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este trabalho teria sido ainda mais imposśıvel. Ao Tomás dedico, como prometido, todas as páginas em
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Uma menção honrosa para os meus house mates e amigos – aliás, famı́lia – Pedro Cruz, Francisco

Mendes e João Cruz, que me acompanharam ao longo destes cinco (seis?) anos. Por mais complicado que
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Resumo

As redes Bayesianas Dinâmicas são modelos probabiĺısticos gráficos usados para a modelação de proces-

sos estocásticos. Atendendo às recentes aplicações de data mining, estes modelos podem ser treinados

com séries temporais multivariadas e a sua interpretação permite encontrar relações interessantes entre as

variáveis medidas. Os algoritmos de aprendizagem ótimos têm, contudo, uma elevada complexidade com-

putacional. Esta dificuldade inspira o desenvolvimento de novas técnicas que recorrem a procedimentos

heuŕısticos para reduzir o espaço de procura.

Esta dissertação introduz um método de treino chamado sDBN, que possui uma complexidade com-

putacional mais atrativa e pode ser utilizado para dados com alta dimensionalidade. Esta nova técnica

recorre a métodos recentes que ligam o treino de redes Bayesianas discretas com modelos lineares gener-

alizados. O método proposto treina redes estacionárias e não estacionárias, recebendo como entrada um

atraso de Markov.

Os resultados experimentais mostram que o algoritmo proposto consegue identificar redes válidas

e atinge recuperação perfeita de estruturas com dimensão elevada, utilizando dados simulados. Neste

contexto, o algoritmo supera os métodos mais avançados dispońıveis em termos de qualidade e de tempo

de treino. Ao classificar séries temporais reais, o sDBN mostra também resultados competitivos. Em dados

médicos de pacientes com Espondilite Anquilosante, retirados do Reuma.pt, uma base de dados nacional

de doentes reumáticos, o algoritmo recupera estruturas inteliǵıveis e consegue prever a progressão da

doença. Estes resultados posicionam o sDBN como um método alternativo viável para o treino de redes

Bayesianas dinâmicas e sugerem que o algoritmo pode ser treinado com dados de alta dimensionalidade.

Palavras-chave: séries temporais multivariadas, redes Bayesianas dinâmicas, modelos lin-

eares generalizados, aprendizagem automática de estrutura, dados de alta dimensionalidade, data mining
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Abstract

Dynamic Bayesian Networks (DBNs) are probabilistic graphical models used to predict the evolution of

stochastic processes. Following recent trends in data mining, these models can be trained from multivari-

ate time-series data to uncover interesting temporal relationships between measured variables. However,

optimal training algorithms are computationally prohibitive which inspires the development of heuristic

techniques to prune the search space.

This dissertation introduces sDBN, an alternative training algorithm with better computational com-

plexity that can handle high-dimensional data. This method leverages state-of-the-art techniques that

bridge discrete Bayesian network training with generalized linear models, extending them to handle tem-

poral data. The proposed method handles both stationary and non-stationary models and is flexible to

a specified Markov lag.

Empirical results show that the algorithm achieves meaningful network identification, accomplishing

up to perfect F1 scores in artificial datasets with a considerable number of dimensions. Using simu-

lated data, sDBN outperforms state-of-the-art dynamic Bayesian network training algorithms both in

terms of structure quality, and training time. Tests in benchmark public datasets show that sDBN is

also competitive in time-series classification. Using Ankylosing Spondylitis patient data from Reuma.pt,

a national rheumatological registry, the new method recovers intelligible models and successfully pre-

dicts disease progression. These results validate the novel algorithm as an alternative methodology to

identify dynamic Bayesian networks from data and suggest that this algorithm enables training using

high-dimensional datasets.

Keywords: multivariate time-series, dynamic Bayesian networks, generalized linear models,

structure learning, high-dimensional data, data mining
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Chapter 1

Introduction

1.1 Motivation

Data science has become, over the last few years, ubiquitous in society and all our lives. Data is currently

being collected everywhere due to the digitalization of society and the advent of the “information age”.

Vast amounts of information call for the development of automatic techniques for its analysis. Using

concepts from statistics and computer science, this field of study has exponentially increased in popularity

in the last decade. Under this subject, two distinct areas can be identified: machine learning and data

mining. Machine learning studies a set of techniques that allow for computers to learn some task and then

generalize when faced with previously unseen data, hopefully still achieving satisfactory results. State-of-

the-art techniques involve using some form of deep neural networks due to the phenomena of dual descent.

Success stories bleed from everywhere, across a vast amount of areas such as games, image classification,

natural language processing, translation, and even self-driving cars. On the other hand, data mining

aims to extract patterns from data and help in decision making. The focus is not on performing a task,

but instead on analyzing the data and getting insights. “Data mining turns a large collection of data

into knowledge” [1]. Examples include abnormality detection, business intelligence, prediction of future

stock market value, and even the prediction of a treatment outcome based on clinical indicators.

One type of datasets are multivariate time series (MTS), representing how a set of multiple variables

evolves over time. MTS datasets frequently arise in several contexts like meteorology, robotics, economics

and finance, and electronic health records. In the latter, for example, the patient evolution is tracked over

the course of several doctor appointments. Typical medical exams and questionnaires are repeated for

each appointment, resulting in the measurement of several features over a time period. The increase in

the availability of this type of data, also associated with the digitalization of society, justifies the growing

interest in data mining techniques for the analysis of MTS.

Dynamic Bayesian networks (DBNs) are a class of mathematical models that can be used for the

analysis of time-series. They are a probabilistic graphical model (PGM) and therefore can be easily

schematized using a graph and provide interpretable information on the relationships between measured

variables. This is especially important in medical applications, where decisions should follow a well-defined
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rationale instead of simply being outputs of black-box type models. Additionally, these models are flexible

and allow the computation of complex probability queries through inference algorithms and the prediction

of the future evolution of the variables based on past observations using a process called “unrolling”.

Another advantage of these kinds of mathematical models is the possibility of fine-tuning using domain

expert knowledge. DBNs can also be trained automatically from data, but exact optimization algorithms

are computationally expensive. To counteract this, the training typically includes the use of state-of-the-

art heuristic methods to restrict the search space enough so that a computer can tackle it in a reasonable

time.

Recent work on discrete Bayesian network (BN) training leverage generalized linear models (GLMs)

as an approximate parametrization and employ regularization techniques to train sparse networks. GLMs

are non-linear generalizations of regular linear models commonly applied in machine learning and data

mining. In these contexts, gradient-based optimization techniques are used to identify these models from

data and characterize the underlying process. GLMs are also the heart of some deep neural networks,

and the recent advances in this field provide a sophisticated computational framework that can leverage

modern hardware to accelerate the training procedure meaningfully. Training BNs approximating them as

a collection of GLMs profits from these novel techniques and are mandatory in high-dimensional contexts.

Although plenty of literature is found on identifying static models, extending these techniques to

include temporal information is still unexplored. Therefore, this thesis focuses on alternative heuristic

methods for training DBNs leveraging GLMs and aiming to recover a sparse structure and allow the

possibility of training of these kinds of models using high-dimensional MTS, i.e., time-series with several

measured variables per timestep with few observations.

1.2 Objectives and contributions

The main objective of this thesis is the development of a new method for learning sparse discrete dynamic

Bayesian networks, introducing the possibility of handling high-dimensional data previously tricky due

to the computational complexity of the heuristic methods involved. The algorithm should learn from

provided multivariate time-series data with categorical distributed features, outputting a locally optimal

network structure, preserving time course causality. The method produces different types of models,

namely for the description of stationary and non-stationary stochastic processes.

The main contributions of this thesis are the following:

1. A review of the literature on probabilistic graphical models and generalized linear models.

2. The proposal of a new method for training dynamic Bayesian network based on the reparametriza-

tion of the network and state-of-the-art regularization techniques and gradient-based optimization.

3. The implementation of the proposed method in C++, providing a new and flexible software solution

for the training of these models allowing for training acceleration using IntelR© math kernel library

(MKL) and distribution across a computing cluster using the message passing interface (MPI)
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protocol. The proposed implementation was made available as open-source software on:

https://github.com/JBSants/sDBN.

4. A set of validation results, obtained by training the network with artificial and benchmark datasets.

5. The application of the method to real data from the national registry of rheumatological patients.

Reuma.pt.

1.3 Thesis Outline

Chapter 2 briefly introduces linear regression, maximum likelihood estimation, and generalized linear

models, as well as some regularization techniques usually employed. Chapter 3 dives into probabilistic

graphical models, introducing Bayesian networks, dynamic Bayesian networks, and Bayesian multinets. It

describes some applications of these models and state-of-the-art training techniques. Chapter 4 exposes

in detail the developed method and the optimization technique used in the provided implementation.

Chapter 5 presents some results obtained in generated artificial datasets, benchmark MTS data, and

Ankylosing Spondylitis medical data and discusses them, validating the proposed solution. Chapter 6

concludes the thesis, balancing the achievements, and provides some thoughts on future directions to

extend this work.

3
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Chapter 2

Generalized Linear Models

A linear model is a model that assumes that the output variable y is given, in terms of the input variables

X, by a linear relationship. In the one-dimensional case, where both the response and input variables are

scalars, they are related by the equation y = β0 + β1X. Plotting this relationship yields a straight line.

Given a set of observations and assuming that these observations are “ruled” by a linear model,

machine learning aims to use computers to identify such models from the data automatically. Intuitively,

the algorithm tries to find the best straight line that fits the observations. The problem is how to

characterize mathematically what the best line is. Having this mathematical description of what it

means to be the best line, optimization techniques are used to find it.

Several methods may be used, but the first to be discovered was the least-squares approach, mostly

credited to Gauss [2], despite being first published by Legendre in 1805 [3]. Using this method, the model

parameters β0 and β1 are estimated by minimizing the square of the error term between the observed

data and the predicted data, with respect to the model parameters, i.e.,

minimize
β0, β1

e2(β0, β1, D), (2.1)

where D is a dataset with M observations. The squared error term is simply given by the squared

distance between the observed value and the estimated value for the corresponding output

e2(β0, β1, D) =

M∑
i=1

(
y(i) − ŷ(i)

)2
=

M∑
i=1

(
y(i) − β0 − β1X(i)

)2
,

where y(i) is the i-th observation of the output variable, X(i) the corresponding input variable, and ŷ(i)

the predicted response variable by the linear model with parameters β0 and β1.

This model may be extended to handle multidimensional input variables by considering X = (1, x1 . . . , xn)

and a parameter vector β = (β0, β1, . . . , βn). In this case, assuming the vectors to be column vectors,

y = β>X. The error term is computed, replacing the prediction using this equation.

Another way to pose the problem of finding the best line is to use a probabilistic framework and

assign a probability value to a model given a dataset of observed values. This probability value is usually

referred to as likelihood and expresses how likely a model would produce the data if sampled from it.
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The best model is the model that leads to the highest probability value. This method is called maximum

likelihood estimation (MLE), and it is based on early work by Laplace, and Gauss [4], consolidated by

Fisher [5].

To transport the original line fitting problem to a probabilistic framework, usually, it is considered that

the system has a linear model relationship perturbed by an error term that is drawn from a probability

distribution, i.e., in the one-dimensional case,

y = β0 + β1X + e,

where e is the error term. Additionally, it is made an assumption on the distribution of this error on the

observed dataset due to the measurement process while attaining the observations.

Considering the observation errors to be independent and identically distributed, and that the i-th

observation error e(i) ∼ N (0, σ2), the observation y(i) also becomes normally distributed with parameters

N (β0 + β1X,σ
2). The probability that the observation takes a certain value ζ can be computed as

P (y(i) = ζ | β0, β1, X(i)) =
1

σ
√

2π
exp

{
−1

2

(
ζ − β0 − β1X(i)

σ

)2
}

.

The maximum likelihood estimation of the parameters is obtained by solving the optimization problem

maximize
β0, β1

M∏
i=1

P (y(i) | β0, β1, X(i)).

Solving this maximum likelihood problem is equivalent to solving the least-squares problem (Equa-

tion (2.1)). For increasingly large datasets, the value of likelihood becomes increasingly low. This

most likely originates precision problems when using computers. For this reason, and also because of

the usually better mathematical properties, the equivalent problem of minimizing the logarithm of the

likelihood is solved instead of directly solving the MLE problem. The log-likelihood in the linear case

with gaussian errors is

`(β0, β1, D) = −M log σ − M

2
log(2π)− 1

2σ2

M∑
i=1

(
y(i) − β0 − β1X(i)

)2
.

Note that only the third term depends on the parameters, thus being the only term that must be

maximized, reducing the problem to simple least squares. Maximization of differentiable convex losses is

usually done using a gradient descent method. However, the solution to linear regression can be computed

in closed form [6] and is given by

β = (O>O)−1O>Y ,

where O is a M × n matrix constructed by stacking the input variables for all observations and Y ∈ RM

is a vector with every observation of the response variable. Note that this is a solution provided that

some conditions are met by the observation matrix, namely that O>O is invertible.

This reformulation of the linear regression problem as a likelihood problem and the translation of the
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linear model to a probabilistic framework allows for the generalization of the linear model. It enables the

assumption of different distributions of the output variable, and alternative link functions between the

distribution parameters and the linear mapping of the input variables with the model parameters.

A GLM [7] is a model with parameters β = (β0, β1, . . . , βn) that relates the response variable y

with the features X = (1, x1, . . . , xn), via a linear mapping Z = XTβ, a linking function g(Z) and an

assumption on the distribution of the response variables y ∼ Ψ(θ), where Ψ is a distribution of the

exponential family with parameter θ = g(Z).

With Ψ(θ) = N (θ, σ2) and g(Z) = Z, the GLM specializes to linear regression. Different choices of

distribution and link function lead to different, well-known models. In this chapter, logistic regression

is introduced, and an extension of logistic regression to multinomial models. Then, some regularization

techniques that can be employed while training these models are introduced.

2.1 Univariate Logistic Regression

Let Ψ(θ) = Bernoulli(θ) and the link function be the logistic function

g(Z) =
eZ

1 + eZ
.

This generalized linear model is called logistic regression [8], and it is used to predict the outcome of a

binary response variable from a set of features. This can be achieved due to the S shape of the logistic

function, as seen in Figure 2.1. For larger values of the input map Z, the probability becomes almost

one, and for smaller values, almost zero. The transition region increases rapidly, and the steepness can

be controlled by the parameters of the model when seen by the input variables.

Considering the probability mass function associated with the Bernoulli distribution, the expansion

P (y = k | X,β) = θk(1− θ)1−k =

(
eX
>β

1 + eX>β

)k(
1− eX

>β

1 + eX>β

)1−k

,

can be deducted, leading to the characteristic probability mass function of logistic regression

P (y = k | X,β) =

(
exp(X>β)

1 + exp(X>β)

)k (
1

1 + exp(X>β)

)1−k
, (2.2)

where k ∈ {0, 1}.

The log-likelihood of a given set of model parameters explaining a dataset D with M training pairs

(X(i), y(i)) is given by

`(β|D) =

M∑
i=1

{
y(i) β>X(i) − log

[
1 + exp(β>X(i))

]}
.
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Figure 2.1: A plot of the logistic function. This illustrates the S-shaped curve originated by the logis-
tic function, allowing it to model binary outcomes from a continuous perspective. The curve has two
asymptotes and is limited by the value one when Z → +∞ and by the value zero when Z → −∞, being
suitable to be used directly as a probability value.

2.2 Multinomial Logistic Regression

Multinomial Logistic Regression extends logistic regression to handle the prediction of categorical dis-

tributed random variables, allowing the response variables to take r possible categories. Therefore, Ψ(θ)

is set to be the categorical distribution, and θ = (θ1, . . . , θr) is simply a vector determining the probability

for each possible category. This parameter vector has to satisfy

r∑
i=1

θi = 1.

The link function has to specify every parameter independently. To achieve this, preserving the only

dependency on a linear map of the features vector, the features vector must be extended, repeating itself

for each category, allowing for a different set of parameters for each possible response. The extended

features vector has the form

X′ =
[
X · · · X

]>
∈ Rr(n+1),

and the corresponding model parameters vector has the form

β =
[
β1 · · · βr

]
∈ Rr(n+1),

where βi ∈ Rn+1 are the model parameters associated with category i. Subsequently, the link function

exponentiates every linear map obtained for each set of model parameters and normalizes the distribution

parameters, forcing them to sum to one, i.e.,

g(Z) =

(
exp(X>β1)∑r
i=1 exp(X>βi)

, . . . ,
exp(X>βr)∑r
i=1 exp(X>βi)

)
.
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Note that Z = X′>β, but every internal product X>βi can be obtained from Z by selecting the appro-

priate components (via another linear map), due to the way X′ and β were constructed.

The probability mass function for multinomial logistic regression is obtained directly from the cate-

gorical distribution

P (y = k | X,β1, . . . ,βr) = θk =
exp(X>βk)∑r
i=1 exp(X>βi)

, (2.3)

where k ∈ {1, . . . , r}.
The log-likelihood of a given set of model parameters explaining a dataset D with M training pairs

(X(i), y(i)) is given by

`(β|D) =

M∑
i=1

[
r∑
l=1

I(y(i) = l)βl
>X(i) − log

{
r∑
l=1

exp(βl
>X(i))

}]
. (2.4)

Several model parameters β can lead to the same probability distribution. In fact, by choosing a new

beta β′ = β + α1 for any α ∈ R then

gk(X′
>
β′) =

exp(X>βk + α)∑r
i=1 exp(X>βi + α)

=
exp(α) exp(X>βk)

exp(α)
∑r
i=1 exp(X>βi)

=
exp(X>βk)∑r
i=1 exp(X>βi)

.

Due to this, when identifying these models from data, a model parameter is usually constrained to a

given value, effectively eliminating this ambiguity.

2.3 Regularization Techniques

Maximum Likelihood Estimation, although effective, is prone to overfit the model to the observed data.

In order to fix this issue, typically, regularization techniques are used, adding a new term to the cost

function achieving a smaller model variance at the cost of adding some bias to the prediction.

Ridge Regression

Ridge regression [9] consists of imposing an `2-norm constraint ||β||2 ≤ t on the model parameters,

where t is an arbitrary bound on the norm. This optimization problem can be solved by solving an

equivalent unconstrained optimization problem, using the Lagrangian multipliers method, given by

minimize
β

− 1

M
`(β | D) + λ||β||2. (2.5)

The parameter λ determines how much regularization is applied, and there is a value of λ that corresponds

directly to a value of t. Ridge promotes shrinkage of the model parameters and is typically used to obtain

a more stable model with usually better accuracy prediction on the test data [10]. Moreover, in situations

of high-dimensional data, where M < n, or when the observed data does not fulfill certain conditions,

traditional linear regression has an infinite number of solutions. Ridge regression may be applied, yielding

a set of parameters that cannot be obtained by solving the unregularized problem.

LASSO Regression

Similar to Ridge regression, the regression using the least absolute shrinkage and selection operator
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3.4 Shrinkage Methods 31

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X. M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I [rank(|β̂j | ≤M)

Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j |− λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β̂ β^2
. .β

1

β 2

β1 β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.

Figure 2.2: Comparison between LASSO (left) and Ridge (right) regression. To illustrate why the LASSO
penalty yields a sparse vector, a toy problem was constructed using only two dimensions. The curves
drawn in red are the level curves of the negative log-likelihood loss, and the regions in blue are the
constraints imposed on the parameters by each regression. The point β̂ is the unconstrained problem
solution, i.e., the MLE estimation of the parameters. Source: [10]

(LASSO) [11] consists of imposing an `1-norm constraint on the model parameters ||β||1 ≤ t. Like Ridge,

the parameter set is typically obtained by solving the equivalent unconstrained optimization problem

given by

minimize
β

− 1

M
`(β | D) + λ||β||1. (2.6)

LASSO is a special case of regularization methods using `q-norms because it yields a sparse parameter

vector, i.e., some irrelevant or redundant parameters are set exactly to 0. As seen in Figure 2.2 for a

toy problem, the level curves of the negative log-likelihood cost are likely to intercept the constraint on

a vertice of the square, thus setting one of the parameters to exactly zero. On the other hand, in Ridge

regression, the parameters become small, close to zero, but not quite exactly zero. This picture provides

an intuition for why this constraint yields not only small coefficients, but also some of them exactly zero.

This property is desirable because it applies feature selection while training the model, remaining a

convex optimization problem. Models obtained via LASSO are simpler, more stable, and easier to inter-

pret because the response variable is most likely explained by fewer features than their ridge counterpart.

Convexity is essential because it allows the use of computationally efficient optimization algorithms, and

the `1-norm is the norm with smaller q that is still convex.

Group LASSO

Group LASSO [12] is a regularization technique used to obtain sparse solutions where predictors are

grouped, and a group is either considered to explain the response variable or discarded, setting all the

features in the group to zero. Let the model parameters β be split in J groups of coefficients. These

groups may have different lengths.
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Let γ ∈ Rn be an arbitrary vector of dimension n ≥ 1 and K be a symmetric positive definite matrix

of dimension d× d. Consider the norm

||γ||K =
√
γ>Kγ.

Sparse group regularization is applied by solving the unconstrained optimization problem given by

minimize
β

− 1

M
`(β | D) + λ

J∑
i=1

||βi||Ki
, (2.7)

where K1, . . . ,KJ are positive definite matrices of the appropriate dimension to be applied with the norm

of the group.

Typical values for the Ki matrices are identity matrices, transforming the regularization term in the

sum of simple `2-norms for each group.
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Chapter 3

Probabilistic Graphical Models

3.1 Introduction

Probabilistic Graphical Models [6, 13] are schematic representations of probabilistic relationships between

random variables (RVs) that allow better visualization and understanding of the underlying probabilistic

model than pure algebraic expressions. In these models, probability distributions are represented via

graphs, where each node represents a random variable, and the edges encode relationships between them

(e.g., causality). These representations have several advantages – they provide an easy way to visualize

the properties of a given probability model, like conditional independence; they offer an alternative

representation of uncertain models that is more compact when compared with joint distributions; they

define a structure where complex computations can be defined rigorously, allowing inference and learning

algorithms.

In Pearl [13], two types of PGMs are defined – Bayesian networks and Markov networks. Bayesian

networks rely on directed graphs to describe relationships between random variables. This approach

provides an even more intuitive way to reason about the underlying model, considering that arcs can be

interpreted as a causation relationship. On the other hand, Markov networks use undirected graphs and

are more suited for handling models with relationships that do not have a sense of directionality. Both

these models can be reduced to a factorized representation of a joint distribution.

Being probabilistic models, they encode the uncertainty associated with the root process aimed to

be described. Therefore, one use of them is to query the likelihood of a specific event to happen,

given the evidence observed so far. This process is called inference. Mathematically, this translates

to computing P (x | e), where x is some arbitrary realization of a set of RVs and e is some observed

evidence. For example, consider Rainy, Cloudy, two boolean RVs, and Season, an RV that can take

four values {Summer,Autumn,Winter,Spring}. One may want to assess P (Rainy = True | Cloudy =

True, Season = Summer), that is, the probability of today being a rainy day given that it is cloudy and

that we are in the summer.

However, in order to be used, a model has to be built, in a process called learning. In short, there

are two possible paths to model construction – a manual rationally derived, approach and an automatic,

13



data-driven, approach. The first, although time-consuming, may encompass expert knowledge of the

underlying system, which can be beneficial to the overall performance of the model. This may be the

only approach possible if there is insufficient data, both in terms of quantity and quality. The latter results

in an automatically generated model from a given dataset and may harness the computational power of

modern computers to find structure in vast chunks of data. Given the amount of data being collected

nowadays, this approach, also known as machine learning, is being widely used. Due to the schematic

nature of these models, automatically discovered graph topologies could reveal interesting relationships

between RVs that might be previously unknown.

In this chapter, two PGMs – Bayesian networks and Dynamic Bayesian networks – are defined, and

some automatic learning algorithms for both are described. There is also an overview of the applications

of these models. To conclude, Bayesian multinets are also introduced as a way to perform classification

tasks using Bayesian networks.

3.2 Bayesian networks

3.2.1 Definition

A BN is a representation of a joint probability distribution over a set of random variables using a directed

graph [13]. It can be defined as a triple B = (X, G,θ), whereX = (X1, X2, . . . , Xn) is a vector of random

variables, G = (X, E) is a directed acyclic graph (DAG) which nodes are random variables, and the edges

encode dependencies between them and θ is a set of parameters that quantify the conditional probability

distributions (CPDs) of the network.

Let pa(Xi) denote the parent nodes of the random variable Xi as defined in G. The joint probability

distribution is then defined by the network B as

PB(X1, X2, . . . , Xn) =

n∏
i=1

PB(Xi | pa(Xi)). (3.1)

Conditional probability distributions

The structure G of the Bayesian network uniquely defines the joint probability over all random vari-

ables. However, how each conditional probability distribution is computed remains open. One common

modeling choice is to impose that each random variable results from a linear combination of their parents’

value (with prior probabilities defined for nodes without parents) summed with error terms, assumed to

be white. This results in Gaussian Bayesian networks [14, 15].

Another common way, which this thesis is going to focus, is assuming a categorical distribution and

using tables to parameterize the CPDs. This leads to discrete Bayesian networks, defining θ = {θijk},
where i ∈ {1, . . . , n}, j ∈ {1, . . . , qi} and k ∈ {1, . . . , ri}. The parameters θijk are defined by

θijk = PB(Xi = xik | pa(Xi) = wij), (3.2)

and specify the probability of Xi assuming the value xik, given a parent configuration wij . Accordingly,
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qi is the number of different configurations for the parents of Xi, and ri is the number of different values

that Xi takes in the dataset. Note that, this way, the parameters have to be specified for every possible

case, and there is no formula defined to obtain them. This leads to powerful modeling capabilities, given

that no structural equations need to be defined, i.e., there is no need for a way of expressing in a formula

a random variable Xi in terms of its parents pa(Xi).

Conditional independences

According to Equation (3.1), it can be noted that the DAG implies independence statements between

variables: Xi is independent of every non-descendant node, given its parents’ configuration, i.e.,

∀Xi,Xj∈X : i 6=jXj /∈ des(Xi)⇒ Xj ⊥⊥ Xi | pa(Xi), (3.3)

where des(Xi) is a set of all the descendant nodes of Xi. Also, in [13], a more general criterion to assess

conditional independences guaranteed by the graph structure is introduced. It is called d-separation.

Let Xi 
 . . . 
 Xj be a trail between Xi and Xj in G. Let also E be a subset of observed nodes in

the trail. This trail is active if both these conditions are verified:

• Whenever a structure Xk−1 → Xk ← Xk+1 (called a v-structure) is present, then Xk or one of its

descendants belong to E.

• There is no other node in E that belongs to the trail.

Let X,Y,E be three non-overlapping sets of nodes in G. X and Y are d-separated in G given some

evidence E, i.e., d-sepG(X;Y | E), if there is no active trail between any two nodes, one in X and one

in Y , given E. Note that d-separation implies conditional independence, although two variables may not

be d-separated and still be independent due to a particular configuration of the parameters set θ.

Example

Suppose that an Algorithms and Data Structures student is trying to predict whether he will pass

or fail the subject’s final exam. By speaking with older students, he learned that the project deeply

influences the exam’s contents, and he knows he is better prepared if graphs algorithms are the main

content. The student may use the Bayesian network of Figure 3.1 to infer the probability of approval (A)

given the project’s contents (P), difficulty (PD), the time he will spend studying (TS), and his a priori

knowledge of the subject (K). This model allows him to vary the different parameters, like time studying

and can help him decide to use his free time to study for the subject or do some other (productive) work.

Similarly, a model that predicts a patient’s response to treatment can help the physician prescribe the

correct treatment (or the one with the highest probability of success).

The shown example Bayesian network defines the joint probability distribution over its variables

P (P,PD,E,ED,K,A,TS) = P (P)P (PD)P (ED | PD)P (E | P,ED)P (K | E,ED)P (A | K,TS). (3.4)
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EExam Contents
P ED Graphs Trees

Graphs Hard 0.2 0.8
Graphs Easy 0.4 0.6
Trees Hard 0.2 0.8
Trees Easy 0.4 0.6

ED

Exam Difficulty
PD Hard Easy

Hard 0.2 0.8
Easy 0.9 0.1

PD

Project Difficulty
Hard Easy
0.5 0.5

P

Project
Graphs Trees

0.5 0.5

AApproval
TS K Yes No

Long Abundant 0.98 0.02
Long Scarce 0.75 0.25
Short Abundant 0.70 0.30
Short Scarce 0.4 0.6

TS

Time Studying
Long Short
0.3 0.7

K

Knowledge
E ED Abundant Scarce

Graphs Hard 0.65 0.35
Graphs Easy 0.9 0.1
Trees Hard 0.2 0.8
Trees Easy 0.4 0.6

Figure 3.1: A simple Bayesian network example that allows predicting whether an Algorithms and Data
Structures student will be approved in the course. This network defines a joint probability distribution
over seven random variables: Project Difficulty (PD), Exam Difficulty (ED), Project Contents (P),
Exam Contents (E), Knowledge (K), Approval (A), and Time Studying (TS). The edges in the structure
constrain independence between random variables, and the parameters of the network are specified using
conditional probability distribution tables, shown here next to each node.

This formula and the conditional probability distributions associated with the Bayesian network allow

computing complex queries, using only the conditional probability formula and the law of total probability.

For example, a possible query is

P (A | P,PD,TS) =
P (A,P,PD,TS)

P (P,PD,TS)
,

where both the numerator and denominator can be obtained by marginalizing the joint probability in

Equation (3.4) appropriately.

3.2.2 Learning

There are two steps in learning a Bayesian network – learning the structure of the G graph and learning

the parameters set θ.

Parameters learning

The parameters can be estimated using a MLE approach. The analysis hereby described follows

Koller [16] closely. Given a structure graph G and a dataset D with M entries, the likelihood of the
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parameter set θ is defined by

L(θ | D) =

M∏
m=1

n∏
i=1

P (xim | pa(Xi) = wim | θ), (3.5)

where m is a dataset entry, xim and wim are the values of the RV Xi and of the configuration of Xi’s

parents, respectively, in that dataset entry. Equation (3.5) results from the factorized distribution defined

by the graph structure, as introduced by Equation (3.1).

Therefore, due to the factorization imposed by the network structure, the likelihood function can be

decomposed in terms that only depend on a single RV and its parents. Then, the likelihood is

L(θ | D) =

n∏
i=1

Li(θ | D) =

n∏
i=1

Li(θXi|pa(Xi) | D), (3.6)

because each local likelihood function Li is specified by a small subset of θ concerning Xi and pa(Xi).

The global likelihood function is maximized if every local likelihood function is maximized because each

local likelihood function is not influenced by any other.

Recalling the table parameterization used for the CPDs, the local likelihood function regarding an

RV Xi is given by

Li(θ | D) =

M∏
m=1

P (xim | pa(Xi) = wim | θXi|pa(Xi)) =

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk , (3.7)

where Nijk is the number of times a particular configuration of Xi = xik and pa(Xi) = wij appears in

the dataset. Maximizing this function is the same as maximizing logLi(θ | D). Aditionally, the resulting

parameters must sum to one, for a given parent configuration, i.e.,
∑ri
k=1 θijk = 1. Therefore, optimization

can be achieved using the Lagrangian multiplier method, resulting in maximizing the function

f(θijk, λ) =

qi∑
j=1

ri∑
k=1

Nijk log θijk + λ

(
−1 +

ri∑
k=1

θijk

)
, (3.8)

both in order to θijk and λ. This concludes in the maximum likelihood estimator for the parameter,

θ̂ijk =
Nijk∑ri
k=1Nijk

=
Nijk
Nij

, (3.9)

where Nij is the number of times a particular configuration of pa(Xi) = wij appears in the dataset,

disregarding the value of the RV Xi itself.

Structure learning

There are three main categories of structure learning algorithms – constraint based, score based and

hybrid.

The first methods try to estimate the conditional independence between random variables from data

using statistical hypothesis testing. The PC algorithm [17] is considered state-of-the-art in this technique

[18]. It starts with a fully connected graph and removes edges between RVs, as independences are
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established.

The second category, which is more used, relies on a score function that evaluates the fit of a structure

to the data used. The strategy for training is to search for the best structure, given a particular score,

from the space of all possible structures, therefore solving the optimization problem

maximize
G

φ(G | D)

subject to G is a DAG,

(3.10)

where φ is a scoring function, G is the structure of the network, and D is a dataset with observations of the

process to model. Note that the constraint imposes that the problem is non-convex and, unfortunately,

this is an NP-hard problem [19], and the search space grows superexponentially (2O(n2)) with the node

count [20]. This is the general case, even if a restriction on the number of possible parents of a node

is imposed. Only if the structure is forced to be a tree, i.e., a network allowing only one parent for

each node, worst-case polynomial algorithms [21] are possible. Due to the computational complexity of

the problem, heuristic methods are usually applied to restrict the search space, and only locally optimal

solutions are found.

The hybrid methods combine these methodologies and usually work by restricting the search space

based on a measure of independence between nodes. One example is the sparse candidate algorithm [22]

that restricts the parents of a particular RV to a set of most relevant nodes using an information theory

approach and then uses search to find a locally optimal structure. Also worth noting, the max-min hill

climbing (MMHC) algorithm [23] tries to obtain a skeleton of the Bayesian Network, i.e., a partially

directed graph that encodes possible associations between random variables, using statistical tests for

RVs independence. These partial DAGs may contain undirected edges. Afterward, a greedy hill-climbing

step is run, but only using the edges that belong to the skeleton. The authors claim that this method

obtains better results in practice than the PC and sparse candidate.

Score-based structure learning

To solve the optimization problem in Equation (3.10), a score and a heuristic search procedure must

be defined.

A basic score metric that can be considered is the log-likelihood (LL). Estimating the parameters

using their MLE estimation as shown in Equation (3.9), the likelihood formula of Equation (3.5) can be

used as a comparison measure. Therefore, the log-likelihood score of a structure G for a given dataset D

is defined as

φLL(G,D) = logL(G | D) =

M∑
m=1

n∑
i=1

P (xim | pa(Xi) = wim) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk
Nij

. (3.11)

A common problem using the log-likelihood score is overfitting since it usually returns a graph with all

the nodes connected that explains the given data exceptionally well but fails to generalized to unseen

data. This is unwanted behavior, and therefore a new score that penalizes complex network structures

was introduced based on model selection criteria. The minimum descriptor length (MDL) [24] metric is
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defined by

φMDL(G,D) = φLL(G,D)− 1

2
|B| logM , (3.12)

where |B| is the number of elements in the set θ and is given by

|B| =
n∑
i=1

(ri − 1)qi. (3.13)

One common way to conduct the searching procedure is to use greedy hill-climbing (Algorithm 1).

Starting with an empty structure (a graph with no edges), each iteration executes the operation leading

to the best scoring function increment. Typically, three operations are considered possible: edge addition,

edge removal, or edge reversal. Naturally, since the interest is finding an acyclic graph, operations that

would result in a cycle are not allowed. The algorithm stops when, for example, no edge addition results

in a positive increment. Other stopping criteria are possible.

Algorithm 1 Greedy hill-climbing

Input: A dataset D and a scoring function φ

Output: A local optimal structure G

1: loop
2: S∗ ← −∞
3: for all edge addition, removal and reversals resulting in a DAG do
4: G′ ← result of applying operation to G
5:

6: if φ(G′)− φ(G) > S∗ then
7: S∗ ← φ(G′)− φ(G)
8: G∗ ← G′

9: end if
10: end for
11:

12: if S∗ < 0 then
13: break
14: end if
15:

16: G← G∗

17: end loop

This method is a heuristical searching procedure, and therefore the solution obtained is not to the

global optimum. There are strategies to try to improve the quality of the solution and try to escape local

maxima.

Tabu search [25] applied after hill-climbing attempts to do this by moving to a worse neighbor of

the solution and then putting the original solution in a tabu list, therefore not allowing the hill-climbing

algorithm to circle back. Then, multiple steps can be performed forbidding the reversal of the operations

applied until some stopping criterion is met. Note that the resulting structure is not necessarily a local

optimum. The solution is the best structure visited during all the searching procedure. Given that this

forces different structures to be considered, the searching procedure may be guided to unexplored regions

of the searching space and to obtain possibly better solutions.

Another way to try to escape local maxima is by applying random restarts. After a solution is found,
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this method consists of performing some random operations on the structure and then do hill-climbing

again. This can be repeated several times, keeping the best structure visited.

Simulated Annealing [26] can also be applied to Bayesian network learning [27]. Inspired by physical

processes, this method consists of several moves to a neighbor of a given structure. If the move considered

improves the score, it is always accepted. Otherwise, it is accepted with probability p = exp
(
φ(G′)−φ(G)

T

)
,

where G is the current structure, G′ is the structure after the operation is applied and T is a temperature

parameter. As the searching procedure is carried, this temperature decays over time, reducing the

probability of an operation that decreases the score to be performed. Eventually, a local optimum is

reached, and with T = 0 this method converges since the probability of picking a neighbor with a worse

score also becomes p = 0.

Trying to improve the greedy hill-climbing search efficiency, Chickering [28] proposes a different way

to conduct a search by moving on the search space of equivalence classes instead of DAGs. The author

defines a complete set of operators to move directly between those classes. Two DAGs are said to be

equivalent if the set of probability distributions that can be encoded by one of these structures is the

same as the set that can be represented using the other one. An equivalence class is a set of all possible

equivalent DAGs for a given structure. If the scoring function used is score equivalent, then structures

belonging to the same class are indistinguishable and, therefore, comparing one to the other is a waste

of computing resources. This algorithm outputs a partially directed acyclic graph that can be arbitrarily

directed to form the local optimal solution.

More recently, `1-norm based optimization, in the context of neighborhood selection [29], was applied

to structure learning in an attempt to obtain sparse Bayesian networks [30]. Regularization terms are

useful and may prevent overfitting since a network with fewer edges but with similar (or even better)

modeling accuracy should lead to a better generalization. For Gaussian Bayesian networks, the structural

equations, i.e., how a random variable is expressed in terms of its parents, are by hypothesis linear

equations. Each random variable is given by a linear combination of its parents and some error terms.

This implies that in a network with n nodes, for each node, there are at most n− 1 parameters. Thus, a

simple `1 penalty can be added to the cost function for each parameter, causing some of them to be set

exactly to zero. Given that the DAG space is non-convex, in Schmidt et al. [30] the authors propose to find

a skeleton estimate for the DAG (similar to MMHC) using convex continuous optimization. The graph

is then directed to form a DAG and define a joint probability. To apply this method directly to discrete

Bayesian networks, a penalization term should be added for every parameter. However, the number of

possible parameters for a given node grows exponentially with the number of possible parents (O(rn−1),

where r is the number of levels that a node can take). In fact, a given node has, for each possible level,

different parameters, as seen in Equation (3.13). To overcome this, the author proposes applying the

method only to binary discrete Bayesian networks and approximating the multinomial distribution with

logistic regression. This way, only the structure is learned since the multinomial parameters cannot be

directly trained. The authors also suggest that this method can be extended to general discrete networks

by using multinomial logistic regression and group `1-norm penalty. This work is later consolidated by

Schmidt [31].
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Building on this work, Fu et. al [32] propose a coordinate descent algorithm to learn Gaussian

Bayesian networks using `1-norm regularization. Instead of first trying to learn a skeleton and then

directing the graph, the authors propose a heuristical searching procedure that simultaneously fits the

linear regression and finds the structure. This can be achieved given that the coordinate descent algorithm

performs minimization one coordinate at a time, which allows acyclicity to be enforced. The authors claim

that this heuristic can save computation time and still obtain satisfactory results, allowing this method

to be applied to structure estimation in high-dimensional contexts.

Using the same search procedure, Gu et al. [33] extend this approach to discrete Bayesian networks,

approximating the multinomial distribution with multinomial logistic regression using one-hot encoding.

The likelihood is then penalized using a group norm penalty, resulting in a sparse structure because this

term prunes some edges.

These last two methods are both a part of an R package dedicated to learning Bayesian networks in

high dimensional data contexts called sparsebn [34]. The authors claim that their software can handle

graphs with more than 1000 nodes (on their Github page, it is mentioned 8000 nodes) with superior

performance when compared to several other standard software packages.

Also applying continuous optimization procedures to learning Bayesian networks, Zheng et al. [35]

propose a new mathematical characterization for acyclicity in directed graphs using matrix exponentials.

This leads to a smooth and differentiable function that allows characterizing “DAG-ness” and to be

used directly in continuous optimization using gradient techniques. Although this problem remains non-

convex, the authors claim that this method gives reasonable solutions. Possibly, this allows for new

gradient optimization techniques that are being heavily studied due to the rise of deep learning to be

applied to Bayesian network learning. However, they only apply this method to Gaussian Bayesian

networks, also adding a penalization term. No extension to discrete Bayesian networks was found during

the preparation of this thesis.

3.2.3 Applications

Due to their versatility, Bayesian networks are applied across a wide variety of areas, and they can be seen

used from analyzing clinical data to decision making in entirely different fields. The bioinformatics use is

evident due to the explicability of the models obtained and the possibility to include expert knowledge in

the models. This faces particularly well with black box models like neural networks and random forests.

In studies by Loghmanpour et al. [36], Bayesian network based classifiers are trained using pre-implant

clinical data and used to predict short and long-term mortality in patients with left ventricular assistant

devices. The authors showed that these methods perform very well compared to standard classification

metrics used to predict survival in these patients.

Also using clinical data, Seixas et al. [37] use BNs to diagnose Alzheimer’s disease and other similar

illnesses. Those networks have structures developed using expert knowledge, but the parameters were

estimated from data. They compared the performance to other classifiers and obtained competitive

results. A network with an automatically learned structure was also compared, but the results were very

similar to the ones using the manual structure.
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Employing structure learning in epidemiological data, [38] uses these networks to analyze the risk of

cardiovascular disease and of metabolic syndrome development. The algorithms identify several interest-

ing relationships, including a strong influence of smoking habits and physical activity in these risks.

Regarding other fields, they were used to determine if vessels should be inspected by the maritime

authorities in a port [39].

3.3 Dynamic Bayesian Networks

3.3.1 Definition

Dynamic Bayesian Networks are an extension of Bayesian networks used to model temporal processes.

Like Bayesian networks, these probabilistic graphical models define a joint probability distribution over a

set of random variables. However, these variables are assumed to change over time due to an underlying

process and are observed in several discrete time instants.

They are defined by a pair D = (B0, B→) [40]. Let X(t) = (X1(t), X2(t), . . . , Xn(t)) denote a

vector of the random variables at time t ∈ [0, T ], also known as a slice. B0 is a Bayesian network

defined over X(0), called the prior network. B→ is another Bayesian network defined over X(0 : T ) =

X(0)∪X(1)∪ . . .∪X(T ), called the transition network. In the transition network, it is always true that,

∀i∈{1,...,n} ∀t∈{0,...,T} P (Xi(t) |X(0 : T )) = P (Xi(t) |X(0 : t)), (3.14)

i.e., a random variable realization must not be dependent on future realizations.

Markov property

The underlying stochastic process is said to be first-order Markovian if future values of the random

variables only depend on the present values. Therefore,

P (X(t+ 1) |X(0 : t+ 1)) = P (X(t) |X(t : t+ 1)). (3.15)

This means that in our transition network, nodes that belong to a timestep t+ 1 can only have parents

from that timestep or from nodes belonging to the previous timestep t. This property may be generalized

by the so-called higher-order Markovian processes. In these, random variables realizations may depend

on several past values. The number of previous timesteps allowed is fixed, and it is called the Markov

lag of the process. Let υ be the Markov lag of an arbitrary process, then

P (X(t+ 1) |X(0 : t+ 1)) = P (X(t+ 1) |X[ t− (υ − 1) : t+ 1 ]). (3.16)

Stationarity

A random process is said to be stationary if P (X(t) |X(0 : t)) is the same for all t. This assumption

allows extrapolating the probability distribution of future timesteps by “unrolling” the network. This

is achieved by repeating the transition network starting at each timestep until a future time instant is
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reached.

3.3.2 Learning

Similar to Bayesian networks, the network parameters are easily learned once a network structure has

been found. Therefore, the hard part is to find the structure that best explains the data. Inference

algorithms used for BNs can also be applied to DBNs once a model has been determined.

In general, DBN structure learning is as hard as in BNs, because acyclicity has to be ensured in

the intra-slice connections. Inter-slice connections can’t generate cycles due to the constraint in Equa-

tion (3.14). If intra-slice edges are ignored, then DBNs can be learned in polynomial time [41, 42]. Some

work has also been done considering that intra-slice structure does not change between timesteps [43].

This simplifies the learning process since only one intra-slice structure has to be learned, and the re-

maining inter-slice dependencies can be found using efficient algorithms. Monteiro et al. [44] introduce a

polynomial-time algorithm for DBNs (tDBN) was achieved, restricting the intra-slice connections to a tree

(just one parent) and admitting only a fixed number of parents from previous slices. In the work by Sousa

et al. [45], the intra-slice restriction was relaxed, but an ordering for the variables was obtained using the

tDBN algorithm. Leão et al. [46] improved further on the tree-restricted method, allowing training with

static variables, i.e., that don’t change over timesteps.

For general dynamic Bayesian networks, score+search strategies can be used [40], as discussed for

Bayesian networks, pruning the search space in order to impose the necessary restrictions.

3.4 Bayesian Multinets

3.4.1 Definition

Let P (X1, . . . , XN ) be a probability distribution and H1, . . . , ..., Hk be a collection of mutually disjoint

sets of realization of the random variables in P . A Bayesian multinet is a set of k Bayesian networks,

where each network Bi is a comprehensive local network associated with Hi, i.e., a Bayesian network of

P (X1, . . . , XN | Hi) [47]. This multinet allows the definition of a joint probability distribution

P (X1, . . . , XN ) =
∑
i∈B

PBi(X1, . . . , XN | Hi)P (Hi), (3.17)

where B = {i, . . . , k : Hi ⊆ X}, X = {X1, . . . , XN}.
These models were introduced in order to allow for asymmetrical independences to be expressed and

therefore allow for even more sparse networks that can benefit computational complexity. Since fewer

edges may be selected, this could also benefit learning. Asymmetrical independence is an independence

constraint that only occurs when some hypothesis is assured.

Example

To illustrate the concept of asymmetrical independences, Geiger et al. [47] introduce the example of

a guard that has to distinguish between workers, visitors, and spies entering a secured building. When
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B G

Figure 3.2: The structure of a Bayesian network that can detect whether a person entering a secured
building is a spy, visitor or a worker. This network is defined over 3 random variables: the Class (C) may
be spy, visitor or worder; Gender (G) may be male or female; Badge (B) may take the values wearing or
not wearing. (Source: [47])
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Spy/Visitor

C

B G

Worker

Figure 3.3: A schematic representation of a Bayesian multinet that can detect whether a person entering
a secured building is a spy, visitor, or worker. This set of networks is defined over three random variables:
the Class (C) may be spy, visitor, or worker; Gender (G) may be male or female; Badge (B) may take
the values wearing or not wearing. (Source: [47])

someone enters the building, the guard may notice two particularities – the person’s gender and whether

the person is wearing a badge. Visitors do not have a badge, so they never wear one. Spies always wear

a badge because they do not want to be uncovered. Workers sometimes wear a badge (when they do

not forget it at home), and female workers tend to wear it more often than males. Figure 3.2 represents

the structure of a Bayesian network that may be used by the guard to compute the probability of a spy

entering the building. Note that wearing a badge is independent of gender, given that the person is a

spy. Using only this structure, such independence is not guaranteed and must be assured by specific

parameter values.

In Bayesian multinets, the structure of the network is allowed to vary based on a value of a specific

random variable. Figure 3.3 shows a multinet that can be used by the guard. Note that the independence

between gender and badge can now be established via network topology when someone is guaranteed to

be a spy or a visitor.

3.4.2 Classification

Bayesian multinets can be used to perform classification of given data [48]. In the classification task, the

probability of a class given some evidence has to be estimated. Let C be the class random variable of

some realization, and X1, . . . , XN be N random variables that correspond to the feature variables used

in the classification. To classify the observation, the probability P (C | X1, . . . , XN ) must be computed,

and the class is the realization of C that has the highest probability.

To achieve this with Bayesian multinets, in a supervised learning context, a Bayesian network must

be learned for each class, using a training dataset. The dataset must be split by class, and for each group,

automatic techniques for learning Bayesian networks (like some discussed in Section 3.2.2) can be used
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to learn a network over the features X1, . . . , XN . Note that, using this approach, the class C is assumed

to be independent of the features in each network. According to Equation (3.17), the multinet defines

the joint distribution

P (C = ci, X1, . . . , XN ) = P (C = ci)PBi
(X1, . . . , XN ),

where Bi is the Bayesian network learned for class ci. This distribution may then be used to compute

each class probability. For a dataset with k classes,

P (C = ci | X1, . . . , XN ) =
P (C = ci, X1, . . . , XN )∑k
l=1 P (C = cl, X1, . . . , XN )

. (3.18)

Summing up, classification using a learned Bayesian multinet is done by computing the joint proba-

bility assuming each class is true and choosing the class that has the highest probability.
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Chapter 4

The sDBN method

Extending the work of Schmidt et al. [30] and Gu et al. [33] to include temporal information, this thesis

proposes a three-step method (Figure 4.1) called sDBN to train sparse dynamic Bayesian networks lever-

aging the approximate problem of finding a graph skeleton using a group `1-norm penalized multinomial

logistic regression loss function. First, edge penalization weights are estimated by fitting an unregularized

multinomial logistic loss to the dataset, as suggested by the adaptative lasso method. Then, a sparse

skeleton, a set of possible edges for our network, is estimated from our dataset, penalizing every possi-

ble edge using the weights computed in the previous step. Finally, a resulting network is obtained by

directing the skeleton using greedy hill-climbing, complying with the temporal restrictions.

Determine

Adaptative Weights

Sparse Skeleton

Discovery

Greedy

Hill Climbing

Figure 4.1: Schematic of the pipeline of the proposed method for training dynamic Bayesian networks.

4.1 Network Parametrization

In the first two steps of the training pipeline, a parametrization based on multinomial logistic regres-

sion is used to reduce the dimension of the parameter set and enable gradient based optimization with

regularization, promoting sparse structures and enabling training in high-dimensional contexts.

Let B = (X, G,β) be a discrete Bayesian network, where X = (X1, . . . , Xn) is a vector of discrete ran-

dom variables, G is any given DAG and β is a set of parameters. It is assumed, without loss of generality,

that a discrete random variable Xj can take a value in the set {0, . . . , rj − 1}. In order to increase the

logistic model flexibility, each random variable Xj is encoded by a set of rj−1 dummy variables that can

take only two possible levels and work in an one-hot enconding configuration, that is, if one of them takes

the value 1 the others are necessarily 0; the variable set to 1 determines the level of Xj , being 0 if there

are no variables set. For convenience, let di = ri − 1. Using this transformation, in total there are now

c =
∑n
j=1(rj−1) =

∑n
j=1 dj random variables. In this context, a realization of the vector of random vari-
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ables of the network can be considered itself a vector x = (x0,1, . . . , x0,d0 , . . . , xn,1, . . . , xn,dn) ∈ {0, 1}c,
where xa,b is the dummy variable associated with the level b of the random variable Xa. A dataset is a

collection of N such vectors.

Let Xj denote a random variable that belongs to our network. Let βjli ∈ Rdi denote the vector of

parameters associated with the influence of the value of Xi in the level l of Xj . If the multinomial logistic

regression is used to parameterize the probability distribution of this node then

P (Xj = l | pa(Xj)) =
exp(x̄>βjl·)∑rj

m=1 exp(x̄>βjm·)
, (4.1)

where x̄ = [ 1 x ]
> ∈ Rc+1 is an augmented evidence vector and βjl· = [ βjl0

> βjl1
> ··· βjln

> ]
> ∈ Rc+1

is the parameter vector associated with level l of Xj . Note that this vector is built by stacking the

components of βjli, because those are not scalars due to the one-hot encoding of the dataset. Using vectors

enables a different parameter for each level of the parent random variable, increasing the versatility of the

multinomial logistic regression approximation to the categorical distribution. βjl 0 is a scalar intercept

term. To address the identifiability issues of the parameters, as discussed for regular multinomial logistic

regression in Chapter 2, it is enforced βj 0 0 = 0.

Let βj·i = [ βj0i
> βj1i

> ··· βjdji
> ]
> ∈ Rrjdi , be the vector of parameters of the edge Xi → Xj .

Analyzing the multinomial approximation, observe that

Xi /∈ pa(Xj)⇔ βj·i = 0, (4.2)

from the conditional of the probability in Equation (4.1). This equivalence allows determining a sparse

graphical structure from the set of parameters if many are set exactly to zero.

Example

Consider the simple Bayesian network present in Figure 4.2. Attending to Equation (4.1) and the

equivalence in Equation (4.2), the following equalities hold:

β2 0 · =
[
0 β2 0 1 0 β2 0 3 0

]>
,

P (X2 = 0 | X1 = x1, X3 = x3) =
exp(β2 0 1 · x1 + β2 0 3 · x3)

exp(β2 0 1 · x1 + β2 0 3 · x3) + exp(β2 1 0 + β2 1 1 · x1 + β2 1 3 · x3)
,

P (X2 = 1 | X1 = x1, X3 = x3) =
exp(β2 1 0 + β2 1 1 · x1 + β2 1 3 · x3)

exp(β2 0 1 · x1 + β2 0 3 · x3) + exp(β2 1 0 + β2 1 1 · x1 + β2 1 3 · x3)
.

Likelihood of a given structure

Following Equation (3.5), the likelihood of a given parameter set β for a given dataset D can be

defined as

L(β | D) =

M∏
m=1

n∏
i=1

P (Xi = x
(m)
i | x(m),βi··), (4.3)

where x(m) is the m-th evidence vector from the dataset and x
(m)
i denotes the observed value of the
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X2

X1 X3

X4

Figure 4.2: A small Bayesian network to illustrate the multinomial logistic regression parametrization.
This network is defined over four random variables X1, . . . , X4 and contains only three edges. Every
random variable is discrete and can take only two levels, 0 or 1.

random variable Xi. Using the parametrization of Equation (4.1) and taking the logarithm, the log-

likelihood of the parameter set expands to

`(β | D) =

M∑
m=1

n∑
i=1

[
di∑
l=0

I
(
x
(m)
i = l

)
·
(
x̄(m)

)>
βil· − log

{
di∑
l=0

exp

((
x̄(m)

)>
βil·

)}]
. (4.4)

Since the parameter set defines a graphical structure via the equivalence in Equation (4.2), this likelihood

can be used in a loss function specifically constructed to provide us with a sparse structure using group

LASSO regularization. In this specific case, the groups considered are the βj·i, i.e., the parameters

associated with an edge Xi → Xj . Due to the variable selection properties of group LASSO, many of

these groups will be set to exactly 0 after the optimization, eliminating an edge and thus providing a

sparse graph that can be used to discover the network’s structure. Note that restricting this optimization

to the space of DAGs is an NP-hard problem. Therefore a relaxed problem is considered instead, allowing

cyclicity and outputting a network skeleton instead of a final structure.

4.2 Parametrization and dataset construction in dynamic Bayesian

networks

In the context of dynamic Bayesian networks, the dataset used in training has a value for every random

variable in each timestep. In non-stationary networks, the number of timesteps in the transition network is

equal to the number of measured timesteps in the dataset. That does not happen in stationary networks.

Stationary networks imply that edges are kept the same across timesteps. In practice, this is achieved by

training just one timestep and then repeating the edges for every timestep needed for modeling, unrolling

the network. The original dataset with measurements across all timesteps must be collapsed down to

accommodate the needs for stationary network training without loss of information.

Each timestep has a collection of its own parameters β(t). The parameter notation from the Bayesian

network approximation can be applied directly to DBNs. Then, βjl·(t) ∈ RcT+1 is the vector of coefficients

associated with the level l of the random variable Xj(t). Accordingly, and in DBNs introducing a way to

identify inter-temporal edges, βj·i(τ, t) denotes the parameters associated with the edge Xi(τ)→ Xj(t).
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Non-stationary networks

For training of non-stationary networks, the evidence vector can be thought of as a collection of static

evidence vectors for each timestep, i.e.,

x =
[
x(0) · · · x(T )

]
=
[
x0,1(0) · · · xn,rn−1(0) · · · x0,1(T ) · · · xn,rn−1(T )

]
∈ {0, 1}c T .

To preserve temporal causality (Equation (3.14)), the parameter vector βjl·(t) has to be restricted in

such a way that forbids parents from future timesteps. Plus, edges disrespecting the Markov lag should

also be disregarded. In order to maintain compatibility with the shorthand notation used for the linear

combination in the exponential terms in Equation (4.1) and the dynamic evidence vector shown above,

this vector should be defined as belonging to RcT+1, as it also includes an intercept term. To fulfill its

imposed constraints, the vector is forced to be zero everywhere except when specifying an edge from an

allowed parent (in this case, it is allowed to be freely optimized). Thus,

βjl·(t) =
[
βjl0(t) 0 · · · βjl1(t− υ, t) · · · βjln(t− υ, t) · · · βjl1(t, t) · · · βjln(t, t) · · · 0

]
,

(4.5)

where υ is the Markov lag of the network.

Stationary Networks

In the specific case of stationary dynamic Bayesian networks, the transition model is assumed to

be always the same. To train these kinds of models, it is only needed to determine the intra-temporal

edges of one timestep and edges going into that timestep from every possible past instant according to

the specified lag. Random variables from other timesteps are added as nodes to the transition network,

allowing the formation of inter-temporal edges, but they only act as a stub, are not trained, and are not

considered actual network nodes. A valid dynamic Bayesian network is only obtained when unrolling the

transition network (joined with the prior network).

The number of timesteps in the evidence vector for these networks is connected with the Markov lag.

Since only one real timestep is used for training and intra-temporal edges are only allowed within the lag

restriction, the number of timesteps in the evidence vector is always υ+1. The dataset has to be collapsed

in such a way that results in υ+ 1 timesteps, and all the information that may lead to an inclusion of an

edge remains present. Let D be a M × c T matrix obtained by stacking all evidence vectors of the input

dataset, i.e.,

D =


x(0)

...

x(M)

 =


x(0)(0) · · · x(0)(T )

...
...

...

x(M)(0) · · · x(M)(T )

 .

The associated collapsed dataset with lag υ, D† is a M(T − υ + 1)× c(υ + 1) matrix constructed as
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D† =



x(0)(0) x(0)(1) · · · x(0)(υ)

x(0)(1) x(0)(2) · · · x(0)(υ + 1)
...

...
...

...

x(0)(T − υ) x(0)(T − υ + 1) · · · x(0)(T )

x(1)(0) x(1)(1) · · · x(1)(υ)
...

...
...

...

x(M)(T − υ) x(M)(T − υ + 1) · · · x(M)(T )


.

Therefore, the new evidence vector used in the training of the stationary network can be thought of

simply as

x† =
[
x0,1(0) · · · xn,rn−1(0) · · · x0,1(υ) · · · xn,rn−1(υ)

]
∈ Rc(υ+1).

Note that the timesteps inside the parenthesis correspond to the collapsed dataset pseudo-timesteps and

not the original input dataset.

Every parameter vector is forced to zero, except the ones associated with the last timestep. Those

are the only ones that need to be optimized and may take any value except, naturally, the parameter

associated with the edge to itself, which is set to zero. Therefore,

βjl·(t) =

0 , if t 6= υ

(βjl0(t), . . . ,βjln(t, t)) , if t = υ.

(4.6)

4.3 Loss Function

In this section, a loss function will be constructed using the structure log-likelihood derived in Section 4.1.

The final result should be a pair of Bayesian networks skeletons that can be directed, resulting in a full dy-

namic Bayesian network that attempts to uncover the underlying stochastic process and the relationships

between random variables from empirical data.

Foremost, our loss is desired to be decomposable, i.e., it can be separated into a sum of components

for each random variable that only depends on it and its parents. This decomposition implies that the

training of the prior network can be done separately from the transition network since no node in the

prior network can admit a parent from the transition network due to the restriction in Equation (3.14).

In fact, if our score is decomposable and the acyclicity constraint on the structure is dropped, the parent

set for each node can be estimated independently. A negative log-likelihood score has this property.

Secondly, for this method to be applicable to high-dimensional data and to suit better “real” networks

arguably with a small number of edges, a sparse structure is preferred. To achieve this, a group lasso

regularization term should be applied to the parameters related to every possible edge of the structure,

both intra-temporal and inter-temporal, respecting the temporal causality and Markov lag.

Combining them both, regularizing the log-likelihood score with a group lasso penalty, a loss function
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can be constructed, summing the cost for each timestep, resulting in

f(β) =

T∑
t=0

− 1

M
`(β(t)) +

∑
τ∈W (t)

n∑
j=1

n∑
i=1

λij(τ, t)‖βj·i(τ, t)‖

 , (4.7)

where `(β(t)) is a shorthand notation to represent the log-likelihood of a set of parameters associated to

the timestep t according to Equation (4.4), M is the size of the dataset, λij(τ, t) are the regularization

weights, associated with the edge Xi(τ) → Xj(t) and W (t) = {τ ∈ N0 : t − υ ≤ τ ≤ t} is a set of

previous timesteps within the specified Markov lag υ. Since this loss is decomposable, every node – and

therefore every timestep – can be seen as a separate optimization problem. The prior network skeleton

is obtained by solving the term associated with timestep 0, and the transition network skeleton can be

found optimizing the remaining timesteps.

The regularization weights are obtained using the strategy of the so-called adaptative LASSO [49, 50],

and constitutes the first step of the proposed pipeline. First, an unregularized optimization problem

minimize
β̃(t)

− 1

M
`(β̃(t)), (4.8)

is solved for each timestep to find the set of relevant parameters β̃(t). Then, these parameters are used

to compute the adaptative regularization weights using the expression

λij(τ, t) = λ
1

‖β̃j·i(τ, t)‖γ
,

where λ and γ are hyper-parameters. λ may act as a tuning parameter and specifies “how much”

regularization is applied. Larger lambdas lead to sparser structures, and smaller values result in denser

skeletons. If no regularization is applied, the full possible skeleton is typically outputted, possibly resulting

in an overfitted model.

4.4 Optimization Method

To find a skeleton to the network, a parameter set β needs to be estimated by minimizing the loss

function. To achieve this, a coordinate descent algorithm was employed following Gu et al. [33] – from

which this subsection is largely based – which in turn closely followed Meier et al. [51]. This algorithm

was chosen because of its simplicity, facilitating the development of new software, and its recognized use

in this context, for example, in the sparsebn R package.

Since the proposed loss is decomposable, every node may be independently optimized. Therefore,

consider the parameters associated with the parents of a node Xj(t). The parcel of the loss associated

with this is
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fj,t(βj··(t)) =− 1

M
`j,t(βj··(t)) +

∑
τ∈W (t)

n∑
i=1

‖βj·i(τ, t)‖

=− 1

M

M∑
m=1

 dj∑
l=0

I
(
x
(m)
j (t) = l

)
·
(
x(m)

)>
βjl·(t)− log


dj∑
l=0

exp

((
x(m)

)>
βjl·(t)

)


+
∑

τ∈W (t)

n∑
i=1

‖βj·i(τ, t)‖,

(4.9)

where `j,t(βj··) is the log-likelihood function of the parameter vector βj··(t), which denotes the collection

of parameters for all levels of the node Xj(t). Minimizing this loss for all nodes across all timesteps

is equivalent to minimizing the function in Equation (4.7). The coordinate descent algorithm method,

presented in Algorithm 2, consists of optimizing the cost function along one dimension, keeping all the

others constant, and iterating throughout the dimensions until convergence to a solution point is attained.

To optimize the function in Equation (4.9) the algorithm circles through every βj·i(τ, t) needed, moving

each coordinate following a descent direction and repeating until convergence. Some coordinates are

forced to be zero due to the constraints imposed by the DBNs. Since these restrictions are always applied

only to a single coordinate, the algorithm can simply set those to zero and skip their optimization, never

moving in directions that may cause illegal structures. In fact, it is as if the multinomial parametrization

never depended on those coordinates. They are only on the vector due to notation convenience and to

keep the parametrization general.

Algorithm 2 Coordinate descent

Input: A dataset D and an initial estimate β
(0)
j·· (t)

Output: The minimizer of the cost function β∗j··(t)

1: β∗j··(t)⇐ βj··
(0)(t)

2: k ← 0
3: loop
4: for all coordinates βj·i of βj··(t) do
5: Compute the minimizer of the quadratic approximation around the current estimate β̄j·i

(k)

6:

7: α← α0

8: while inequality in Equation (4.13) is not fulfilled do
9: α← ηα

10: end while
11:

12: β∗j·i = β∗j·i + αsji
(k)

13: end for
14: Update the intercept term
15:

16: if stopping criteria is met then
17: break
18: end if
19:

20: k ← k + 1
21: end loop

To overcome the fact that this loss is undifferentiable because of the `1-norm, a linear second-order
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approximation of the function on the current estimate is minimized instead. This allows solving for the

minimum in close form using the Karush-Kuhn-Tucker (KKT) [52, 53] theorem. The algorithm always

moves towards the minimum of this approximation until it coincides with the minimum of the function.

Let βj·i
(k) represent the value of an arbitrary coordinate βj·i on the k-th iteration of the algorithm.

The cost function, approximating the log-likelihood keeping only the second-order terms of the Taylor

series expansion on the current point βj·i
(k), for a chosen coordinate βj·i is

Q
(k)
j,t (βj·i) =− 1

M

{(
βj·i − βj·i(k)

)>
∇`j,t(βj·i

(k)) +
1

2

(
βj·i − βj·i(k)

)>
Hji

(k)(βj·i
(k))

(
βj·i − βj·i(k)

)}
+ λj,i‖βj·i‖.

(4.10)

The gradient of the log-likelihood on the current point can be computed as

∇`j,t(βj·i
(k)) =

M∑
m=1


{
I
[
x
(m)
j (t) = 0

]
− P

[
Xj(t) = x

(m)
j (t)

]}
xi

(m)(t)

...{
I
[
x
(m)
j (t) = dj

]
− P

[
Xj(t) = x

(m)
j (t)

]}
xi

(m)(t)

 , (4.11)

where the probabilities are computed using the current iteration (k) parameter values. Observe that

xi
(m)(t) ∈ {0, 1}di , and thus ∇`j,t(βj·i

(k)) ∈ Rrjdi . Hji
(k)(β

(k)
j·i ) is the Hessian matrix computed on the

current point.

The calculation of this matrix can be computationally prohibitive, especially in high-dimensional

contexts. Moreover, the algorithm update rule (shown further on) will need the inverse matrix of the

Hessian, increasing even further the computation complexity of our algorithm. To prevent this, instead

of using the true Hessian matrix, a diagonal approximation Hji
(k)(βj·i

(k)) = h
(k)
ji Irjdi is used. The

scalar h
(k)
ji < 0 can be chosen to be h

(k)
ji = −max

{
diag(−Hji

(k)(βj·i
(k))), b

}
, where b is a small positive

integer to improve numerical stability when max
{

diag(Hji
(k)(βj·i

(k))))
}
→ 0. Using this approach,

there is no need to compute the full Hessian matrix because only the diagonal is used. Furthermore, the

resulting Hessian approximation can be trivially inverted by computing the reciprocal of every term in

the diagonal. Also, a benefit for the computational time is the fact that the Hessian approximation needs

not be re-computed every iteration and may be determined only for the starting point. It is proven that

the algorithm still converges to the solution if the scalars h
(k)
ji are chosen according to the strategy above

[51, 54].

Applying the KKT conditions to minimize the cost in Equation (4.10), the minimizer β̄j·i
(k) is given

by

β̄j·i
(k) =


0 if ‖dji

(k)‖ ≤ λij

− 1

h
(k)
ji

(
1− λij

‖dji
(k)‖

)
dji

(k) otherwise,
(4.12)

where dji
(k) = ∇`j,t(βj·i

(k)) − h
(k)
ji βj·i

(k). The calculation of the minimum of the approximation is

referred to in line 5 of Algorithm 2.

If the minimizer is not equal to the last estimate (meaning the algorithm had converged), the Armijo
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rule is applied to find a suitable step size in order to attain sufficient descent. Let sji
(k) = β̄j·i

(k)−βj·i(k)

denote the distance of the current estimate to the minimum of the quadratic approximation, and ∆(k)

represent the corresponding change in the value of the quadratic approximation. Then,

∆(k) = −(sji
(k))>∇`j,t(βj·i

(k)) + λij‖β̄j·i(k)‖ − λij‖βj·i(k)‖.

The Armijo rule specifies that the step α(k) should be the maximum step that verifies

fj,t(βj·i
(k) + α(k)sji

(k)) ≤ fj,t(βj·i(k)) + δα(k)∆(k), (4.13)

for an arbitrary value of δ ∈ ]0, 1[. A backtracking-like algorithm (lines 7-10 in Algorithm 2) is employed

to find this value, starting with an initial estimate for the step size α0 and updating it successively by

multiplying with an arbitrary factor η ∈ ]0, 1[, until it achieves sufficient descent.

The update rule to obtain the next estimate for βj·i (line 12 of Algorithm 2) is

βj·i
(k+1) = βj·i

(k+1) + α(k)sji
(k). (4.14)

Since the intercepts βj·0 are unpenalized, they can be simply updated by the minimum of the quadratic

approximation (line 14 of Algorithm 2), i.e.,

β
(k+1)
j·0 = β̄

(k)
j·0 = −

d
(k)
j0

h
(k)
j0

.

Note that, in spite of this update rule not fulfilling it, the constraint βj00 = 0 is mandatory to address

identifiability issues. This means that this coordinate is always set to 0 throughout the execution of the

algorithm.

This update rule was derived for an arbitrary coordinate βj·i, but observe that the cost function

(Equation (4.9)) has several of them, including inter-temporal edges. The coordinate descent algorithm

(Algorithm 2) finds the minimum by cycling through all coordinates, updating one at a time until it

converges.

4.5 Directing the edges and learning parameters

Solutions to the minimization of the function in Equation (4.7) define a skeleton for our prior and

transition network through the equivalence in Equation (4.2), but in order for it to define a Bayesian

network structure, it has to be a directed acyclic graph. To obtain one, and following the suggestion

from the MMHC algorithm, a greedy hill-climbing searching procedure is conducted, starting with an

empty structure, but instead of checking every possible edge addition, reversal, and deletion on each

iteration, it checks only in the set of allowed edges. In addition, in the transition network, constraining

the structures to DBNs and imposing the temporal causality further decreases the allowed actions on

each iteration. These constraints reduce the complexity of greedy hill-climbing substantially, especially
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in high dimensional contexts since the number of allowed edges is O(n2). Algorithm 3 summarizes this

method to direct the skeleton, being a slightly modified version of traditional hill-climbing (Algorithm 1).

The process is similar to direct the prior network, but no temporal causality is imposed because it only

concerns the first timestep.

Algorithm 3 DBN restricted greedy hill-climbing

Input: A temporal dataset D and a set of allowed edges E

Output: A restricted local optimal structure for a DBN G

1: loop
2: S∗ ← −∞
3:

4: for all timestep t ∈ [0, T ] do
5:

6: for all timestep τ such that t− υ ≤ τ ≤ t do
7: for all addition or removal, resulting in a DAG, of edge Xi(τ)→ Xj(t) in E do
8: G′ ← result of applying operation to G
9:

10: if φLL(G′)− φLL(G) > S∗ then
11: S∗ ← φLL(G′)− φLL(G)
12: G∗ ← G′

13: end if
14: end for
15: end for
16:

17: for all reversal, resulting in a DAG, of every edge Xi(t)→ Xj(t) in E do
18: G′ ← result of applying operation to G
19:

20: if φLL(G′)− φLL(G) > S∗ then
21: S∗ ← φLL(G′)− φLL(G)
22: G∗ ← G′

23: end if
24: end for
25:

26: end for
27:

28: if S∗ < 0 then
29: break
30: end if
31:

32: G← G∗

33: end loop

Having a directed structure, parameter estimation is trivial (as long as the structure is sparse because

the number of parameters increases exponentially in the number of parents) using a maximum likelihood

estimation method (see Chapter 3). Note that, since the algorithm enforces temporal causality, no

modification is needed for dynamic Bayesian networks. The parameters are estimated for both networks

(prior and transition) independently and seeing them as separate Bayesian networks. Learning full

conditional probability tables might be more beneficial than other more compressive methods, preserving

the flexibility of the discrete Bayesian network model.
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4.6 Implementation Details

In the context of this dissertation, a C++ implementation of the proposed method was developed and

is available as open-source software on https://github.com/JBSants/sDBN. Two binaries can be built

from source: bntrain which implements the method for non-time-series data (limiting the number of

timesteps to one and thus eliminating all parameter restrictions), and it is used to train the prior network;

dbntrain which is the main binary and implements the complete method and it is used to train the

transition network.

Two training modes are provided. In normal mode, the user writes to standard input an arbitrary

set of values for λ as targets for training. Alternatively, as a convenience feature, the user may specify

the number of networks and a start and ending λ value via command-line argument. A geometric grid of

lambdas is automatically generated and used as input to the program. In the alternative mode, networks

are trained until a specified number of total edges are obtained, starting with an initial value for λ and

specifying a step and a maximum number of trained networks. All modes begin the training with the

largest λ value, following the specified path and using the parameters of the last network as a hot-start to

the new network. The stopping criterion used was based on the best improvement of all the coordinates.

If no coordinate changes more than ε = 10−4, then it is determined that the algorithm has converged.

Command-line arguments to the program are read and parsed using the cxxopts1 open source library.

The dataset input format is custom built and specifies all the necessary information to the algorithm, such

as the number of timesteps and of nodes per timestep and the one-hot encoded dataset. A Python script

was developed to convert between longitudinal data comma-separated valuess (CSVs) to this specific

format. The output format is a JavaScript object notation (JSON) file with the trained networks,

providing for each requested value of the λ parameter the obtained skeleton and the final directed structure

along with the likelihood of it generating the training data. Both formats are human-readable, and

additional details can be found on the Github page.

The unregularized problem in Equation (4.8) is solved using liblbfgs2, a C implementation of the

Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm [55, 56], because of its proven use in the

sklearn3 Python library. Matrix multiplication and other operations are handled by the Eigen4 library.

This is a widely used linear algebra template C++ library, including well-known gradient-based opti-

mization projects such as GoogleR© Tensorflow. This library allows changing the underlying math engine

to IntelR© MKL5 or other basic linear algebra subprogram (BLAS) providers, accelerating an algorithm

iteration considerably.

MPI paralellization was developed using the OpenMPI6 library. MPI is a standard that specifies

and facilitates inter-process communication and permits the distribution of the optimization problem

through a cluster of computing devices. It also can leverage the multicore capabilities of modern central

processing units (CPUs). In the provided implementation only the first two stages of the pipeline were

1Available on https://github.com/jarro2783/cxxopts.
2Available on http://www.chokkan.org/software/liblbfgs/.
3Available on https://scikit-learn.org/stable/.
4Available on https://eigen.tuxfamily.org.
5Available on https://software.intel.com/mkl.
6Available on https://www.open-mpi.org.
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paralellized. This stages can be naturally distributed, because each node of the network can be optimized

independently.

To find the adaptative weights, the work is distributed across every process a priori, splitting the

nodes equally. Afterward, the weights are gathered to the rank 0 process, and the flow of execution

continues from there. To find the skeleton, a work pool distribution model was implemented. In this

model, a process acts as a master coordinating a pool of workers that serve requests from the master. A

request is simply the node to be optimized as well as associated hyper-parameters and initial estimates.

After a solution is found, the worker sends a response to the master process, storing the results and

carrying on with the algorithm. If there is still work to be done, the master gives the worker a new node

to optimize. If every node is already complete, the program continues to the next stage of directing the

network. This stage is done only in rank 0 as the algorithm is not parallelized.

The implementation also relies on the MD5 hash implementation of the openssl7 library, to facilitate

dataset comparison and adaptative weights cache resolution. The program caches the adaptative weights,

and if the user supplies the same dataset twice, the adaptative weights are no re-computed because they

stay the same.

4.7 Complexity Analysis

An iteration of the implemented coordinate descent optimization algorithm has theoretical O(Mnr2)

complexity, where M is the size of the dataset, n is the total number of nodes to optimize, and r is the

maximum number of allowed levels per node.

Consider that matrix multiplication with dimensions a× b and b× c has computational cost O(abc).

Actual multiplication complexity could be lower, but for the purposes of this discussion, the naive scenario

is considered. Also, without loss of generality, assume that every node has the same number of allowed

levels r. The coordinate descent iteration has three main steps: the update of every coordinate, the

update of the intercept, and the checking of the stopping criteria.

The coordinate update itself has three main steps: the closed-form computation of the minimum of

the quadratic approximation, the backtracking-like algorithm to determine the step size, and the actual

update of the coordinate.

The minimum of the quadratic approximation is determined using the gradient and hessian approx-

imation of the log-likelihood function around the current point. In order to compute the gradient and

Hessian, the level probabilities have to be determined (Equation (4.11)) for every observation in the

dataset. This has to be done through the multinomial logistic regression equations. In practice, the lin-

ear map for every observation is determined via matrix multiplication, with cost O(Mnr). The resulting

matrix has dimensions M × r, and each column has a map with the parameters for each level. To speed

up the iterations, instead of re-computing the linear map on every iteration, the linear map is cached

and only updated incrementally each time a coordinate is updated, summing the appropriate difference

to every line of the matrix, with cost O(Mr).

7Available on https://www.openssl.org
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Probabilities are then determined via exponentiation of the linear mapping and posterior normaliza-

tion, but these operations only require linear time on the matrix. Having them, they are subtracted to an

indicator variable (all in O(Mr) time) and then multiplied to the corresponding dataset block (according

to Equation (4.11)). This multiplication has complexity O(Mr2). This is the more expensive operation,

and thus gradient computation has this complexity. To save time, the new cost, assuming a unitary step,

is calculated at the same time as the gradient adding no additional complexity.

The hessian approximation only requires the computation of the diagonal, which in turn only depends

on probabilities. The diagonal has r2 entries, and every entry involves the sum of a quantity involving

probabilities for every observation. In the proposed implementation, hessian coefficient determination

has O(Mr2) complexity.

Having the gradient and the hessian, the approximation minimum is computed according to Equa-

tion (4.12) in O(r2) time, because every vector has size r2 and only linear time operations are involved.

Determination of the step size is done using several computations of the cost function. Similar

to the linear map, instead of determining the regularization term for every iteration, it is cached and

updated every time a coordinate changes. This term is not linear, so the delta has to be computed

with the norm of the old parameter value and the norm of the new. This update has complexity O(r2),

the size of the coordinate vectors. Then, cost function calculation has O(Mr) complexity because it

only depends on the probabilities for each observation (like the gradient) and the cached regularization

term. The backtracking algorithm introduces constant complexity because a limit of iterations (in this

implementation 15) is imposed.

Having the step size and the step direction, updating the coordinate is a simple sum having O(r2)

complexity. These three steps are repeated for each coordinate. Since gradient and hessian computation

are the most expensive, this inner loop has O(Mnr2) complexity.

Intercept update is done similarly to coordinate update, but since every node only has r intercepts,

the complexity is just O(Mr). The stopping criterion is checked by caching the best improvement along

with the algorithm execution and thus only introduces constant complexity. Since the inner coordinate

update loop is the most expensive step, the complexity of the complete coordinate descent iteration is

dominated by this term.

The skeleton discovery step repeats this optimization for every node of the network. The overall com-

plexity of this step is O(kMn2r2), where k is the limit of iterations of the coordinate descent optimization

for a single node. In this implementation, the algorithm is limited to 5000 iterations.
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Chapter 5

Results

5.1 Synthetic Datasets

Several experiments were conducted to validate the proposed method. Transition networks were trained

using data sampled from known, randomly generated, stationary dynamic Bayesian networks. The result-

ing transition structures were compared to the true one, to measure the algorithm’s ability to recover the

underlying process. Prior networks structures were not considered as they are simple Bayesian networks

trained using the same method but without temporal restrictions.

Because the underlying structure is known, the quality of the recovered structure is measured by

simply accounting for the true positive, false positive, and false negative edges. True positive (TP) edges

appear in the estimated network and correspond to correct edges in the original network. False positive

(FP) edges show in the resulting network but are not part of the original structure. False negative (FN)

(FN) edges take part in the ground truth network but were not identified by the algorithm.

Although direct comparison is possible and seen in the literature, the algorithm may output a network

that is different from the original structure but still indistinguishable from an observational standpoint,

i.e., both networks have the same score. They cannot be distinguished using only the observed data. In

fact, both networks are in the same equivalence class. To mitigate this issue, the edges of the original

network are labeled as reversible or unreversible based on an algorithm developed by Chickering [19].

Reversible edges that appear reversed on the estimated network are still counted as true positives. This

alternative counting establishes a better framework to compare Bayesian networks and eliminates the

possibility of getting higher or lower scores just by shuffling the order of the nodes, causing the hill-

climbing procedure to consider first a particular edge direction.

Two metrics were computed to evaluate the obtained network: the precision of the recovered structure

is computed as

precision =
TP

TP + FP
, (5.1)

the recall, also known as true positive rate, is given by

recall =
TP

TP + FN
. (5.2)
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Summing up these two metrics, the F1 score is computed as the harmonic mean between precision and

recall, i.e.,

F1 = 2
precision · recall

precision + recall
. (5.3)

In addition to structure comparison, the resulting networks were also subject to evaluation of the

φLL and φMDL, of Equation (3.11) and Equation (3.12), respectively. Both scores were computed using

a different, independently sampled dataset from the same DBNs. This dataset constitutes a test dataset

as it is never used during the training process and is previously completely “unseen” by the estimated

networks. These scores can assess structure quality and whether or not the obtained structure under or

overfits the training data.

Structure generation procedure

Two stationary transition networks generators were used. In the first, stationary transition network

structures are generated by taking a backbone network containing only identity edges, i.e., edges from

the same random variable on the previous timestep, and progressively adding randomly selected edges

to form several v-structures between nodes. This procedure takes as input the number of nodes in each

timestep, the desired Markov lag, and the number of inter and intra-temporal v-structures. The desired

Markov lag simply influences the number of stub timesteps available. In practice, this means that the

inter-temporal v-structures have a larger set of possible parent nodes.

After adding all identity edges, the intra-temporal v-structures are fixed as they may originate cycles

in the transition network. To avoid this, children nodes are selected from all nodes in the timestep

without replacement. Then, the in-degree for each child is sampled from a truncated discrete normal

distribution with an adjustable mean. Once the degree is established, parents are selected by choosing

from all non-children nodes uniformly.

The procedure is similar to fix the inter-temporal v-structures. Children nodes are fixed (they can

be the same as the intra-temporal v-structures children), and then the number of parents is determined.

Next, parents are chosen uniformly from the pool of stub nodes in the transition network.

The second generator returns a network with a tree intra-temporal structure augmented with inter-

temporal edges. The tree structure is constructed first by choosing a random topological order for the

nodes and then choosing a single parent for each node respecting that order. Inter-temporal edges are

also randomly picked by choosing a maximum of p parents uniformly from previous timesteps. These

structure types are used to fairly compare the proposed method with the tDBN algorithm.

Sampling Method

Datasets were simulated using the sampling methods available in the open-source package tDBN.1

This software library provides a set of utility classes for the training and sampling of dynamic Bayesian

networks. To generate observations, the desired network structure is loaded along with the possible

states for each node. Then, random parameters are generated for each node, according to the underlying

structure and possible states. The software then outputs a simulated dataset with the desired number of

observations.
1Available in http://josemonteiro.github.io/tDBN/.
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Experimental Setup

Under this experimental framework, four different sets of tests were conducted. First, a total of 16

transition networks with a Markov lag of 1 were generated for 20, 50, 100, and 300 nodes per timestep,

four networks for each size with an increasingly larger number of v-structures, and therefore, increasing

complexity. Training datasets were sampled with 1000 observations for each network, and test datasets

were sampled with 250 observations. All nodes were considered to have three possible discrete states.

The training dataset was used as input to the dbntrain executable, and a path of 80 stationary transition

networks was requested with a Markov lag of 1. The path follows a geometric grid of λ values, chosen to

originate a significant variation on the outputted networks scores. The backtracking algorithm parameters

were set to α0 = 1, η = 0.5 and δ = 0.1, typical values found in the literature. Different values were

tried, but often resulted in a decrease in the performance of the backtracking algorithm.

Additionally, DBNs with 300 nodes per timestep were generated fusing two distinct networks. First,

two DBNs with 150 nodes per timestep were independently generated and sampled. Then, the two

structures and datasets were fused into one, shuffling the position of the nodes on the final network. The

resulting dataset served as input to the algorithm, requesting a path of 80 networks following a geometric

grid of λ values. This was repeated three times with increasing total v-structures. This evaluates the

algorithm’s ability to separate two distinct networks from observational data.

Following that, a DBN with 30 intra-temporal and 60 inter-temporal v-structures was generated. To

evaluate the algorithm’s performance on different dataset sizes, a linear grid with increasing dataset sizes

was trained. A path of 80 networks was trained for each dataset size, also following a geometric grid of

λ values. The experiments were repeated three times, using different networks with the same number of

v-structures.

Finally, the performance metrics were compared between the proposed algorithm and the tDBN al-

gorithm. Three different structure of stationary networks types were sampled and used: tree structures

with inter-temporal edges restricted to a maximum of 1, 2, and 3 parents from previous timesteps; inter-

temporal only structures with random parents also restricted to a maximum of 1, 2, and 3 parents;

random structures with a fixed number of v-structures similar to those used in the other experiments.

All structures were generated with Markov lag 1. For each structure type, the algorithms were run five

times using different original networks. sDBN was used to train a path of 80 networks following a geometric

grid of λ values. tDBN was run using the log-likelihood score and limited to 2 parents from the previous

timesteps, except for runs using structures with three parents from the previous timesteps.

Structure identification results

Regarding the first experiment, Figure 5.1 and Figure 5.2 plot the F1, φLL and φMDL scores for each

obtained network in the geometric grid of λ values. Table 5.1 summarizes the results by reporting all

metrics for the best network on each trained path.

By observing the F1 evolution over the grid of λ values, it can be established that trained networks

follow comparable trends. For higher regularization, the score starts very low. These networks are

characterized by high precision values, but the F1 score is very low due to the low recall. This means
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Figure 5.1: Evolution of the performance metrics F1, φLL and φMDL evaluated along a resulting path of 80 networks using a geometric grid of λ values. Generated
networks have 20 (a) and 50 (b) nodes per timestep, and each node admits three different levels. The networks are trained from observational data, using
datasets with 1000 observations across four timesteps. φLL and φMDL are determined using a different four timestep dataset with 250 observations. Four different
configurations of v-structures are compared for every network size, starting with no v-structures (only identity edges) and progressively increasing them. The plot
legend associates each configuration to the plotted color.
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Figure 5.2: Evolution of the performance metrics F1, φLL and φMDL evaluated along a resulting path of 80 networks using a geometric grid of λ values. Generated
networks have 100 (a) and 300 (b) nodes per timestep, and each node admits three different levels. The networks are trained from observational data, using
datasets with 1000 observations across four timesteps. φLL and φMDL are determined using a different four timestep dataset with 250 observations. Four different
configurations of v-structures are compared for every network size, starting with no v-structures (only identity edges) and progressively increasing them. The plot
legend associates each configuration to the plotted color.
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that the recovered edges are, in fact, present in the original network, but only a small portion of the

original network is recovered.

Table 5.1: Best F1 score and corresponding λ obtained by direct structure comparison and by evaluating
φLL and φMDL on test datasets. Generated networks have n = 20, 50, 100, 300 nodes per timestep and
each node admits 3 different levels. The networks are trained from observational data, using datasets
with 1000 observations across 4 timesteps. φLL and φMDL are determined using a different 4 timestep
dataset with 250 observations. Structure comparison reports the precision, recall, and F1 scores for the
single best network – according to the F1 metric – of the full path. Log-likelihood and MDL report the
associated φ and F1 scores for the single best network – according to the corresponding φLL or φMDL

score – of the full path. Each row refers to a different original structure with the specified number of
intra-temporal and inter-temporal v-structures.

V-structures Structure Comparison Log-likelihood MDL
Intra Inter Pre Rec F1 λ φLL F1 λ φMDL F1 λ

n = 20

0 0 1.00 1.00 1.00 0.0359 -11616.0 0.98 0.0122 -12013.2 0.98 0.0122
2 3 1.00 1.00 1.00 0.0981 -12713.3 0.85 0.0093 -13378.3 1.00 0.1146
4 6 1.00 1.00 1.00 0.0240 -13191.3 0.98 0.0230 -13946.0 0.98 0.0230
5 10 0.97 1.00 0.99 0.0172 -13018.9 0.94 0.0099 -14303.2 0.99 0.0174

n = 50

0 0 1.00 1.00 1.00 0.0400 -31126.4 0.95 0.0105 -32123.2 1.00 0.0219
3 7 1.00 0.98 0.99 0.0267 -30756.3 0.99 0.0234 -32226.0 0.99 0.0234
5 10 1.00 0.97 0.98 0.0350 -30814.8 0.92 0.0098 -32637.9 0.98 0.0234
10 20 0.99 1.00 0.99 0.0128 -31198.8 0.99 0.0128 -34110.5 0.98 0.0267

n = 100

0 0 0.87 0.98 0.92 0.1030 -63790.0 0.86 0.0609 -72362.3 0.58 0.5583
10 20 0.84 0.92 0.88 0.0489 -62841.3 0.84 0.0267 -69903.2 0.64 0.2796
20 40 0.92 0.88 0.90 0.0453 -64423.2 0.84 0.0158 -71399.1 0.80 0.1215
30 60 0.96 0.93 0.95 0.0179 -63049.7 0.91 0.0112 -70448.8 0.95 0.0267

n = 300

0 0 0.99 0.94 0.96 1.6714 -189563.2 0.91 1.2972 -196058.3 0.96 1.9376
30 60 0.98 0.91 0.95 1.7303 -189229.1 0.93 1.4044 -200027.3 0.92 2.4815
60 90 0.95 0.90 0.93 1.4587 -189926.4 0.91 1.3266 -205256.4 0.92 1.9390
90 130 0.98 0.90 0.94 1.6346 -188964.8 0.93 1.4313 -207060.1 0.91 2.3001

Progressing on the grid, the score attains a maximum on the optimal λ value and then begins to

drop. This drop is explained by drastically lower precision values. This means that the algorithm starts

to select edges that are not present in the original network, evidencing insufficient regularization. Recall

values may still not achieve the maximum, and missing edges can still exist after the optimal λ is crossed.

The results suggest that the sDBN algorithm can correctly recover transition structures with high

accuracy. The best F1 score tends to decrease as network complexity increases. The majority of tested

structures scored a F1 score greater than 0.90. The notable exception is the network with 100 nodes per

timestep, 10 intra-temporal and 20 inter-temporal v-structures that scored a F1 of 0.88. This is caused

by a lowering of the precision score. A possible explanation is a particularly difficult structure type for

the algorithm to recover.

The log-likelihood score on the test dataset follows the same tendency as the F1 score. For higher

regularization, φLL starts low, attains a maximum near the best F1 score, and then drops. This plot shape

is more clearly visible in networks with a larger number of nodes per timestep and with a higher number

of v-structures and therefore edges. Log-likelihood is expected to drop with the decrease of precision
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because a higher number of edges not present in the underlying structure usually causes the model to

overfit on the training dataset.

The λ value with maximum log-likelihood does not coincide with the one for maximum F1, and almost

always scored strictly lower relative to the best retrieved F1. Nevertheless, the maximum log-likelihood

still serves as a valid approximation to the optimal λ, with the majority of networks scoring a F1 higher

than 0.90 using this criterion. On the tested structures, 12 out of 16 runs present a likelihood estimated

network with F1 within 5% of the best. This suggests that cross-validation may be used to estimate the

optimal λ.

MDL scores are consistent with log-likelihood for networks with 20, 50, and 300 nodes per timestep.

This score drops abruptly when the rise of log-likelihood stagnates. This is expected as it results from

an increase in the number of network parameters not followed by a substantial increase in likelihood.

Networks with 100 nodes per timestep and a small number of v-structures do not follow this pattern, as

the MDL score cuts off very distant from the maximum likelihood λ. Maximum MDL λ values can also

serve as good approximations to the optimal λ. However, these scores tend to favor networks with fewer

edges.

Structure splitting results

Figure 5.3 plots F1 score and the number of edges incorrectly identified between the two separate

networks for each obtained network in the geometric grid of λ values. Even in this challenging dataset,

the algorithm still performs adequately, recovering networks with F1 score above 0.90 for all considered

configurations of v-structures. These results are consistent with previous experiments: an initial rise of

the score is followed by a decline after a maximum is reached on the optimal λ.

Using more regularization, there are no identified edges between the two networks. However, this is not

the case for lower values of λ. At these lower levels of regularization, the algorithm incorrectly associates

nodes belonging to different networks. Table 5.2 reports the results for the best network according to F1

score. As expected, the misidentified edges increase with network complexity. Albeit, these inter-network

edges are reduced and only represent a small fraction of all identified edges. Overall, the sDBN algorithm

has a good performance splitting the networks.

Table 5.2: Best F1 score and associated number of edges identified between two disjoint structures trained
from the same dataset. For each configuration of v-structures, two separate DBNs with 150 nodes per
timestep were generated and sampled, and the datasets were then fused to train a single network with
300 nodes per timestep. The percentages in parenthesis are the proportion of misclassified edges between
the two structures on the total number of predicted edges.

Intra Inter F1 Inter-network edges

20 30 0.936 2 (0,6 %)
60 90 0.939 6 (1,3 %)
90 150 0.904 8 (1,5 %)

Results quality vs. Dataset size

Figure 5.4 plots the best F1 score achieved for different number of observations. As observed, the

algorithm has consistently great performance even when using a smaller dataset. The resulting score is
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Figure 5.3: Evolution of the F1 metric and the number of incorrectly identified edges between two
disjoint structures evaluated along a resulting path of 80 networks using a geometric grid of λ values.
For each configuration of v-structures, two separate DBNs with 150 nodes per timestep were generated
and sampled, and the datasets were then fused to train a single network with 300 nodes per timestep.
Each node admits 3 different levels. The networks are trained from observational data, using datasets
with 1000 observations across 4 timesteps.

fairly consistent between the three runs, and all networks trained with a dataset with 300 or more obser-

vations scored a F1 higher than 0.90. Oscillations on the best F1 are explained by the non-deterministic

nature of dataset sampling, which in these runs led to a worse score on the largest dataset, even though it

is expected that a larger amount of data leads to a better result. Although the F1 scores are consistently

good, cross-validation estimations may become worse on smaller datasets. Unless domain knowledge can

be applied in real data situations, this may lead to low-quality networks. Further work is needed to test

the algorithm in these conditions meaningfully.

sDBN vs. tDBN comparison

Table 5.3 compares precision, recall, F1 and ellapsed time between the sDBN and the tDBN algorithms.

All experiments were run on an IntelR© XeonR© E3-1220 v3 @ 3.10GHz quad-core CPU running Ubuntu

Server2. The sDBN algorithm was run with IntelR© MKL acceleration enabled. The tDBN algorithm was

run using OpenJDK3 version 11.0.11.

The results show that sDBN beats tDBN + LL on structure recovery. These experiments statistically

reject the hypothesis4 that both algorithms perfom equally well in terms of the F1 metric. Therefore, it is

fair to extrapolate that, on the tested structure types, sDBN performs better than tDBN. Only for n = 50,

p = 3 the latter algorithm scored, on average, a better F1, but the proposed method still achieved better

2Available on https://ubuntu.com/download/server.
3Available on https://openjdk.java.net.
4Wilcoxon test [57] yields a p-value of 1 × 10−12.
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Figure 5.4: F1 score of the best network obtained for several dataset sizes. For each dataset size, the
original network was sampled, and the resulting dataset was used as input to the dbntrain executable.
A path of 80 stationary networks with a Markov lag of 1 was requested, following a geometric grid
of lambda values. This was repeated three times for distinct randomly generated networks with 300
nodes per timestep and with 30 and 60 intra-temporal and inter-temporal v-structures, respectively. The
reported scores are centered on the mean scores over the three runs and present the box plot with the
median and quantiles for each dataset size.

precision.

The tDBN algorithm tends to have excellent recall, meaning that the algorithm selects the entire

original structure but adds additional false positive edges. In the complete tree setting, this suggests that

tDBN cannot discern the true parents of the nodes correctly but still outputs the correct tree structure. It

is expected that tDBN improves by using the MDL score on these structure types, so further work is needed

to compare it with sDBN. In inter-temporal only networks, the precision is even lower because there are

no tree intra-temporal relationships. On variable v-structures networks, the tDBN algorithm is expected

to perform poorly as the intra-temporal underlying structure violates the algorithm’s assumptions. The

fact that the proposed algorithm performs well in all these contexts shows its increased versatility.

Consistently sDBN outperforms tDBN considerably in terms of running time. Even for n = 50, sDBN

outputs the entire path of 80 networks in under 30 minutes. On the other hand, tDBN takes more

than 4 hours to train a single network. This is consistent with the theoretical quadratic complexity of

the novel pipeline that is fairly better when compared to tDBN which has a O(np+3) complexity. The

exponential complexity in p explains the severely increased running time for n = 20, p = 3. sDBN has

weaker assumptions, better theoretical complexity, lower practical running time and can achieve good

structure identification. Unfortunately, it has the additional overhead of optimal λ estimation, if domain

knowledge is not available.
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Table 5.3: Precision, recall, F1 score and elapsed time t for various types of networks comparing the sDBN and tDBN algorithm. Performance metrics are expressed
in percentages. The table reports average values along with the standard deviation in parenthesis over five runs for each type of network. On every run, a dataset
with 1000 observations over four timesteps was sampled and used as input to both algorithms. Variable p is the maximum number of parents from previous
timesteps allowed; v is a tuple characterizing the random structure generation with the number of intra-temporal and inter-temporal v-structures, respectively;
n is the number of nodes per timestep. Values in bold are the best obtained for each metric per row. In sDBN the performance metrics are the ones obtained for
the best network in the trained path (t is the elapsed time for the entire path).

sDBN tDBN + LL
Type Pre Rec F1 t / s Pre Rec F1 t / s

Complete Tree + Inter-temporal (n = 20)

p = 1 97.5 (3.2) 93.3 (3.1) 95.3 (1.8) 147.5 (14.0) 66.1 (0.0) 100 (0.0) 79.6 (0.0) 264.6 (4.2)
p = 2 96.0 (3.2) 89.6 (6.3) 92.6 (4.2) 138.6 (14.1) 82.7 (4.3) 100 (0.0) 90.5 (2.6) 264.7 (5.4)
p = 3 93.6 (4.2) 87.6 (4.7) 90.5 (3.9) 113.3 (15.5) 73.4 (6.5) 100 (0.0) 84.5 (4.4) 4338.8 (78.4)

Complete Tree + Inter-temporal (n = 50)

p = 1 95.8 (2.2) 96.2 (3.0) 96.0 (1.6) 952.7 (64.4) 66.4 (0.0) 100 (0.0) 79.8 (0.0) 16474.4 (161.2)
p = 2 91.6 (2.6) 91.7 (2.4) 91.6 (2.1) 862.0 (56.6) 81.3 (3.3) 100 (0.0) 89.7 (2.0) 16502.0 (58.0)
p = 3 89.7 (2.5) 82.9 (2.6) 86.1 (1.7) 775.7 (51.3) 88.1 (3.2) 90.8 (1.6) 89.3 (1.3) 16517.8 (53.3)

Inter-temporal only (n = 20)

p = 1 100 (0.0) 100 (0.0) 100 (0.0) 168.4 (15.1) 33.9 (0.0) 100 (0.0) 50.6 (0.0) 254.8 (4.7)
p = 2 99.4 (1.2) 100 (0.0) 99.7 (0.6) 148.4 (17.7) 49.8 (1.7) 100 (0.0) 66.5 (1.5) 261.0 (4.3)
p = 3 98.4 (2.1) 99.5 (1.1) 98.9 (1.3) 132.2 (10.1) 45.3 (2.2) 100 (0.0) 62.3 (2.1) 4273.6 (61.7)

Inter-temporal only (n = 50)

p = 1 100 (0.0) 100 (0.0) 100 (0.0) 1293.5 (80.2) 33.6 (0.0) 100 (0.0) 50.3 (0.0) 16286.2 (51.0)
p = 2 96.4 (5.3) 98.7 (1.4) 97.5 (3.4) 1043.5 (178.9) 51.5 (2.5) 100 (0.0) 68.0 (2.2) 16332.9 (72.9)
p = 3 98.0 (1.0) 97.6 (1.4) 97.8 (0.9) 854.1 (96.3) 53.8 (3.0) 86.4 (1.0) 66.3 (2.3) 16616.2 (425.6)

Variable v-structures (n = 20)

v = (2, 3) 97.2 (3.9) 100 (0.0) 98.6 (2.1) 172.8 (21.6) 41.7 (1.4) 98.5 (1.9) 58.6 (1.2) 265.3 (3.3)
v = (4, 6) 99.4 (1.2) 98.8 (1.5) 99.1 (0.8) 150.4 (15.0) 50.8 (0.0) 92.6 (1.4) 65.6 (0.4) 261.5 (8.3)
v = (5, 10) 98.9 (1.3) 96.7 (1.0) 97.8 (1.0) 151.4 (20.0) 58.0 (1.3) 94.6 (3.4) 71.9 (1.1) 261.6 (2.9)
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5.2 Multinet classification on benchmark Datasets

To test the performance of this learning procedure on real data, a classification task was performed on

a collection of public multivariate time-series from the UCI Machine Learning Repository [58] and the

UCR Time Series Classification Archive [59]. These datasets were already pre-processed and discretized

by Samuel Arcadinho [34] using the SAX algorithm [60], ready to be used by discrete DBN training

algorithms. Each random variable is assumed to take four possible levels. No missing values exist.

Table 5.4 presents a summary of the considered datasets.

Each dataset was shuffled and then split into train and test datasets using stratified cross-validation

with five folds. This ensures that the datasets keep the original class balance. A cross-validation approach

was used due to the small size of the dataset, as this can better evaluate algorithms performance than

on a single test dataset.

For each dataset, a DBN multinet was trained and then used for prediction on a test dataset. The

DBNs were trained considering a Markov lag of 1 and a stationary process, which effectively helps

to increase the number of observations on the training dataset. In the directing process, nodes were

restricted to have a maximum of 3 parents. The observations were stratified by class and, for each sub-

dataset, a DBN was trained using the proposed algorithm. The predicted class is predicted computing

the joint query for each network and considering the class associated with the highest probability (see

Equation (3.18)).

To select the best λ value, a cross-validation procedure with 10 folds was used in the training data.

Using each fold as a test dataset, a path of 80 networks was trained, and then the φLL score was computed

for each network. The λ selected is the one that has the best average score across all folds. Every class

has a different value.

Serving as a comparison, DBN multinets were trained using the tDBN algorithm, a state-of-the-art

DBN structure discovery algorithm. These networks were trained using the MDL score, considering a

stationary process, and limiting the number of parents from previous timesteps to three.

Table 5.4: Summary of the MTS benchmark datasets used for classification to assess the performance of
the proposed method. The reported number of nodes is per timestep.

Dataset Nodes Timesteps Observations Classes

ArabicDigits 13 4 8800 10
CharacterTrajectories 3 100 2858 20

ECG 2 39 200 2
JapaneseVowels 12 7 640 9

Libras 2 45 360 15
NetFlow 4 50 1337 2
UWave 3 100 4478 8
Wafer 6 100 1194 2

Results

Table 5.5 reports the average performance metrics on the test dataset, comparing sDBN and tDBN with

MDL. Figure 5.5 shows the receiver operation characteristic (ROC) plot curve for all benchmark datasets
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with binary classes. Using sDBN, ECG, NetFlow and Wafer scored an average area under the ROC curve

(AUC) metric [61], resulting from the integration of each single ROC curve and posterior averaging, of

0.836, 0.852 and 0.854, respectively. On the other hand, tDBN scored 0.812, 0.870 and 0.887, respectively.

Figure 5.6 and Figure 5.7 report the sum of the confusion matrices for both methods.

On 5 out of 8 datasets, tDBN shows better performance than sDBN. Still, on all datasets, the proposed

method performs within 3% of the accuracy of the state-of-the-art method. Accordingly, ROC plots show

that both algorithms have very similar performances on the binary MTS datasets. AUC scores are also

similar, but with advantage for tDBN + MDL, scoring higher in 2 out of 3 datasets.

Poor sDBN performance can be associated with difficulty to select the optimal λ value. The benchmark

datasets do not have a large number of observations, which can result in an unsatisfactory cross-validation

estimate. This is consistent with results in synthetic datasets, as the best network in the path scored in

the test dataset often did not coincide with the optimal one. Also, in these experiments, each network

that belongs to the multinet classifier was trained using the same geometric grid. However, different

classes datasets may have different optimal λ values, and therefore the request grid may not be suitable

for every class, which can contribute to reduced classification performance.

Overall results show very competitive accuracies. Although tDBN wins most cases, both in terms of

accuracy and F1 score, the winning margins are not large. According to the Wilcoxon statistical test, the

available results are not sufficient to reject the null hypothesis that the two classifiers have different mean

accuracy (p=0.898). The results validate the use of sDBN algorithm in real data as it still can output

better classifiers when faced with a state-of-the-art DBN training algorithm.
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Table 5.5: Average accuracy, precision, recall, and F1 score on test MTS benchmark datasets for classifiers trained with the sDBN and tDBN algorithms, along

with standard deviation inside parenthesis. For each dataset, a five-fold stratified cross-validation evaluation methodology was used. Precision, recall, and F1 on

multiclass datasets were computed using a macro-averaging perspective. The best classifiers for each metric are highlighted in bold. All values are expressed in

percentages.

Dataset
sDBN tDBN with MDL

Acc Pre Rec F1 Acc Pre Rec F1

ArabicDigits 78.1 (0.5) 78.4 (0.6) 78.1 (0.5) 78.2 (0.6) 75.5 (0.6) 75.9 (0.7) 75.5 (0.6) 75.6 (0.6)

CharacterTrajectories 85.8 (1.7) 86.9 (1.3) 85.1 (1.7) 84.2 (2.0) 86.3 (0.7) 87.2 (0.8) 85.2 (0.6) 85.1 (0.7)

ECG 76.5 (4.4) 74.2 (4.8) 76.1 (5.1) 74.7 (4.9) 75.0 (7.6) 72.6 (8.4) 73.1 (9.1) 72.3 (8.7)

JapaneseVowels 86.7 (3.1) 89.0 (2.2) 86.3 (3.5) 86.7 (3.3) 89.1 (1.3) 89.6 (1.4) 88.5 (1.7) 88.8 (1.6)

Libras 63.9 (6.7) 65.1 (7.0) 63.7 (6.5) 62.2 (6.5) 62.2 (5.7) 63.2 (7.2) 62.2 (5.7) 60.1 (6.5)

NetFlow 81.9 (1.0) 74.4 (1.4) 78.8 (3.0) 75.9 (1.7) 84.4 (2.6) 77.2 (3.4) 80.1 (4.7) 78.4 (3.8)

UWave 92.3 (1.0) 92.5 (1.0) 92.3 (1.0) 92.3 (1.0) 92.7 (0.4) 92.8 (0.4) 92.7 (0.4) 92.7 (0.4)

Wafer 89.8 (0.8) 72.4 (6.4) 61.4 (6.5) 63.5 (7.0) 90.5 (1.7) 77.0 (9.2) 61.4 (6.4) 64.5 (7.5)
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Figure 5.5: Average ROC plots comparing classifiers generated using sDBN and tDBN for the ECG, NetFlow

and Wafer test datasets. The curves were averaged by fixing a grid of FPR values and computing the

corresponding TPR using linear interpolation.
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Figure 5.6: Confusion matrices for ECG, NetFlow, Wafer, UWave, JapaneseVowels, ArabicDigits, and
Libras. Squares with darker blue colors signal a larger number of observations classified as the position
implies.
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Figure 5.7: Confusion matrix for CharacterTrajectories.

5.3 Rheumatological health records dataset

Ankylosing spondylitis (AS) is a condition considered to be a rheumatological disease [62]. This disease

is characterized by inflammation in skeleton joints and can lead to total fusion of the axial skeleton and

consequent loss of spinal mobility. AS affects predominantly young adult males and has a social and

economical impact as it usually leads to disability and loss of employment [63]. It has no cure and is

typically treated with non-steroidal anti-inflammatory drugs [62]. For patients that no longer respond to

typical therapy, treatment with biological agents is recommended [64].

Since it is a chronic disease with deep sociological impact, there is interest in modeling the disease

using a mathematical framework [65] that can lead to early diagnosis, treatment outcome prediction,

personalized treatment, better disease progression understanding, and hopefully reduce the impact of the

disease in the patient’s life.

Reuma.pt or the Rheumatic Diseases Portuguese Register, is a database of rheumatological patients

health records in Portugal created by the portuguese society of rheumatology (SPR) operating since 2008

[66]. The registry includes patients of several diseases in the rheumatological scope, including rheumatoid

arthritis, psoriatic arthritis, and ankylosing spondylitis.

To evaluate the sDBN performance on real data, a subset of records from the Reuma.pt AS dataset was

cleaned and pre-processed. Table 5.6 summarizes the kept features and their associated discretization

scheme. Data discretization was largely based on the proposed categories by Martins [67]. Painful and

swelled articulations were discretized as a binary feature.

Data pre-processing

Provided data had to be cleaned as it is subject to filling errors and missing values. It is also continuous

and has to be discretized.

Typical faults on the data include the use of non-numeric characters, for example, indicating that
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Table 5.6: Summary of the features considered composed of measured clinical indicators from the
Reuma.pt dataset for Ankylosing Spondylitis patients and used discretization. BASDAI and BASFI
questionnaires are 6 and 10 individual features, respectively.

Feature name Description Discretization

BASDAI

The bath ankylosing spondylitis disease activity
index (BASDAI) [68] is a metric to assess
disease activity based on a patient answered
questionnaire.

0: [0, 4[; 1: [4, 7[; 2: [7, 10]

BASDAI Q1-Q6
Questionnaire filled for evaluating
the BASDAI index.

0: [0, 4[; 1: [4, 7[; 2: [7, 10]

BASFI

The bath ankylosing spondylitis functional
index (BASFI) [69] is a metric to assess the
level of a patient disability based on a
self answered questionnaire.

0: [0, 3[; 1: [3, 7[; 2: [7, 10]

BASFI Q1-Q10
Questionnaire filled for evaluating
the BASFI index.

0: [0, 3[; 1: [3, 7[; 2: [7, 10]

PCR C-reactive protein (CRP) / mg/L
0: [0, 5[; 1: [5, 10[; 2: [10, 100];
3: [100,∞[

VS
Erythrocyte sedimentation rate (ESR) /
mm/hour

0: [0, 6[; 1: [6, 17[; 2: [17,∞[

TemCorticActivo
Whether the patient is medicated with
corticosteroids

0: No; 1: Yes

ArtTumefactas Number of swelled articulations 0: [0, 1[; 1: [1,∞[
ArtDolorosas Number of painful articulations 0: [0, 1[; 1: [1,∞[

EVAMedico
visual analogue scale (VAS) from the physician
prespective

0: [0, 1[; 1: [1, 3[; 2: [3, 10]

EVADoente VAS from the patient prespective 0: [0, 2[; 1: [2, 5[; 2: [5, 10]

ASDAS

The Ankylosing Spondylitis Disease Activity
Score (ASDAS) [70] is a composite index,
computed using the C-reactive protein value,
applied to evaluate disease activity.
See Equation (5.4).

0: [0, 1.3[; 1: [1.3, 2.1[; 2: [2.1, 3.5[;
3: [3.5,∞[

ASDASvs
The ASDAS-ESR score is a composite index,
computed using the ESR value, applied to
evaluate disease activity.

0: [0, 1.3[; 1: [1.3, 2.1[; 2: [2.1, 3.5[;
3: [3.5,∞[

NEW BioActivo Biological agent currently used for treatment.

Adalimumab, Certolizumab,
Etanercept, Golimumab,
Infliximab, Secucinumab,
None
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there is no result. It is also common that the observed value is specified to be in an interval. In those

cases, a random value was assigned picked with uniform probability in the specified interval. CRP values

were also sometimes specified directly as a negative outcome instead of a measured number. In those

cases, a random number was picked in the appropriate discretization interval. Random numbers are a

way to fill the data leading to the same final result because, after discretization, every possible value gets

in the same category.

After basic input cleaning, missing values were filled using simple filling methods. For each patient,

values from previous appointments were first forward carried to later appointments. After that, a backfill

method was used to carry back observed values to previous appointments. Foward fill and backfill were

only applied on data from a single patient. After this filling procedure, there were still observations

containing missing values.

Subjects were also filtered by the number of appointments. On the examined data, there were patients

with more than 80 identical medical evaluations. This was clearly an input error and should not be

considered as part of the dataset. Additionally, patients with a low number of observations should be

considered as outliers as the disease progression may not be normal or simply dropped treatment. Due

to this, patients with less than four and more than 80 observations were disregarded.

Additionally, patients were filtered and stratified by applied treatment. Appointments in which the

biological agent was changed were dropped, as well as subsequent medical evaluations. Treatment plans

were the patient started with no treatment using biological agents, but then one was applied are kept.

Afterwards, all observations containing missing values were dropped. Figure 5.8 shows the final distri-

bution of patients per treament. Groups treated with Abatacept, Certolizumab, Rituximab, Secucinumab,

Tocilizumab and Ustecinumab were dropped due to the low level of observations. After discretization,

the result was a discrete dataset with 1679 subjects and 27469 observations.

Experimental Setup

Two different sets of results were obtained. For every group of treatment, stationary DBNs with

Markov lag of 1 and 2 were trained using the rheumatological dataset. The dataset used has a variable

number of appointments per patient. Therefore, stationary DBNs are better for this data as only transi-

tions are used to train the networks. Non-stationary network training without missing values, imperative

in the proposed algorithm, forces a homogeneous number of appointments per subject.

The best lambda value according to each score was obtained using 10 fold cross-validation. Each

cross-validation run used a path of 80 networks with a geometric grid of λ values with arbitrarily chosen

limits to obtain a reasonable amount of edges. The log-likelihood and MDL scores were tested on the

left-out dataset for each run. The λ with the best average score was selected. The resulting networks

were inspected visually and qualitatively analyzed.

For a quantitative study, a classification task was designed aiming to predict the treatment outcome.

To this end, stationary DBNs were trained on a transition dataset between two consecutive appointments.

The best λ value was chosen similarly to the other experiments. For comparison purposes, networks were

trained with the tDBN algorithm with different scores.
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Figure 5.8: Number of patients per applied
treatment on the final, pre-processed, Reuma.pt
dataset.
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Figure 5.9: Number of observations per class on the
final Reuma.pt dataset used for classification.

A class variable was designed discretizing the ASDAS feature differently. Instead of admitting four

categories, only two were considered – low or high disease activity – being 3.5 the threshold between the

two. This is the threshold to very high disease activity defined by Machado et al. [71]. Additionally,

patients with more than 10 appointments were disregarded. Figure 5.9 shows the distribution of obser-

vations for each considered class. This class variable resulted in a very unbalanced dataset, with the low

activity class representing over 81% of the observations. This is expected, as patients under treatment

usually do not develop high disease activity. Nevertheless, predicting it is a relevant classification prob-

lem. Observations with low disease activity were undersampled at random to tackle the class imbalance.

The final dataset used for the classification task had 956 observations.

To predict treatment outcome, the resulting network was queried for the probability of the class

variable in the latter timestep using evidence only for the first timestep. The predicted class is the node

level with the highest a posteriori probability, given the evidence. The maximum a posteriori (MAP)

query was made using the Variable Elimination algorithm [72] implementation in the pgmpy5 package

[73].

Results

Figure 5.10 shows the best MDL network with lag 1 using the full Reuma.pt dataset. Figure 5.11

shows the best networks for patients treated with Adalimumab and Etanercept and Figure 5.12 for those

treated with Golimumab and Infliximab. Full trained path, best log-likelihood networks and networks

with lag 2 can be interactively explored on http://jbsants.com/viewer/reuma.

All networks are consistent, and there are no significant changes on the edges identified for each

group. All trained networks have a high prevalence of identity edges, i.e., edges originating in the same

node but on the previous timestep. This is expected as the value of a particular clinical variable should

influence its condition in the next medical consultation. There are very few non-identity inter-temporal

edges, appearing only in Figure 5.10. The Golimumab group yields the sparsest network due to having

5Available in https://github.com/pgmpy/pgmpy.
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Figure 5.10: Transition network trained with data from the Reuma.pt dataset considering only patients
that were treated by a single or none biological agent. The dataset used was obtained joining all considered
treatment groups. The networks were trained considering a Markov lag of 1. To determine a single
network, a cross-validation step was conducted with 10 folds. The shown network is the one with the
best mean MDL score on the folds test dataset. Nodes are labelled as variable name timestep.

fewer patients and, subsequently, observations lead to more conservative networks according to the MDL

criteria. Observational evidence is not sufficient to support the increase in complexity of the model.

All networks identify consistent clusters of nodes around the BASDAI and BASFI indices. These nodes

correspond to the individual questions on each questionnaire. This proves the algorithm’s ability to find

good relationships between variables as the indices are determined using the individual questions, leading

to an evident relationship. The proposed method was able to identify this relationship without any prior

knowledge of it. This also shows that resulting networks have intra-temporal v-structures, which are not

allowed by the tDBN algorithm and is a clear advantage of the proposed algorithm. Clusters surrounding

BASDAI and BASFI are not possible to be recovered by algorithms restricted to tree structures. In this

dataset, this relationship is known a priori. However, when that is not the case, tDBN can fail to fully

characterize the underlying model due to the substantial restrictions.

The same happens for the ASDAS, and ASDAS-ESR indices as the corresponding clinical indicators

applied in the calculation (CRP and ESR, respectively) are tied to both indices. In four out of the five

shown networks, ASDAS is associated with the VAS level from the patient perspective and Q2 from the

BASDAI questionnaire. The formula used for calculating ASDAS is

ASDAS = 0.12 · BASDAI Q2 + 0.06 · BASDAI Q6 + 0.11 · EVADoente + 0.07 · BASDAI Q3

+ 0.58 log (PCR + 1) ,
(5.4)
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(b) Etanercept

Figure 5.11: Transition networks obtained from the Reuma.pt dataset considering only the patients that were treated by a single biological agent and splitting
them into different datasets. This figure shows the networks for Adalimumab and Etanercept. The networks were trained considering a Markov lag of 1. To
determine a single network, a cross-validation step was conducted with 10 folds. The shown networks are the ones with the best mean MDL score on the folds
test dataset. Nodes are labelled as variable name timestep.
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(b) Infliximab

Figure 5.12: Transition networks obtained from the Reuma.pt dataset considering only the patients that were treated by a single biological agent. This
figure shows the networks for Infliximab and Golimumab. The networks were trained considering a Markov lag of 1. To determine a single network, a cross-
validation step was conducted with 10 folds. The shown networks are the ones with the best mean MDL score on the folds test dataset. Nodes are labelled as
variable name timestep.
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using the Reuma.pt feature terminology. In fact, these two variables also have a considerable influence on

ASDAS, corroborating that the algorithm outputs a good structure. Edges between ASDAS and ASDAS-

ESR can be explained by similarities in the used formula for the latter, which also account for VAS and

BASDAI Q2, Q3, and Q6. These results are not consistent with Martins [67] as, in most networks, a

relationship is found between ASDAS and VAS from the doctor’s perspective instead. Since ASDAS is

calculated with the patient perspective, the shown results are more reasonable. Nevertheless, the trained

network with the least amount of regularization for Golimumab also found an edge between ASDAS and

the physician VAS.

No network included a relationship with corticosteroids use. An identity edge is present from the

previous timestep because, most times, the value is the same as in the previous timestep. Martins [67]

also found that corticosteroids use is very disconnected from the considered features. This suggests that

the use of these drugs does not influence disease progression. In fact, the use of steroids can provide pain

relief, but it has not been proved to be effective with AS [62].

Regarding the classification task, Table 5.7 shows performance metrics for the trained classifiers.

Figure 5.13 compares the mean ROC curves of the classifiers. All classification algorithms accurately

predicted the disease activity in the medical consultation, with average accuracies greater than 80%.

Given that a balanced binary dataset was used, this shows that these classifiers can be helpful in aiding

clinical decisions. The used imputation and balancing methods are very naive, and overall accuracy might

improve using different approaches, suggesting future work to assess the impact of such pre-processing

on the classifiers’ performance.

Table 5.7: Average classifier performance on the Reuma.pt test dataset over a 10 fold cross-validation.
Values inside the parenthesis are the standard deviation over all runs. The best classifier for each metric
is emphasized in bold. Both algorithms were trained assuming a stationary process with Markov lag 1.
The sDBN algorithm was trained cross-validating the training dataset with 10 folds to find the optimal
lambda value according to the φLL or the φMDL score. Every node was limited to having a maximum of
three parents in the directing step. The tDBN algorithm was run limiting the number of parents from
the previous timestep to just 1.

Algorithm Accuracy Precision Recall F1 score AUC

sDBN + LL 0.875 (0.048) 0.890 (0.046) 0.869 (0.083) 0.877 (0.050) 0.913 (0.039)
sDBN + MDL 0.838 (0.151) 0.871 (0.159) 0.873 (0.092) 0.856 (0.105) 0.846 (0.125)
tDBN + LL 0.873 (0.050) 0.886 (0.051) 0.873 (0.083) 0.876 (0.050) 0.920 (0.036)

tDBN + MDL 0.882 (0.065) 0.887 (0.054) 0.888 (0.093) 0.885 (0.064) 0.923 (0.037)

The ROC curves show that the sDBN classifier chosen with φLL is very competitive with both tDBN

classifiers. Using the MDL score to choose the best network is not the best approach, leading to a clearly

worse classifier. tDBN with MDL score, on the other hand, is distinctively the best classifier. Note that

MDL is computed using the training data in this case, not on the test dataset. The proposed algorithm

wins in the precision score and is within 0,7% of the best classifier in terms of accuracy. Additionally,

it performs better than tDBN with the LL score, despite having a lower AUC score. These results, once

again, validate the performance of sDBN and affirms it as an alternative learning algorithm.

In this particular classification task, tDBN with MDL is the best classifier. Not only has greater
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Figure 5.13: Mean ROC curve for all Reuma.pt classifiers evaluated on the test dataset over a 10 fold
cross-validation for all the considered classifiers. The mean curve was computed fixing a linear grid of
values for FPR and then averaging the TPR values for every point in the grid determined using linear
interpolation.

accuracy, but it also has no additional overhead of discovering the optimal λ. Also, it was trained

admitting only one parent from the previous timestep, the fastest configuration possible. Therefore, sDBN

does not prove itself useful in this context, as the dimensionality is still tractable to be trained by other

methods with better results. The lower performance of sDBN can be linked to difficulty in choosing the

optimal λ. Additional studies have to be done to determine if increasing the number of folds on the cross-

validation step to find the optimal network can lead to a better result. The number of networks in the

requested path can also be increased. Moreover, as the author of tDBN suggests, tree-like classifiers have

been shown to perform very well [48]. Structures with added complexity may still model the underlying

process correctly. However, they can lead to a final classifier with a higher variance that overfits the

training data. These results in medical datasets are consistent with the results found with multinet

classification on MTS benchmark datasets shown in Section 5.2.

64



Chapter 6

Conclusions

6.1 Achievements

This dissertation introduces a new pipeline to train dynamic Bayesian networks based on recently devel-

oped regularization-based approaches to Bayesian network training. The algorithm successfully applies

temporal causation restrictions to these methods, allowing high-dimensional DBN training using time-

series data. In this work, an implementation of the new methodology was developed and validated in

synthetic and real data.

The proposed method achieves great structure identification in low and high-dimensional contexts.

This thesis reports excellent results in DBNs with up to 300 nodes per timestep in artificial datasets,

dimensions simply unattainable by state-of-the-art techniques like tDBN in a reasonable time. Even in low

dimensions, sDBN excels in structure discovery with considerably lower training times. The new algorithm

also identified suitable transition networks on rheumatological data that uncover known relationships

between dataset features. These structures are full of intra-temporal v-structures that optimal tree

algorithms can’t recover.

Classification results, on the other hand, do not favor the use of these techniques on datasets with low

dimensions. Even though a competitive performance was achieved, the added overhead of cross-validation

to find the optimal regularization level is a clear disadvantage of this method. Also, tree classifiers achieve

good performances as more complex structures are prone to overfit and offer better accuracy variance

across datasets.

6.2 Future Work

The validation results of this dissertation are by no means extensive. This thesis focused on training

stationary networks with Markov lag 1, so additional work can be done to test the algorithm for networks

with different configurations. Also, non-stationary network training is possible, but it is not tested.

Finding public high-dimensional temporal datasets proved to be a challenge. Therefore, further studies

to assess the performance of the algorithm in these kinds of datasets are needed. As suggested, the pre-
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processing used in the Ankylosing Spondylitis may not be the most suitable for the classification task.

Therefore, more detailed studies to treatment outcome prediction are a possibility.

The developed C++ implementation has a huge improvement potential. The skeleton directing step

can also be parallelized to improve performance. Additional work is needed to enhance single-core per-

formance, like CPU cache hit rate analysis. Since the algorithm heavily relies on matrix multiplication,

graphics processing unit (GPU) acceleration can be leveraged to reduce computation time.

The proposed algorithm conducts a full optimization procedure on the multinomial logistic parametriza-

tion, but only the support of the parameter vector is considered when directing the network. It should

be possible to improve the method by stopping the optimization if the active set did not change in a

certain number of iterations. Another possibility is to change to stopping criteria, accepting less precise

solutions.

Following recent advances in characterizing graph acyclicity using differentiable functions [35], new

studies can be conducted joining these restrictions with the reparametrization of DBNs to introduce new

network training methods using gradient descent. These methods can provide different local minimum

escaping procedures than greedy methods and can serve as alternative optimization procedures that may

benefit from the latest research in gradient optimization techniques.
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