub-populations

are possible. As previously mentioned, we will focus our studies in populations divided only in two sub-populations.

We start by defining Z [L] as the number of individuals that drive its reasoning according to leaning rule L ∈ L. It

is easy to understand that these quantities must be normalized to the total number of individuals on the population,

that is, we will have
∑

L∈L Z
[L] = Z.
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This framework creates an interdependent behavioral ecosystem, where every individual in a group knows

about all other member’s actions and where one’s own decisions and achievements are influenced by others. Par-

ticularly, for instance, decisions taken by a conformist may potentially have an impact on a social learner actions

and achievements (and vice versa), even though they belong to distinct sub-populations. However, individuals may

be more receptive to decisions of those that follow the same learning rule as its own, thus selecting preferentially

those of their learning rule as peers. To take this effect into account, one may define an homophily parameter,

0 ≤ h ≤ 1, such that when h = 1, individuals are restricted to influence (and be influenced) by those of the same

sub-population, whereas when h = 0, anyone in this population may influence and be influenced by anyone else

[41]. This latter definition, for h = 0, is equivalent to assume the population is well-mixed, in such a way that we

may recover the homogeneous case, whereas having maximum homophily highlights the true definition of hetero-

geneity. In this sense, homophily may be seen as a (normalized) measure of the level of heterogeneity, from an

homogeneous organization to a pure heterogeneous one.

Let us take a population sized Z that is subdivided into two sub-populations with Z [L1] and Z [L2] individuals,

respectively for each of the two available learning rules, L = {L1, L2}. Having two strategies S = {S1, S2}, but

treating each sub-population distinctively, we will have the system configuration as i = {i[L1]
S1

, i
[L2]
S1

}, always bearing

in mind that the configuration for the opposite strategy is given by i[L]
S2

= Z [L] − i
[L]
S1

, with L ∈ L. The transition

probabilities, which gives the probability that an agent A with strategy SA ∈ S in the sub-population LA ∈ L

changes to a strategy SB ∈ S, both from the same sub-population LA and LB ∈ L, with LB ̸= LA, can all be

written in terms of the following expression [41]:

T
[LA]
SA→SB

=
i
[LA]
SA

Z

{
i
[LA]
SB

Z [LA] − 1 + (1− h)Z [LB ]

(
1 + e

β[LA](f
[LA]

SA
−f

[LA]

SB
)
)−1

+
(1− h)i

[LB ]
SB

Z [LA] − 1 + (1− h)Z [LB ]

(
1 + e

β[LA](f
[LA]

SA
−f

[LB ]

SB
)
)−1

} (2.51)

in which it is visible how it replicates the definition of homophily.

Notice this equation could be generalized for more than two sub-populations, that is, for more than two different

learning rules. For this, different homophilies should be defined for each different combination of interactions, as

different sub-populations may have different influence over the others. In this case, the homophilies should be

defined with explicit identification of the sub-populations involved. Supposing we have an individual from the sub-

population LA interacting with another individual from sub-population LB , the homophily between the two different

sub-populations may be defined similarly to the transition population, that is, as hLA→LB . Notice that the opposite

homophily, hLB→LA , may not be the same, meaning the sub-population LB does not have the same influence on

LA than LA has on LB . However this could bring a whole new dynamics to the populations evolution, we will focus

on bi-directional homophilies, that is, we will assume hLA→LB = hLB→LA ≡ h as the only general homophily.

From the transition probabilities, one may now build the gradient of selection, but now defined in a 2-dimensional

space, as each direction is associated to a different learning rule. This means that, differently from homogeneous

populations, we take each rule’s gradient of selection, G[L] with L ∈ L, as a single coordinate. We define this

gradient of selection as ∇(i), which, for each configuration i = {i[L1]
S1

, i
[L2]
S1

}, may be given by:

∇(i) ≡ {G[L1](i), G[L2](i)} = {T [L1]
+ (i)− T

[L1]
− (i), T

[L2]
+ (i)− T

[L2]
− (i)} (2.52)

Using this framework, one may now look for new internal equilibria and, with that, study these new and more

complex dynamics in heterogeneous populations, and eventually retrieve some knowledge for further application in
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real-world networks. We will focus on studying the effects of different homophilies on the evolutionary dynamics of

populations, from the homogeneous case to the pure heterogeneity case.

Just like previously described for the usual SL dynamics, both the homogeneous or heterogeneous layout of

populations may be evaluated, in terms of cooperation maximization, through both the expected fraction of coop-

eration, EFC, or the group achievement, ηG, defined in the same reason as previous equations 2.34 and 2.35,

respectively. Notice that in the heterogeneous case, having each sub-population distinctively separated, we may

also compute the EFC for each sub-population, as we will see later on Chapter 5.

2.5 Final Notes

We have used Game Theory to describe interactions among individuals, which evolution in time will make rise

the so-called Evolutionary Game Theory. When applying to Biology, scientists have formulated the Social Learning

dynamics, intending to describe individuals’ cooperative dynamics, although it is not enough to explain cooperative

learning rule in societies. In this sense, we bring up two new different learning rules that possibly may help us better

understand the existence of cooperation among rational individuals.

Along this chapter, we presented the mathematical tools that allow us to study the evolution of populations. We

started by describing the whole social learning framework, that has been widely studied in the past years, followed by

the formulations for both conformity and counterfactual reasoning, from a pairwise comparison with social learning.

Regardless of the dynamic in the study, either for a single or a multiple learning rule population, through the birth-

death process Markov chain previously described, one may characterize the system in its finite form. With the

transition probabilities between two different states, we are able to compute both the stationary distribution and

the (deterministic) gradient of selection. The first one, not only allow us to compute both the expected fraction of

cooperation, EFC, and the group achievement, ηG, that evaluate the system in terms of cooperation maximization,

but also gives us the average population configuration, that is, population composition averaged over time. The

latter, on the other hand, allows us to evaluate the real population dynamics, giving us the most probable path and

its fastness at each point of the configuration space.

Having all these foundations established, we have now conditions to perform different studies on the evolutionary

dynamics of populations. We will begin with studies on analyzing the impacts of synchronism in the updating pro-

cess, on Chapter 3, followed by a deep study of multiple learning rule populations dynamics, in both homogeneously

and heterogeneously displayed communities, respective on Chapters 4 and 5.
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Chapter 3

Synchronism and Asynchronism

In this chapter, we analyze and discuss the impact of different updating processes on the general cooperating

dynamics for a finite population. More specifically, we will analyze the impacts on the stationary distribution and

convergence of the dynamics along the spectrum of synchronism, from a completely asynchronous to a completely

synchronous process. We start by developing the general formulation for the transition matrix, that will allow us to

produce the results to be assessed later in the chapter.

3.1 Synchronism versus Asynchronism

In evolutionary games, individuals interact with one another several time steps through a given game, which, as

we saw, is used as a metaphoric description of the interaction that is being studied. After each interaction session,

or generation, some or all of the agents, depending on the update dynamics used, may update their strategies.

A dynamics is said to by synchronous if all the agents in the population update their strategies simultaneously at

each generation, that models a strong correlation of moments at which agents are updated. This is not the case of

asynchronous dynamics where only some agents, possibly even just one, update their strategy at each step [46].

Perfect synchronism is an abstraction that assumes the existence of a global clock by which all individuals

in the population time their actions. However, actions being strongly correlated does not imply they are perfectly

timed. For instance, populations of Pteroptyx malaccae fireflies are able to synchronize their flashes so they occur

approximately at the same time, although not perfectly simultaneous. Despite perfect synchronism being a concept

that is far from being real, in a variety of scientific fields synchronization processes have been the most common way

of modelling the update dynamics of real systems, even though this practice is very questionable [46]. Following this

reasoning, even assuming perfect synchronization as an abstraction of reality, one may consider synchronization

processes as a valid approximation of real simultaneous updating processes.

The most common alternative of synchronous updating is the sequential updating, that is a special case of

asynchronism: at each generation, exactly one element is updated, which is the case of the birth-death process.

Despite both synchronous and sequential updating being opposite ways to model the update dynamics of a system,

most real dynamical systems, and biological ones in particular, actually lie between these two different extreme

processes. Moreover different systems may have different synchrony rates [46]. This panoply of possibilities for

updating processes allow us to define a spectrum of synchrony, which may characterize updating systems according

to their level of synchronism, from a completely asynchronous to a perfectly synchronous process.

To understand the differences between different updating processes along the spectrum, let us start by building
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the general framework that will allow us to define some of the major tools to study population dynamics. More

specifically, we will study the impact of intermediate synchronous processes on the stationary distribution. Notice,

however, this whole framework is specifically built for a cooperation dynamics with only two strategies, C and D,

and hence the system’s configuration is reduced to the number of cooperators. For other more complex system’s

architectures, a generalization of this framework would be required.

3.2 The General Transition Matrix

The general transition matrix, that was previously described according to equation 2.20 (in the previous chapter),

summarizes all the possible transition probabilities. However, and as mentioned, in most studies researchers adopt

an asynchronous process, namely the birth-death process, that is, we assume that, at each time-step in discrete

time, one individual only will proceed with its strategy revision. This would produce a tri-diagnonal matrix, and,

consequently, some of the major tools to study the population dynamics, such as the gradient of selection, could be

defined in a very simple way. We know, however, this assumptions are, in many cases, far from reality and thus the

need of building a general framework that describes any updating process along the spectrum of synchrony.

We start by defining the number of revisions, nr, as the number of individuals that will revise their strategy on

each time step. For sake of simplicity we will assume that nr is a constant variable, although it could indeed follow a

different distribution in time. For example, one could consider a system where nr would follow a discrete Gaussian

distribution around a given mean value µnr , thus having the synchrony level as a new variable. Nevertheless, we

will take nr as constant. In this case, we define the updating process according to its number of revisions, that is, for

a given nr we say the system’s evolutionary dynamics evolves according to a nr-step process, that is, a process that

is on the nr-th level of the synchrony scale. Some particular cases of this are the one-step process, or birth-death

process, characterized by nr = 1, and the Z-step process, also known as the Wright-Fisher process, characterized

by nr = Z, which is the same as a perfectly synchronous process.

As previously seen, when adopting a birth-death process, the only possible transitions are T −1, T 0 and T +1,

that is, T n with n ∈ {−1, 0, 1}, and consequently, our matrix T becomes tri-diagonal. Following this reasoning, one

may generalize the transition probabilities for every value of nr as T n with n ∈ {−nr, . . . , 0, . . . , nr}, which may be

summarized in a transition matrix with the 2nr + 1 central diagonals, as shown in the matrix bellow:

T =
{
T j−i(i− 1)

}Z+1,Z+1

i=1,j=1
=

T 0 T +1 . . . T +nr 0 . . . 0 0

T −1 0

...
...

T −nr 0

0 T +nr

...
...

0 T +1

0 0 . . . 0 T −nr . . . T −1 T 0





(3.1)

where the green, red and gray regions represent the probabilities to increase, decrease and maintain, respectively,

the number of cooperators. The remaining regions are null, that is, are impossible to reach.
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The major challenge is now trying to understand how to obtain the values for each of the transition probabilities.

For that, we will have to take into account all the interactions that are possible at each generation. For instance, if we

have nr = 2, there are n2
r = 4 possible scenarios: chose two cooperators, chose two defectors, chose a cooperator

and then a defector, and the opposite. Notice that the order individuals are chosen is important as it will have an

impact on the effective population from which the probabilities are computed. As things get more complex now, it is

necessary to build a general framework, that works for any system’s configuration.

3.2.1 The Transition Probabilities’ Algorithm

While studying cooperation dynamics, consider a finite population with size Z, where only two strategies are

available, S = {C,D}. For the sake of simplicity, we assume the only available learning rule is social learning. To

generally define each the n-th transition probability, T n, one may follow four different steps:

1. Firstly, we choose nr different individuals that will interact. Notice that the individuals are allowed to interact

with any of the remaining, including to any others from the nr chosen individuals, expect the self.

2. For each revision i ∈ {1, . . . , nr}, the system varies its number of cooperators by vi. For each possible

variation and for each strategy, we will compute the individual transition probabilities, specified for cooperation

dynamics. All the nr revisions will occur sequentially and each sequence is unique.

3. For each value of n, we get the subset of all the possible sequences of revisions such that the sum of all

variations produces a transition of n in the system.

4. Finally, we multiply all transition probabilities for each sequence and sum over all possible combinations in

the subset that corresponds to n. This way, we will be able to obtain the transition probability T n.

Each of the points will be explained in detail soon after. After having all values of T n, we are able to compute

the transition matrix, and hence the stationary distribution.

3.2.2 Developing the Framework

We start by generally defining the individual transition probability, TS
v , as the probability that the systems varies

its configuration by v when picking an individual following strategy S ∈ S. In other words, it is the probability

that a general system with a certain configuration i, at a certain time ta, varies to a configuration i′ = i + v,

at a time ta+1, when a randomly chosen individual follows strategy S. Notice that the variation is a vector v =

{v1, . . . , vk, . . . , vs+1}, with the same size of the non-normalized configuration i, as the variation may not be regular.

However, by considering the system as the equivalent to a closed system in physics, the variation’s norm must be

null, that is |v| = 0, and, consequently, this allows us to normalize the variation vector as v = {v1, . . . , vk, . . . , vs}

with vs+1 = −
∑s

k=1 vk.

Specifying for cooperation in its simplest case, with S = {C,D}, we will have i = {iC , iD}, which respectively

corresponds to the number of cooperators and the number of defectors. As we previously saw in Chapter 2, we will

only focus on the normalized version of i and v, for matters of simplification, and so we we have i = {iC} = {k}.

From any two-individual interaction only three different outcomes are possible: a cooperator switches its strategy,

and so v = {−1}; a defector switches its strategy, and thus v = {+1}; or no strategy switching occurs, where

v = {0}. In this latter case, one must also include the same-strategy individuals’ interactions, as we assume

individuals only change their strategy whenever facing an individual following a different strategy. Naturally, if a

cooperator (defector) is chosen to interact with another individual, it will not be possible for it to increase (decrease)

the number of cooperators k, as this is a binary variable.
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Having this, the most basic individual transition probabilities, for any S ∈ {C,D} and any v ∈ {−1, 0, 1}, may be

given similarly to equations 2.21 and 2.22 as:

TC
−1(k) = x

(Z)
C · x(Z−1)

D · pC→D(k) TD
−1(k) = 0 (3.2)

TC
+1(k) = 0 TD

+1(k) = x
(Z)
D · x(Z−1)

C · pD→C(k) (3.3)

TC
0 (k) = x

(Z)
C

(
x
(Z−1)
C + x

(Z−1)
D · (1− pC→D(k))

)
TD
0 (k) = x

(Z)
D

(
x
(Z−1)
D + x

(Z−1)
C · (1− pD→C(k))

)
(3.4)

where we assume, for now, that all individuals follow the SL rule. Notice that, in this form, we have the previously

defined simpler equations as T− = TC
−1 and T+ = TD

+1, and thus one may rewrite equations 3.4 as a result of the

normalization T0 ≡ TC
0 = TD

0 = 1 − TC
−1 − TD

+1. However, having a number of revisions higher than one, this

normalization is no longer possible.

Having more than one individual revising their strategy, the functions above get more complex. We now must

take into account the number of available individuals for each strategy, and for the population itself. For instance, let

us suppose we will proceed with two revision processes. We pick a first individual that will interact with another one,

and for that interactions the possible transitions’ probabilities may be computed according to equations 3.2 and 3.3.

Next, the chose a second individual to proceed similarly, although now one must be aware that the first individual

was already chosen. This means that, as revisions are being processed, one must update the number of individuals

that are available to get picked from, not only for each strategy but for the whole population. And this reasoning

must be applied successively until we reach the nr-th revision.

To solve this issue, we define uZ as the update for the available population size and uiC (or uk to simplify) as the

update for the available cooperators. Previously in subsection 2.3.1, we defined the fraction of individuals following

strategy S as a function of Z as x(Z)

C/D ≡ x
(Z)

C/D(k) =
iC/D

Z
. Now, we shall redefine it as x(Z,uZ)

C/D (k, uk) =
iC/D−uiC/D

Z−uZ
.

Simplifying things, and by normalization, we will have:

x
(Z,uZ)
C (k, uk) =

k − uk

Z − uZ
x
(Z,uZ)
D (k, uk) =

(Z − uZ)− (k − uk)

Z − uZ
(3.5)

As we mentioned previously, individuals are allowed to interact with any others, including the ones picked for

revision. This means the second term on the transition probabilities 3.2, 3.3 and 3.4 remain unchanged, that is, with

no updates. Having this in mind, and now using the definition 3.5, we may redefine the transition probabilities as:

TC
−1(k, Z, uk, uZ) = x

(Z,uZ)
C (k, uk) · x(Z−1,0)

D (k, 0) · pC→D(k) (3.6)

TD
+1(k, Z, uk, uZ) = x

(Z,uZ)
D (k, uk) · x(Z−1,0)

C (k, 0) · pD→C(k) (3.7)

TC
0 (k, Z, uk, uZ) = x

(Z,uZ)
C (k, uk)

(
x
(Z−1,0)
C (k, 0) + x

(Z−1,0)
D (k, 0) · (1− pC→D(k))

)
(3.8)

TD
0 (k, Z, uk, uZ) = x

(Z,uZ)
D (k, uk)

(
x
(Z−1,0)
D (k, 0) + x

(Z−1,0)
C (k, 0) · (1− pD→C(k))

)
(3.9)

where both TC
+1 and TD

−1 probabilities were not considered already since they are are null, as this scenarios are

unrealistic in this specific setup, as previously discussed in this subsection.

One may now group these transition probabilities all together into the set of transition probabilities, that we will

be temporarily designated as Q, that is defined as the set of functions:

Q = {TC
−1, T

D
+1, T

C
0 , T

D
0 } (3.10)

which will be the basis for computing all the possible combinations of transition probabilities.
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At each generation, a certain combination of revisions will occur in a specific order and each combination defines

an unique possibility. It is important to notice that the order of the revisions is important, as the updates on Z and

k will depend on that. Having defined the set of the possible transition probabilities, Q, one may now compute the

set of all the possible combinations of transition probabilities, where each combination directly defines a sequence

of revisions, as obvious. This way, we define the set of sequences of revisions, Rnr , as a function of nr, as follows:

Rnr = Q×Q× · · · ×Q︸ ︷︷ ︸
nr times

(3.11)

As the size of P is 4, the total number of terms of the set Rnr is 4nr , and hence we may rewrite Rnr as:

Rnr = {R1, . . . , Ri, . . . , R4nr } (3.12)

where each Ri defines a sequence of revisions Ri = {TS1
v1(i)

, . . . , T
Sj

vj(i)
, . . . , T

Snr
vnr (i)}, with i ∈ {1, . . . , 4nr}. Notice

that each combination is independent and its i index does not have any implication on the sequence of transition

probabilities, being merely indicative and will be helpful as we will see later on.

As mentioned, each sequence of revisions defines an unique situation, that produces a specific variation on the

system’s configuration. For instance, a generic sequence of revisions such as R = {TS1
v1 , . . . , T

Sj
vj , . . . , T

Snr
vnr

} will

modify the number of cooperators by n =
∑

j vj , that is, if this sequence of revisions occur, the system will move

from a state k to a state k + n. Having this in attention, it is now trivial how to get the subset of sequences that will

produce a transition n in the system, so one can compute the system’s transition probability T n afterwards. In fact,

to accomplish this, we just have to get all the sequence of transition probabilities such that the sum of their variations

is equal to n. Mathematically speaking, we have the set of sequences of revisions that produces a transition n as

the subset Rn ∈ Rnr , defined as:

Rn =

{
Ri ∈ Rnr :

nr∑
j=1

vj = n | TSj

vj(i)
∈ Ri

}
(3.13)

Each revision is an independent event. This means that the probability of a certain sequence of revisions may be

obtained simply by the multiplication of the probabilities for each revision. In other words, the probability of R ∈ Rn,

P (R), may be given by the successive multiplication of all TSj

vj(i)
∈ Ri, where at each multiplication, the number of

available individuals is sequentially decreased by one. This way, we may write down:

P (Ri) =

nr∏
j=1

T
Sj

vj(i)
(k, Z, uk, j − 1) (3.14)

Regarding the update on the number of cooperators, we will only decrease then number of available cooperators

whenever a cooperator was picked in the previous revision. In other words, we will only increase uk if the strategy

of the player in the sequence’s previous revision was C. Formally speaking, we may redefine P (R) as:

P (Ri) =

nr∏
j=1

T
Sj

vj(i)
(k, Z, uk, j − 1) , with uk =


0 j = 1

uk Sj−1 = D

uk + 1 Sj−1 = C

(3.15)

Having the probability for each sequence of revisions, and noticing that each sequence is independent, one

may now obtain the system’s n-th transition probability as T n = P (Rn), which is equivalent to summing up the
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probabilities for all the elements of Rn. Formally speaking, this is:

T n =
∑
i

P (Ri) (3.16)

For a given value of nr, the possible values of n stand in the interval [−nr;nr]. Following combinatorics, the

total number of terms for each Rn will follow the same order as the 2nr-th line of the Pascal’s Triangle. This means

each Rn have a size of
(

2nr
nr+n

)
. As an example, for the lowest possible values we have:

nr = 1 n = {−1, 0,+1} nº of terms: {1, 2, 1}

nr = 2 n = {−2,−1, 0,+1,+2} nº of terms: {1, 4, 6, 4, 1}

nr = 3 n = {−3,−2,−1, 0,+1,+2,+3} nº of terms: {1, 6, 15, 20, 15, 6, 1}

nr = 4 n = {−4,−3,−2,−1, 0,+1,+2,+3,+4} nº of terms: {1, 8, 28, 56, 70, 56, 28, 8, 1}

nr = nr n = {−nr, . . . , 0, . . . ,+nr} nº of terms:

{(
2nr

0

)
, . . . ,

(
2nr

nr + n

)
, . . . ,

(
2nr

2nr

)}

Finally, we are able to define the general equation for the system’s transition probability as:

T n =

( 2nr
nr+n)∑
i=1

nr∏
j=1

T
Sj

vj(i)
(k, Z, uk, j − 1) , with uk =


0 j = 1

uk Sj−1 = D

uk + 1 Sj−1 = C

(3.17)

where TSj

vj(i)
∈ Ri ∈ Rn. From this, the transition matrix becomes trivial to compute, as show in the matrix 3.1.

The above formula is quite complex to compute. As the number of revisions increases, computing T n quickly

becomes computationally extremely extensive, as we will have a very large number of sequences to compute.

Hence, we find ourselves in this limiting situation, where on one hand we must have a large population size, but

on the other hand, we are not able to study scenarios where the number of revisions is high. For further work, it

would be helpful to find a formulation that accomplishes the results from equation 3.17 in a much more simple way.

Nevertheless, we will proceed to the study of the impact of increasing synchronism level in the updating process.

3.3 Synchronism in Social Learning

As previously mentioned in section 2.3.3, the stationary distribution is propitious to the formation of two peaks on

both extremes of the fraction of cooperators, due to the absorption characteristics of the Markov chain that defines

the system. To contrary this issue, we consider the updating process to be innovative, instead of non-innovative,

and hence we introduce a small mutation rate µ, just like in equations 2.23 and 2.24. Applying the same reasoning

to the previously defined individual transition probabilities, equations 3.6-3.9, we will be able to obtain:

µTC
−1(k, Z, uk, uZ) = (1− µ)TC

−1(k, Z, uk, uZ) + µx
(Z,uZ)
C (k, uk) (3.18)

µTD
+1(k, Z, uk, uZ) = (1− µ)TD

+1(k, Z, uk, uZ) + µx
(Z,uZ)
D (k, uk) (3.19)

µT
C/D
0 (k, Z, uk, uZ) = (1− µ)T

C/D
0 (k, Z, uk, uZ) (3.20)

where the probabilities with v = 0 only have one term due to the normalization process. More specifically, we have

that the sum of all transition probabilities above written is one, as one should expect.
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We are now in conditions to proceed to the analysis of the impact of increasing synchronism on the updating

processes along the spectrum of synchrony. We will be building up the transition matrix for some different values

of nr, and from that we will be obtaining the stationary distribution for the four different social games, previously

described in section 2.1.2.

Let us suppose we have a population of social learners with a size of Z = 50, with a certain mutation rate.

It was experimentally verified that, for this population size, having µ ∼ O
(

1
Z2

)
would still lead to the formation of

two peaks in the stationary distribution, meaning the mutation rate was low enough to be negligible and hence it

becomes unpractical to make a proper evaluation of this distribution. We also verified that having µ ∼ O
(

1
Z

)
would

be more suitable regarding the system’s stationary distribution analysis, as it is low enough to remove the system’s

absorption states and high enough to not corrupt the game dynamics, and for this reason, we will take µ = 1
50

= 2%.

In the figure below we present 4 panels, one for each of the social games. For all these, we impose the condition

1 > 0.75 > 0.25 > 0 for the order of the R,S, T, P variables. For instance, for the SG, as we have T > R > S > P ,

we get T = 1, R = 0.75, S = 0.25 and P = 0. The same reasoning will be applied for the other games. To simplify,

having an intensity of selection of β = 1.0, and for all the numbers of revisions nr = {1, 3, 5, 7}, we were able to

obtain the stationary distributions, presented below in the Figure 3.1.

Figure 3.1: The effects of progressive increasing levels of synchronization on a well-mixed population of
social learners. We present the stationary distribution for nr = {1, 3, 5, 7}, in four different 2-person social
games, specifically, the PD, HG, SG and SH, respectively on panels from A to D. It is noticeable that,
as we increase the level in the spectrum of synchrony, the stationary distribution is getting further away
from its original asynchronous form, even though this variation is very small. This insight is independent
on the game, as the results is visible in all panels.

As previously mentioned, as we increase the level of synchronism in the synchrony spectrum, the computational

process becomes more and more extensive, and due to computational power limits, we were not able to obtain the

transition matrix for values above nr = 7 in a feasible time. Nevertheless, from the results above shown we will try

to get as much information as possible, although always being aware it may be insufficient to some conclusions.
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At first sight, it is noticeable how small is the impact of a small increase on the synchronization level. From

the graphs above one may infer how similar the stationary distribution curves are, only presenting a progressive

deviation relative to the previous curve, starting from the one-step process curve and moving further and further

away as we increase the number of revisions.

For all cases with exception of panel D., the nr = 1 curve is peak-shaped, and hence, as previously discussed in

section 2.3.3, we might be on conditions to perform a study on the evolution of the expected fraction of cooperators,

as a function of the number of revisions. One may take, for instance, the snowdrift game and, for each the available

stationary distributions, that is, for each nr = {1, 3, 5, 7}, we compute the EFC according to equation 2.34, as we

intend to obtain the relation EFC(nr) and find any possible trend. Results are shown below in the Figure 3.2.

Figure 3.2: The evolution of the expected fraction of cooperators as a function of the number of revisions,
for the 2-Person Snowdrift game. If the trend follows the same patter as for the initial points, we could
expect a linear variation with a positive slope, that, even though is very small, would be indicative of an
progressive increase of the EFC. The red dot represents the predicted value if the update process was
perfectly synchronous, that is, for nr = Z, while the blue dots correspond to the values of EFC for the
previous displayed stationary distributions.

As the stationary distribution only slightly changes with increasing nr, it is predictable that the expected fraction

of cooperators evolves with very subtle changes. In fact, in Figure 3.2 it is evident how close are the EFC values

for the available previously computed stationary distributions, the differences between them being almost negligible.

Even though the number of computed points is very small, it is already noticeable a certain pattern in the

evolution of EFC, where it is apparent a linear relation with a positive slope. As that, in order to find a forecast for

EFC for higher values of nr, a linear regression was performed in the four available points (in blue in the figure)

so we obtain the relation EFC(nr). As expected, the regression slope is extremely low, in the order of O(10−5),

indicating that a large variation of nr has a very little impact on the EFC. Moreover, using the regression model,

one may compute the predicted value for the maximum possible number of revisions, nr = Z = 50, and obtain a

value that corresponds to an increase of at most ≈ 0.25% of the EFC, when compared to the one-step process.

This clearly indicates that, as we progressively increase the level of synchronism in the spectrum of synchrony,

EFC increases almost negligibly.

Notice these results were obtained specifically for the 2-person SG, which may question any try of generaliza-

tion, even though similar results can be obtained for the remaining games (to which corresponds a peak-shaped

stationary distribution). Nevertheless, we will take into consideration the fact these insights were specific for a single

example. To better support any conclusions, we will investigate other cases, namely, we will see the impact of

synchronism in N -person games and analyze their stationary distribution with the help of some other different tools.
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Results above shown for 2-person games are very similar to the ones obtained for all the N-person games,

previously described in section 2.1.3. In the same way as previously done, in the figure below we present 4 panels,

one representing each of the N-person social games. More expressly, from panels A to D, we have the NSG with

(N,M, b, c) = (10, 5, 1.0, 0.5), NSH with (N,M,F, c) = (10, 5, 10, 0.25), PGG with (N,F, c) = (10, 10, 0.25), CRD

with (N,M, b, c, r) = (10, 5, 1.0, 0.15, 0.6). The choice of these values was based on the search for a wide variety of

the population dynamics, as we intend to generalize the conclusions.

Figure 3.3: The effects of progressive increasing levels of synchronization on well-mixed population of
social learners. We present the stationary distribution for nr = {1, 3, 5, 7}, in four different N-person so-
cial games, specifically, the NSG, NSH, PGG and CRD, respectively on panels from A to D. Once again,
one may notice that, as we increase the level in the spectrum of synchrony, the stationary distribution is
getting further away from its original asynchronous form, even though this variation is very small. This
insight is independent on the game, as the results is visible in all panels.

For all the results from both Figures 3.1 and 3.3 one may notice something very interesting: in some intervals

in x, the curves relative to more synchronous processes stand above the asynchronous process’ curve, while for

other intervals they stand below. These insights are very visible, for instance, in the mini zoomed plots in panel B.

As that, one should expect some points on which all the curves touch, which define values for s̄ that are completely

independent of the synchronism level. This may be indicative that the transformations resulting from increasing

synchrony level are more like fluctuations around the asynchronous process’ curve than a translation. Attending

that any stationary distribution should be normalized to 1, that is
∑

x s̄(x) = 1, this result shouldn’t be surprising: with

increasing nr, if in some points the stationary positively deviates from the asynchronism curve, it must negatively

deviate in some other points, such that the integral difference between both curves is null.

Another important quantity to measure the probability to achieve success, in terms of cooperation, is the group

achievement. Following the definition in equation 2.35, and being aware that it is applicable for all N-person games

in which M > 0 (we will see the effects for M = 0), one may compute ηG evolution as a function of the number of

revisions. If any change occurs, and following the same trend hitherto seen, one should expect it to be very slight.
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Keeping the previous game’s configuration, the obtained results are shown in the Figure 3.4 below.

Figure 3.4: Group achievement as a function of the number of revisions, for all the studied N -person
games. It is noticeable an almost constant line, which indicates the progressive increasing of the syn-
chronism level does not have a very significant effect on the group achievement. Notice that, for the
PGG, the ηG is always maximum (one), due to the fact the threshold M is null.

Firstly, for the PGG, in its NPD description, we verify a group achievement with constant value of 1 regardless of

the number of revisions. This is due to the fact that we define the null threshold ofM = 0, and hence the multivariate

hypergeometric sampling takes into account all the possible cases, and thus the sum becomes one.

For the other N -person games, as expected, one may infer how small are the effects of increasing level of

synchronism on the evolution of the group achievement. Although almost negligible, we notice an increase of ηG for

both NSG and NSH, while for the CRD we notice a slight decrease. Before take any conclusions, it is important to be

aware about the formulation taken on each game’s description. Being highly configurable, many different outcomes

are possible for a certain game, and, as such, for one same game it is possible to verify either synchronism ’positive

and negative effects. This way, we are tempted to assume the existence of a correlation between the synchronism

effect and the game’s configuration.

To confirm these insights, for different game setups we compute ηG for both nr = 1 and nr = 3, from which we

calculate the difference ηG(3)− ηG(1). An increase of the synchrony level, from nr = 1 to nr = 3, affects positively

the group achievement whenever this difference is positive, and affects negatively otherwise. As we previously

saw in Figure 3.4, the evolution of ηG(nr) seems to be uniform with nr, and hence we will assume that, from

the difference ηG(3) − ηG(1), one may conclude about the whole ηG(nr) evolution. Therefore, for both NSG and

CRD, we vary some of the quantities that characterize each game, more specifically, we vary the ratios c/b and

M/N , for the NSG, and r and M/N for the CRD. Finally, for each combination of values we compute the difference

ηG(3)− ηG(1) as an indicative of the effects of synchronism. The results are shown bellow, in Figure 3.5.

The previous made insights look valid: there is in fact a correlation between the game’s setup and the synchro-

nism effects. In some regions in the game’s setup space (for instance, in the NSG we have the (N,M, b, c)-space),

increasing the level on synchronism along the spectrum of synchrony produces a positive effect on the probability

to achieve success, while in other regions the opposite occurs. Between these two, one may find a region on the

effects of synchronism are null, meaning in some cases the group achievement is completely independent of the

synchrony level on the spectrum. Generally, we may conclude that an increase of the synchrony level may or may

not be beneficial to achieving success, depending on the game’s setup. Not wanting to compromise the validation

of the results, attending to the very small magnitude of those values, and due to the increasing complexity with

increasing nr, one must be aware of the possible computational errors associated to all the required calculations.
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(a) N -Person Snowdrift Game (b) Collective Risk Dilemma

Figure 3.5: Synchronism effects on ηG as a function of the game’s configurations. For the NSG, it
is clear how the effects of synchronism depend on the game’s configuration, more specifically, being
mostly negative for higher values of M/N , while positive in the remaining regions. For the CRD, the
higher the risk, the less likely it is for synchronism to produce an negative effect.

3.3.1 Fixation Probability and Fixation Times

Another important determinant of the dynamics is given by the probabilities of fixation, that looks forward to

answer the following question: if a mutation leads to a new strategy, how likely is it that this individual takes over

the entire population? [44] In the previous chapter, in section 2.3.2, we explicitly present the formula for the fixation

probability, ϕi, for i of cooperators that invade the population. However, as with fixation times, these expressions

are only valid for the birth-death process, and thus one need to find a generalized form to compute these quantities.

Following the reasoning in [44], let us consider the transition matrix of the discrete-time Markov chain as T s×s,

with at least one absorbing state, where s is the total number of states. In our cooperation dynamics case, as

previously discussed, we will have two absorbing states, for both k = 0 and k = Z. After that, we renumber the

states such that the t transient states are first and the a absorbing states are last, where t + a = s, and, this way,

the transition matrix is said to be in its canonical form:

T s×s =

Qt×t Rt×a

0a×t Ia×a

 (3.21)

As transitions are not possible from absorbing states to transient states, the lower left block of the matrix is null.

Once absorbed, the system will stay there forever, hence the lower right block is the identity matrix. From this, we

may now compute the fundamental matrix of the Markov chain as:

F =

∞∑
n=0

Qn = (I −Q)−1 (3.22)

which multiplied by the block R provides both the fixation and extinction probabilities, together as:

Φ = F ·R (3.23)

Both extinction and fixation probabilities may be specified as the columns of Φ, respectively, as Φ1
i and Φ2

i , for

any number of cooperators i ∈ {1, . . . , Z − 1}. For the extreme values of i, that is, for the absorbing states, we
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follow the definition of fixation and extinction and we have:

Φ1
0 = 1 Φ1

Z = 0 Φ2
0 = 0 Φ2

Z = 1 (3.24)

To assess the total time the process spends before absorption, we look at the so-called unconditional fixation

time, which we define as τj . It is said to be unconditional since it is not sensitive to which of the absorption states it

reaches. It is independent of the strategy and it may be given by:

τi =

Z−1∑
j=1

F i,j (3.25)

For each the absorbing states k = 0 and k = Z we associate an index A = 1 and A = 2, respectively. Contrary

to τi, the conditional fixation time depends on the strategy and, as that, we define:

τAi =

Z−1∑
j=1

(
ΦA

j

ΦA
i

F i,j

)
(3.26)

For some clarification, in this case, A = 1 (k = 0) is the defectors absorbing state, while A = 2 (k = Z) is the

cooperators absorbing state. In short, each absorbing state is associated to the strategies’ monomorphic state.

To verify the impact of synchronism in these measures, we start by computing the fixation probabilities for the

snowdrift game, in both 2-person and N -person versions. In specific, we will take (R,S, T, P ) = (0.75, 0.25, 1.0, 0.0)

for SG and, as before, we take (N,M, b, c) = (10, 5, 1.0, 0.5) for the NSG. Following the trend of results obtained so

far, with increasing nr one should expect only a very slight change on fixation probability curve shape, compared to

the asynchronous curve. Attending to the normalization of ΦA
i , these changes will occur in the form of fluctuations

and not translations, just like we saw for the stationary distribution. These predictions go along with the results

obtain, as shown in the Figure 3.6 below.

(a) 2-Person Snowdrift Game (b) N -Person Snowdrift Game

Figure 3.6: Fixation probabilities as a function of nr, for both SG and NSG. Once again, it is clear how
small is the impact of increasing synchrony level on the fixation probability, in either the cases. Attending
to the normalization of the fixation probability, the curves for higher nr correspond to fluctuations around
the asynchronism curve.

Regarding the fixation times, as we increase the number of revisions, it would be expectable a faster conver-

gence to each of the absorbing states, regardless of the dynamics’ complexity. Let us suppose an one-step process

where one defector changes its strategy to cooperation in a first generation. In the next generation, the same hap-

pens, and hence in the two generations the system moved from k to k+2. If, on the other hand, we have nr = 2, we
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have the possibility to produce such a result in only one generation. Generalizing this reasoning, one may expect the

convergence time to decrease linearly with increasing number of revisions. This way, instead of directly computing

both τi and τAi with a ∈ {1, 2}, we will compute these quantities multiplied by the number of revisions, that is, τi · nr

and τAi · nr, and so obtaining an average fixation time for each revision. This way, we may properly investigate if

synchronism really affects the systems’ convergence time.

In this reasoning, and for the same games as for the fixation probabilities before, we compute both the average

unconditional and conditional fixation times, τi · nr and τAi · nr. The results are shown below in Figure 3.7.

(a) 2-Person Snowdrift Game (b) N -Person Snowdrift Game

Figure 3.7: Average unconditional and conditional fixation times as a function of nr, for both SG and
NSG. In the first case (the graphics on the left), the curves for all different nr are further away from each
other when compared to the NSG, which may be due to the fact the magnitude of the time values are
much higher, possibly from computational errors.

In both cases, we verify the average time curves are very similar in shape, although they progressively translate

positively in the y-axis with the increasing of nr. This effect is more visible in the 2-person SG, the curves for all

different nr are further away from each other when compared to the NSG case. This effect may be due to the higher

magnitude magnitude of the time values for this latter case, having, at most, an magnitude order of O(τi ·nr) ∼ 103,

while for SG we have O(τi · nr) ∼ 104 (the same occurs for τAi · nr). This may be indicative that, even though

synchronism accelerates the system’s convergence for either one of the absorption states, the average fixation

time, conditional or unconditional, will progressively increase with nr.

To summarize, and specifically for social learning, from all the performed experiments it is possible to conclude

the effects of an increase of the synchronism level, in the updating process, are globally very small, being nearly

negligible in some cases, when compared to the asynchronous process. However, although small, there are indeed

some effects that one should take into consideration. We not only saw how synchrony could increase the expected

fraction of cooperators, and how it may slightly enhance the group achievement, depending on the game’s setup,

but also how the average fixation times increase, even knowing the total fixation time linearly decreases with nr.
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Nonetheless, and as a reminder, one must be aware of the computational limitations that we are subjected,

only having been possible to viably reach a level of synchronism corresponding, at most, to approximately 14%

(7/50) of the synchrony spectrum. The effects of higher levels of synchronism may be contradictory of some of the

conclusions above taken, or maybe even totally disprove them. It is, then, imperative to find a formulation for T n

that would allow us to compute more and more complex transition matrices, hence allowing us to investigate more

profoundly the effects of synchronism along all the synchrony spectrum.

3.4 Synchronism in Other Learning Rules

In the same way as for social learning, we may also study the effects off synchronism on environments where

individuals may also follow other learning ruless beside social learning, such as C and CT. In specific, we investigate

how synchronism affects well-mixed populations with multi-rule dynamics. As we don’t intend to go much deeper,

we will focus our study in homogeneous populations. Before evaluating the population dynamics, considering multi

revision process, some slight changes on the transition probabilities may be required.

Let us start with conformity. In the description we have been taking so far, the conformist individual, as a

zero-degree ToM agent, does not reason about other’s most probable response, and thus its strategic choice is

independent of the level of synchronism in the update process. In other words, we say the conformist is not sensitive

to other simultaneous revisions, only caring about the opponent’s strategy in its own revision process. Therefore, no

changes will be necessary for the conformity transition probabilities, previously defined in equations 2.39 and 2.40.

Regarding CT, things aren’t so simple. Previously in section 2.4.2, we discussed how we could categorize a CT

individual as a first-degree ToM agent [13]. This means the individual is aware of others intentions and takes them

into account for its strategic choice. When facing a scenario with multiple revisions occurring simultaneously, the

individual must reason about every single possible scenario and find what would probably be the most beneficial for

itself. As one can predict, this has severe implications for the description of the switching probability: not only the

individual reasons hypothetical past events, but he must also take into consideration all the hypothetical responses

of all the other nr − 1 individuals that are revising their strategy simultaneously.

3.4.1 Reassembling the Model

To take into account the new CT dynamics in the updating process, one must reformulate the switching prob-

abilities for both possible interactions, C → D and D → C. Previously in section 2.4.2, we explicitly defined the

switching probabilities for the birth-death process, that we will retake in order to build our new model. For a more

clear visualization, we start by taking both equations 2.43 and 2.44 in the following representation:

p
[CT ]
C→D(k) ≡ p

[CT ]
− =

{
1 + Exp

[
−β[CT ] (fD(k − 1)− fC(k))

]}−1

(3.27)

p
[CT ]
D→C(k) ≡ p

[CT ]
+ =

{
1 + Exp

[
−β[CT ] (fC(k + 1)− fD(k))

]}−1

(3.28)

Besides being rational and intelligent, the counterfactual thinker is aware of the game’s updating process. More

precisely, it is aware that, at each generation, there are nr individuals that will proceed with their revision process.

This means that, besides itself, each one of the other nr − 1 entities is given the possibility to move the system’s

state from k to k ± 1. Having all the nr − 1 individuals producing an impact of ±1, the system’s configuration will

move in total, at most, from k to k± (nr − 1). Knowing this, the CT individual will take into consideration what would

happen if any of those states would be reached in the end of the generation, if it haven’t played. In other words,
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the CT will evaluate its strategic choice for each of the possible state resulting from the other nr − 1 revisions.

Assuming every single scenario would occur with the same probability, one may reformulate equations 3.27 and

3.28 as follows:

p
[CT ]
C→D(k) ≡ p

[CT ]
− =

{
1 + Exp

[
− β[CT ]

2nr − 1

nr−1∑
δ=−nr+1

(fD(k + δ − 1)− fC(k + δ))

]}−1

(3.29)

p
[CT ]
D→C(k) ≡ p

[CT ]
+ =

{
1 + Exp

[
− β[CT ]

2nr − 1

nr−1∑
δ=−nr+1

(fC(k + δ + 1)− fD(k + δ))

]}−1

(3.30)

where we have divided the intensity of CT by 2nr − 1 for the sake of normalization.

Although this new formulation seems to describe the new dynamics, the latest assumption is compromising.

Each possible outcome from the nr − 1 first revisions, which we will designate by k′, does not have the same

possibility to occur, and hence there is a need to find a weighting function that differentiates every single scenario.

In our research, we have wonder if we could base our weighting function in the probability to have a certain

amount of cooperators in the group of nr individuals. For instance, in order to provisionally reach the state k′ =

k − nr + 1, all the nr − 1 individuals must be cooperators, as only they may produce a state variation of v = −1.

The probability to pick all these cooperators, given by
∑nr−2

i=0 x
(Z,i)
C (k, i), is dependent of the current number of

cooperators, and it may be different from any other scenario. The reasoning above described may be translated

according to the scheme on Figure 3.8, shown below.

Figure 3.8: Scheme of CT’s reasoning in the updating process.

If, for instance, we have k′ = k− nr + 2, it is mandatory that at least nr − 2 individuals are cooperators. Notice,

however, that this also includes the scenario where we have nr − 1 cooperators, meaning the weighting function

is cumulative on all scenarios that, at least, accomplish the required number of cooperators. Defining α as the

weighting function, we may rewrite equations 3.29 and 3.30 as follows:

p
[CT ]
C→D(k) ≡ p

[CT ]
− =

{
1 + Exp

[
−β

[CT ]

nr

nr−1∑
δ=−nr+1

α(k, nr − 1, δ) (fD(k + δ − 1)− fC(k + δ))

]}−1

(3.31)

p
[CT ]
D→C(k) ≡ p

[CT ]
+ =

{
1 + Exp

[
−β

[CT ]

nr

nr−1∑
δ=−nr+1

α(k, nr − 1, δ) (fC(k + δ + 1)− fD(k + δ))

]}−1

(3.32)

where:

α(k, n′
r, δ) =

Min(δ+n′
r,n

′
r)∑

β=Max(δ,0)

(
nr′

δ

)(∏δ−1
i=0 (k − i)

)(∏n′
r−δ−1

j=0 (Z − k − j)
)

∏n′
r−1

i=0 (Z − i)

=

Min(δ+n′
r,n

′
r)∑

β=Max(δ,0)

(
nr′

δ

)
k!(Z − k)!(Z − n′

r)!

Z!(k + δ)!(Z − n′
r − k + δ)!

(3.33)

43



Although the weighting function is apparently complex, its formulation is very simple. The limits on the summa-

tion are given according to the possible number of cooperators that allow each scenario, following the reasoning of

the examples previously mentioned. In a much simpler way, we may rewrite equation 3.33 as:

α(k, n′
r, δ) =

Min(δ+nr′,nr′)∑
β=Max(δ,0)

(
δ−1∏
i=0

x
(Z,i)
C (k, i)

)(
δ−1∏
i=0

x
(Z,δ+i)
D (k, δ)

)
(3.34)

following the definitions in equation 3.5, for both xC and xD.

Having reformulated the switching probabilities for CT, to take into account the ToM first-degree characteristic,

all the remaining functions in the dynamic’s study may be given naturally just by following the description on sections

2.4.2 and 3.2.2, and hence, we are ready to proceed to the evaluation of the impact of synchronism in well-mixed

populations in the presence of multiple different learning rules.

3.4.2 Synchronism in Conformity

Regarding conformity, in all its dynamics, there is not an explicit dependency on the number of revisions, and,

as that, the results on the impact of synchronism should not be any different from the ones in the SL dynamics, that

we previously saw in section 3.3.

In order to better evaluate a new dynamic that includes conformity, we believe that, firstly, it would be convenient

to show the typical conformity dynamics, that is, the dynamics for the usual asynchronous updating process. The

dynamics may be described, for example, in terms of the stationary distribution. Following the previously described

formulation, from section 2.4.1, we will take population sized Z = 50, with a mutation rate of µ = 1
Z

, in which all

individuals behave according to the conformity principles, that is, a purely conformist population. This is the same

as taking a multi-rule homogeneous population with δ[C] = 1.0. For this case, we will vary the intensity of conformity,

β[C], and for each we compute the stationary distribution. The results are given below in Figure 3.9.

Figure 3.9: Stationary distribution for a pure conformist population, that is, we have δ[C] = 1.0. This also
means the dynamics is completely independent of the game. For a population sized Z = 50, and with
µ = 1

Z , we take different intensities of conformity as β[C] = {0.1, 0.25, 0.5, 1.0}.

Firstly, note that, regardless on the learning rules, the lower the intensity associated to a certain rule, the

lower the impact of the learning rule’s corresponding function. In this sense, as expected, one may observe that

decreasing the value of the intensity of conformity progressively leads to a lower influence of the difference between

the fractions of cooperators and defectors on the revision process. It is to be noted that, as a consequence, the
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decreasing β[C] progressively twists the typical coordination dynamics to a co-existence one, which contradicts the

formal definition or conformity (we will retake this topic later on section 4.1.1).

The conformity switching probability is given as a function of the difference between the fraction of individuals

for each strategy, C and D. This may be suggestive of a dynamics characterized by two fixed points, one for each

strategy, that is, one for defectors, at k = 0, and other for cooperators, at k = Z. Notice that this dynamic is

equivalent to the 2-person SH, as both may be considered dynamics of coordination (see section 2.2.3). In this

reasoning, we expect that, by well-mixing conformity-driven individuals in a SL environment, the two peaks relative

to each of the fixed points will be increasingly highlighted, as we increase the probability of conformity.

Once again, we take the same population as in the case above, on Figure 3.3, but now fixing both intensities of

conformity and selection at β[C] = 1.0 and β[SL] = 1.0, respectively. Having 20% of conformity-driven individuals,

that is, for a conformity probability of δ[C] = 0.2, and varying the number of revisions in the updating process,

with nr = {1, 3, 5, 7}, we investigate the N -person previously studied games, specifically obtaining the stationary

distributions presented in the Figure 3.10 below.

Figure 3.10: The effects of progressive increasing levels of synchronization on a well-mixed homo-
geneous population, in a SL environment with δ[C] = 0.2. We present the stationary distribution for
nr = {1, 3, 5, 7}, in four different N-person social games, specifically, the NSG, NSH, PGG and CRD,
respectively on panels from A to D. The curve in black represents the asynchronous process, with
δ[C] = 0, for matters of comparison. The results on synchronism do not generally differ much from what
we obtained for a full SL population, due to the fact that conformity does not have a dependency on
synchronism variables.

Regarding the curves’ overall shape, the results go as expected, as they accomplish the homogeneous mixing

of conformity individuals on a social learning environment, having now two protrusions, one corresponding to each

the monomorphic states, that are associated to the conformity dynamics.

The results on synchronism effects go along, very similarly, with the ones previously obtained in both cases of

Figures 3.1 and 3.3: not only the curves for different nr are very close to each other, acting like fluctuations around
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the asynchronous process’, but also there is no direct impact on fostering cooperation, as the effects on both EFC

and ηG are highly dependent on the system’s set of parameters. Generally, this indicates that conformity has only

an impact on the general population dynamics, not being dependent on the system’s level of synchronism.

3.4.3 Synchronism in Counterfactual Thinking

Contrary to conformity, the CT dynamics, with its new switching probability description, does have a dependency

on the number of revisions, and hence, one should expect a non null impact on the system when increasing the

level of synchronism. Moreover, the results from [13] show that a small prevalence of CT individuals is enough to

nudge an entire population towards highly cooperative standards. This way, as a measure of validation, we hope

our new model’ results match these insights.

To evaluate the impact of synchronism in homogeneous populations, like before, we will take a population sized

Z = 50, with a mutation rate of µ = 1
Z

, with β[SL] = 1.0 and β[CT ] = 5.0, where 5% of all individuals follow the

CT learning rule, that is, δ[CT ] = 0.05. We will vary the number of revisions as nr = {1, 3, 5}, for all the N -person

previously studied games, and for each we compute the stationary distribution, as shown in the Figure 3.11 below.

Figure 3.11: The effects of progressive increasing levels of synchronization on a well-mixed homoge-
neous population, in a SL environment with δ[CT ] = 0.05. We present the stationary distribution for
nr = {1, 3, 5}, in four different 2-person social games, specifically, the NSG, NSH, PGG and CRD, re-
spectively on panels from A to D. Even though the CT dynamics is explicitly dependent on the level of
synchronism, it is visible how small that impact is, on the overall system’s dynamics.

The results on the synchronism effects follow the same trend of the results for both conformity and social

learning, where, regardless on the level of synchronism, the stationary distribution curves present a very similar

shape, being displayed very close to each other, seemingly behaving as fluctuations around the asynchronous’

curve. However, in this case, one may notice these variations occur more strongly for counterfactual reasoning than

for other learning rules, as we may more easily infer from both NSH and CRD. Moreover, although we were only able
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to produce these results, in feasible time, for low values of nr, due to the CT more complex formulation, it is already

possible to notice a non-negligible deviation of the curve, even for nr = 5. This way, even lacking more support

information, these insights could suggest that, unlike other learning rules, counterfactual reasoning is significantly

affected by increasing synchronism, as the higher the synchronism level is in the spectrum of synchrony, the more

deviated from the asynchronous curve the stationary distribution is. Nevertheless, we must take into consideration

that this lack of data could be critical, as for higher levels of synchronism the system dynamics could fall into a

different tendency.

Furthermore, we notice that a small probability of CT has already an huge impact on the general system’s

dynamics, which go along with the expected, as shown in [13]. For both C and D panels, corresponding to the PGG

and CRD, respectively, it is clear how CT does, indeed, move the entire population to much higher standards of

cooperation. Regarding the other two cases, it may not be that clear. To clarify the results, and as previously done

in Figure 3.3, it might be relevant to compute the overall achievement group as a measurement of the probability of

success, and to compare them with the expected results for a full of social learner population. This way, for each

game and for each number of revisions we compute ηG, not only to show the overall evolution as a function of the

synchronism, but also to compare it with what would we expect in a full SL population. The results are shown in

Figure 3.12.

Figure 3.12: Group achievement as a function of the number of revisions, for all the studied N -person
games. It is noticeable an almost constant line, which indicates the progressive increasing of the syn-
chronism level does not have a very significant effect on the group achievement. Notice that, for the
PGG, the ηG is always maximum (one), due to the fact the threshold M is null.

Generally, regardless on the social game, one may observe that a small probability of counterfactual thinkers

is enough to push the entire population towards higher cooperative standards, which goes as expected, according

to [13]. When it comes to the effect of synchronism, we notice that, comparatively to the pure social learning

population, the CT learning rule is much strongly affected by increasing the number of revisions on the updating

process. In fact, attending to Figure 3.4, we notice that from nr = 1 to nr = 5, the group achievement has

increased 0.415%, 0.503% and −0.349%, respectively for NSG, NSH and CRD in the pure-SL framework, while

homogeneously mixing a small amount of CT individuals in a SL environment modifies these values to 2.221%,

1.707% and 1.724%, respectively. This result suggests that counterfactual reasoning is, in absolute terms, strongly

more influenced by synchronism than social learning.

Interestingly, we notice that, in all the performed examples, the group achievement grows with the increas-

ing synchronism level, which could suggest a very new exciting conclusion: a small prevalence of counterfactual

thinkers, homogeneously well-mixed in a SL environment, not only leads to a significant increase of the group

achievement, when compared to a pure SL population, but also promotes higher probabilities of success for higher
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levels of synchronism, in the synchrony spectrum. Although this results sound interesting, we cannot take them

as certain, due to many factors. Firstly, to achieve such results, very complex calculations had to be computed,

to which a propagation of computational error may be underlying. Moreover, we have only been able to test the

outcomes for relatively low levels of synchrony, and, therefore, our insights may lack the information necessary for

their generalization. Furthermore, these studies have only been performed specifically for the game’s configuration

above explicit, but however, as we saw on Figure 3.5, different game configurations may lead to negative impacts

on the group achievement with increasing synchronism level.

Attending to all the previous insights, we suggest that more profound studies on synchrony effects on CT-based

populations should be performed. To do so, due to their high complexity, it would firstly be advisable to obtain a

new simpler formulation to compute both the stationary distribution and the CT transition probabilities, so one could

perform studies for higher levels of synchronism, along the whole synchrony spectrum. In addition, it should also be

interesting to evaluate the dependency of these conclusions on the game’s configuration variables, in order to find

any direct dependency of the effects of synchronism in CT on the game’s variable.

3.5 Final Notes

The effects of increasing the synchronism level, along the spectrum of synchrony, on the overall population

dynamics is very small, to the point of being negligible, either in the 2-person or the N -person framework. In fact,

along this chapter, we have verified how insignificant are the consequences of progressively increasing the number

of revisions, on the evolutionary updating process, not only for a pure social learning population, but also for homo-

geneously well-mixed populations of social learners and conformists. For all cases we verified that, regardless of

the social game, synchrony leads to a dynamic characterized by a the stationary distribution which curve fluctuates

around the asynchronous process curve, oscillations that progressively become more intense as we increase the

level of synchronism, yet still very small.

Following this reasoning, we have also obtained an almost negligible impact of the evolution of the cooperation

evaluation tools, both the EFC (in the 2-person framework) and the ηG (in the N -person framework). Even though

very small, we saw that the evolution of ηG(nr) shows to be either positive or negative, depending on the game’s

configuration variables, directly meaning that, regarding cooperation optimization, synchronism may either have

positive or negative impact, depending on the game. Formally, we can say ηG ≡ ηG(v, nr), where v is the set of

game’s configuration variables. When it comes to convergence, we saw, through the fixation times, that, even though

synchronism generally accelerates the system’s convergence for either one of the absorption states, approximately

linearly with nr, the average fixation time, that is, the fixation time for each revision, conditional or unconditional,

will progressively increase with increasing nr. This suggests the total number of revisions, which should not be

confused with total time steps, increase with nr.

It is noteworthy that, specifically in the case of CT, the dynamics shows to be more sensitive to synchrony than

to the other learning rules, fundamentally due to the fact they new transition probabilities directly depends on nr.

In fact, for one same game, increasing the synchronism level on the CT framework shows to promote an increase

on ηG, in some cases, up to five times larger than on a pure-SL population. Moreover, might be interesting to

notice that, specifically for the studied cases, increasing the synchronism level progressively leads to higher group

achievements which, contrary to conformity or social learning, no longer are so small to be negligible. However,

attending to the lack of relevant information to sustain these latter insight, it would be very premature to generalize

these conclusions.
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Chapter 4

Population Dynamics in

Homogeneous Populations

In this chapter, we explore the dynamics of different social games, in the case of well-mixed, homogeneous

and finite populations, on a scenario with multiple available learning rules. More specifically, we investigate the

evolutionary dynamics through analyzing the stochastic gradient of selection, along with other relevant evaluation

tools such as the EFC, in the case of 2-person games, and the ηG, for N -person games, aiming to discover

how the introduction of different learning rules in a social learning environment affects the overall population’s

evolutionary most likely outcome. For this new population dynamics, we ought to find any correlations between

the population’s configurations and the overall cooperation expectations, hopefully finding any relations that foster

cooperation maximization.

4.1 Dynamics in 2-Person Games

It is in 2-person games where we find the simplest dynamics. We begin our study by evaluating the effects of

the introduction of different learning rules, namely conformity and counterfactual thinking, in an homogeneous and

well-mixed population of social learners, following each of the 2-person games previously described in section 2.1.2.

Regarding cooperation optimization, we resort to the expected fraction of cooperation, EFC (see equation 2.34),

as an evaluation tool, but only whenever it is valid.

4.1.1 Conformity in 2-Person Games

We start by investigating population’s dynamics in communities with a fixed number of conformity-driven individ-

uals, in a social learning environment. Attending to the multi-rule formulation, as previously shown in section 2.4.3,

and specifically for homogeneous populations, in the case where L = {SL,C}, we may define the deterministic

gradient of selection equivalently to equation 2.50:

G(x) = δ[SL]G[SL] + δ[C]G[C] (4.1)

Attending to the conformity formulation in section 2.4.1, both these learning rules are associated with dynamic

revision processes, whose effect is taken into account when formulating the transition probabilities for both SL and
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C. In fact, and assuming a similar magnitude for both switching probabilities, p[SL]
SA→SB

and p[C]
SA→SB

, it wouldn’t be

unreasonable to expect similar orders of magnitude for both T [SL]
± and T [C]

± . Very roughly, this means the conformity

impact on the overall population dynamics is dimensionally equivalent to the social learning’s impact, and hence,

one shall expect to visually verify a very smooth increase of the conformity effects as we increase the probability of

conformity, δ[C], in a social learning environment. Even though the learning rule’s functions, that is, the functions

associated to each learning rule (fS(x) and nS(x), respectively for SL and C), involve variables or different kind, and

assuming they are similarly weighted with the respective learning rule’s intensities, β[SL] and β[C], the difference

on their magnitudes is not enough to justify a significant difference between the switching probabilities, hence not

being sufficiently relevant to change the magnitude of the gradient of selection.

Proceeding with the investigation, we start with a full SL population (δ[C] = 0) and we progressively increase

the value of the probability of conformity until reaching a full conformist population (δ[C] = 1.0). For each step, we

compute the gradient of selection, as an explicit function of the fraction of cooperator x, and analyze the system’s

dynamics. Recall that, in this setup, we assume δ[C] as a constant fixed value, that is characteristic of the population,

and hence the G variations with δ[C] should not be considered as part of the population’s evolution. Along with the

gradient of selection it might be relevant to compute the expected fraction of cooperators, EFC, as a qualitative

measure, assuming our objective is to maximize cooperation. Notice, however, that the EFC analysis may be

escorted by misleading conclusions, namely for coordination dynamics, as previously explained in Chapter 3, and

thus it must be taken solely as an auxiliary tool.

For all the four 2-person games previously described, we impose the condition 1 > 0.75 > 0.25 > 0 for the order

of the R,S, T, P variables respective to each game, following the same reasoning as in section 3.3. In order to force

the same relative impact, we have both intensities of selection and conformity set to β[SL] = 1.0 and β[C] = 1.0,

respectively, and, for a population sized Z = 50 with a mutation rate of µ = 1
Z

, we may obtain the relative gradient

of selection for all x ∈ [0; 1], and for all possible δ[C] ∈ [0; 1]. We say the gradient of selection is relative as the

computed values of G are then normalized between the minimum (negative) value to the maximum (positive) value

of G. The results for all the described setup are shown below in Figure 4.1.

The obtained results generally go as expected: the effects of conformity increase approximately linearly with

increasing probability of conformity, as one may visually verify. In other words, the variations on the system’s

dynamics progressively increase with increasing δ[C], and hence the effects of conformity apparently become more

visible for larger probabilities of conformity. For instance, for both HG and PD (panels A and D, respectively), for

values of δ[C] > 0.50, approximately, conformity is responsible for the formation of a new regions with opposite sign

to the dominant sign of the gradient, which occurs in a very smooth way, not abruptly. In the case of SG (panel B), we

perceive that conformity completely switches the population dynamics, quite rapidly, within a certain region of δ[C],

but still in a very smooth way. In opposite, for the SH (panel C) nothing much occurs, as the general dynamics of this

game matches the full conformity population’s dynamics. In fact, all these results could be predicted attending to

the fact that a population full of conformity-driven individuals is characterized by a coordination dynamic, regardless

of the current social game. These means that the progressive effects of conformity in the population will depend on

the original social learning game dynamics. Generally, the further away a game dynamics is from coordination, in

the 2-person game space, the more conformity affects the population dynamic is, an effect that progressively grows

with increasing probability of conformity.

In terms of cooperation optimization, one may observe that, for certain social games, conformity may be re-

sponsible for improving the expected fraction of cooperation, but for other cases this is not true, as conformity may

even work against the EFC maximization. Although these conformity effects, positive or negative, on EFC mostly
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Figure 4.1: Relative gradient of selection in 2-person games, for well-mixed, homogeneous and finite
populations of conformists and social learners. We take a population sized Z = 50, with a mutation rate
of µ = 1

Z , with both intensities of social learning and conformity as β[SL] = β[C] = 1.0. Panels from A to
D respectively show the results on the HG, SG, SH and PD games. The gradient of selection is given
relatively through normalization, from its minimum to its maximum values. The line in white represent
the points of null gradient, while the green line represents the evolution of the EFC with increasing
δ[C]. Recall that the gradient of selection, being explicitly defined as a function of x for a fixed value of
δ[C], evolves horizontally in the graphic, and not vertically. Generally, the impacts of conformity increase
smoothly with increasing δ[C], meaning one must have a considerable amount of conformists in the
population in order to get a significant impact of C. Regarding the effects on EFC, the most significant
variations are given for very large δ[C] (panels A and D), while for others the effects can be considered
close to negligible. However, recall the EFC may be missleading for non peaked-shaped stationary
distributions, such as the 2-person SH.

depend on the current social game dynamics, there are also a dependency on the value of δ[C]. Let us take, for

instance, the HG (panel A). Here we notice that conformity progressively leads to an increase of the EFC, which

goes along with the HG stable fix point motion to the left, but only until a certain maximum value, on δ[C] ≈ 0.5,

from where EFC starts decreasing until it reaches the final value of EFC = 0.5. Despite that, and regardless

on the social game, as one would expect, we notice that, the same way conformity leads to a pure coordination
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dynamic, conformity also pushes the EFC towards the unstable fix point in the middle, exactly at x = 0.5, that is

characteristic of the coordination dynamics.

The convergence to the coordination dynamics visually occurs very smoothly as we increase δ[C]. However,

one may expect this convergence to be faster or slower depending on the relation between both intensities of

selection and conformity: having β[C] > β[SL], one would expect a faster convergence to coordination, while for

β[C] < β[SL] we would expect a slower one. These statements are merely empirical speculations and lack a more

formal foundation. In this manner, for better evaluating the impact of the intensity of conformity, we may compute

the homogeneous gradient of selection for one same population, but varying the value of β[C]. Specifically in this

study, for the SG with (R,S, T, P ) = (0.75, 0.25, 1, 0), we take a well-mixed, homogeneous and finite population with

δ[C] = 0.5, where Z = 50, µ = 1
Z

and β[SL] = 1.0. For each value in the range β[C] = {0.1, 0.5, 1, 10}, we compute

the gradient of selection. The results are shown below in Figure 4.2.

Figure 4.2: Gradient of selection in well-mixed, homogeneous and finite populations with Z = 50, µ = 1
Z

and δ[C] = 0.5, for β[SL] = 1.0 and β[C] = {0.1, 0.5, 1, 10}. We notice how the dynamics progressively
change from co-existence to coordination as we increase the intensity of conformity.

Firstly, we can’t help noticing that these results go along with the conformity stationary distributions, shown

previously in Figure 3.9, where lower values of β[C] would promote a co-existence dynamics, while higher values

would favour coordination. In the graphic above, we notice mostly the same: for the lower values of β[C], the

dynamics appears to be one of co-existence kind, whereas for higher values we recover the typical coordination

dynamic. As we keep increasing β[C], the gradient takes on much larger magnitude values, progressively enhancing

an abrupt transition from the negative gradient peak, on the lower half (x < 0.5), to the positive gradient peak, on the

upper half (x > 0.5). In its limit (β[C] → ∞), we achieve the true nature of conformity: individuals facing a population

with more cooperators strongly tend to choose cooperation, while in the opposite case they opt for defection.

As we can see, this result does not depend on the social game, meaning that the (pure) conformity dynamics

will only depend on the intensity of conformity, which, only for lower values promotes co-existence, while for the wide

majority of the cases it favours coordination. Although all these scenarios are mathematically possible, in its formal

definition, conformity promotes a coordination dynamic, and hence, configurations with the lower values of β[C]

lose their physical meaning. As that, we are more prone to assume that conformity always promotes coordination,

notwithstanding the social game’s dynamics.

To summarize, regardless on the social learning game, conformity will always lead to a perfect coordination

dynamics, characteristic of a pure conformity population (δ[C] = 1). For intermediate levels of conformity (δ[C] < 1),

however, the resulting dynamics are dependent on the SL environment. The same result is replicated when it

comes to cooperation optimization: although increasing δ[C] will lead to the expected EFC = 0.5, characteristic
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of conformity, for intermediate levels the effects are unknown apriori and dependent on the social game dynamics

(recall, however, that the EFC indicator may be escorted by misleading conclusions). Moreover, having both

gradients G[SL] and G[C] dimensionally equivalent, it is required a fair prevalence of conformity-driven agents to

significantly modify the social game dynamics.

4.1.2 Counterfactual Thinking

Now, we investigate population’s dynamics in communities with a fixed number of counterfactual thinking-driven

individuals, in a social learning environment. Again, specifically for homogeneous populations, but now in the case

where L = {SL,CT}, we may define the deterministic gradient of selection equivalently to equation 2.50:

G(x) = δ[SL]G[SL] + δ[CT ]G[CT ] (4.2)

Contrary to conformity, counterfactual thinking is characterized by a static revision process rather than a dynamic

one, which automatically implies transition probabilities some orders of magnitude above the typical for the SL

transition probabilities. Consequently, CT comes with a much larger impact on the overall gradient of selection for

homogeneous populations, when compared to SL. Formally speaking, this means that a small prevalence of CT

individuals, that is, a small value of the probability of counterfactual thinking is enough to drastically change the

population’s dynamics. Regarding the switching probabilities, as the learning rules’ functions for both SL and CT

are very similar (fS(x) and f i
S(x), respectively), and assuming a same order intensities for the learning rules, we

should not expect any significant difference between p[SL]
SA→B and p[CT ]

SA→B .

To study the impact of CT in a SL environment, we may start by investigating the dynamics, through the (relative)

gradient of selection, of population’s with variable probability of CT. Specifically, and likewise that in conformity, we

start by building a full SL population (δ[CT ] = 0) and progressively increase the probability of counterfactual thinking

until reaching a full CT population (δ[CT ] = 1). For each step, we compute the gradient of selection, once again,

explicitly as a function of the fraction of cooperators, x, and analyze the system’s dynamics. Attending to the

previous insights, for the same intensities order, one may verify that CT impact is much larger than SL, that is,

G[CT ] ≫ G[SL]. To contrary these effects, we will set β[SL] = 5 while having β[CT ] = 1, significantly increasing the

overall strength of SL in order to balance the gradient of selection for both learning rules. Again, along with G(x)

we also present the expected fraction of cooperators as a qualitative measure, however always keeping in mind the

possible misleading conclusions its analysis may bring.

For all the four 2-person games previously described, we impose the condition 1 > 0.75 > 0.25 > 0 for the

order of the R,S, T, P variables respective to each game, just as before. As mentioned, we have both intensities

of selection and conformity set to β[SL] = 5.0 while β[CT ] = 1.0, respectively, and, for a population sized Z = 50

with a mutation rate of µ = 1
Z

, we may obtain the relative gradient of selection for all x ∈ [0; 1], and for all possible

δ[C] ∈ [0; 1]. The results for all the described setup are shown below in Figure 4.3.

Firstly, in all the above graphics it is easy to notice how much larger isG[CT ] when compared to G[SL], especially

if we take attention to the colour gradient, which represents the overall range of values for G in this setup. For all

the above games, we notice that, when the population is full CT-driven, both minimum and maximum values of

G correspond, respectively, to the minimum and maximum values of the color bar. On the other hand, when the

population is full SL-driven, the values of G stand very close to the origin, independently of their sign, meaning the

values for G[SL] are relatively much smaller than G[CT ].

Another interesting thing to notice is that counterfactual thinking favours a co-existence dynamic. However, and
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Figure 4.3: Relative gradient of selection in 2-person games, for well-mixed, homogeneous and finite
populations of counterfactual thinkers and social learners. We take a population sized Z = 50, with
a mutation rate of µ = 1

Z , with both intensities of social learning and conformity as β[SL] = 5.0 and
β[CT ] = 1.0. Panels from A to D respectively show the results on the HG, SG, SH and PD games. The
gradient of selection is given relatively through normalization, from its minimum to its maximum values.
The line in white represent the points of null gradient, while the green line represents the evolution of the
EFC with increasing δ[CT ]. Recall that the gradient of selection, being explicitly defined as a function
of x for a fixed value of δ[CT ], evolves horizontally in the graphic, and not vertically. With exception to
SH (panel C), the progressive addition of CT individuals does not have a greater impact on the overall
game dynamics, being a stable equilibrium progressively favored as we increase the value of δ[CT ]. It
is noticeable how much more intense is the gradient of selection for higher probabilities of CT when
compared to a full SL population. This goes as expected, attending on the difference of magnitudes on
the transition probabilities for both SL and CT. Regarding SH, we verify a very small probability of CT is
enough to drastically change the game dynamics, from a point where we have 3 fix points, to 1.

contrarily to conformity, the final learning rule dynamics does depend on the social game individuals are playing.

This result should be expected as the rule function associated with CT does have a dependency on the game’s

configuration, in this case, on (R,S, T, P ), while in the conformity case the function goes solely as a function of x.

In fact, we notice that for all games but the SH the EFC line seems to overlay the null gradient line, emphasizing a
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very strong co-existence dynamics, which go according to the previous insights.

Regarding the SH case, one may verify something very interesting: increasing the probability of counterfactual

thinking rapidly leads to a drastic change in the game’s dynamics. Specifically, increasing the number of CT indi-

viduals in the SL environment leads to a progressive disruption of the SL dynamics, from a point where we have 3

fix points, that characterizes the typical SH coordination dynamics, passing through 2 fix points for a specific value

of δ[CT ], and ending up with solely 1 fix point, that characterizes the coordination fix point. This modification in the

dynamics is responsible for a sharp increase in the EFC, from a very small value (EFC ≈ 0.1) when δ[CT ] = 0,

until we reach a more stable regime (EFC ≈ 0.5) when δ[CT ] ≈ 0.4. This increase of ≈ 400% in the expected

fraction of cooperation go along with the insights from [13], that, despite being specific for the N -person version of

the SH, shows how a small probability of CT is enough to foster cooperation significantly.

Generally, for this specific population setups, counterfactual thinking seems to foster a co-existence dynamics,

characterized by a positive gradient for lower values of x and a negative gradient for higher values of x, pushing

the population’s dynamics towards the stable fixed point for some x in the middle. However, according to [13],

in collective action problems, and specifically for NSH, one should expect counterfactual reasoning to promote

coordination dynamics. Taking NSH simply as a generalization of the SH, it wouldn’t be unreasonable to think

that, for this latter case, CT would approximately follow the same coordination dynamics, rather than co-existence

dynamics. Although it appears to be a contradiction, one must be aware of the dependency on the intensity of CT:

the higher it is, the more the f i
S functions influence the switching probabilities. As the population’s dynamics depend

mostly on this probability, it is logical to think that β[CT ] may have a great impact in the overall population dynamics.

To verify this suggestion, and proceeding as before for conformity, we compute the gradient of selection for one

same population, but varying the intensity of counterfactual thinking. For the SH with (R,S, T, P ) = (1, 0, 0.75, 0.25),

we take a well-mixed, homogeneous and finite population with δ[CT ] = 0.5, where Z = 50, µ = 1
Z

and β[SL] = 5.0.

For each value of the intensity of CT, in the range β[CT ] = {1, 5, 10, 25}, we compute the gradient of selection. The

results are shown below in Figure 4.4.

Figure 4.4: Gradient of selection in well-mixed, homogeneous and finite populations with Z = 50, µ = 1
Z

and δ[CT ] = 0.5, for β[SL] = 5.0 and β[CT ] = {1, 5, 10, 25}. We notice how the dynamics progressively
change from co-existence to coordination as we increase the intensity of CT.

The previous insights are proved to be correct: varying the intensity of CT may lead to greater modifications

on the system’s dynamics. More specifically, we observe that, as we increase the value of β[CT ], we progressively

transform the dynamics from co-existence to coordination. Having this, one can justify both results from Figure 4.3

and from [13] in terms of the relation between β[SL] and β[CT ], and hence we may verify our framework is valid.

To summarize, counterfactual reasoning dynamics are sensitive to the population’s configurations, namely to

55



the game’s configuration (R,S, T, P ), population’s size and mutation rate (that we do not investigate here), and to

the intensities of social learning and counterfactual thinking (β[SL] and β[CT ]). As we previously saw in Figure 4.4,

specifically for the β[CT ], changing any of these variables may result in a drastic change in the population dynamics.

In our specific case, with β[SL] = 5 and β[CT ] = 1, we saw that CT fosters co-existence dynamics, whereas having

β[SL] = 5 and β[CT ] > 5 progressively leads to a dynamics characterized by coordination. A more complete study

on CT dynamics, to compare the results with the ones from [13], will be performed later on.

4.2 Dynamics in N -Person Games

When moving to the N -person framework, the population dynamics gets much more rich and complex. Pro-

ceeding similarly as for the 2-person framework, in this study we evaluate the effects of different learning rules,

namely conformity and counterfactual thinking, in an homogeneous and well-mixed population of social learners,

now following each the N -person games previously described in section 2.1.3. In this case, regarding cooperation

optimization, we resort to the so called group achievement, ηG (see equation 2.35), to evaluate the overall dynamics,

as a measure of the probability to achieve success.

4.2.1 Conformity

While in 2-person games agents are always aware of other individual’s choices, in the N -person framework

opes the possibility to exploit the common good by defectors, that go unnoticed [19]. This implies game dynamics

to become much more rich and complex, specifically for social learning. However, notice that, even in this N -person

framework, conformity-driven individuals are still aware of the other’s choices, as they have the knowledge about the

fraction of cooperators and defectors, meaning they may potentially block the possibility of defector’s exploitation.

In fact, following the reasoning from the previous results in Chapter 4, one would expect that, regardless on the SL

original dynamics, conformity would always favour coordination dynamics.

Following the same reasoning as in the previous chapter, we start by investigating population’s dynamics in

communities with a fixed number of conformity-driven individuals, in a social learning environment. Attending to the

multi-rule formulation where L = {SL,C}, specifically for homogeneous populations we may define the determin-

istic gradient of selection equivalently to equation 4.1. Along with G, in the N -person framework, it would also be

relevant to compute the group achievement as a measure of the probability to achieve success, like we previously

did in Chapter 3. Note, however, that for games with a null threshold (M = 0), as in the case of the NPD, this

measurement loses its effect, has we would have ηG = 1 independently on the population dynamics.

We will proceed the say way as before: we vary the probability of conformity in the interval δ[C] ∈ [0; 1] and

for each value we compute the relative gradient of selection, that is, G normalized between its minimum (negative)

value to its maximum (positive) value. We will do this for each one of the fourN -person games, previously described

in section 2.1.3, more specifically, for NSG with (N,M, b, c) = (10, 5, 1, 0.2), NSH with (N,M,F, c) = (10, 5, 12, 0.5),

PGG with (N,F, c) = (10, 10, 0.7) and CRD with (N,M, b, c, r) = (10, 6, 1, 0.15, 0.75). As in section 4.1.1, to force

the same relative impact, we take both intensities of selection and conformity as β[SL] = 1.0 and β[C] = 1.0,

respectively, and we take a population sized Z = 50 with a mutation rate of µ = 1
Z

, so one can finally compute the

relative gradient of selection for all x ∈ [0; 1]. All the results are shown below in Figure 4.5.

Generally, the results go along with the ones previously obtained for the 2-person framework: regardless of

the social learning game, increasing the number of conformity-driven individuals will progressively favour a pure
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Figure 4.5: Relative gradient of selection in N -person games for populations of conformists and social
learners, homogeneously well-mixed. We take a population sized Z = 50, with a mutation rate of µ = 1

Z ,
and with both intensities of social learning and conformity respectively as βSL = 1.0 and β[C] = 1.0.
Panels from A to D respectively show the results on the NSG, NSH, PGG and CRD games. The
gradient of selection is given relatively through normalization, from its minimum to its maximum values.
The line in white represent the points of null gradient, while the green line represents the evolution of
the group achievement (ηG) as we increase the value of δ[C]. Recall that the gradient of selection, being
explicitly defined as a function of x for a fixed value of δ[C], evolves horizontally in the graphic, and not
vertically. Again, the conformity effects smoothly increase with increasing δ[C], but when comparing to
the 2-person framework, the general changes on the dynamics seem more accentuate. Regarding the
group achievement, as we increase δ[C], the nG moves toward the conformity coordination fix point,
regardless of the original game dynamics, with exception of PGG.

coordination dynamic, with a single unstable fix point at exactly x = 0.5, which is characteristic of the pure conformity

dynamic. Notice that, contrarily to CT, this final dynamic is independent on the system’s configuration.

Regarding the group achievement, irrespective on the social game dynamics, increasing the probability of con-

formity progressive moves the ηG towards the coordination fix point, at x = 0.5. If in the pure SL dynamic we have

ηG < 0.5, we could expect conformity to be beneficial in the overall cooperation dynamics, as we can see in panel

D, whereas, if we have ηG > 0.5, conformity would generally become prejudicial to the cooperation dynamics, as
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we can see in both panels A and B. Notice, however, that this does not mean that we cannot have an higher value

for ηG in between the two extremes, δ[C] = 0 and δ[C] = 1. In fact, we notice that in panel A the maximum value for

ηG stands for a value of δ[C] ≈ 0.25, while in panel B the maximum value for ηG stands for δ[C] = 0. Generally, this

means that, even when ηG > 0.5 for δ[C] = 0, conformity may either lead to an increase or decrease of the group

achievement, depending on the probability of conformity, while when ηG < 0.5 for δ[C] = 0, conformity will always

lead to an increase of the ηG, specially for higher values of δ[C].

The conclusions above suggested are only valid for those certain game’s configurations, that were carefully

chosen, and, like that, one may wonder about the generalization of these results. For other different game’s con-

figurations, very different dynamics may rise, as we previously shown in both Figures 4.2 and 4.4, where modifying

the intensity of a learning rule may lead to a drastic dynamic change. Besides these intensities, the game’s con-

figuration variables may also strongly transform the population dynamics. To show this, for one same N -person

game, we may vary one of the game’s configuration variable and analyze how it impacts the group achievement.

In Figure 4.6, we take the three most interesting N -person games, in terms of ηG analysis, and for each we will

take two of the game variables (one at a time) and vary them in a specific range, while the remaining variables

remain untouched. Finally, for each value of δ[C] ∈ [0; 1], we compute ηG, in the same way as previously, so one

can analyze the dependency of ηG in the system’s configurations. Essentially, we want to show that ηG ≡ ηG(v),

where v stand for the set of variables that define each game.

In the Figure 4.6, there are a lot of many different insights that may be taken, depending on the social game. For

instance, for the NSG, in sub-figure (a), the group achievement linearly decreases with the threshold, a trend that

seems to occur independently on the probability of conformity, although, for higher values of δ[C], this decrement

on ηG no longer occurs as regularly as for a pure SL population. As a consequence, while for lower thresholds

conformity may lead to a decrease in ηG, for higher thresholds conformity is actually promoting cooperation, leading

to higher group achievements. Regarding the cost, in sub-figure (b), the results matches the intuition that lower

costs promote higher group achievements. Notice, however, that, when we have a full conformity population, we

recover the expected ηG = 0.5, corresponding to conformity fix point. As that, and attending conformity dynamics

are independent on the game’s configuration, regardless of the initial value of ηG, increasing the probability of

conformity will always lead to the conformity characteristic ηG = 0.5. This result may be observed in all graphics,

with exception to the (a), as the group achievement has a dependency on the multivariate hypergeometric sampling

in its formal definition (equation 2.35), thus directly depending on N and M .

Regarding the NSH, from sub-figure (c), and as one would expect, the higher the enhancement factor, the more

likely we are to achieve success. However, and likely to sub-figure (b), increasing conformity will be beneficial when-

ever the pure SL group achievement stands below 0.5, while for populations with ηG > 0.5 conformity will become

a disadvantage. Relatively to the cost, in sub-figure (d), we observe that, once again, lower costs promote higher

group achievements. Moreover, as we have ηG(δ
[C] = 0) ≤ 0.5 for all pure SL populations in this configuration,

increasing the conformity probability will generally lead to an improvement on the group achievement, even though

in some cases we may notice a slight decrease followed by a stronger increase of ηG.

Finally, the results for the CRD appear to be very similar to the ones obtained for the NSH. However, in this case,

for most the pure SL populations the group achievement lays under the 0.5 threshold, meaning that, once again,

regardless on the initial ηG, conformity will always become generally beneficial in terms of cooperation maximization.

From sub-figure (f), and specifically to CRD, one may perceive how sensible the system’s dynamic is to the cost, as

ηG rapidly decreases with a small increase of c, until reaching values nearly 0 for c ≈ 0.35.

Generally, and in accordance with the previous insights, conformity promotes a fixed group achievement of
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(a) NSG, with (N,M, b, c) = (10,M, 1, 0.75). (b) NSG, with (N,M, b, c) = (10, 5, 1, c).

(c) NSH, with (N,M,F, c) = (10, 5, F, 0.2). (d) NSH, with (N,M,F, c) = (10, 5, 10, c).

(e) CRD, with (N,M, b, c, r) = (10, 5, 1, 0.1, r). (f) CRD, with (N,M, b, c, r) = (10, 5, 1, c, 0.1).

Figure 4.6: Group achievement for different N -person games under conformity, in well-mixed, homoge-
neous and finite populations sized Z = 30, µ = 1

Z , β[SL] = 1.0, β[C] = 1.0. For each graphic, we vary
both the probability of conformity and one specific game’s variable, and compute the ηG for each entry.
For all the points we apply a 2nd-order interpolation.
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ηG = 0.5, correspondent to the unstable fix point characteristic of the conformity coordination dynamics. We

showed that this result is independent on the game’s configuration, with exception on both group size and threshold.

This final result could be intriguing, since the group achievement should be maximum, as, in its formal definition,

conformity-driven individuals are not engaged in groups. This brings up a whole new problematic that calls into

question the results described above, urging the need for a new success measurement tool that takes into account

all new learning rules, independently on how they are internally organized. However, we recall that we have been

studying the effects on group achievement, specifically defined according to equation 2.35, that, even if not complete

for the whole homogeneous dynamics, we may assume to be valid for all the learning rules displayed in groups.

4.2.2 Counterfactual Thinking in N -Person Games

In contrary to conformity, as counterfactual reasoning expressly depends on the game’s configuration, we still

have the possibility to let defectors exploit the common good. In accordance with the previous studies [13], we

expect that even when individuals seldom resort to CT, highly cooperative standards are achieved. Although these

insights were specifically applied for the NSH, we are also interested in analyzing how the presence of individuals

with CT-enabled strategies affects the evolutionary dynamics under other collective action problems, namely, in the

NSG, the PGG (in the form of NPD) and the CRD.

Once again, we start by investigating population dynamics in communities with different number of CT-driven

agents, in a social learning environment. Attending to the multi-rule formulation, specifically for homogeneous

populations, having L = {SL,CT}, we may define the stochastic gradient of selection identically to equation 4.2.

At this point, and recalling the previous insights about T [CT ]
± value’s magnitude relatively to T [SL]

± , one must expect

CT to have a very strong impact in a population full of social learners, an effect that can be countered by assuming

an intensity of selection much stronger than the intensity of counterfactual reasoning, and so balance both learning

rules relative strength, just like we previously explained in section 4.1.2. Like we did in the previous section, we

compute the group achievement for each population, that is, for each value of δ[CT ]. Recall that the results for the

PGG are meaningless, standing at a constant value of ηG = 1, as we assume a null threshold for the NPD.

Once again, in a well-mixed, homogeneous and finite population of social learners and counterfactual thinkers,

we will vary the probability of CT in the interval δ[CT ] = [0; 1] and for each value we will compute the rela-

tive gradient of selection. For all the four N -person games previously described, more specifically, for NSG with

(N,M, b, c) = (10, 6, 1, 0.75), NSH with (N,M,F, c) = (10, 5, 10, 0.2), PGG with (N,F, c) = (10, 10, 0.5) and CRD

with (N,M, b, c, r) = (10, 6, 1, 0.1, 0.75), we take a population sized Z = 50, µ = 1
Z

, β[SL] = 5.0 and β[CT ] = 1.0,

and we compute the relative gradient of selection for all x ∈ [0; 1]. The results are shown below in Figure 4.7.

With exception to the PGG, all the game dynamics are similar to each other. Having this, and taking into con-

sideration the suggestions from [13], one would expect that a small prevalence of CT-driven agents is responsible

for pushing the entire population to very high cooperative standards. In fact, our results go exactly in accordance

with these insights: for all the NSG, NSH and CRD, a small increase on the probability of counterfactual thinking is

responsible for an impressive improvement of the group achievement. However, there are some other things that

we must be aware when analyzing these graphics.

Firstly, we may observe that, although a small incidence CT individuals is beneficial in terms of cooperation,

after the reaching the maximum value for ηG, adding more and more CT-driven agents will progressively preju-

dice the cooperative standards. Furthermore, in some cases, like in NSG, from a certain value of δ[CT ], the group

achievement gets even lower than on its initial value, on a pure SL population. Having this, we may complement the

conclusions previously taken in [13] by stating that a small prevalence of CT-driven individuals promotes highly co-

60



Figure 4.7: Relative gradient of selection in N -person games for populations of counterfactual thinkers
and social learners, homogeneously well-mixed. We take a population sized Z = 50, with a mutation
rate of µ = 1

Z , and with both intensities of social learning and counterfactual reasoning respectively
as β[SL] = 5.0 and β[CT ] = 1.0. Panels from A to D respectively show the results on the NSG, NSH,
PGG and CRD games. The gradient of selection is given relatively through normalization, from its mini-
mum to its maximum values. The line in white represent the points of null gradient, while the green line
represents the evolution of the group achievement (ηG) as we increase the value of δ[CT ]. Recall that
the gradient of selection, being explicitly defined as a function of x for a fixed value of δ[CT ], evolves
horizontally in the graphic, and not vertically. With exception to the PGG, the population dynamics are
very similar to each other. In all cases, and as expected, we notice that a small prevalence of CT-driven
individuals is responsible for nudging the entire population towards very high cooperative standards,
although after a certain critical δ[CT ] the addition of more CT agents in the population becomes a disad-
vantage. Notice these results are only valid for this population configuration’s in particular.

operative standards, but only until a certain point, from which adding more counterfactual thinkers to the population

becomes a disadvantage to cooperative action.

Besides that, and like previously for conformity, notice that the results above shown are only valid for the specific

game’s configurations. For other different game’s setup, very different dynamics may arise. This effect may be

observed when, for one same N -person game, we vary one of the game’s configuration variable and analyze how

it impacts the group achievement. In Figure 4.8, we take the 3 most relevant N -person games and for each we take
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two (one at a time) of the game variables and vary them in a specific range. For each population, we finally compute

the ηG, like we did previously, so we can analyze the dependency of ηG in the system’s configurations.

In the Figure 4.8, there are a lot of many different insights that may be taken, depending on the social game. For

instance, for the NSG, in sub-figure (b), the group achievement is maximized for lower costs, especially whenever we

have a lower value of δ[CT ]. Besides that, from sub-figure (a), while higher values for M affects ηG very negatively,

lowering the threshold progressively favours ηG, although this only happens after reaching a certain critic probability

of CT. Notice that this last insight corresponds exactly to the conclusions previously taken for Figure 4.7, where for

all NSG, NSH and CRD we verified that a small portion of CT’s improves a lot the group achievement.

Regarding the NSH, from sub-figure (c), while increasing the enhancement factor promotes higher values of ηG,

for lower values of F raising the number of CT progressively leads to higher values for the group achievement. For

higher values of F , in other hand, after a certain point increasing the number of CT’s does not have a great impact

in the overall ηG, meaning that, while in some cases the amount of CT-driven individuals is linearly increasing the

group achievement, in other cases having a small amount of counterfactual thinkers is enough to boost significantly

ηG. Regarding the impact of varying the cost c, in sub-figure (d), in a first analysis we notice it is completely different

than the cost in the NSG, showing how different are the dynamics between each other. Furthermore, we may

observe that δ[CT ] impact on ηG varies considerably with the cost, as we notice that increasing δ[CT ] does not have

an impact at all, when c is very small, while for higher values of c rising the probability of CT’s leads to the massive

growth of ηG, that we can observe.

Finally, for the CRD, from sub-figure (e), we see that the risk follows approximately the same learning rule as

the enhancement factor in the NSH, that is, higher values of r generally promotes higher ηG, independently on the

probability of CT, while for lower risks we have lower values for the group achievement, that progressively increase

as we raise δ[CT ]. Regarding the costs, in a pure-SL population, c = 0 gives us the highest values for ηG in this

setup, that rapidly decreases as we increase c, in such a way that, for approximately c = 0.2, we already reach a null

group achievement regime. In this scenario, even though we observe that rising the number of CT-driven agents

generally promotes an increase on ηG, for a very small values of c we notice that increasing δ[CT ] actually reduces

the group achievement. This effect is easily noticeable for c = 0, where ηG is maximal when δ[CT ] = 0 and gets

progressively reduced as we increase the probability of counterfactual reasoning.

These are just some of the possible outcomes when studying the impact of different population’s configurations,

made specifically for the game settings above presented. If one intend to maximize the cooperative standards, for a

certain game, many different studies of this kind should be performed, so by crossing all the information one would

get the configuration that would maximize the group achievement.

4.3 Final Notes

For both 2-person and N -person framework, conformity shows to bring a very stable dynamic, being completely

independent on the social game’s configuration. Even though this dynamic strongly depends on the intensity of

conformity, the formal definition of conformity states that it should promote coordination regardless on the system’s

configuration. In short, values of β[C] that promote co-existence rather than coordination are said to be invalid,

as conformity would lose its physical meaning. This way, we may generally conclude that conformity will always

promote a pure coordination dynamic, with its characteristic unstable fix point at x = 0.5. Furthermore, one may

also conclude that it is required a considerable prevalence of conformity-driven agents to substantially change

the social game dynamics, as the conformity gradient is dimensionally equivalent to the social learning gradient.
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(a) NSG, with (N,M, b, c) = (10,M, 1, 0.75). (b) NSG, with (N,M, b, c) = (10, 5, 1, c).

(c) NSH, with (N,M,F, c) = (10, 5, F, 0.2). (d) NSH, with (N,M,F, c) = (10, 5, 10, c).

(e) CRD, with (N,M, b, c, r) = (10, 5, 1, 0.1, r). (f) CRD, with (N,M, b, c, r) = (10, 5, 1, c, 0.5).

Figure 4.8: Group achievement for different N -person games, in well-mixed, homogeneous and finite
populations sized Z = 30, µ = 1

Z , β[SL] = 5.0, β[CT ] = 1.0. For each graphic, we vary one specific
game’s variable and the δ[CT ], and compute the ηG. For all the points we apply a 2nd-order interpolation.
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Recall this modification on the dynamics may have either a positive or a negative impact regarding cooperation

maximization, depending whether the SL dynamics provides, or not, a worst scenario in terms of cooperation, when

compared to the conformity coordination dynamics.

Regarding counterfactual reasoning, things get more complex. We saw that, for populations in the exact same

conditions, increasing the level of counterfactual thinking may lead to opposite dynamics, that highly depend on

the intensity of CT. While for relatively lower values of β[CT ] individuals resorting to CT promote a co-existence

dynamic, for higher intensities a coordination dynamic is favoured. Moreover, we saw that CT is highly dependent

on the game’s configuration, although generally acts in favor of maximizing cooperation, especially in the N -person

framework, were we saw that, in most cases, increasing δ[CT ] leads to higher ηG, until a certain critic point. We

were able to complement the insights from [13], showing that, for some cases, regarding collective action, a small

prevalence of CT-driven individuals is sufficient to foster highly cooperative standards, but only until a certain point,

from which adding more CT agents becomes a disadvantage.

Despite the complexity on studying these population dynamics, it is common to reach the same results for

different combinations of configurations. To reduce the dimensionality of the problem, it may be relevant to suppress

some variables, by defining a new one as a function of other two, just like previously done in Figure 3.5. For this

section, it would appropriate to compute the relation between β[SL] and β[CT ], but however, it may not be trivial.

Experimentally, one may verify that having β[SL] = 5 and β[CT ] = 1 will produce very different results than β[SL] = 1

and β[CT ] = 0.2. This may indicate that, when building these relations, one must be also aware of the magnitude

of the values of the variables themselves. For further work, it would be very relevant to find any relations between

certain combination of variables, that would allow a much simpler and direct evaluation of the system’s dynamics.
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Chapter 5

Population Dynamics in

Heterogeneous Populations

In real world networks, for a same population, individuals may be organized heterogeneously according to their

learning rules, that is, agents following different learning rules are commonly displayed in different sub-populations,

rather than homogeneously mixed in one same population. In this chapter, we investigate the dynamics of different

N -person games, in the case of well-mixed and finite populations, heterogeneously sub-divided according to the

available learning rules. More specifically, we evaluate the multi-dimensional gradient of selection that will map out

the system’s fix points, eventually giving rise to a whole new dynamics, that one expects to be different from the

results previously obtain for homogeneous populations.

5.1 Heterogeneous Populations

When exploring heterogeneous populations, a different approach must be taken. While in homogeneous pop-

ulations the number of cooperators or defectors, or even the population size, is not discriminated for each learning

rule, in heterogeneous populations one must track each of the variables individually. Roughly speaking, moving

to heterogeneous populations, with l available learning rules, means we are dividing our main population into l

sub-populations of individuals with the same learning rule. Each sub-population may be, then, evaluated singularly,

just as if it were, by itself, an homogeneous well-mixed pure-learning rule population. However, its dynamics will

always depend on all the other sub-populations, a dependency that will be weighted by the homophily, h, just as

previously described in section 2.4.3: when h = 0 anyone in the population may influence and be influenced by

anyone else, while when having h = 1 individuals are restricted to influence (and be influenced) by those of the

same sub-population.

In the following studies, we ought to analyze the effect of homophily in the behavioral dynamics, from a com-

pletely homophilic relation between learning rules, with h = 1, to the absence of homophily, with h = 0. In the

latter case, as individuals interact with one another regardless on their sub-population, we recover the essence of

the homogeneous dynamics, now represented in the l-dimensional space. We perform a study similar to [36], but

however, in our setup, the different learning rules take the role of the different social classes. This new dynamics

may be escorted by different challenges, as not all learning rules regulate their strategic decisions based in strategy

fitness, which is the case of conformity, for instance, that bases its strategic decision on the frequency strategies
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occur. In this sense, for each study we will explicitly present all the dynamics behind the results seen along the

chapter.

More in concrete, we will be exploring the population dynamics for different heterogeneous populations, in

scenarios with only two learning rules (b = 2), thus having L = {L1, L2}, with L1,2 ∈ {SL,C,CT}. In this

specific case, and for the sake of simplicity, we assume the homophily to be bidirectional, that is, we assume

hL1→L2 = hL2→L1 ≡ h. Of course, for more complex dynamics, it would be interesting to analyze various population

dynamics where this assumption is not valid, looking to find any relation between the distinct homophilies and

cooperation optimization, but for now, we will stick to this simpler case.

All the following analysis will be performed under different N -person social games, due to their much more

complex dynamics. Moreover, and as an evaluation tool for cooperation maximization, we may compute the aver-

age group achievement. For multiple learning rules, we make use of the multivariate hypergeometric sampling to

compute the average fraction of groups that accomplish a total in contribution of Mcb̄, corresponding to achieving

the public good, previously designated as aG(i). In other words, and similarly to the previously explained in section

2.3.3, it may be obtained by replacing ΠSk (j) by Θ(
∑

L∈L c
[L]j

[L]
C −Mcb̄) in Equation 2.10, where c[L] is defined as

the contributions from cooperators resorting to learning rule L ∈ L, and b̄ the average endowment. Having aG(i),

we may finally compute the average group achievement, ηG, again according to equation 2.35.

5.2 Conformity and Social Learning

We start by building a population configuration where we have both social learners and conformist, that is,

having the set of available learning rules as L = {SL,C}. In this setup, and following the previous descriptions

for heterogeneous populations, from section 2.4.3, we consider a population of Z = Z [SL] + Z [C] individuals, from

where Z [SL] obey to social learning while Z [C] follow conformity. Individuals resorting each learning rule are given

an initial endowment, b[SL] for SL and b[C] for conformity, that will remain fixed, and play theN -person game in study,

thus engaging in groups sized N . Each type of cooperators will contribute for the public good with c[SL] = c · b[SL]

and c[C] = c·b[C], respectively for SL and C. For each the collective social game, one must specify each the possible

payoffs resulting from agent’s interactions. Following each game’s formulation from section 2.1.3, and attending to

[36] formulation, the payoffs for each the N -person social games may be given according to:

• NSG, with the parameters (N,M, b̄, b[C], b[SL], c):

Π
[SL]
C (i

[SL]
C , i

[C]
C ) = ΠD(i

[SL]
C , i

[C]
C )− c[SL]

i
[SL]
C + i

[C]
C

Θ− c[SL]

M
(1−Θ) (5.1)

Π
[SL]
D (i

[SL]
C , i

[C]
C ) = b[SL]Θ (5.2)

• NSH, with the parameters (N,M, b̄, b[C], b[SL], c, F ):

Π
[SL]
C (i

[SL]
C , i

[C]
C ) = ΠD(i

[SL]
C , i

[C]
C )− c[SL] (5.3)

Π
[SL]
D (i

[SL]
C , i

[C]
C ) = (i

[SL]
C + i

[C]
C )

F c̄

N
Θ (5.4)

• CRD, with the parameters (N,M, b̄, b[C], b[SL], c, r):

Π
[SL]
C (i

[SL]
C , i

[C]
C ) = ΠD(i

[SL]
C , i

[C]
C )− c[SL] (5.5)

Π
[SL]
D (i

[SL]
C , i

[C]
C ) = b[SL](Θ + (1− r)(1−Θ)) (5.6)
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where for all cases we have Θ ≡ Θ(c[SL]i
[SL]
C + c[C]i

[C]
C − c̄M) as the Heaviside function, that is, Θ(k) = 1 whenever

k ≥ 0 and Θ(k) = 0 otherwise. We also have c̄ = cb̄ where Zb̄ = Z [SL]b[SL] + Z [C]b[C] is the average endowment.

Notice that all quantities, c, b̄, b[SL] and b[C] are all real positive numbers.

In contrary to SL, conformity does not rely on fitness in the strategic decision, rather depending in the number

of individuals following each strategy. In this sense, one may generally define:

Π
[C]
C ≡ x

(Z−1)
C =

i
[C]
C + i

[SL]
C

Z − 1
Π

[C]
D ≡ x

(Z−1)
D =

i
[C]
D + i

[SL]
D

Z − 1
(5.7)

From these payoffs, one may compute the fitness f [L]
S for any strategy S ∈ S and any learning rule L ∈ L.

As conformity populations are not engaged in groups of size N , like social learners, the conformity fitnesses are

reduced to their respective payoffs. Regarding social learning, we may define the respective fitnesses naturally

using the multivariate hypergeometric sampling without replacement, according to equation 2.10 as:

f
[SL]
C (i) =

(
Z − 1

N − 1

)−1 N−1∑
j[SL]=0

N−1−j[SL]∑
j[C]=0

(
i[SL] − 1

j[SL]

)(
i[C]

j[C]

)(
Z − i[SL] − i[C]

N − 1− j[SL] − j[C]

)
Π

[SL]
C (j[SL] + 1, j[C]) (5.8)

f
[SL]
D (i) =

(
Z − 1

N − 1

)−1 N−1∑
j[SL]=0

N−1−j[SL]∑
j[C]=0

(
i[SL]

j[SL]

)(
i[C]

j[C]

)(
Z − 1− i[SL] − i[C]

N − 1− j[SL] − j[C]

)
Π

[SL]
D (j[SL], j[C]) (5.9)

Assuming an asynchronous updating process in the evolutionary dynamics, from these fitnesses we may com-

pute all the required transition probabilities, for both learning rules, directly derived from equation 2.51, as follows:

T
[SL]

C→D\D→C(i) ≡ T
[SL]
∓ (i) =

i
[SL]

C\D

Z

{
i
[SL]

D\C + (1− h)i
[C]

D\C

Z [SL] − 1 + (1− h)Z [C]

(
1 + e

β[SL](f
[SL]
C\D(i)−f

[SL]
D\C(i))−1

)}
(5.10)

T
[C]

C→D\D→C(i) ≡ T
[C]
∓ (i) =

i
[C]

C\D

Z

{
i
[C]

D\C + (1− h)i
[C]

D\C

Z [C] − 1 + (1− h)Z [SL]

(
1 + e

β[C](f
[C]
C\D(i)−f

[C]
D\C(i))−1

)}
(5.11)

where f
[C]
S is reduced to Π

[C]
S , for S ∈ {C,D}, as previously stated. Recall that taking into account a certain

mutation rate does not change in heterogeneous populations, and hence one may redefine the previous transition

probabilities according to equations 2.23 and 2.24.

From these transition equations, we may compute the transition matrix, following the description from section

2.3.3, however it must be adapted to a multi-dimensional space. To do so, we start by indexing all the possible

states, that is, all configurations i = {i[SL]
C , i

[C]
C }, with an integer number. For this conversion, we define a bijective

function V such that p = V (i) and q = V (i′), and, consequently, i = V−1(p) and i′ = V−1(q). Afterwards,

we may write the transition matrix in such a way that Tqp = Ti→i′ , where Ti→i′ is the corresponding transition

probability from configuration i to i′, and, having computed T , one may finally obtain the stationary distribution as

usual, according to equation 2.33 [36]. To the obtained vector it is applied the inverse of V so one may finally obtain

the stationary distribution directly as a function of i, as s̄ ≡ s̄(i).

Lastly, from this transition probabilities, and following equation 2.52, we may generally define the 2-dimensional

heterogeneous gradient of selection for social learning and conformity as follows:

∇(i) = {G[SL](i), G[C](i)} = {T [SL]
+ (i)− T

[SL]
− (i), T

[C]
+ (i)− T

[C]
− (i)} (5.12)

In thisN -person framework, specifically in a setup with two learning rules, we may evaluate the overall dynamics
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in terms of cooperation optimization by computing the group achievement as:

ηG(i) =

Z[SL]∑
j[SL]=0

Z[C]∑
j[C]=0

aG({j[SL], j[C]}) · s̄({j[SL], j[C]}) (5.13)

Having all this quantities, we are now in conditions to proceed to the gradient evaluation. For each the N -person

games, previously defined in equations 5.1-5.6, we start by investigating the effects of homophily in evolutionary

dynamics for populations with an equal amount of social learners and conformists, that is, having Z [SL] = Z [C].

In the same way as in the homogeneous populations studies, we will evaluate the system’s dynamics in both

terms of the gradient of selection, ∇(i), and the stationary distribution, s̄(i), for every single possible configuration,

which, in this case, corresponds to varying both i[SL]
C ∈ [0;Z [SL]] and i[C]

C ∈ [0;Z [C]]. Taking a population size of

Z = 100, hence having Z [SL] = Z [C] = 50, with a mutation rate of µ = 1
Z

, and with both learning rules equally

balanced with the intensities β[SL] = β[C] = 1, we start by investigating the homophily effects on the dynamics of

both NSG and NSH. The obtained results are shown in the Figure 5.1 below.

(a) NSG, with (N,M, b[SL], b[C], c) = (10, 5, 1, 1, 0.1).

(b) NSH, with (N,M, b[SL], b[C], c, F ) = (10, 5, 1, 1, 0.1, 9).

Figure 5.1: Gradient of selection for the NSG and the NSH under conformity, in heterogeneous popu-
lations with Z [SL] = Z [C] = 50, µ = 1

Z , β[SL] = β[C] = 1.0. We investigate the effects of increasing
homophily in the population dynamics, that is, on ∇ and s̄ for each possible configuration.
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A quick reminder that, along this chapter, most studies will be performed for a specific game setup, as we rather

focus on the overall dynamics in heterogeneous populations than on its dynamics dependency on the game setup.

Regarding the figure above, for both NSG and NSH, we notice that, having null homophily, one can recover, in

some way, the typical homogeneous conformity dynamics, characterized by the existence of three fix points, two of

them being stable on the monomorphic states (they will be addressed as such), in this case, with (i
[SL]
C , i

[C]
C ) ≈ (0, 0)

or (i[SL]
C , i

[C]
C ) ≈ (Z [SL], Z [C]), while the other is unstable at the center, at (i[SL]

C , i
[C]
C ) ≈ (0.5Z [SL], 0.5Z [C]). This

insight comes more clear if we take into consideration the symmetry of the dynamics, which in this case may be

considered practically symmetrical. In general, this dynamic seems to replicate with increasing homophily, but only

until a certain point, from which the dynamics is highly modified.

For the NSG in this specific setup, from sub-figure (a), and attending to the stationary distribution, the stable

equilibrium relative to the cooperation monomorphic state is clearly much stronger than the other one, as the system

spends much more time in the first case. Moreover, we notice that the population dynamics is not much sensitive

to most lower homophily values, when, even having homophily at 60%, the population dynamics is practically the

same as for h = 0, but however, if one keep increasing the homophily, we will eventually reach a threshold from

which the system dynamics strongly changes, specially when h is maximum. In this latter case, as we can see from

the graphic on the right, the cooperation monomorphic fixed point has moved to the left (lower i[SL]
C ), while the other

two fix points, the other stable and the unstable one, have disappeared. This result may suggest that an increase of

the homophily may lead a new dynamics where the only most probable outcome, after a sufficient amount of time,

is a configuration that promotes highly cooperative standards. Even though the group achievement is lower than in

the other cases with lower h, which could indicate a worst performance in terms of cooperation optimization, we no

longer have the tendency to move towards the defection monomorphic state, having only one strong attraction point

(in terms of evolutionary dynamics a stable fix point is an attraction point).

The same does not occur in the NSH, shown in sub-figure (b). Firstly, we may observe that, contrary to the

NSG, the stationary distribution has its maximum value for the defection monomorphic state, rather than for the

cooperation one. Besides that, but now alike the previous case, the population dynamics is not sensitive to most

lower values of homophily, although, keeping to increase the value of h will eventually lead to strong modifications

in the population dynamics. However, in this case, instead of the fix points disappear, they progressively move

away from their homophilic position. In specific, the cooperation monomorphic fix point moves the left (lower i[SL]
C )

and the defection monomorphic fix point, the stronger one, slightly moves to the right (higher i[SL]
C ), while the

unstable equilibrium moves to a configuration with higher i[SL]
C but lower i[C]

C . So, contrary to to the NSG, for this

specific setup, increasing the homophily will not affect conceptually the dynamic of the population, where defection

is favoured, although the equilibria, either stable or unstable, will change with increasing h.

Regarding the group achievement, we notice something particularly interesting: the relations between ηG and

h are not linear, that is, the value for h for which the group achievement is maximum is not necessarily 1. For

instance, from the available results for the NSG, we infer a very light increase of ηG from h = 0 to h = 0.6, whereas

for the homophilic setup the group achievement reaches its lowest value. In opposition, for the NSH, the group

achievement starts to decrease with increasing homophily, however it rapidly rises from the lowest value on h = 0.9

to its maximum at h = 1. Having such different learning rules for the relation between the homophily and the

probability of success, that is, for ηG(h), a more detailed study on this topic shall be addressed. But firstly, we will

analyze the homophily effects on the CRD dynamics, just like previously done for both NSG and NSH.

The dynamic of the collective risk dilemma is usually known to be very sensitive to the risk, as one may infer

from many different studies [33, 35–37]. In this reasoning, and like previously performed, for this game in specific,
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we will address the investigation of the effect of increasing homophily on the population dynamics for different values

of the risk, specifically, for r = {0, 0.5, 1}. The results are shown below in Figure 5.2.

(a) CRD, with (N,M, b[SL], b[C], c, r) = (10, 5, 1, 1, 0.1, 0).

(b) CRD, with (N,M, b[SL], b[C], c, r) = (10, 5, 1, 1, 0.1, 0.5).

(c) CRD, with (N,M, b[SL], b[C], c, r) = (10, 5, 1, 1, 0.1, 1).

Figure 5.2: Gradient of selection for different CRD games, with various r, under conformity, in hetero-
geneous populations with Z [SL] = Z [C] = 50, µ = 1

Z , β[SL] = β[C] = 1.0. We investigate the effects of
increasing homophily in the population dynamics, that is, on ∇ and s̄ for each possible configuration.

70



We start by ascertain that, when the homophily is null, regardless on the value of the risk, the dynamics are

nearly the same, as we have recovered the homogeneous conformity dynamics. The only differences come from

a very slight variation of the position of the unstable fix point, that progressively moves to the left as we increase

the risk, and on the stationary distribution, where we observe the cooperation monomorphic state is also a viable

outcome when the risk is maximum, while for the other cases only defection is expected. Like before, for both

NSG and NSH, the dynamics maintains the same as we increase the homophily, until a certain point, from where

it is highly modified. In fact, when we have h = 0.9, we may already notice that the fix points on the edges, for

cooperation and defection monomorphic states, have, respectively, moved to the left (lower i[SL]
C ) and to the right

(higher i[SL]
C ). Moreover, regarding the position of the internal equilibrium, it is interesting to notice the following: as

we increase the risk, the fix point gradually moves down (lower i[C]
C ), a result that goes along with the first insight

taken for h = 0. In fact, the overall dynamics appears to be the result of twisting the null homophily symmetry, in a

circular motion, counter-clockwise, and hence slightly pushing the edge’s fix points closer to the center. However,

this insights are merely empirical speculations, from only a visual point of view, and hence they should not be taken

as formally well-grounded.

For the maximum homophily regime, things get more exciting. Starting off with half risk, r = 0.5, and attending to

the previous insights, the internal equilibrium stands approximately in the middle, regardless on the homophily, even

though, when it is maximum (h = 1), it lightly deviates from the central position in a bottom-right direction. The stable

fix points follow a learning rule very close to the one from NSH, where cooperation monomorphic equilibrium has

moved to lower i[SL]
C and defection equilibrium has moved to higher i[SL]

C . Conceptually, in this case, the dynamics

keeps its original form, and hence we will take it as a comparison basis. When the risk is null, we notice that two

equilibria, the unstable and one stable, have disappeared, just like for the NSG, but instead of the defection one,

it is the cooperation monomorphic equilibrium that is gone. Furthermore, alike the NSG, the fix point associated

with a stronger stationary distribution is the one that remains present in the dynamics. Finally, having the maximum

possible risk, the dynamics seems to be the opposite of the previous study-case (for r = 0), however, no fix-points

have vanished. Instead, the unstable equilibrium appears to move towards the defection monomorphic state, at

very low levels of i[C]
C , while both stable equilibria stay as expected, similarly as for r = 0.5.

Attending to the stationary distribution that, in this case, is significantly present for both the stable equilibria,

whereas for null risk it is only strongly present for the defection monomorphic fix point, we can be led to think that,

when trying to predict the effects of homophily, the stationary distribution in h = 0 may work as an anchor for the

stable equilibria, as the fix points for which s̄ is meaningful will remain present on the population dynamics as we

increase the homophily, whereas the other fix points vanish. This insight may taken from both Figures 5.1-(a) and

5.2-(a). Although in the CRD with r = 0.5 the same does not occur, we notice that, for this specific game, the

unstable fix point is initially exactly at the middle, while in the other cases it is lightly deviated from the center of

the configurations. However, these latter insights lack a formal foundation, being entirely empirical speculations.

Furthermore, they are based only on the present studies, and hence, they are hardly generalizable. Nevertheless,

it would be interesting to investigate more about these effects and if the stationary is really helpful in predicting the

effects of homophily in the population dynamics.

Regarding the group achievement, independently on the value of the risk, we notice there are a tendency

of an overall increase of ηG with increasing homophily. One may notice, however, in sub-figure (b), the group

achievement for a 90% homophilic population is (slightly) lower than for the not homophilic case, even though it

generally increases from h = 0 to h = 1, that is, ηG(h = 0) < ηG(h = 0), which suggest the first insight was

incorrect. In this sense, and like previously mentioned for both NSG and NSH, one may wonder about the evolution
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of the relation ηG(h). To conclude about any correlation, for each the games previously presented, we vary the

homophily in small steps and compute the group achievement for those configurations. The result is presented

below, in Figure 5.3.

Figure 5.3: Group achievement for different N -person games, under conformity and social learning, in
all the heterogeneous populations previously studied. The evolution of ηG(h) is not regular and even for
the same game it may change a lot. This may be indicative of a dependency on game’s configurations.

For the NSG, the values of ηG appear to be constant with increasing h, although, attending to Figure 5.1-(a),

we know it actually lightly increases, but only until a certain point, from which it drops drastically. For the NSH,

the opposite occurs, now much more clearly: ηG decreases with h until a critical homophily, from with it increases

significantly. For the CRD, and contrary to the earlier insights, the group achievement shows a learning rule similar

to the one taken for the NSH, that is, initially it decreases followed by an (in this case, not so) abrupt increase.

From an overall point of view, whereas for the NSG the homophily seems to prejudice the probability of success, for

both the NSH and CRD it seems to enhance that probability, being beneficial in terms of cooperation maximization.

Attending to all these insights, we are led to suggest that the group achievement goes, not only as a function of the

homophily, but also as a function of the game’s configuration, that is, ηG ≡ ηG(h, v) with v the set of variables that

identify each game. This result would be expected if one take into consideration the previous chapter conclusions,

where we proved the dependency ηG ≡ ηG(v). As that, in order to maximize the group achievement, we suggest that

different studies on the relation ηG(v) or ηG(h, v), respectively for homogeneous and heterogeneous populations,

shall be performed. The resulting information shall then be crossed in order to obtain the desired maximum possible

ηG.

The conformity’s dynamics, alike we saw for homogeneous populations, is very specific and easily identifiable,

generally not depending on the game. In its pure for, it is characterized by the coordination dynamic, with two

stable equilibria on both the monomorphic states and one unstable internal fix point. Moving to heterogeneous

populations, homophily shows itself as able to change the overall expected conformity dynamic, as it may either

promote a C-dominance (in the case of NSG) and a D-dominance (for the CRD) dynamic, which would not happen

in homogeneous populations. In this sense, conformity in heterogeneous populations brings up a whole new set of
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possible dynamics from which we may infer very interesting knowledge.

5.3 Counterfactual Thinking and Social Learning

Along this thesis, counterfactual thinking has shown to be a very interesting and complex learning rule, where,

depending on the intensity β[CT ], it may either foster coordination or co-existence, hence becoming a very flexible

learning rule. In homogeneous populations we saw that, contrary to conformity, counterfactual reasoning in its pure

form does depend on the played game, as it directly depend on agents’ fitnesses on its updating process. This way,

we expect to find a very rich and complex dynamics that may contrary any previous intuition.

Like before, we start by building a population sub-divided onto two sub-populations, one of social learners and

the other constituted by counterfactual thinkers, thus having L = {SL,CT}. Following the same reasoning as for

conformity, we consider our population has a size of Z = Z [SL] + Z [CT ] individuals, from where Z [SL] are social

learners and Z [CT ] follow CT, that will play a given N -person game. Individuals resorting to either SL or CT are

given an initial endowment b[SL] and b[CT ], respectively, and, being cooperators, they are compelled to contribute,

proportionally to their respective endowments, with c[SL] = c · b[SL] and c[CT ] = c · b[CT ]. Having counterfactual

thinking based on fitness, just as social learning, the payoffs relative to SL for each the N -person games, from

equations 5.1-5.6, remain unchanged, now only substituting [C] by [CT ] in the learning rules. The payoffs relative

to CT are trivially obtained by replacing the SL characteristic variables, that is, both b[SL] and c[SL] by, respectively,

b[CT ] and b[CT ] in equations 5.1-5.6.

From these payoffs, we may compute the fitness f [L]
S for any S ∈ S and L ∈ L. Following the same approach

as before, again taking the multivariate hypergeometric sampling without replacement, we obtain the fitness for SL

similarly to equations 5.8 and 5.9, but substituting [C] by [CT ]. For CT the fitness may be obtained in the same way

as before but swapping [SL] with [CT ], however, taking into consideration the CT formulation, we have that:

f
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Having this, and again considering an asynchronous updating process in the evolutionary dynamics, we may

compute the required transition probabilities, for both learning rules, as follows:

T
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C→D\D→C(i) ≡ T
[SL]
∓ (i) =

i
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C\D

Z

{
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(
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where for the CT we do not consider the second fraction of C\D, attending to the fact counterfactual thinking follows

a static update in its revision process, that is, it does not depend on one another to proceed to its revision. In the

case of SL, in its formal definition, a social learner will only evaluate the fitness of a certain strategy, not considering

the learning rule of the other interacting individual. In this reason, the second term (in equation 2.10) would be

the same as the first one, and hence they may be condensed into a single term, just like previously formalized in

the SL-C framework, once that both learning rules are based in different functions - fitness for social learning and
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fraction of S-individuals (S ∈ {C,D}) for conformity.

From this transition probabilities, like before, we are able to compute the major tools to evaluate a game’s

dynamics, such as the stationary distribution and the 2-dimensional gradient of selection. The first one will be

calculated exactly as previously performed for conformity, whereas ∇ may generally be defined for social learning

and counterfactual reasoning as follows:

∇(i) = {G[SL](i), G[CT ](i)} = {T [SL]
+ (i)− T

[SL]
− (i), T

[CT ]
+ (i)− T

[CT ]
− (i)} (5.18)

Finally, to evaluate the game dynamics, we may compute he group achievement similarly to equation 5.13 but,

again, substituting [C] by [CT ] in the learning rules’ index. Another quantity of interest, which allow us, is the

expected fraction of cooperators, EFC, that goes as previously defined in equation 2.34. Having different sub-

populations, one may compute the EFC specifically for each sub-population, or for the population as a whole. In

this case, we will define EFCSL and EFCCT , respectively, as the expected fraction of cooperators for the sub-

populations of SL and CT, and EFC will refer to the whole population. Formally, we will have the following:

EFC =
i
[SL]
C + i

[CT ]
C

Z [SL] + Z [CT ]
· s̄ EFCSL =

i
[SL]
C

Z [SL]
· s̄ EFCCT =

i
[CT ]
C

Z [CT ]
· s̄ (5.19)

Attending to previous studies, as in [13], when having homogeneous populations, one would expect that a

small prevalence of individuals resorting to CT strongly favours cooperation. In this sense, and before proceeding

with our investigation on the effects of homophily in the evolutionary dynamics, it would be interesting to evaluate

the overall dynamics of populations when varying the different sub-populations sizes. Specifically, we will take a

population with a fixed size Z = 100, with µ = 1
Z

, and we will vary the proportion Z [SL]/Z [CT ], where Z = Z [SL] +

Z [CT ]. For each population, we compute all the available evaluating tools, ηG, EFC, EFCSL and EFCCT , looking

to find any correlation that would provide interesting conclusions. For two CRD with (N,M, b[SL], b[CT ], c, r) =

(10, 5, 1, 1, 0.01, r), where r = {0.2, 1.0}, with an homophily of h = 0.9, and having both learning rules equally

balanced with β[SL] = β[CT ] = 5, we may obtain the results on the Figure 5.4, shown below.

Figure 5.4: ηG, EFC, EFCSL and EFCCT versus the proportion between the sizes of the different
sub-populations. For all the cases we have Z = 100, µ = 1

Z , h = 0.9 and β[SL] = β[CT ] = 5, for the CRD
with (N,M, b[SL], b[CT ], c, r) = (10, 5, 1, 1, 0.01, r), where r = {0.2, 1.0}.

In the case where r = 0.2, we notice that all quantities, with exception to the EFCCT , progressively in-

crease as we increase the proportion of Z [SL]/Z [CT ], reaching their maximum values for the highest proportion

of Z [SL]/Z [CT ] = 90/10. It will also be interesting to notice that it is exactly in this point where we find the minimum
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value for the EFCCT , which reveals a very exciting result: counterfactual reasoning, while responsible for fostering

the population dynamics towards much more cooperative standards, does not concerned about improving the co-

operation standards of the ones of its kind. Moreover, it is to be noted that this results go along with the previously

obtained insights for homogeneous populations, from Figure 4.7, where we saw that increasing the prevalence of

CT agents is firstly responsible for strongly nudge the entire population towards highly cooperation standards, but

only until a certain critical point, where ηG reaches its maximum value, that is followed by a progressive decrease

of the group achievement. When setting apart the two learning rules onto two sub-populations, one may inspect

specifically which type of individuals are being enhanced, in terms of cooperation, which in this case turns out to be

the social learners, while cooperation is not fostered among CT’s.

Regarding the second case, with maximum risk, in contrary to the previous case, we may observe the EFCSL,

after reaching its maximum value, starts decreasing progressively as we increase the proportion of Z [SL]/Z [CT ].

However, and attending that EFCCT also decreases with increasing sub-populations’ proportion, it is not intuitive

that the overallEFC follows the opposite trend, being maximum for the minimum fraction of CT individuals. Although

this seems contradictory, one must take into consideration the proportion of Z [SL]/Z [CT ] as a measure of the

contribution of both EFCSL and EFCCT on the overall EFC. In fact, we may notice that, having Z [SL]/Z [CT ] =

10/90, the EFC is much closer to EFCCT than to EFCSL, while in the opposite case Z [SL]/Z [CT ] = 90/10, the

EFC is much closer to EFCSL. Nevertheless, and regardless on the curves for EFCSL and EFCCT , for the both

graphics above, specifically for the CRD, we may infer that a lower fraction of CT, relatively to the fraction of SL,

promotes higher group achievements and EFC, regardless of the risk.

As the above results were performed specifically for a fixed homophily of h = 0.9, one may now wonder if,

besides the sub-populations’ sizes, homophily also shows an impact on the overall cooperative quality of a certain

population. In this sense, and alike in the previous conformity study, we may proceed to the study of the relation

between the group achievement and the homophily, that is, the evolution of ηG(h), for different populations. More

specifically, and as a reference, we will focus on same-sized sub-populations. Taking a population size of Z = 100,

with a mutation rate of µ = 1
Z

, and with both learning rules equally balanced with β[SL] = β[CT ] = 5, we investigate

the evolution of ηG with the homophily for both the NSG with (N,M, b[SL], b[CT ], c) = (10, 7, 1, 1, 0.75), a NSH

with (N,M, b[SL], b[CT ], c, F ) = (10, 5, 1, 1, 0.5, 9.5) and for CRD with (N,M, b[SL], b[CT ], c, r) = (10, 5, 1, 1, 0.01, r),

where we have r = {0, 0.5, 1}. The obtained results are shown below, on Figure 5.5.

From the figure above, we may be lead to suggest that an increase of the homophily is responsible for increasing

the group achievement, regardless on the social game. Although this is true for most games, in some configurations

the opposite occurs, as homophily progressively lowers the probability to achieve cooperative success. This is the

case of the CRD that, having the same exact configurations, but changing the risk, may either lead to a cooperation

enhancement, for higher risks, or to lowering of the overall cooperation standards. Again, as we saw for conformity,

this strongly suggests that, regarding cooperation optimization, the overall quality of the evolutionary dynamics’

outcome for a certain population is dependable on the social game’s configuration, that is, not only we have ηG ≡

ηG(h) but we also have ηG(h, v), where v stands for the set of variables that define a certain social game. Once

again, one may notice this conclusions are no different from the ones taken for homogeneous, just as previously

discussed in the previous section 5.2.

Finally, one small note on the previous results: contrary to conformity, we may observe that either the minimum or

maximum values of the group achievement, regardless on the game’s configuration, occur the homophily extremes,

that is, for either full homophilic sub-populations or for perfectly well-mixed sub-populations. In accordance with

the upper conclusions, that is, attending higher ηG are more often reached for maximum homophily, one may be
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Figure 5.5: Group achievement for different N -person games, under counterfactual thinking and social
learning, in the heterogeneous populations’ framework. In most cases, the ηG grows up with increasing
homophily, but for other cases the opposite occurs. In the CRD, for instance, we see that different risks
may lead to different outcomes. This may be indicative of a dependency on game’s configurations.

lead to suggest that, generally, heterogeneity promotes higher cooperative standards, or, in other words, well-mixed

populations lead to worst performance in terms of cooperation maximization. Although these insights sound very

exciting, they are devoid of a considerable amount of information, being based only on 5 results. In this sense,

we suggest a more wide investigation on this subject would be required to verify these primordial insights, but

nonetheless, it would be interesting to conclude pure heterogeneity fosters cooperation, at least generally.

Similarly to previous studies on the effects of homophily in the population dynamics, we will evaluate the system’s

dynamics, in both terms of the gradient of selection, ∇(i), and of the stationary distribution, s̄(i), for every single

possible configuration, which, in this case, corresponds to varying both i
[SL]
C ∈ [0;Z [SL]] and i

[CT ]
C ∈ [0;Z [CT ]].

Specifically, we take the same populations’ configurations as for the previous study on Figure 5.5, that is, Z [SL] =

Z [CT ] = 50, µ = 1
Z

, and β[SL] = β[CT ] = 5, and we investigate the homophily effects on the population dynamics

for all the NSG, the NSH and the CRD, above described. In this study, contrary to homogeneous populations, we

will not focus on balancing the different learning rules through their respective intensities, as we intend to see how

they react in their true form. The results are shown below in Figure 5.6.

Firstly we notice that, contrary to conformity dynamics, counterfactual thinking does not replicate the typical

homogeneous dynamics for when the homophily is null. In fact, we notice that, regardless on the social game, there

are not any signs of symmetry on the dynamics for h = 0. The results in the figure even suggest that increasing the

homophily does not significantly affects the overall population dynamics. Attending to the definitions for the transition

probabilities for CT, in equations 5.16 and 5.17, this latter insight could be justified if one takes into consideration

that, not only counterfactual thinking has a much stronger dynamic, when compared to social learning, but also it

is independent on the homophily. In this reasoning, the only changes on ∇(i) with homophily will come from the

differences on the x-component, relative to G[SL].

Even though the overall dynamics in terms of the gradient of selection does not significantly change, the system

internal equilibria does change with the homophily, and, with that, the stationary distribution. Starting with the NSG,

when h = 0, one can identify three fix points, two stable, one more hidden on the left and a stronger one on the

right, and one unstable, that is close to the weaker stable equilibrium. Recall in this analysis we weight the strength
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(a) NSG, with (N,M, b[SL], b[CT ], c) = (10, 7, 1, 1, 0.75).

(b) NSH, with (N,M, b[SL], b[CT ], c, F ) = (10, 5, 1, 1, 0.5, 9.5).

(c) CRD, with (N,M, b[SL], b[CT ], c, r) = (10, 5, 1, 1, 0.01, 0.5).

Figure 5.6: Gradient of selection for the NSG and the NSH under conformity, in heterogeneous popu-
lations with Z [SL] = Z [CT ] = 50, µ = 1

Z , β[SL] = β[CT ] = 5.0. We investigate the effects of increasing
homophily in the population dynamics, that is, on ∇ and s̄ for each possible configuration.
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of the fix points in terms of the stationary distribution, being that it is on the stronger fix point that we may find s̄max.

As we increase the homophily, for instance, at h = 0.5, both the unstable and the stable and weak fix points start

to get more visible, while the stronger equilibria slightly moves to the right, corresponding to a better performance

for the SL sub-population, in terms of cooperation. When finally reaching the maximum homophily, besides the

unstable fix point being now much more clear, we also notice the weaker stable equilibria has moved entirely to the

left, whereas the stronger fix point is now very close to i[SL]
C ≈ Z [SL]. This means that, in this specific case, even

though we do not have any improve on the cooperative dynamics of CT, the presence of CT’s, in a full homophilic

scenario, nudges specifically the entire sub-population of SL towards extremely high cooperative standards, a result

that matches the previous insights from Figure 5.4.

For the other two social games, and focusing on the stationary distribution over the stronger stable fix point, very

similar results may be achieved: increasing the homophily progressively pushes this stronger stable equilibrium

towards high SL cooperative standards, that is, i[SL]
C ≈ Z [SL], even though cooperation in the CT sub-population

is not only not favoured, but even harmed. As this result is transverse to all the presented social games, we are

willing to suggest a possible generalization of this conclusion. It is interesting to notice that, even when expecting

a decrease on ηG for the CRD for a null risk, we may notice a considerable increase of the group achievement for

r = 0.1. This insight may indicates that the exception cases on the previous conclusions, regarding homophily being

responsible for an increase of the ηG, occur only for very small risks, enhancing the generality of those conclusions.

5.4 Final Notes

When compared to the homogeneous case, the evolutionary dynamics of heterogeneously organized popula-

tions brings a whole new range of possible outcomes, depending on the degree of heterogeneity, that could be

measured according to the homophily. In the conformity on social learning framework, the increasing homophily

is responsible for twisting the typical coordination dynamics, characteristic of conformity in well-mixed populations,

onto a wide variety of completely different scenarios, such as C-dominance or D-dominance, depending on the

game’s configuration. Consequently, the group achievement reveals itself as dependent, not only on the game’s

variables, as we saw in homogeneous populations, but also on the homophily. It should be noted that, in some

cases, the maximum or minimum group achievements occur in non extreme homophilies, that is, not in either h = 0

or h = 1, which suggest a non-linear relation for ηG(h).

Regarding the framework with counterfactual thinkers on social learning, a completely different dynamic may

be achieved. For one same level of heterogeneity, we have concluded that one may obtain the highest cooperation

standards, evaluated either by the ηG and the EFC, for the smallest prevalence of CT-driven agents. More specifi-

cally, we suggested that CT individuals, while responsible for fostering the population dynamics towards much more

cooperative standards, does not concerned about improving the cooperation standards of the ones of its kind, a

result achievable when analyzing the evolution of both EFCSL and EFCCT . Furthermore, although the results on

the relation ηG(h) go in agreement with the conformity results, contrary to this framework, higher heterogeneous

levels generally promote higher cooperative outcomes, or, in other words, well-mixed populations lead to worst

performance in terms of cooperation maximization. Nevertheless, take into consideration this result lacks of a sig-

nificant amount of information, most likely not having enough evidence to support, thus should be taken solely as

a primordial, and possibly premature, insight. Finally, having the CT formulation independent on the homophily, the

level of heterogeneity does not highly influence the overall social dynamics, but however, regardless on the social

game, it does push the entire population towards specifically highly SL cooperative standards.
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Chapter 6

Conclusions

Earlier in Chapter 1 we have defined our main objectives for this thesis. In a general way, along this thesis, we

saw that very different configurations may lead to very distinct dynamics, from which we generally concluded that

cooperation is highly dependent on most (or even, all) of the variables that characterize a certain population. We

stand now at a position to evaluate the our results relative to each one of these goals, individually.

6.1 Achievements

Synchronism and Asynchronism

Starting off with Chapter 3, we saw that the effects of increasing the synchronism level, along the spectrum of

synchrony, are in general nearly negligible, not only for a pure social learning population, but also for homogeneously

well-mixed populations of social learners and conformists, and regardless on the social game. Thereby, also the

cooperation evaluation tools, such as the group achievement and the expected fraction of cooperators, suffered

negligible modifications with increasing synchronism.

However, we found out those changes are not generic as there’s a dependency on the set of game’s config-

uration, that is, while for some games these slight changes may act in order to increase ηG, in other cases the

opposite occurs. Formally speaking, we have concluded that ηG ≡ ηG(v, nr), where we define v as the set of the

game’s configuration variables. Regarding convergence, although synchronism generally accelerates the system’s

convergence for either one of the absorption states, approximately linearly with nr, also the average fixation time

increases, suggesting the total number of revisions increase with increasing synchronism level.

In opposition to the previous insights, counterfactual thinking shows to be much sensitive to synchronous up-

dates, generally suggesting a progressive increase of the group achievement as we increase the number of revisions

in the updating process, which, contrary to conformity or social learning, are no longer so small to be negligible.

Population Dynamics in Homogeneous Populations

Moving on to homogeneous populations, and now fixing the updating process on the birth-death process, in

Chapter 4 we saw that depending on the learning rule, conformity or counterfactual thinking, many different con-

clusions may be taken. In general, we saw that cooperative action is highly dependent on, not only the game’s

configuration variables, but also on the populations composition, in terms of learning rules. Formally, we found that

ηG ≡ ηG(v, δ), where here we define δ = {δ[SL], δ[C], δ[CT ]}.
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Firstly, conformity shows to bring a very stable dynamic, being, on its pure form, completely independent on the

social game’s configuration, either in the 2-person or the N -person framework. In this sense, even though this dy-

namic strongly depends on the intensity of conformity, the formal definition of conformity states that it should always

promote coordination. Regarding cooperation maximization, conformity may have either a positive or a negative

impact on the overall group achievement, depending on SL’s characteristic ηG position relatively to the unstable

equilibria. Furthermore, one may also conclude that, contrary to CT, it is required a considerable prevalence of

conformity-driven agents to substantially change the social game dynamics.

In the counterfactual reasoning case, however, the dynamic does depend on the game’s configuration. Firstly,

we saw that CT is very versatile, as while for relatively lower values of the β[CT ] individuals resorting to CT promote a

co-existence dynamic, for higher intensities a coordination dynamic is favoured. Moreover, we saw that CT is highly

dependent on the game’s configuration, although generally acts in favor of maximizing cooperation. To complement

the insights from [13], we showed that, for some cases, regarding collective action, a small prevalence of CT-driven

individuals is sufficient to foster highly cooperative standards, but only until a certain critical point, from which adding

more CT agents becomes a disadvantage for cooperative action.

Population Dynamics in Heterogeneous Populations

Finally, on the heterogeneous populations framework, in Chapter 5 we concluded that the cooperative action is

highly dependent, not only on the game’s configuration variables, but also on the level of heterogeneity, measured

according to the homophily. For the conformity on social learning framework, the increasing homophily is responsible

for progressively twisting the typical coordination dynamics, characteristic of conformity in well-mixed populations,

onto a wide variety of completely different scenarios, depending on the social game. Results also suggest that there

is not a direct relation between the group achievement and the homophily, hence meaning the probability to achieve

success, not only depends on the game, but also on the level of heterogeneity.

For the counterfactual thinking, on the other hand, very different results were achieved. Firstly, for one same

level of heterogeneity, the highest cooperation standards may be obtained for the smallest prevalence of CT-driven

individuals, meaning the best cooperative performance is achieved only for a small fraction of CT’s. Results also

suggest that CT individuals, while responsible for fostering the population dynamics towards much more cooperative

standards, does not concerned about improving the co-operation standards of the ones of its kind. Moreover, in

contrary to conformity’s framework, higher heterogeneous levels generally promote higher cooperative outcomes,

or, in the other hand, well-mixed populations lead to worst performance in terms of cooperation maximization.

6.2 Future Work

Generally, our model looks very complete and easily generalizable, although it lacks on simplicity. In fact, we saw

on Chapter 3 the formulation for the general transition matrix is quite complex, as computing T n quickly becomes

computationally extremely extensive, and hence we find ourselves in a very limiting situation. In this sense, it would

be extremely helpful to find a new formulation that accomplishes the results from equation 2.17 in a much more

simple and elegant way. If such would be achieved, much more detailed studies on the effects of synchronism

could be performed, with special interest on how these synchronism processes may enhance the performance of

CT-driven individuals, regarding cooperative action. More over, having this new formulation, we would have more

evidence that would strongly support our previously mentioned insights.

Regarding population dynamic, more profound studies may be performed, similarly to the ones performed along
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this thesis, that look to find the group of conditions that allow us to maximize cooperative action. The more infor-

mation we have, the more aware of all the possible outcomes we will be. Besides that, as mentioned, it would be

very relevant to find new ways to study the system’s dynamics, for instance, by looking for any relations between

certain combination of variables that would allow us to reduce the problem dimensionality a much simpler and direct

evaluation of the system’s dynamics. Moreover, it could be interesting to construct a new formulation for conformity

when considering group action, just like in the case of SL. Along that, we have also discussed an urging need for

a new success measurement tool that takes into account all new learning rules, independently on how they are

internally organized.

In our heterogeneous populations’ framework, we have introduced a whole new dynamics so far never seen

before. From this, we have produced some results that we find out to be interesting, however this study is far from

being complete. As one may understand, these new dynamics are very complex are allow a really wide set of

possible outcomes. In this sense, for further work, we suggest the need of more studies under this framework, and

even adding other different learning rules, in order to increase our knowledge on this topic of cooperative action on

heterogeneous populations. Furthermore, and as previously mentioned, it would also be interesting to study what

happen when having non bi-directive homophilies, that is, having hLA→LB ̸= hLB→LA , for any two sub-populations

of individuals respectively resorting to LA and LB , with LA, LB ∈ L.

Still regarding this population’s dynamics topic, it would also be interesting to focus our study not much on the

evolution of strategies by itself, but on the evolution of all the different learning rules. Instead of taking them as

fixed parameters, one could let it go freely, probably bring into the system a completely new dynamic. Moreover,

differnet studies on boundaries of the used mathematical framework should be performed. For instance, the inverse

of temperature (β), as seen, show that different characteristic dynamics are possible depending on its values, so

it could be interesting to evalutate what actually happens in the trannsition point between the different dynamic

scenarios.

Finally, it would be remarkable to take some of the insights previously taken, regarding counterfactual reasoning,

and wonder about higher levels of counterfactual thinking, that is, one may wonder what happens as we increase in

level depth in Theory of Mind for (at least some) individuals in a population. We hope to find very interesting results

that could give us many different and interesting insights about this new dynamic.

Regardless on the kind of study, one shall always take into its mind that we aim to explain the emergence of

cooperation in human communities.
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[34] A. Góis, F. Santos, J. Pacheco, and F. Santos. Reward and punishment in climate change dilemmas. Scientific

Reports, 9:16193, 11 2019. doi: 10.1038/s41598-019-52524-8.

[35] F. C. Santos, V. V. Vasconcelos, M. D. Santos, P. N. B. Neves, and J. M. Pacheco. Evolutionary dynamics

of climate change under collective-risk dilemma. Mathematical Models and Methods in Applied Sciences, 22

(supp01):1140004, 2012. doi: 10.1142/S0218202511400045.

[36] V. Vasconcelos, F. Santos, J. Pacheco, and S. Levin. Climate policies under wealth inequality. Proceedings

of the National Academy of Sciences of the United States of America, 111, 01 2014. doi: 10.1073/pnas.

1323479111.

[37] F. Santos and J. Pacheco. Risk of collective failure provides an escape from the tragedy of the commons.

Proceedings of the National Academy of Sciences, 108:10421 – 10425, 2011.

[38] M. Redei. John von Neumann: Selected Letters. American Mathematical Society, Providence, Rhode Island,

2005.

[39] H. W. Kuhn and A. W. Tucker. John von neumann’s work in the theory of games and mathematical economics.

Bull. Amer. Math. Soc., 64:100–122, 1958.

[40] W. Chen, C. Gracia-Lázaro, and Z. L. et al. Evolutionary dynamics of n-person hawk-dove games. Scientific

Reports, 7:4800, 2017.

[41] V. Vasconcelos, F. Santos, and J. Pacheco. A bottom-up institutional approach to cooperative governance of

risky commons. Nature Clim. Change, 3:797–801, 09 2013. doi: 10.1038/nclimate1927.

[42] V. V. L. de Vasconcelos. Emergence and Self-organization of Cooperation. PhD thesis, Universidade do Minho,

2016.

[43] L. J. S. Allen. An Introduction to Stochastic Processes with Applications to Biology. Chapman and Hall/CRC,

2010. ISBN 1439818827.

[44] L. Hindersin and A. Traulsen. Counterintuitive properties of the fixation time in network-structured populations.

Journal of The Royal Society Interface, 11(99):20140606, 2014. doi: 10.1098/rsif.2014.0606.

[45] A. Traulsen and C. Hauert. Stochastic evolutionary game dynamics, 2008.

[46] C. Grilo and L. Correia. Effects of asynchronism on evolutionary games. Journal of theoretical biology, 269:

109–22, 10 2010. doi: 10.1016/j.jtbi.2010.10.022.

85



86


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Topic Overview
	1.3 Objectives
	1.4 Thesis Outline

	2 Mathematical Framework
	2.1 Classical Game Theory
	2.1.1 Nash Equilibria
	2.1.2 2-Person Games
	2.1.3 N-Person Games

	2.2 Evolutionary Game Theory
	2.2.1 Evolutionary Stable Strategy
	2.2.2 Strategies and Fitness
	2.2.3 Replicator Dynamics

	2.3 Stochastic Processes
	2.3.1 Transition Matrix and Transition Probabilities
	2.3.2 Fixation Probability and Fixation Times
	2.3.3 Stationary Distribution
	2.3.4 Deterministic Gradient of Selection

	2.4 Other Learning Rules
	2.4.1 Conformity
	2.4.2 Counterfactual Thinking
	2.4.3 Multiple Learning Rules Populations

	2.5 Final Notes

	3 Synchronism and Asynchronism
	3.1 Synchronism versus Asynchronism
	3.2 The General Transition Matrix
	3.2.1 The Transition Probabilities' Algorithm
	3.2.2 Developing the Framework

	3.3 Synchronism in Social Learning
	3.3.1 Fixation Probability and Fixation Times

	3.4 Synchronism in Other Learning Rules
	3.4.1 Reassembling the Model
	3.4.2 Synchronism in Conformity
	3.4.3 Synchronism in Counterfactual Thinking

	3.5 Final Notes

	4 Population Dynamics in Homogeneous Populations
	4.1 Dynamics in 2-Person Games
	4.1.1 Conformity in 2-Person Games
	4.1.2 Counterfactual Thinking

	4.2 Dynamics in N-Person Games
	4.2.1 Conformity
	4.2.2 Counterfactual Thinking in N-Person Games

	4.3 Final Notes

	5 Population Dynamics in Heterogeneous Populations
	5.1 Heterogeneous Populations
	5.2 Conformity and Social Learning
	5.3 Counterfactual Thinking and Social Learning
	5.4 Final Notes

	6 Conclusions
	6.1 Achievements
	6.2 Future Work

	Bibliography

