

How fake is my image?

Evaluation of Generative Adversarial Networks

Marta Filipa de Pinto Marques

Thesis to obtain the Master of Science Degree in:

Electrical and Computer Engineering

Supervisor(s): Prof. João Miguel Duarte Ascenso

Prof. Catarina Isabel Carvalheiro Brites

Examination Committee

Chairperson: Prof. José Eduardo Charters Ribeiro da Cunha Sanguino

Supervisor: Prof. João Miguel Duarte Ascenso

Member of the Committee: Prof. Luís Eduardo de Pinho Ducla Soares

September 2021

ii

iii

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iv

v

Acknowledgements

First and foremost, I want to thank my parents, Fernanda, and Nuno, for being my biggest cheerleaders

since day one. And even though they put me on this earth without my consent, they always promised

that the journey would be worth the breach of contract. I guess they were right, like always.

Then I would like to thank my supervisors, Prof. Dr. João Ascenso and Prof. Dr. Catarina Brites, for

supporting me with kindness and patience throughout this project. I’m truthfully thankful to have had

supervisors that are genuinely passionate when it comes to sharing knowledge. I also want to thank

Instituto de Telecomunicações for making this project possible.

I would also like to thank BAC for giving me the opportunity to keep playing basketball competitively

even in this tiring times. It certainly was not an easy season, but the effort put in by every single one

involved gave me an additional sense of purpose when I needed it the most. A special word of

appreciation to my younger teammates that make me want to be a good role model, and God knows

they need it.

A big thank you to my friends that stayed close even when life didn’t make it easy to do so. The resilience

you show when it comes to scheduling group activities inspires me to apply that same mindset to my

work, even if I probably didn’t make it that day.

To my family that loves me unconditional and made sure that I was well fed and sleeping enough. I feel

like I should be dead, but they made a collective effort to avoid that.

Lastly, I want to thank the amazing people that took this journey with me for every minute we spent

discussing, worrying, working on some class, but also for every minute spent dreaming about becoming

engineers and applying that knowledge to better the world we live in.

vi

vii

Abstract

Nowadays, visual information and communication systems are essential for humans everyday life.

There are many services and applications that rely on visual data, from medical imaging to

entertainment, many in widespread use in smartphones and social media platforms. In the past decade,

Machine Learning (ML) algorithms, more precisely Deep Neural Networks (DNN) have been able to

solve complex and difficult image processing and computer vision problems, such as image

compression, image super-resolution, image denoising, etc. and able to extract semantic information

from images, with much success.

Generative models are rather recent but have been very successful in many multimedia applications. It

all started with the creation of fake images which can challenge the human perceived notion of reality.

Nowadays, it is possible to create faces of persons that never existed and even entire visual scenes

which look realistic and plausible. Generative Adversarial Networks (GANS) have risen in popularity

among the generative models that can learn high-dimensional distributions of data, i.e. the manifold of

the entire set of natural images, which are then sampled to create new never seen images. More

importantly, GANs are now able to create realistic-looking images and have been applied for several

image processing problems such as super-resolution or image compression.

In this context, it is rather important to assess the perceptual quality of the generative images produced

by GAN-based solutions. This M.Sc. thesis aims to study and analyze the quality of the images

generated with GAN based framework, for three different fields: super-resolution, denoising and

compression. More importantly, other quality factors besides fidelity that play an important role in this

context, such as the naturalness/fakeness of the image, will be addressed in such analysis. To achieve

this objective, a crowdsourcing-based subjective evaluation of the GAN based solutions was performed

and the performance of objective quality metrics was evaluated.

Keywords: Image Quality Assessment, Generative Adversarial Networks, Machine
Learning, Deep Neural Networks

viii

ix

Resumo

Nos dias que correm, informação visual e os sistemas de comunicação são essenciais e dominam o

nosso quotidiano. Há imensos serviços e aplicações que estão dependentes de dados visuais como é

caso da imagiologia medica ou do entretenimento, muitos em larga escala usados nos nossos

telemóveis e nas redes sociais. Na última década, algoritmos de aprendizagem automática,

nomeadamente Deep Neural Networks (DNN), começaram a ser usados para resolver problemas

difíceis e complexos no ramo da visão computacional e do processamento de imagem, como por

exemplo, compressão, super-resolução, denoising (redução de ruído), etc. e alcançaram grande

sucesso nestas tarefas por serem capazes de extrair informações semânticas contidas nas imagens.

Modelos generativos são relativamente recentes e têm vindo a provar ser muito bem-sucedido em

diversas aplicações de multimédia. Tendo começo na criação de imagens ou de vídeos falsos que

conseguem desafiar a perceção humana da realidade. Hoje em dia é possível criar caras de pessoas

que nunca existiram ou até mesmo cenários visuais que parecem reais e plausíveis, não o sendo.

Generative Adversarial Networks (GAN) têm vindo a crescer em popularidade entre os modelos

generativos capazes de aprender distribuições de dados de alta dimensionalidade (isto é, a variedade

de todo o conjunto de imagens naturais, que são utilizadas para gear novas images). Principalmente,

as GANS são agora capazes de criar imagens realistas e têm sido aplicadas com sucesso a várias

tarefas como a compressão de imagens como por exemplo compressão ou super resolução.

Neste contexto, é fundamental avaliar a qualidade percetual das imagens geradas por soluções que

utilizem GANs. Esta tese tem como objetivo fazer uma análise da qualidade de imagens geradas por

soluções baseadas em GANs em três ramos diferentes: super resolução, remoção de ruido e

compressão. Visto que neste contexto outros fatores, para além da fidelidade, influenciam grandemente

a qualidade de imagem, como é caso da naturalidade/falsidade da imagem, irá ser feita essa análise.

Para isso é feito um estudo crowdsourcing subjetivo da qualidade de imagem das soluções que utilizam

GANs onde se avalia a qualidade das imagens, assim como, o desempenho de métricas objetivas na

avaliação da qualidade de imagem.

Palavras-Chave: Avaliação de qualidade de imagem, Generative Adversarial Networks,

Aprendizagem Automática, Redes Neuronais Profundas

x

xi

Table of Contents

Abstract .. vii

Resumo.. ix

Table of Contents ... xi

List of Figures ... xiii

List of Tables ... xv

List of Acronyms ... xvii

1. Introduction ... 2

1.1 Context and Motivation.. 2

1.2 Objective and Structure ... 4

2. Neural Networks: Foundations and Architectures ... 5

2.1. Neural Networks Foundations Basics ... 5

2.2. Model Learning ... 7

2.3. Main Neural Network Types .. 10

3. Relevant GAN-Based Image Solutions .. 20

3.1. Generative Adversarial Networks for Extreme Learned Image Compression 20

3.2. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 26

3.3. Deep Universal Generative Adversarial Compression Artifact Removal 31

4. GAN-based Image Processing: Subjective Quality Evaluation ... 40

4.1. Test Material and Preparation ... 40

4.2. GAN-based Image Processing Solutions and Benchmark .. 43

4.3. Subjective Test Methodology .. 49

4.4. Data Processing: converting pairwise-comparison to psychometric scores 56

4.5. Test Results and Analysis .. 59

5. Quality Metric performance evaluation .. 68

5.1. Quality Metrics .. 68

5.2. Quality Metrics Performance Evaluation Procedure .. 70

5.3. Results and Analysis ... 70

6. Summary and Future Work Plan ... 75

References ... 77

Annexes .. 88

xii

xiii

List of Figures

Figure 1 - Number of citations of the paper where GANs were introduced [7] between 2016 and
2019 (left). Evolution of the fake images generated by GANs between 2014 and
2018 [7, 8, 9, 10, 11] (right). .. 3

Figure 2 - Representation of a biological neuron (left) and artificial neuron (right) [12]. 6

Figure 3 – Graphical representation of Sigmoid (left), Tanh (centre) and ReLU (right). 6

Figure 4 – Example of a fully connected neural network architecture with two layers. 7

Figure 5 - Simplified gradient descent algorithm flowchart. .. 8

Figure 6 - Example of gradient descent converging (left) and diverging (right). 10

Figure 7 - Architecture of a CNN used for image classification [19]. .. 11

Figure 8 - Example of a 2-D convolution with stride equal to 1 and without padding [20]. 12

Figure 9 - Simplified representation of the neurons’ organization in a convolutional layer. 12

Figure 10 - Illustration of the input-output relationship in a pooling layer with filter size 2x2 and
stride 2 [12]. ... 13

Figure 11 - Architecture of an autoencoder [22] with encoder. ... 14

Figure 12 - Block diagram of the general architecture of a Denoising Autoencoder [23]. 15

Figure 13 - Representation of the typical architecture of a Variational Autoencoder [26]. 16

Figure 14 – Architecture of a Generative Adversarial Network. .. 17

Figure 15 – Main loop of the training process of a GAN [33]. ... 18

Figure 16 – Comparison between log(1 − 𝐷𝐺𝑧 and −log(𝐷𝐺𝑧, illustrating the saturation of the

log(1 − 𝐷𝐺𝑧 curve for small values of 𝐷𝐺𝑧. .. 19

Figure 17 - Architecture of the proposed GC network [30]. ... 22

Figure 18 - Proposed SC network architecture [41]. ... 23

Figure 19 - Evaluation between GC, BPG and MSE baseline using an image from the Cityscapes
dataset (Adapted from [30]). .. 24

Figure 20 - Visual comparison between original image (left), GC (middle) and BPG (right) using
images from different datasets: Kodak (top) and RAISE 1k (bottom) (Adapted
from [41, 44, 45]).. 25

Figure 21 - Example of visual comparison for different random boxes using the SC model with RB
training [41]. ... 25

Figure 22 – Example of visual comparison for different synthesised elements of the image using
the SC model with RI training [30]. .. 26

Figure 23 - Architecture of the Generator Network with corresponding kernel size (k), number of
feature maps (n) and stride (s) shown for each convolutional block [52]. 28

Figure 24 - Architecture of the Discriminator Network with corresponding kernel size (k), number
of feature maps (n) and stride (s) indicated for each convolutional layer [52]. .. 28

Figure 25 - Architecture of a generic residual block [53]. .. 29

Figure 26 -Visual comparison between Bicubic, SRResNet, SRGAN and the Original image using
images from different datasets: Set5 (top), Set14 (middle) and BSD100 (bottom)
(Adapted from [52]). ... 31

Figure 27 - Architecture of the universal compression artifact removal solution [68].................. 32

Figure 28 – Architecture of the deep convolutional residual neural network, where 𝑛 is number of

filters and 𝑠 is the stride [70]. ... 33

Figure 29 – Discriminator Network Architecture, where 𝑛 is number of filters and 𝑠 is the stride
[68]. .. 33

Figure 30 - Visual comparison between JPEG (QF = 20), AR-CNN, the proposed solution and the
Original [68]. ... 36

Figure 31 - MOS scores and confidence intervals for the 50 random BSD500 images used in the

xiv

subjective evaluation [68]. ... 38

Figure 32 - Images from JPEG AI test dataset selected for subjective assessment. 42

Figure 33 – Example of test layout highlighting the requirements for image sizes targeting the
screen size of 1920x1080. ... 43

Figure 34 - Example of the original JPEG AI image (left) and respective crop (right). 43

Figure 35 - Architecture of the Residual in Residual Dense Block (RRDB) 44

Figure 36 - Visual representation of the pipeline used to obtain ESRGAN test images 46

Figure 37 – Architecture of the crowdsourcing web platform .. 52

Figure 38 – Schema of the collections used in the subjective assessment web application.
Namely, pairs collection (left), sessions (center) and training (right). Where in bold
are the keys of each collection. ... 53

Figure 39 -Homepage of the subjective test web application.. 54

Figure 40 – Left, training phase user interface; right, information shown in the end of training
phase ... 55

Figure 41 - Test environment of the subjective test. On the left selection screen and on the right
the end of test screen. ... 55

Figure 42 – Example of decision matrix (left) and corresponding directed graph (right) 58

Figure 43 – Distribution of the subjects’ gender (left) and age (right) ... 60

Figure 44 - Distribution of the displays size (left) and resolution (right) 60

Figure 45 – Distribution of observers’ average response time. ... 61

Figure 46 – Distribution of the winning frequencies by image content. 62

Figure 47 – Comparison of the winning frequency between HiFiC and HEVC-Intra for the same
target bitrate. Left: 0.06 bpp. Centre: 0.14 bpp. Right: 0.3 bpp. 62

Figure 48 - Comparison of the winning frequency of each model by solution. Left: ESRGAN.
center:HiFiC. Right: ArNet. .. 64

Figure 49 - Comparison of the Woman (00012) image obtained with different Mi models. 65

Figure 50 - Comparison of the Car (00002) images obtained with ESRGAN Mi and ArNet Mi. . 66

Figure 51 -Comparison between different solutions MLE by image of reference. 67

Figure 52 -Wining frequency and MLE plots as function of full-reference metrics. 71

Figure 53 - Wining frequency and MLE plots as function of no-reference metrics. 73

Figure 54 - Cropped area on the Racing Car (00002) image (left) and final test image (right) .. 88

Figure 55 - Cropped area on Rotunda of Mosta (00004) image (left) and final test image (right)
 ... 89

Figure 56 - Cropped area on Las Vegas Sign (00005) image (left) and final test image (right) . 89

Figure 57 - Cropped area on Train (00006) image (left) and final test image (right) 89

Figure 58 - Cropped area on Transmission Towers (00008) image (left) and final test image (right)
 ... 90

Figure 59 - Cropped area on Port (00009) image (left) and final test image (right) 90

Figure 60 - Cropped area on Curiosity Rover (00010) image (left) and final test image (right) .. 90

Figure 61 - Cropped area on Woman (00012) image (left) and final test image (right) 91

xv

List of Tables

Table 1 – Experimental results of NN, bicubic, SRCNN, SelfExSR, DRCN, ESPCN, SRResNet,
SRGAN and the original HR on benchmark data. Highest measures (PSNR [dB],
SSIM, MOS) in bold [4×upscaling] [52]. ... 30

Table 2 – Architecture of the proposed quality predictor network [68]. 34

Table 3 - Evaluation of the proposed generator NN and selected benchmarks using the PSNR,
PNSR-B and SSIM quality metrics on BDS500 and LIVE1, with the best result for
each metric and respective QF group in bold [68]. .. 36

Table 4 - Comparison between the proposed ensemble of NN and the Multi-QF NN regarding the
PSNR, PNSR-B and SSIM on BDS500 and LIVE1, with the best result for each
metric and respective QF group in bold [68]. ... 37

Table 5 -Categorization of JPEG AI test set images by its contents. Highlighted in green are the
selected test images and in orange are the images included in the training phase.
 ... 41

Table 6 – Bitrates per image in JPEGAI dataset obtained with the HiFiC models...................... 48

Table 7 - Transitivity Satisfaction Rate (𝑅𝑖) associated with the ratings (binary decisions) of each
subject. ... 58

Table 8 - Side by side comparison the Train (00006) image compressed by HiFiC and HEVC Intra
for similar scenarios. .. 63

Table 9 - Correlation coefficients for full-reference metrics. Left: PCC. Right: SRCC. 72

Table 10 - Correlation coefficients for no-reference metrics. Left: PCC. Right: SRCC. 73

Table 11 – Subjective test images cropping details- ... 91

Table 12 -Values of quality parameter used when compressing images with HEVC-Intra for each
target quality. ... 97

xvi

xvii

List of Acronyms

AE
Autoencoder

AI
Artificial Intelligence

BN
Batch Normalization

BPG
Better Portable Graphics

Bpp
Bits per pixel

cGAN
Conditional Generative Adversarial Network

CNN
Convolutional Neural Network

Conv
Convolutional

DAE
Denoising Autoencoder

DL
Deep Learning

DNN
Deep Neural Network

FC
Fully Connected

GAN
Generative Adversarial Network

GC
Generative Compression

HR
High Resolution

IQA
Image Quality Assessment

KL
Kullback-Leibler

LR
Low Resolution

ML
Machine Learning

MOS
Mean Opinion Score

MSE
Mean Squared Error

MS-SSIM
Multi-Scale Structural Similarity

NN
Neural Network

PSNR
Peak signal-to-noise ratio

QF
Quality Factor

RB
Random Box

ReLU
Rectified Linear Unit

ResNet
Residual Network

RI
Random Instance

RNN
Recurrent Neural Network

SAE
Sparse Autoencoder

SC
Selective Generative Compression

SR
Super Resolution

SRGAN
Super-Resolution Generative Adversarial Network

SSIM
Structural Similarity

SVM
Support Vector Machine

VAE
Variational Autoencoder

2

Chapter 1

1. Introduction

This chapter aims to introduce this thesis. First, by setting the context and motivations behind this work.

And then, by defining the objective and structure that the thesis will follow.

1.1 Context and Motivation

The need to develop algorithms capable of processing, analysing and understanding images have

appeared with the first digital image back in the 1950s. At the time, this was a purely academic subject,

and the focus was mainly to compress the images due to limitations in storage. By the end of the century,

the advances in image compression were very significant with the introduction of well-known image

compression algorithms, such as JPEG [1], PNG [2] and JPEG 2000 [3]. This was also a turning point

for the field of computer vision and machine learning (ML), with techniques such as SVM (Support Vector

Machine) [4] and the first neural networks, which have started to gain momentum to address more

complex tasks such as image segmentation and classification. These were the first steps in creating

algorithms that not only process images but also have some visual analysis capabilities.

The first wave of machine learning algorithms applied to image processing problems encountered some

limitations due to the lack of training datasets and overall poor generalization capabilities. This was

mainly due to the high dimensionality of visual data and the need to develop models that could represent

it more efficiently. In the early 2010s, another wave in machine learning occurred, especially when a

deep convolutional network (AlexNet) [5] won the ImageNet Large Scale Visual Recognition Challenge

[6]. This neural network combined a somewhat high number of convolutional layers (deep learning), to

extract progressively higher-level features from the dataset and fully connected layers to perform image

classification using the extracted features.

In 2014, Generative Adversarial Networks proposed by Ian Goodfellow [7] introduced the concept of

adversarial training, where two neural networks (Generator and Discriminator) are trained

3

simultaneously and in competition with each other. The generator goal is to create new images while

the discriminator is trained to distinguish between the images in the training dataset and the images

created by the generator. This training method allows the generator to implicitly learn the underlying

distribution of the images of the training dataset. This type of NN is discussed in more detail in Section

2.3.3 of this thesis.

Since the introduction of GANs, several developments were made in the generation of high-quality

images. The initial promising results of adversarial networks caught the attention of several researchers,

creating an explosion of studies on GANs in the following years, as illustrated by Figure 1 (left). These

studies were focused mainly on improving the generated image quality and the convergence of the

training process. Nowadays, many variants of the original GAN have been proposed which can generate

high quality attracting images, as illustrated in Figure 1 (right). These GANs have been applied to several

image processing problems such as text-to-image or image-to-image translation, image compression,

super-resolution, denoising, and other natural image generation applications.

Figure 1 - Number of citations of the paper where GANs were introduced [7] between 2016 and 2019

(left). Evolution of the fake images generated by GANs between 2014 and 2018 [7, 8, 9, 10, 11] (right).

Typically, generative algorithms create images with very different characteristics of natural images and

thus existing subjective assessment methodologies and objective image quality models are not suitable.

For example, the images generated by GANs can still have some artefacts that show evidence that the

image was synthetically generated (fake); usually, the artifacts are very different from the usual artefacts

created by a super-resolution or image compression solution. This motivates the need for new image

quality subjective assessment experiments (also requiring some changes in the methodology) to faithfull

analyse the performance of such solutions.

Moreover, the conventional metrics used to quantify image quality are quite ineffective when applied to

the content generated by GANs, mainly because generative models can produce images that appear

realistic and attractive but do not match when pixel-based comparisons are made. This behaviour occurs

often in image compression, super-resolution or denoising GAN based systems which have shown

superior perceived quality but low objective quality when popular full-reference quality metrics such as

PSNR and SSIM are used. On the other hand, no-reference quality metrics do not consider the original

information and thus are missing valuable (and important) information. This implies that the performance

4

of available objective quality metrics must be revisited in this context, to understand if they are suitable

to assess the performance of GAN based solutions and which quality metrics have the best

performance.

1.2 Objective and Structure

The main objective of this Thesis is to perform a subjective quality assessment study to evaluate images

obtained from generative adversarial network solutions. This means the use of an appropriate subjective

test methodology, which was designed to measure the naturalness/fakeness of the images. The level

of how much an image is fake is intrinsically connected to the perception of quality by humans and thus

a well-known subjective methodology should provide a s olid measure. Thus, the main contribution is a

generative image dataset which contains: 1) distorted images obtained from several GAN based

solutions, in the fields of image super-resolution, artifact removal and compression; 2) results of a

subjective test using a pairwise comparison methodology, providing a perceptual score for every image

of the dataset. Moreover, recognizing the importance of objective metrics to accurately translate the

human perception of quality, the correlation performance of well-known objective quality metrics are

studied. To report the Thesis achievements, this document is divided into six chapters, which are

described next:

• Chapter 1 presents the context and objectives.

• Chapter 2 provides an overview of the basic concepts of Neural Networks (NN), as well as a

review of some selected types of NNs. This chapter culminates in a review of GANs.

• Chapter 3 presents the review three selected GAN-based solutions, namely in the following

contexts: image compression, single image super-resolution, and artifact removal. These

solutions were selected having into account: the importance of the problems that tackle, its

popularity, and overall performance.

• Chapter 4 presents the crowdsourcing based subjective assessment test, namely the

methodological approach, data processing, the solutions under evaluation and the experimental

results obtained.

• Chapter 5 provides an analysis of different image quality metrics applied to the selected GAN-

based solutions.

• Chapter 6 presents a summary and the future work plan.

5

Chapter 2

2. Neural Networks: Foundations and Architectures

The idea of having a human-like intelligence in machines is the ground base for Artificial Intelligence

(AI). AI is a scientific field whose focus is the development of computing systems with cognitive abilities.

For example, a commonly used word, spoken clearly by any person, is entirely recognizable for any

speaker of that language who might hear it. On the other hand, to a machine, the same word said by

different orators corresponds to distinct audio signals with no clear correlation. Due to the idiosyncrasies

of problems like this one, scientists begun to lean on the idea of making the computer learn from

experience. This simple notion gave birth to the AI sub-field of Machine Learning, a computer science

field that has recently received increasing attention by the research community. In ML, the idea of

“learning from experience” may corresponds to a computational model that adjusts itself when presented

with a large amount of data to later be able to make accurate output predictions when exposed to a

different set of inputs. This chapter will focus on a specific set of ML models called Artificial Neural

Networks, or Neural Networks for short.

2.1. Neural Networks Foundations Basics

The idea of having a machine mimicking the way a human brain solves some real-life tasks motivated

the creation of biological brain-inspired ML models, such as Neural Networks. In a very simplified way,

a biological brain, more specifically the nervous system, encloses a very large set of basic processing

units, the so-called neurons, highly interconnected with each other through the so-called synapses. In

the same way, an NN is a computing system that may also enclose a high number of artificial neurons

connected with each other. However, the artificial neuron mathematical representation, illustrated in

Figure 2 (right), is rather simpler when compared to representation of the biological neuron. Figure 2

provides a side by side visual comparison of biological and artificial neurons.

6

Figure 2 - Representation of a biological neuron (left) and artificial neuron (right) [12].

As shown in Figure 2, each artificial neuron receives a set of inputs (𝑥𝑖) and associates to each of them

a weight (𝑤𝑖) that indicates the influence of said input to the neuron’s output (𝑦). These weights are

learnable and can be positive or negative, exhibiting an excitatory or inhibitory effect of one neuron to

another, respectively. The product 𝑥𝑖 . 𝑤𝑖 is a simplified representation of a synapse and the weight 𝑤𝑖

corresponds to the synaptic strength. Another important concept in NNs is the activation function,

which defines the non-linear response of a neuron given the weighted sum of its inputs and a bias (𝑏).

The bias is another learnable parameter of the neuron, which shifts the activation function along the x-

axis to a desired triggering value. Mathematically speaking, the overall behaviour of an artificial neuron

is represented in (1).

 𝑦 = 𝑓 (𝑏 + ∑ 𝑥𝑖 𝑤𝑖

𝑖

) (1)

Figure 3 shows some of the activation functions typically used in NNs, such as the Sigmoid, the

Hyperbolic Tangent (Tanh) and the Rectified Linear Unit (ReLU) functions. These non-linear

functions allow simulating behaviours more complex than the simple linear one, and this way, more

powerful NNs can be defined to solve a given task.

Figure 3 – Graphical representation of Sigmoid (left), Tanh (centre) and ReLU (right).

In a NN the neurons are organized into layers, as illustrated in Figure 4; within a layer, all neurons are

connected in the same way and process the received data using the same non-linear activation function.

While the first and last layers in a NN are called input layer and output layer, respectively, the layers

in between, which may or may not exist, are called hidden layers. The role of the input layer is to feed

the network with the input data, without any processing involved, thus being the starting layer in any NN

architecture. Hidden layers are the heart and soul of any NN since they are responsible for the

7

processing of information through the combination of the data received from the previous (input or

hidden) layer, thus allowing to learn different representation levels from the input data. The number of

hidden layers (0, 1, . . . , 𝑁) in a NN typically increases with the complexity of the problem at hand. The

last layer of a NN’s architecture, i.e. output layer, is, as the name suggests, responsible to output the

solution to the problem the NN was designed for. The output layer is typically a fully connected (FC)

layer, which means that every neuron on that layer is connected to all the neurons in the previous layer

(see Figure 4); FC layer is, in fact, the most common layer type used in regular NNs. The number of

neurons in a layer is typically called layer size or layer height and the number of layers in a NN is called

depth; the higher the number of layers in a NN, the deeper the NN is and, consequently, the higher is

the power of the NN to solve the problem at hand.

Figure 4 – Example of a fully connected neural network architecture with two layers.

Interpreting a NN as a graph, where the nodes correspond to neurons, the NN can be classified as cyclic

or acyclic depending on whether the connections between nodes (i.e. neurons) form loops or not,

respectively. The popular Feedforward Neural Networks are an example of acyclic NNs, while the

Recurrent Neural Networks are an example of cyclic NNs. Recurrent neural networks are, due to its

architecture, very good at finding patterns in sequences of inputs and have many applications (grammar

learning, time series prediction, etc.). On the other hand, Feedforward Neural Networks do not have this

notion of sequence but are excellent at handling image processing and other similar problems.

The architecture of a NN depends on the target application and is characterized by a set of

hyperparameters that, unlike weighs and bias, are not learnable but rather set to a fixed value before

training. Some examples of hyperparameters are the depth and height of the network and the learning

rate; while the former two hyperparameters define the NN structure, the latter one establishes how the

network is trained. In the context of a NN, the hyperparameters strongly influence its performance, and

therefore they should be carefully set.

2.2. Model Learning

The model learning process is a crucial part of the creation of a functional NN. This process, also

known as NN model training, is responsible for determining the weights and biases of all neuros in the

network using some training data (training samples). The training samples are extracted from the so-

called training dataset and are used to train the NN in order to perform the task is intended for.

Learning methods can be divided into two main categories: unsupervised and supervised. In

8

supervised learning, the training data is labelled, this means that the training samples are pairs of

inputs-outputs. The labels (i.e. ground truth) provide a guideline to the learning process. On the other

hand, in unsupervised learning no target output values, i.e. ground truth, are given, which means that

only the training samples are used to learn and model the training dataset’s underlying structure.

Although unsupervised learning can be applied in the context of NN, the most common approach to

train the NN model is supervised learning. In supervised learning algorithms, the goal is to determine

the network model from the training dataset by learning to minimize the error between the predictions

made by the network and the ground truth (target output associated to the training samples). In this

context, a loss function is used to measure the prediction error, which may vary depending on the

problem at hand. Some examples of frequently used loss functions are the mean square error, the mean

absolute error, and the hinge loss.

The gradient descent is a widely used supervised learning iterative algorithm that, in its simplest form,

can be described by the flowchart depicted in Figure 5. Briefly, the gradient descent algorithm finds, in

an iterative way, the NN model parameters (i.e. weights and biases) that minimize the loss function.

Figure 5 - Simplified gradient descent algorithm flowchart.

In more detail, the steps of this algorithm can be described as:

• Initialization: The algorithm attributes values to all the weights and biases of the NN. Typically,

these initial values are randomly picked to create some asymmetry in the NN, and

consequentially make each neuron have a different starting point in the learning process.

• Forward propagation: The NN makes predictions with the available input training data by

propagating it forward through all the network layers. The outputs generated by the NN in the

first iterations of the gradient descent algorithm are most likely far from the target outputs.

However, it will provide valuable information that can guide the algorithm in future steps.

• Loss function computation: Computes the loss function between the predicted and the target

9

values. This loss function assesses the performance of the network for its current weights and

biases.

• Stop Condition: The value obtained for the loss function is evaluated at each iteration and can

be used as a stop condition for the algorithm. However, other factors can be used as stop

conditions, such as the maximum number of iterations. When one of the stopping criteria is met

the algorithm terminates, and the current weights and biases are the result of the learning

process, defining the network model.

• Gradient Computation: In this step starts the refinement of the parameters. This is possible

with the computation of the gradient of the loss function with respect to the model parameters.

In general, the gradient is an operator that given a certain function as input, outputs the

corresponding direction and rate in which the function's increase is larger. Mathematically

speaking, the gradient is a vector of partial derivatives of the function, as define in (2). Since the

main goal of the gradient descent algorithm is to learn the network model parameters that

minimize the loss function, the computation of the gradient indicates in which direction and with

which speed/rate the model parameters should be changed such that the prediction error is

minimized.

 ∇ℒ =

[

𝜕

𝜕𝑤1

ℒ

⋮
𝜕

𝜕𝑤𝑗

ℒ
]

 (2)

In order to compute the gradient of the loss function with respect to every model parameter, the

backpropagation algorithm is used. This algorithm recursively applies the chain rule making

the loss gradient with respect to a given weight or bias only dependent on the output value of

the neuron associated with said parameter and the derivative of the inputs with respect to the

output value. Naturally, for this to happen, the derivatives of the activation functions used in the

NN have to be known. Since the objective in this step is to calculate the gradient of the loss

function, the loss gradient with respect to the NN output is first computed and this result is then

propagated backwards through all the network layers.

• Parameters update: This operation depends on the previous value of the weight or bias , 𝑤𝑗
(𝑖)

,

the partial derivative of the loss function with respect to the parameter to be updated,
𝜕

𝜕𝑤𝑗
(𝑖) ℒ

(𝑖),

and the learning rate, 𝜂. The learning rate is a hyperparameter that scales the size of the

gradient step given in the weights updating for the loss function to decrease and is typically set

manually after some experimentation. The weights updating is performed as defined in (3),

where 𝑤𝑗
(𝑖+1)

 is the updated weight in iteration (𝑖 + 1).

𝑤𝑗

(𝑖+1)
= 𝑤𝑗

(𝑖)
− 𝜂

𝜕

𝜕𝑤𝑗
(𝑖)

ℒ (𝑖)
(3)

10

When all the weights of the NN are updated, the iteration is completed and the algorithm initiates

a new iteration, starting with the forward propagation with the new parameters.

The convergence of the gradient descent is not guaranteed, as illustrated in Figure 6, and depends

heavily on the learning rate. When a poor choice of the learning rate is made, the algorithm might never

achieve de expected results, diverging. The divergence risk can be reduced by using techniques, such

as, the momentum term or the adaptive step size [13]

Figure 6 - Example of gradient descent converging (left) and diverging (right).

The most straightforward variant of the gradient descent algorithm, the so-called Batch Gradient

Descent or Vanilla Gradient Descent, uses all the training data in each iteration to update the model

parameters. However, depending on the number of samples in the training dataset, it might be useful to

update the model parameters for a set of training samples or even for each training sample, as the

amount of training data used, in each iteration, to update the model parameters has a direct impact on

the computational resources consumption (e.g. memory). While the former variant is commonly known

as Mini-Batch Gradient Descent, the latter is known as Stochastic Gradient Descent and presents

a huge performance improvement when compared with the Batch Gradient Descent, especially when

the training dataset is rather redundant.

After the model learning process is concluded, the NN is ready to be used in realistic conditions, i.e.

using input samples that the NN has never seen before (notably during the training stage), the so-called

test samples, thus allowing to evaluate the real NN’s performance in the accomplishment of the task it

has been designed for. Depending on how the network model is learned, the NN might become too

specialized in the training dataset resulting in overfitting; when this happens, the model’s generalization

capability for unseen (test) data tends to be low, which results in poor performance. In order to guarantee

that the learning process does not lead to an overfitted model, regularization techniques must be

employed. Some examples of regularization techniques are the early stopping [14] and dropout [15].

2.3. Main Neural Network Types

Nowadays, there is a large variety of Neural Networks with different types of layers, topologies, and

purposes. Considering the thesis focus on the application of neural networks (more specifically GANs)

to some computer vision problems, this section is dedicated to reviewing the most relevant types of NN

in the field. The main types identified were Convolutional Neural Networks (Section 2.3.1), Autoencoder

11

(Section 2.3.2), and GANs (Section 2.3.3).

2.3.1. Convolutional Neural Networks

Using neural networks composed only of fully connected layers for image processing tasks is far from

ideal since the model would have a large number of parameters, making the training process slow and

the network prone to overfitting. This problem motivated the creation of convolutional neural networks

(CNN). CNN are feedforward neural networks that, contrarily to regular neural networks, take advantage

of the spatial dependence of its inputs leading to more efficient feature extraction and fewer parameters.

The architecture of a CNN may vary greatly depending on the type of problem at hand, but typically

there are two key building blocks: convolutional layers and pooling layers.

Due to its properties CNN are commonly applied in problems of image classification, natural language

processing [16], computer vision [17], among others. In Figure 7 is illustrated the architecture of a CNN

designed for image classification and is divided into two functional parts: feature learning and

classification. The convolutional and pooling layers are used in the feature extraction portion of the

network and exhibit a hierarchical organization. This means that layers closer to the input will identify

lower-level features, for example, edges or dark spots, and layers further away from the input will identify

higher-level features, with more semantic meaning to that specific problem. In other words, deeper NN

will have higher feature extraction capabilities. [18]

Figure 7 - Architecture of a CNN used for image classification [19].

The classification part of the CNN has a set of fully connected layers since the desired output, in this

case, is a probability distribution. In other applications, this functional part of the network varies

depending on the desired output.

2.3.1.1. Convolutional Layers

Convolutional layers, as its name suggests, are the main elements of this type of NN. These layers are

composed of a set of filters or kernels. A kernel is an array of weights, learned through the typical

training process of a NN, that represent some characteristic of the data relevant to the NN. These filters

can be 1,2 or 3-dimensional arrays depending on the input’s dimension. In this type of layer, the output

is computed by sliding the kernels over the input data and performing a dot product. Which makes the

model insensitive to translations in the data in the feature extraction process. This operation is also

12

known as a convolution and is represented with a very simple example in Figure 8. The result of the

convolution is summed a bias, and to that sum is applied some activation function (typically the ReLU).

Figure 8 - Example of a 2-D convolution with stride equal to 1 and without padding [20].

The number of filters used by a certain layer is a hyperparameter and is adjusted having into account

the complexity of the tasks delegated to that layer. This hyperparameter will influence the size of the

layer’s output, more specifically, will affect the depth of the output volume.

Other hyperparameters that affect the output size, and the number of neurons in the layer, is the stride

(𝑆), the size of the filters (𝐹) and the amount of padding (𝑃). The stride controls the sliding of the filter

that the stride is to equal the number of pixels jumped. Sometimes the desired stride and kernel size

don’t fit the input data size nicely, as shown in Figure 8, thus the need to use padding. Padding consists

of adding to the input an extra border of pixels. There are several types of padding, like zero-padding

that consists of adding a border of zeros to the data or the reflection padding, where the data added is

the result of reflecting the input image about the border, among others. This technique is used to control

the output size without changing the behavior of the layer.

The different paradigm of operation of these NN leads to a 3-dimensional arrangement of neurons, as

shown in Figure 9.

Figure 9 - Simplified representation of the neurons’ organization in a convolutional layer.

13

Each neuron is associated with a given feature (filter) and a given set of inputs. With the filter sliding

along the input, the same weights are shared between different neurons, promoting the reduction of

parameters. That is to say that neurons in the same vertical cut of the layer (depth slice) share the

same kernel. Likewise, neurons in the same horizontal cut (depth column) share the same input area

(receptive field), as highlighted in Figure 9.

2.3.1.2. Pooling Layers

In a CNN, the chain of convolutional layers, responsible for feature extraction, is usually intertwined with

pooling layers. The pooling layers follow the convolutional layers and serve the purpose of

downsampling the output of the previous convolutional layer, as illustrate in Figure 10. The need to

downsample the output of the convolutional layers comes from the fact that chaining convolutional layers

greatly increases the number of parameters. These pooling layers work with sliding filters, like the

convolutional layers. These filters have a function associated with them in order to transform the input

of the filter into a single output. The most common pooling layer is the max-pooling layer, that as the

name suggests, returns the maximum value of the inputs.

Figure 10 - Illustration of the input-output relationship in a pooling layer with filter size 2x2 and stride 2

[12].

The pooling layer makes the model lose information that may or may not be relevant for the NN. This

motivates some architectures that don’t use pooling layers, relying on other techniques to oppose the

increase in parameters [21].

2.3.2. Autoencoders

 Autoencoders (AE) are a type of unsupervised learning algorithm. More specifically are designed to

have the output approximate the input with some constrains or restrictions, most often requiring the input

to be represented also with lower dimensionality. These restrictions built into the neural network allow

to represent the input data in some compressed way (as the name auto-encoder suggests) and in this

process learn the most important features of the input data. This compressed representation (also called

code) lies on some latent space [20].

14

As shown in Figure 11, an AE is composed of an encoder that maps the input to its latent space, followed

by a decoder that attempts to revert the data to its original form using the code provided by the encoder.

Figure 11 - Architecture of an autoencoder [22] with encoder.

The encoding performed in an AE is lossy, meaning that output of the network will never be exactly the

same as the input. During the training of the auto-encoder, the encoder and decoder work together

trying to recreate as closely as possible the input but with certain restrictions (typically in the architecture

design) to prevent a simple copy of the data along the network.

This learning process is performed by minimizing a loss function as described in Section 2.2. The AE’s

performance heavily dependent on the type of data that is trained on. That is to say that the AE is a data

specific solution.

The layer in which the data is represented in a compressed way, i.e. the latent space representation is

usually called the bottleneck layer. The number of neurons in the bottleneck can be used to categorize

different types of AE, namely, an AE is said undercomplete if the dimension (usually the number of

neurons) of the bottleneck is smaller than the number of neurons in the input layer and overcomplete

otherwise. In an undercomplete autoencoder, the restriction that prevents the NN to output a copy of its

input is the reduced bottleneck layer size. In an overcomplete AE, the restriction is different, most often

a sparsity regularization on the responses of bottleneck layer (e.g. forcing the output of some neurons

to zero).

2.3.2.1. Sparse Autoencoders

The Sparse Autoencoder (SAE) is an overcomplete AE that relies on sparsity penalties to enforce the

good generalization of the model. The structure of an SAE allows for a large number of neurons in the

bottleneck layer, but the computation of the loss function includes some penalties on the output values

of this layer. For example, the target may correspond to have very small activations at the output of the

bottleneck layer. Thus, a term is added to the cost function which increases its cost if the average

activation value (over all the training samples) is not close to zero. This is called L1 regularization and

the loss function penalizes the absolute value of the activations.

Other possibility is to use a sparsity regularization that can be imposed by adding a Kullback-Leibler

15

(KL) divergence term to the loss function computation. In general, the KL divergence is a function that

measures the similarities between two probability distributions. In the context of the AE sparsity

regularization, the KL divergence is used to infer if the number of active neurons in the bottleneck layer

is close to what is expected. This guides the learning process to obtain a compact code in the bottleneck

layer.

2.3.2.2. Denoising Autoencoders

In the Denoising Autoencoder (DAE) the training data is slightly corrupted before being fed to the neural

network but still maintain the original (uncorrupted data) as the target output. This makes the

overcomplete autoencoder learn a good data representation, i.e. a model is obtained that is

generalizable, since input (with noise) and target output are no longer the same. Naturally, it is important

to guarantee that by adding noise the data is not degraded to the point of making the DAE uncapable

of recovering the input. In Figure 12 is shown the typical architecture of this type of models.

Figure 12 - Block diagram of the general architecture of a Denoising Autoencoder [23].

2.3.2.3. Variational Autoencoders

The variational autoencoders (VAE) [24, 25] encode and decode as the previously described AEs, but

the code (in the latent space) elements do not correspond to a single value but to a probability

distribution (in general Gaussian Distributions). The structure of an VAE is depicted in Figure 13. As

shown, the latent space representation of the data is composed of two vectors: the mean value (𝜇) and

the standard deviation (𝜎). This is a change in paradigm from the previously mentioned autoencoders

since the variational autoencoder (VAE) describes the input in the latent space in a probabilistic way

and the others don’t. Where the DAE and the SAE are considered discriminative models, the VAE is

considered a generative model. The VAE creates a powerful representation of the data in the latent

space which can be sampled, and the decoder network is capable of create new data similar to what

was observed during training.

16

Figure 13 - Representation of the typical architecture of a Variational Autoencoder [26].

The training of these neural networks is similar to other AE in the sense that the minimization of the loss

function is the main goal. However, in variational auto-encoders it is also used the KL divergence on the

bottleneck layer to ensure that the distributions at the bottleneck layer are close to a normal distribution.

This additional constraint in the loss function, forces the encoder to generate a vector of means and a

vector of standard deviations.

2.3.3. Generative Adversarial Network

Generative Adversarial Autoencoders are a type of generative model proposed in 2014 by Ian

Goodfellow et al. [7]. GANs have several applications, such as generate photographs [27], text-to-image

synthesis [28], image-to-image translation [29], compression [30], video prediction [31], among others.

This model, unlike other generative models (e.g. the VAE described in the previous section), does not

estimates explicitly a probability distribution but learns it implicitly during training from examples. GANs

are composed of two separable neural networks, the Generator (𝐺(𝑥)) and the Discriminator (𝐷(𝑥))

and exploit a game-theory approach where the two NNs compete against each other as adversaries.

Moreover, the goal of the Generator is to create synthetic (fake) data that resembles as closely as

possible to real data and thus, fool the Discriminator, whose goal is to distinguish between fake data

and real data.

The GAN architecture is shown in Figure 14. In practice, the Generator receives samples from a simple

distribution (e.g. random noise) which is processed by a sequence of neural network layers, and the

output corresponds to data that resembles the data from the training set at least in a semantic way.

However, the Generator is blind to the training dataset, being dependent on the Discriminator to guide

its learning process. The Discriminator receives data samples and outputs probabilities that represents

if the sample belongs to the training dataset or not. This means that the discriminator evaluates the

authenticity of images or how close the images produced by the generator are close the images of the

training dataset. When the generator reaches a high level of performance (this means produces realistic

looking images), the Discriminator is unable to distinguish between real and fake data, which means

𝐷(𝑥) = 0.5 for every sample. Thus, Generator goal is to produce images that are considered realistic

17

(i.e. act as a forger without being caught) and the discriminator goal is to assess if these images are

fake or not (i.e. act as the police to detect forgeries).

Figure 14 – Architecture of a Generative Adversarial Network.

The random noise is the input of the generator that drives the creation of fake image. This fake image

and the training set (real) images are fed to the Discriminator, that classifies each image as being either

fake or real [32]. This design of a GAN imposes that the cost function (4) to be a minimax game, where

the Discriminator try to maximize the cost and the generator to minimize it. In (4), 𝐷(𝑥) is the

discriminator output for real data of the training set (i.e. probability that some real data sample is real)

and 𝐷(1 − 𝐺(𝑧)) is the discriminator output for fake data (i.e. the probability that a fake instance is real).

In (4), 𝑝𝑑𝑎𝑡𝑎(𝑥) corresponds to the distribution of probabilities of the training dataset and 𝑝𝑧(𝑧) is the

random noise distribution. Furthermore, 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] is the expectation over all the samples

belonging to the training set and 𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))] corresponds to the expectation over all the

samples produced by the Generator. This means that a discriminator model needs to be found that

maximizes (this means recognizes) real data and fake data, while a generator model also needs to be

found to generate realistic fake data.

 min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))] (4)

During the learning process this cost function will be used and, ideally, the Generator will reach 𝑝𝑔 =

𝑝𝑑𝑎𝑡𝑎, where 𝑝𝑔 is the implicitly learned probability distribution, i.e. the generator can fool the

discriminator. The learning process, as depicted in Figure 15, can be described by the following steps:

1. Obtain a minibatch of size 𝑚 from both the training dataset (𝑥(1) …𝑥(𝑚)) and the random noise

source (𝑧(1) …𝑧(𝑚)).

2. Compute the gradient ascent, as shown in (5), since the goal of the Discriminator is to maximize

the cost function.

 Δ𝜃𝑑

1

𝑚
∑[log (𝐷(𝑥(𝑖))) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

 (5)

3. Update the discriminator’s parameters with the computed gradient.

4. Sample another minibatch of size 𝑚 of random noise samples (𝑧(1) … 𝑧(𝑚)).

5. Compute the gradient descent, as shown in (6). As aforementioned, the generator is not directly

exposed to the training dataset samples, and as such, the gradient computation is done

18

independently of (𝑥(1) …𝑥(𝑚)).

 Δ𝜃𝑔

1

𝑚
∑ [log (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

 (6)

6. Update the generator’s parameters with the computed gradient.

These steps (1 through 6) correspond to one iteration of training. The number of training iterations done

in the learning process depends on the stop condition imposed, as mentioned in Section 2.2. In each

training iteration, steps 1 through 3 are repeated 𝑘 times (hyperparameter).

Figure 15 – Main loop of the training process of a GAN [33].

At the beginning of the training process, the generator produces images that don’t resemble the real

data. Consequently, the discriminator is not fooled, which means 𝐷(𝐺(𝑧)) is close to 0. With the

formulation presented in (4), this leads to a problem of vanishing gradients when computing the gradient

descent needed to update the generator’s parameters. Usually, alternative formulations are used to

prevent this. A common practice is maximizing to the probability of the Discriminator being wrong

(−log(𝐷(𝐺(𝑧))) instead of minimizing the probability of the Discriminator being right for generator data

(log(1 − 𝐷(𝐺(𝑧))). This formulation leads to the same solution as the previous, but, as depicted in

Figure 16, produces higher gradient signals in early training [7, 33].

It’s also important to note that even though this minimax game has a theoretical solution in practice the

convergence of this model might not be achieved if the training is not properly made [34].

19

Figure 16 – Comparison between log(1 − 𝐷(𝐺(𝑧)) and −log(𝐷(𝐺(𝑧)), illustrating the saturation of

the log(1 − 𝐷(𝐺(𝑧)) curve for small values of 𝐷(𝐺(𝑧)).

20

Chapter 3

3. Relevant GAN-Based Image Processing Solutions

In this chapter, it is described the application of GAN-based solutions to some selected relevant image

processing problems, such as image compression, super-resolution, and artifact removal. The selected

solutions were selected due to its performance and overall popularity and will serve as a starting point

to achieving this Thesis goals.

For each solution, a brief contextualization of the problem itself is made followed by the detailed

description of the entire solution including reported experimental results. The review of each solution is

divided into the following 4 parts:

A. Identification of the objectives and technical approach.

B. Overview of the architecture and walkthrough.

C. Identification and review and the key tools used.

D. Performance reporting and analysis, comparing the solution to other relevant state-of-art.

3.1. Generative Adversarial Networks for Extreme Learned Image

Compression

Nowadays, deep neural networks have become a feasible and promising solution for the image

compression problem [35]. Image codecs based on neural networks offer competitive results, when

compared to conventional image compression solutions, such as WebP [36], JPEG2000 [1] or BPG

[37]. The most distinctive aspect in neural network image compression is that the transform (and

sometimes the entropy coding model) is end-to-end learned with a large amount of data and is not hand-

crafted as traditional image codecs.

This solution targets extremely low bitrates, where is hard to preserve many visual elements of an image

21

with high fidelity. The solution described in this section proposes to generate artificial elements and can

be classified as extreme compression, where the pixel-wise preservation becomes less important when

compared to the global structure and the semantic meaning of the image.

A. Objective and Technical Approach

Agustsson et al. proposed two GAN based frameworks for image compression [30] which target bitrates

lower than 0.1 bpp. In this context, the use of GANs tries to deliver more appealing images by implicitly

learning a suitable latent space representation (i.e. the natural image manifold). The proposed solutions

optimize the image coding process beyond the usual conventional image quality metrics used in the

training process, with a loss function that includes an adversarial loss term. This framework has two

operation modes, namely:

• Generative Compression (GC): This mode of operation exploits the generative capabilities of

GANs to aid in image compression, preserving the content as much as possible. This solution

is similar to the vanilla GAN described in Section 2.3.3 but introduces a new loss function and

instead of sampling from a random noise distribution, the generator (decoder) uses the encoded

image as its input.

• Selective Generative Compression (SC): This mode of operation preserves some elements

of the original image with high fidelity and other elements are only generated based on semantic

information about these elements. The SC uses some additional information about the image,

namely, its semantic label map, which can be seen as a Conditional GAN (cGAN) [38]. This

solution is particularly suitable in scenarios where a part of the image is perceptually very

relevant, while other parts are less relevant.

Regarding these two modes, the SC mode requires additional information, which is not available in the

GC mode, namely the input image segmented with regions with a semantic meaning and some

additional indication which regions should be preserved and which can be artificially generated (a binary

heatmap).

B. Architecture and Walkthrough

The two modes of operation in this framework are based on GANs and obtain decoded images where

texture and other elements of the image are fully synthesized without receiving any information from the

encoder about these elements. In this context, distortion (or quality) metrics such as PSNR and MS-

SSIM cannot account how real the image is, since local changes in structure of the image are severe

penalized and thus, cannot evaluate how the global structure of the image is preserved.

 Generative Compression

Figure 17 shows the block diagram architecture of the proposed solution GC mode. The input (𝑥), with

dimensions 𝑊 × 𝐻, is feed to the Encoder (E) which convolutionally processes the input into feature

maps with lower spatial resolution (16 down-sampling factor). The down-sampling is performed with

22

strided convolutions. This results in a feature map of dimension
𝑊

16
×

𝐻

16
× 𝐶, where C is the number of

activation maps. The output of the encoder (𝑤) passes through a Quantizer (𝑞) which outputs a

discretization of the feature map (�̂�), with a pre-defined number of levels.

The following blocks, Generator (G) and Discriminator (D) behave as a classic GAN. This means that

the generator tries to reconstruct the image (𝑥) using the (�̂�) feature map and the discriminator attempts

to distinguish the fake images created by the generator (�̂�) and the real images. However, the loss

function guiding the training process is not the typical GAN loss presented in Section 2.3.3. The GC’s

loss function includes the standard GAN loss and one additional term that includes the distortion

between original and decoded images and the bitrate. This loss function allows to balance the artificially

generated content with the preservation of the original image.

Figure 17 - Architecture of the proposed GC network [30].

 Selective Generative Compression

The architecture of the SC mode is presented in Figure 18 and shares some functional blocks with the

GC architecture. In this sense, the behaviour of the encoder and quantizer is the same. However, unlike

the GC, this solution requires:

• Semantic label map (𝑠): provides additional semantic information with a segmentation of the

images into regions and the classification of each one (label map). This information is very

important for the generator to distinguish the regions in which it must perform full generation

and the regions where it should preserve the original content.

• Heatmap (𝑚): is a binary map with equal dimensions as the feature map (�̂�) that indicates

which elements should be preserved with higher fidelity and which elements can be fully

generated. This heatmap is typically defined by the user.

As shown in Figure 18, the semantic label map is passed to the feature extractor (𝐹) that process and

feeds it to the generator. In a real scenario, the semantic map s is lossless coded using some suitable

solution and thus is available at both encoder and decoder. The heatmap (𝑚) is used to mask the feature

map (�̂�) before being transmitted to the generator (at the decoder side). This step defines which regions

should be preserved and which regions should be fully synthesized using only the semantic map

information.

The SC solution depends on the semantic label map which is required not only during training but also

during compression. The semantic label map can be obtained through an image semantic segmentation

network, such as PSPNet [39] or Mask R-CNN [40], for example.

23

Regarding training, two modes are considered: Random Instance (RI) and Random Box (RB). In RI

some instances (regions) of the semantic label map are picked randomly to be preserved. In RB a

square region of the image is selected in a random way, which is also preserved. This last one is more

challenging since it is difficult to integrate synthetic and preserved content in a seamless way using a

square region.

Figure 18 - Proposed SC network architecture [41].

C. Main Tools

Some of the key tools introduced in this image coding framework are:

• New training objective: The introduction of a new loss function in the GC and SC models

makes for more balanced models, in the sense that there is a trade-off between preserving

the overall structure of the image and its pixel-wise similarities with the original. Moreover,

the GC’s loss function (7) is composed of the typical GAN loss function 𝓛𝐺𝐴𝑁, presented in

Section 2.3.3, and a distortion plus rate term. This term is (𝜆𝔼[𝑑(𝑥, 𝐺(𝑧))] + 𝛽𝐻(�̂�))and

allows to obtain better reconstruction quality with a small amount of bitrate. The function 𝑑

measures the reconstruction error of the generator’s output. This function can be, for

example, a simple MSE (Mean Squared Error) or a more complex MS-SSIM [42]. The 𝜆

(𝜆 > 0) parameter is used to balance the relative importance of the pixel-wise distortion.

The parameter 𝛽 (𝛽 ∈ [0, 1]) is used to limit the bitrate, however in this application the bitrate

can be limited by design (quantization) to avoid having a loss function dependent on an

entropy term (𝐻(�̂�)).

 min
𝐸,𝐺

𝓛𝐺𝐴𝑁 + 𝜆𝔼[𝑑(𝑥, 𝐺(𝑧))] + 𝛽𝐻(�̂�)
(7)

• Improved discriminator with segmentation data: An extension of the SC mode is also

proposed, that consists of feeding the discriminator with a semantic label map (𝑠) (𝐺𝐷(𝐷+)).

This dependence with 𝑠 only exists during training, i.e., the actual 𝐺𝐶(𝐷+) image compression

operation (inference) does not require the semantic label map. Naturally, it is also used in the

SC mode. The use of semantic label maps at the discriminator side allows to improve the

discriminator performance.

D. Performance Assessment

To assess the proposed solution performance, the GC model was trained without semantic label maps.

The training dataset is composed of several natural images, namely 188k images from the Open Images

24

[43] dataset. After training, the model was evaluated on the Kodak [44], RAISE-1k [45] and Cityscapes

[46] datasets.

Figure 19 shows an example of the proposed GC mode output for an image in the Cityscape dataset.

In this example, GC is compared to the BPG codec (an implementation of HEVC) and to the MSE

baseline. The MSE baseline corresponds to a solution similar to GC but instead of having the adversarial

loss guiding the learning process it has a simple MSE loss. This means, the discriminator is not present

in the MSE baseline and that MSE baseline was trained on a subset of the Cityscapes dataset which

gives an advantage in specialization when compared to the GC model.

To evaluate the performance for an objective quality metric, the PSNR was still used despite the

limitations. The GC model is outperformed by its benchmarks with respect to PSNR. This was expected

since PSNR favors pixel-wise similarities and the GC model was not trained with that goal, unlike the

other BPG and MSE baseline solutions. However, when it comes to the subjective quality of the image,

the GC model is superior, obtaining a sharper and more detailed overall image as shown. This highlights

the inadequacy of metrics such as PSNR to evaluate image quality.

Figure 19 - Evaluation between GC, BPG and MSE baseline using an image from the Cityscapes

dataset (Adapted from [30]).

As aforementioned, the GC model was also tested on the Kodak and RAISE-1k datasets. Figure 20

shows a comparison between an original image, the GC model and BPG codec, for each of these

datasets. Regarding the subjective quality of the compressed images, the BPG's images are overall

blurrier, lacking texture and detail due to the low bitrate and the limitations of this conventional solution.

On the other hand, the GC model can generate more realistic textures and maintain sharper details.

However, the GC solution has some visible shortcomings, e.g., in one of the Kodak images (Figure 20

- Top), some windows have annoying artefacts that contribute to an unnatural appearance.

25

Figure 20 - Visual comparison between original image (left), GC (middle) and BPG (right) using

images from different datasets: Kodak (top) and RAISE 1k (bottom) (Adapted from [41, 44, 45]).

The SC solution was trained in the Cityscapes dataset using the RI and RB training modes. For the RB

training, the model was able to combine the preserved and generated (synthetic) contents even in cases

where an object is a combination of preserved and generated content (i.e. the box limits cut the object),

as depicted in Figure 21. In this figure, it is presented two different base images, and for each image is

showcased two different RB scenarios (box location changes). Moreover, the lower left corner of the

images is the heatmap of each scenario, where the white region corresponds to the RB.

Figure 21 - Example of visual comparison for different random boxes using the SC model with RB

training [41].

Figure 22 shows the visual quality (and bitrate savings) when the SC model is used with RI training and

different elements to preserve are selected. In the lower left corner of the images is the heatmap of each

scenario, where the white colored regions corresponds to the RI. It is also shown the bpp for each image

and the relative savings due to the selective generation when compared to the no synth case.

The SC model obtains images without major degradations of the visual quality of the image, especially

if a suitable decision on which elements to preserve is made. This is particularly evident in scenarios

26

where the synthesized elements have a repetitive pattern or texture, such as trees, streets or the sky.

Moreover, very low bitrates (bitrate savings) can be obtained if compared to the no synth case for which

no image element was synthesized (i.e. information of all image regions was transmitted).

Figure 22 – Example of visual comparison for different synthesised elements of the image using the

SC model with RI training [30].

3.2. Photo-Realistic Single Image Super-Resolution Using a Generative

Adversarial Network

In Super Resolution (SR) a higher resolution image (HR) is obtained from one or more lower resolutions

(LR) images [47, 48]. Super resolution algorithms have several applications, such as enhancement of

satellite and aerial images [49], medical image processing [50], among others. DL-based solutions have

often proven to be more efficient than traditional SR solutions, such as those based on hand-crafted

interpolation filters [51]. This is mainly due to the ability to extract relevant higher-level features when

finding a mapping between the LR and HR images [52].

Deep convolutional networks designed for this problem and trained using the MSE as loss function result

in high peak signal-to-noise (PSNR) ratios, but usually lack the fine texture details that are characteristic

of an HR image. To meet the fidelity expected from an HR image, this section presents a GAN-based

solution that attempts to minimize this shortcoming by introducing a new objective function.

A. Objective and Technical Approach

In 2017, Ledig et al. [52] proposed a generative adversarial network for image super-resolution (SRGAN)

that can up-sample images up to 4x using a single low-resolution image. The introduction of the GAN

adversarial loss makes the HR images richer in high-frequency details, when compared to other SR

algorithms that use MSE in the loss function. When the MSE loss function is used, pixel-wise similarities

between the ground-truth and the SR image are accounted and thus, high PSNR quality scores are

obtained; however, this often results in perceptually unsatisfying HR images.

Also, this work introduces a perceptual loss function that balances the generation of content with the

27

preservation of original LR image content. This new training objective coupled with a ResNet [53]

inspired architecture creates a solution that outperforms previous state-of-the-art models.

B. Architecture and Walkthrough

In this work, two different models for the super-resolution problem are proposed:

• SRResNet model: an application of a ResNet [53] trained with the MSE as its loss function.

This network is composed of 16 residual blocks that are briefly described in Section 3.2 - C. The

fact that the model is optimized for MSE makes it more sensible to pixel changes and invariant

to perceptual changes. This model sets a new state of the art in image SR in PSNR and SSIM

measures, as showcased in Section 3.2 - D and, as such, serves as reference when testing the

other model proposed in this paper.

• SRGAN model: GAN based solution composed of the usual Generator-Discriminator pair. The

generator creates reconstructed images very similar to the real images and thus difficult to

classify by the discriminator, which attempts to distinguish between the real images and the

reconstructed high-resolution images created by the generator.

The proposed generator network is shown in Figure 23 and reuses the residual blocks and skip

connections as defined in ResNet (see Section 3.2 - C). A block composed of two convolutional (Conv)

layers with 3 × 3 kernels, 64 feature maps and stride 1 are followed by a batch-normalization (BN) layer

[54] and a parametric ReLU (PreLU) [55] as the activation function. These six layers form a residual

block since the input of the block is added by an element-wise sum to the block output. Moreover, a skip

connection is also present that adds the input of the B residual blocks to their output after processing by

a Conv+BN layers.

After the last element-wise sum, the next network layers are responsible to perform the actual up-

sampling operation. This upscaling is achieved using sub-pixel convolutions as proposed by Shi et al.

in [56]. These layers are composed of a convolutional layer with 3 × 3 kernels, 256 feature maps and

stride 1, followed by a PixelShuffler layer with an upscale factor of 2 and end with a PReLU activation

layer. The last layer is a convolutional layer with a 9 × 9 kernel, 3 feature maps and stride 1 which

produces the high-resolution image. The training of this generator is the same as described in Section

2.3.3. However, the learning process is guided by a perceptual loss function, described in Section 3.2 -

C, that weights the contributions of the adversarial loss with a content loss.

28

Figure 23 - Architecture of the Generator Network with corresponding kernel size (k), number of

feature maps (n) and stride (s) shown for each convolutional block [52].

The discriminator network is shown in Figure 24 and is also a convolutional network with 8 convolutional

layers. These layers have 3 × 3 kernels, and the number of kernels doubles every 2 convolutional layers,

starting with 64 and ending with 512 kernels. The image resolution is reduced using stride 2 in the

convolutional layers, each time the number of features is doubled. The convolutional layers are followed

by a chain of dense layer (fully connected layer) with height 1024, LeakyReLU activation and a dense

layer with height 1. The last layer is a sigmoid activation function that makes the output range from 0 to

1, representing a probability of the image belonging to the training dataset.

Figure 24 - Architecture of the Discriminator Network with corresponding kernel size (k), number of

feature maps (n) and stride (s) indicated for each convolutional layer [52].

C. Main Tools

The most relevant processing tools defined or used in this solution are:

• Perceptual loss function: this work defines an objective loss function that attempts to follow

more closely the human perception of image quality compared to previous MSE optimized SR

deep neural network solutions. The proposed perceptual loss function is a weighted sum of two

terms: 1) content loss 𝑙𝑋
𝑆𝑅, which measures image similarity, and 2) adversarial loss 𝑙𝐺𝑒𝑛

𝑆𝑅 . The

content loss function can be the any function that measures the similarities between two images,

however in this paper it is either the MSE or the VGG loss that is define next. Regarding the

adversarial loss, it is computed as described in Section 2.3.3, since is the typical adversarial

loss.

 𝑙𝑆𝑅 = 𝑙𝑋
𝑆𝑅 + 10−3𝑙𝐺𝑒𝑛

𝑆𝑅 (8)

With this loss function it is possible to obtain a balance between the generated textures (fine

29

details) with the preservation/fidelity of the original image. The use of a GAN framework allows

to learn an efficient mapping between the LR and the HR (desired) images and the adversarial

loss term pushes the model to output HR images with superior perceptual quality, i.e. the

generator is able to create realistic-looking images. However, in the context of the SR problem,

fidelity is also important. Thus, the content loss term is responsible for guaranteeing that not

only is the HR realistic, but also maintains a close relationship with its LR counterpart.

• VGG loss: the VGG loss tries to mitigate the blurry effect (lack of detail and smooth textures)

that the MSE produces. This loss is computed on the feature maps of the VGG19 network

proposed by Simonyan and Zisserman [57] composed of 19 convolutional layers. Thus, the

ground truth (𝐼𝐻𝑅) and the prediction of the generator (𝐺𝜃𝐺
(𝐼𝐿𝑅)) are passed through the VGG

network. Then the VGG loss is computed as the Euclidean distance between the feature map

in the j-th convolutional layer and before the i-th maxpooling layer of the NN (𝜙𝑖,𝑗), as depicted

in (9).

 𝑙𝑉𝐺𝐺/𝑖.𝑗
𝑆𝑅 =

1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑ (𝜙𝑖,𝑗(𝐼

𝐻𝑅)𝑥,𝑦 − 𝜙𝑖,𝑗(𝐺𝜃𝐺
(𝐼𝐿𝑅)

𝑥,𝑦
)

2

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1

 (9)

The introduction of this loss allows to make the comparison between the ground truth and the

generator predictions in a more perceptual space compared to the usual MSE loss.

• ResNet: Kaiming et al. [53] proposed a deep residual network for image recognition (ResNet)

where residual blocks, convolutional blocks with non-linearities that employ skip connections,

are proposed. Deeper NN tends to be harder to train, as such, the introduction of skip

connections (or residuals blocks) in the architecture of the generator, facilitates the training

process. The skip connection is a connection between the output of one layer with the input of

a previous layer. The residual blocks guarantee that the performance of deeper networks is not

degraded (i.e. deals with the vanishing gradient problem). This type of blocks was used in this

SR solution since it is easier to optimize and can produce more accurate results than the typical

convolutional blocks.

Figure 25 - Architecture of a generic residual block [53].

D. Performance Assessment

The proposed models SRResNet and SRGAN, with VGG54 as the content loss function, were evaluated

on three datasets, namely Set5 [58], Set14 [59], and BSD100 [60]. Some reference methods

(benchmarks) were selected, namely nearest neighbor, bicubic, SRCN [61]. SelfExSR [62], DRCN [63],

30

and ESPCN [56]always for an 4x up-scale factor.

All solutions were trained on 350 thousand images obtained from the ImageNet dataset [64, 6]. To obtain

the LR images, a bicubic kernel with a down-sampling factor of 4 is employed. The LR and HR images

were scaled to the range, [0,1] and [−1,1], respectively. Consequently, the MSE loss computed varies

from [−1,1] and the VGG loss was also scaled to be on the same range of the MSE loss. The Adam

optimizer [65] was used with the momentum term equal to 0.9 and the generator network was initialized

with the trained MSE-based SRResNet network to guarantee that some desired local minima can be

found during training. The SR solutions based on the GAN framework were trained with 𝑘 = 1, where

𝑘corresponds is the GAN framework hyperparameter described in Section 2.3.3, and were performed

two times 105 update iterations, first with a learning rate of 10−4and then with learning rate of 10−5.

To assess the objective quality of the HR images, the PSNR and SSIM objective metrics were used.

Subjective experiments were performed and MOS (Mean Opinion Score) computed from the scores of

the experiment subjects. This objective (PSNR and SSIM) and subjective (MOS) quality evaluation

ensures a complete analysis of the performance of all models. Regarding the MOS, 26 participants

classified a total of 1128 images each, from 1(bad quality) to 5 (excellent quality).

The results obtained in the aforementioned conditions are presented in Table 1. The SRResNet

proposed solution outperforms its benchmarks regarding objective metrics (PSNR and SSIM).

Moreover, the MOS results highlights the fact that the SRGAN is superior in perceptual quality when

compared to the competition. However, the objective metrics do not show the same behaviour as the

MOS, which allows to conclude that these metrics do not fully account the image quality with respect to

the human visual system.

Table 1 – Experimental results of NN, bicubic, SRCNN, SelfExSR, DRCN, ESPCN, SRResNet,

SRGAN and the original HR on benchmark data. Highest measures (PSNR [dB], SSIM, MOS) in bold

[4×upscaling] [52].

In Figure 26, some examples of the images produced by the Bicubic, SRResNet and SRGAN are shown

along with the original image. As shown in these examples, the quality improvements of SRResNet and

SRGAN are visible, especially in high frequency details from the bicubic to the SRResNet, and from the

SRResNET to the SRGAN.

31

Figure 26 -Visual comparison between Bicubic, SRResNet, SRGAN and the Original image using

images from different datasets: Set5 (top), Set14 (middle) and BSD100 (bottom) (Adapted from [52]).

3.3. Deep Universal Generative Adversarial Compression Artifact

Removal

Compression algorithms are used in several contexts to increase the efficiency of storage and

transmission of data. There are two main types of compression [66], lossless compression, and lossy

compression. In lossless compression algorithms, the compressed version of the data retains all the

information contained in the original, where in lossy compression some of the information is discarded,

typically information that is considered less relevant, to achieve higher compression ratios.

Only a few applications, such as medical imaging [67], require lossless image compression, which

means that lossy compression algorithms are more often used. Unfortunately, lossy compression

introduces quality loss and produces some compression artifacts, such as blocking, posterizing,

contouring, blurring, and ringing effects. These artifacts not only degrade the visual quality of the images

but also impair the performance of computer vision algorithms, such as an object detector.

In the past, several conventional solutions have been proposed to remove these artifacts, mainly based

on statistical modelling, without any learning from a dataset of examples. In this section an ensemble of

GAN based convolutional neural networks is described with the aim to obtain more realistic

reconstructions.

32

A. Objective and Technical Approach

Galteri et al. [68] proposed, in 2019, a compression artifact removal solution that is efficient even in

highly degraded images and works in scenarios where the encoding parameters are unknown. This is

different from previous deep learning based methods which assume that the encoding parameters are

known, namely the compression factor QF. To achieve this objective, the authors introduce an ensemble

of deep convolutional residual networks, trained for different compression quality factors (QF), coupled

with a quality predictor model. Each model its trained for different compression qualities, i.e. from lower

to higher compression rates, allowing for a tailored image reconstruction.

The core of this solution is a neural network that can be trained with direct supervision or with adversarial

training. The authors explore several configurations for this model, namely using the GAN framework

and balancing the adversarial loss with a content loss or using direct supervision with MSE and SSIM.

Regarding the content loss several alternatives were evaluated, such as the MSE, SSIM, and VGG19

[57].

B. Architecture and Walkthrough

The architecture of the proposed compression artifact removal solution is shown in Figure 27. The

proposed solution introduces an ensemble of GAN models (generators), which are convolutional

networks trained with decoded images compressed with different quality factor. The input compressed

image (𝐼𝑐) is passed to a compression quality predictor NN, described with more detail in Section 3.3 -

C, that estimates the image QF. With this estimation the QF switcher passes the 𝐼𝑐 to the better suited

GAN and the reconstructed 𝐼𝑅 image is obtained.

Figure 27 - Architecture of the universal compression artifact removal solution [68].

The GAN model that performs the quality enhancement includes the generator network shown in Figure

28. It follows a generative approach which given an input image is able to output an improved version

of the same image. This neural network is composed of convolutional layers with 3 × 3 kernels and 64

feature maps with Leaky ReLU as its activation function. The convolutional layers all have stride 1,

except for the 2nd layer that has stride 2 to reduce the feature map to half of its original size. This layer

is followed by 15 similar residual blocks, inspired by K. He et al. [53] work, that have a skip connection

33

every two convolutional layers. The output of this chain of residual blocks is up-sampled (after a

convolutional layer) using nearest-neighbour [69], which allows to obtain feature maps with the same

size as the original image. To mitigate the impact of some undesired up-sampling artifacts, another two

convolutional layers with the same parameters as before is used. The last layer of the NN is a

convolutional layer with one feature map and Tanh as its activation function, this non-linearity makes

the resulting images range from [−1, 1].

Figure 28 – Architecture of the deep convolutional residual neural network, where 𝑛 is number of filters

and 𝑠 is the stride [70].

The architecture of the proposed Discriminator is shown in Figure 29. In a similar way as the Generator,

the discriminator is composed of convolutional layers with 3 × 3 kernels, stride 1 and Leaky ReLU as its

activation function. The number of filters doubles every 2 layers until reaching 256. The last

convolutional layer has 2 × 2 kernels and a feature map of size 1. Finally, a non-linearity is applied,

namely a sigmoid, to make the output range from 0 to 1 and represents the adversarial loss to be used

during training. The discriminator divides the input images into patches (similar to blocks) of size 16 × 16

making the evaluation at the patch level instead of an evaluation of the entire image. This is done since

compression algorithms typically decompose images into patches before compression, thus creating

artifacts within patches. Which means, that the better the generator is at reconstructing each patch the

more accurate the reconstructions will be. This approach allows to remove existing high frequency noise,

like mosquito noise and thus improves the overall reconstruction quality.

Figure 29 – Discriminator Network Architecture, where 𝑛 is number of filters and 𝑠 is the stride [68].

34

C. Main Tools

The main tools used in this solution are:

• New training objective: training with MSE and SSIM as the loss function typically produces

images that lack some of its finer details and consequentially are less appealing to the human

eyes. To mitigate this problem, adversarial training can be used to generate more photorealistic

images. However, similar to the SR problem described in Section 3.2 [52], the preservation of

the original content is also crucial for compression artefact removal and thus, requires to be

balanced with the generation of new content. The authors introduce an adversarial patch loss

(10) that weights the typical adversarial loss (𝑙𝑎𝑑𝑣), described in Section 2.3.3, with a perceptual

loss term (𝑙𝑃), that evaluates the similarities between the compressed image 𝐼𝐶 and the

reconstructed image𝐼𝑅. These terms are weighted with the parameter 𝜆.

 𝑙𝐴𝑅 = 𝑙𝑃 + 𝜆𝑙𝑎𝑑𝑣 (10)

• Perceptual loss: functions such as MSE and SSIM can be used to evaluate the similarities

between 𝐼𝐶 and 𝐼𝑅, but often do not represent well the human visual perception of image

similarity. To improve this comparison, and consequently have more reliable 𝑙𝑃 values, it is

introduced a loss computed in the feature maps of a pre-trained VGG19 network [57]. This is a

similar approach to the perceptual loss function introduced in the SR model described in Section

3.2, where the VGG19 network is explained with more detail (see Section 3.2 - C).

• Quality predictor network: this network is extremely important in order to have an ensemble

of NN that work efficiently. This network correctly identifies the better suited GAN in the

ensemble to reconstruct any given compressed image. The main purpose of this network is to

produce accurate estimations of the compression quality used in the input image (𝐼𝑐). The

predictor network proposed in this work is described in Table 2 and is a convolutional neural

network composed of 8 convolutional layers with kernels of size 3 × 3 and stride alternating

between 1 and 2. The layers with stride 2 produce a reduction in the feature map size by half,

each time. After the 8𝑡ℎ convolutional layer two fully connected layers combine the previous

output maps and translate them to a single value corresponding to the quality estimation.

Table 2 – Architecture of the proposed quality predictor network [68].

35

D. Performance Assessment

The evaluation of performance is presented in three different studies:

• Evaluation A – GAN model: objective evaluation of just the proposed generator network, i.e.

without the ensemble depicted in Figure 27, using metrics such as PSNR, PSNR-B [71] and SSIM.

• Evaluation B – Ensemble of GANs: objective evaluation of the proposed ensemble of GANs using

the same metrics of the first evaluation.

• Evaluation C – GAN subjective evaluation: subjective evaluation that compares the MOS results

of just the generator model when trained with and without adversarial loss.

Evaluation A: GAN model

The generator network was evaluated on the BDS500 [60] and LIVE1 [72] datasets and compared with

some state-of-the-art approaches, namely SA-DCT [73], AR-CNN [74] and, in some cases with the work

of Svoboda et al. [75] and CAS-CNN [76]. Twelve different versions of the proposed generator NN were

tested, for the three of the training loss functions described next, for each JPEG compression factor

(QF) of 10, 20, 30 and 40:

• Perceptual loss: uses the capabilities of adversarial training and corresponds to the “our GAN”

entry in the results presented in Table 3;

• MSE: corresponding to the “our MSE” entry in the results presented in Table 3;

• SSIM, corresponding to the “our SSIM” entry in the results presented in Table 3;

These models were trained on 16 random 128 × 128 patches from the MS-COCO [77] dataset, with

random flipping and rotation for data augmentation. The images were compressed using the MATLAB

JPEG compressor at the corresponding QF parameter. The training is done with the Adam optimizer

with the momentum term equal to 0.9 and a learning rate equal to 10−4 on the first 50k iterations and

the last 50k iterations have a smaller learning rate of 10−5.

The quality assessment is performed on luminance only, which means that 𝐼𝐶 and 𝐼𝑅 images are

transformed to gray-scale before evaluation. The models are evaluated on PSNR, PSNR-B and SSIM

for both test sets and the results are presented in Table 3. The proposed models shows better results

on objective metrics than the other deep models, except for the PSNR-B measures at QFs of 10 and 40

where the model proposed by Cavigelli et al. (CAS-CNN) [76] slightly outperforms it.

36

Table 3 - Evaluation of the proposed generator NN and selected benchmarks using the PSNR, PNSR-

B and SSIM quality metrics on BDS500 and LIVE1, with the best result for each metric and respective

QF group in bold [68].

Figure 30 shows the results for two images for some region highlighted in yellow in the original image.

Both the JPEG 20 decoded image, the proposed GAN artifact removal algorithm along with the AR-

CNN benchmark output are shown. The JPEG compression algorithm with QF 20 introduces some

undesired artifacts, namely blocking, ringing and color quantization. The reconstruction performed by

the AR-CNN removes the artifacts of the decoded image, but the image is somewhat blurry, lacking

some textures and finer details. The GAN proposed in this paper not only eliminates the compression

artifacts but is also able to produce more faithful reconstructions of the image.

Figure 30 - Visual comparison between JPEG (QF = 20), AR-CNN, the proposed solution and the

Original [68].

Evaluation B: Ensemble of GANs

The proposed ensemble of GANs is evaluated with different configurations. Each ensemble combines

the generator networks trained for the same loss function but each GAN network for a different QF and

37

is driven by a quality predictor network. The following ensembles are evaluated:

• QF predictor GAN: Ensemble of 4 generator networks trained with the proposed perceptual loss.

• QF predictor MSE: Ensemble of 4 generator networks trained with MSE loss function.

• QF predictor SSIM: Ensemble of 4 generator networks trained with SSIM loss function.

These models are evaluated against other three variants of the proposed generator network not in

ensemble, for the same loss functions previously presented (perceptual loss, MSE and SSIM). However,

these networks are not trained with a training data comprised of images compressed under the same

condition (that is, same QF). The Multi-QF models are trained over images compressed with different

QFs using the three loss functions and are referred as Multi-QF GAN, Multi-QF MSE, Multi-QF SSIM.

The ensemble models and the Multi-QF networks are compared with the generator by himself trained

as described in Evaluation A. This means that for each target QF, there is a network trained with images

compressed with always the same target QF. Again, different loss functions are used, and the networks

obtained are referred as Oracle GAN, Oracle MSE and Oracle SSIM.

All of these models are evaluated under the same in the conditions of the previous experiments, which

means that are evaluated with the same QFs, metrics and datasets. The experimental results obtained

are shown in Table 4. It is clear that the ensemble performs better than Multi-QF. The ensemble shows

the same results as its oracle corresponding networks, highlighting the correct behaviour of the QF

predictor.

Table 4 - Comparison between the proposed ensemble of NN and the Multi-QF NN regarding the

PSNR, PNSR-B and SSIM on BDS500 and LIVE1, with the best result for each metric and respective

QF group in bold [68].

38

Evaluation C – GAN subjective evaluation

Two different generator networks without ensemble, one trained with SSIM as the loss function and

another with the proposed perceptual loss, are evaluated with subjective experiments (thus collecting

MOS scores). Ten subjects participated in these experiments. These subjects compare the

reconstruction of the images with the original giving a score of 0 to 100 on a scale of similarity between

them. This experiment was done over 50 random images from the BSD500 [60] and only includes the

reconstructions obtained with the model directly trained by the SSIM and the proposed GAN approach.

Figure 31 illustrates the MOS scores obtained in this subjective evaluation. The results obtained in this

experiment show an overall preference to the GAN reconstruction with only a few exceptions. In general,

the GAN model obtains a MOS of 68.32 with a standard deviation of 20.75, whereas the SSIM model

only achieved a MOS of 49.51 with a comparable standard deviation of 22.72.

Figure 31 - MOS scores and confidence intervals for the 50 random BSD500 images used in the
subjective evaluation [68].

39

40

Chapter 4

4. GAN-based Image Processing: Subjective Quality

Evaluation

In recent years, GANs have become progressively more capable of generating realistic images and

have reached a point where, perceptually, the images generated can be confused as real images. These

advances propelled the development of a variety of GAN-based solutions for several image processing

tasks such as super-resolution, compression, artifact removal, etc. This, in turn, created the need to

accurately evaluate the image quality of these solutions. In this context, subjective evaluations are

crucial in the quality assessment process and this chapter provides an overview of the methodologies

and conditions under which some GAN-based solutions are evaluated.

The results obtained from this study are publicly available and ca be seen at

https://github.com/martafilipa/gan-image-database.

4.1. Test Material and Preparation

To design a subjective assessment, it is important to define what will constitute the test material. That

is to say, which images will compose the study, how will the images be shown and what preparations

need to be done beforehand.

4.1.1. Dataset selection

The JPEG AI dataset [78] was used for this subjective quality evaluation seeing that it was designed to

evaluate the performance of state-of-the-art learning-based image coding solutions. Due to its nature,

this dataset is divided into 2 subsets. The test material used in this assessment belonged to the test

subset since it provides a diverse and well-balanced set of images that allows the evaluation to be

representative.

https://github.com/martafilipa/gan-image-database

41

To keep the test session restrained to less than 60 minutes from the 16 total images that compose this

test set only 8 are used in the subjective assessment. The selection of the 8 test images is done by

visual inspection and considering the need for diversity. Moreover, to aid in the decision process the

test set contents are categorized as presented in Table 5. This categorization helps when it comes to

choosing a diverse set of scenes, however, the set needs to be balanced when it comes to the

complexity of said scenes. That being said, the images are selected to range from less to more complex

when it comes to high-frequency components, color saturation, etc.

Table 5 -Categorization of JPEG AI test set images by its contents. Highlighted in green are the

selected test images and in orange are the images included in the training phase.

Landscapes Synthetic Texture Subjects

Matterhorn (00001) Curiosity Rover (00010) Rotunda of Mosta (00004) Racing car (00002)

Train (00006) Windows (00007) Sardinia festival (00003)

Transmission towers (00008) Port (00009) Las Vegas sign (00005)

Beach (00014) Bell pepper (00011) Woman (00012)

Harbor (00015) Dog (00013)

 Ponytail (00016)

That being said, the images selected are presented in Figure 32. Besides the images used in the test it

was also necessary a set of extra images to include in the training phase of the assessment. The training

phase as the goal of getting the user familiar with the test environment and with the type of content that

will evaluate in the test. This leads to the need of having a set of images that are not included in the test

set and are representative of the type of artefacts produced by the GAN-based solutions. With this is

mind the images selected were Matterhorn (00001) and Harbor (00005).

Racing car (00002)

Rotunda of Mosta (00004)

Las Vegas sign (00005)

Train (00006)

42

Transmission towers
(00008)

Port (00009)

Curiosity Rover (00010)

Woman (00012)

Figure 32 - Images from JPEG AI test dataset selected for subjective assessment.

4.1.2. Display Conditions

Normally the subjective assessment would be done in a controlled environment where all subjects would

visualize the images in the same monitor with the same configurations. However, due to the limitations

imposed by the global pandemic, the approach shifted in the direction of an online crowdsourcing

survey.

With the assessment done in different devices, there are consequently different viewing conditions of

the test material. This creates the need to control as much as possible the conditions under which the

survey is taken. In order to do so, the app developed to employ subjective assessment imposes

restrictions regarding the resolution and size of the display. Particularly, it enforces a resolution of at

least 1920x1080 and a display size of at least 13 inches.

4.1.3. Content Preparation

Considering that this assessment follows a Forced Choice (FC) design, meaning that two images need

to be displayed side-by-side, it is important to determine the target size for the test material. With the

previously mentioned target resolution of 1920x1080 and the layout presented in Figure 33 the desired

resolution for the test images is 940x880.

43

Figure 33 – Example of test layout highlighting the requirements for image sizes targeting the screen

size of 1920x1080.

In order to adapt the dataset to the desired resolution are performed crops taking into consideration the

need to preserve the relevant elements of each image. In Figure 34 is presented an example of a crop

performed over the Train image. The remaining example of crops and corresponding resolution

information is included in Annex A.1.

Figure 34 - Example of the original JPEG AI image (left) and respective crop (right).

4.2. GAN-based Image Processing Solutions and Benchmark

This section provides an overview of the solutions used to obtain the images that will make part of the

subjective assessment. In this case, the preprocessing of the images, the training of the model, the

44

postprocessing of the images and other related aspects. The goal is to make the pipeline that produces

the test images clear to the reader.

Regarding the GAN-based solutions used in this section, they were selected having in mind the

importance of the task performed, the performance, and the availability of software. For each solution

the objective is to obtain 3 levels of image quality (Lo, Mi, Hi) to evaluate the perceptual impacts of the

artefacts generated by GAN based solutions.

4.2.1. Enhanced Super-Resolution Generative Adversarial Networks

In section 3.2. a GAN that performs super resolution [52] is described, however we could not find an

official publicly available software for this solution. Considering other choices, it was selected the

ESRGAN proposed by Xintao Wang et al. in [79] for which an implementation was available. The

ESRGAN model is an improved version of the solution reviewed in section 3.2 and introduces some

new tools. Among those, a Residual-in-Residual Dense Block (RDDB) illustrated in Figure 35, the

removal of batch normalization layers and an improved discriminator network based on Relativistic

average GAN (RaGAN) [80].

The RDDB has a higher number of layers and connections when compared with the generic residual

block. Which leads to deeper and more complex structure. These blocks also employ residual learning

to different levels, i.e., the skip connections are not only between the input and output, but rather connect

different points of the block to each other.

Figure 35 - Architecture of the Residual in Residual Dense Block (RRDB)

The lack of batch normalization layers in the network helped reduce the computational complexity of the

training task while mitigating the artefacts produced by these layers, when coupled with a dense network

trained under the GAN framework.

When it comes to the discriminator the architecture is the same as described in section 3.2 with the

relativistic GAN loss. This loss, instead of estimating the probability of a given sample being fake or real,

it estimates if the sample is more real than a randomly sampled fake data. This change leads to a more

stable network that creates higher quality images.

Regarding the generator used, it follows an SRResNet [52] architecture and has 32 layers of RRDB

blocks. This architecture is joined with a loss function (11) that balances a perceptual loss (𝐿𝑝𝑟𝑒𝑐𝑒𝑝), a

content loss (𝐿1) and the relativistic adversarial loss (𝐿𝐺
𝑅𝑎). The perceptual loss it is computed using a

VGG19 network, the content loss is a 1-norm distance between the generated image and the ground

truth, and the adversarial loss is obtained using the generator/discriminator pair described previously.

45

The weight of these losses in the total generator loss (𝐿𝐺) is controlled by 𝜆 and 𝜂, hyperparameters.

𝐿𝐺 = 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 + 𝜆𝐿𝐺
𝑅𝑎 + 𝜂𝐿1 (11)

Three variants of the proposed solution were used in this study. These variants are defined to obtain

three distinct level of artifacts caused by the content generation capabilities of the network. This is done

by changing the weight (𝜆) of the adversarial loss (𝐿𝐺
𝑅𝑎). Which means that the adversarial loss varies in

importance, and thus may lead to images with higher apparent quality but less real, i.e., more fake. The

different ESRGAN models used can be defined as follows, where perceived quality of the generated

images increasing from Lo to Mi, and from Mi to Hi:

• ESRGAN Lo: 𝜆 = 5 × 10−2

• ESRGAN Mi: 𝜆 = 10−2

• ESRGAN Hi: 𝜆 = 5 × 10−3 (pretrained model)

The ESRGAN Lo and ESRGAN Mi models were trained specifically for this study, while the ESRGAN

Hi was a pretrained model provided by the authors. The models trained followed closely the

recommendations made by the authors to maintain a fair comparison.

As recommended, the training set used was the DIV2K [81] as. More specifically, the subset of training

data that refers to high resolution images, and the corresponding low-resolution images obtained with a

bicubic kernel and a downscale factor of 4. And for validation is used the entirety of Set14 [59].

These datasets follow some pre-processing that is done to decrease access times and reduce training

duration. This pre-processing consists of creating patches of size 480x480 for the HR images and

patches of size 120x120 for the LR images.

Other relevant training parameters used are the Adam optimizer [65] with 𝛽1 = 0.9, 𝛽2 = 0.99 and a

learning rate of 10−4. The mini-batch size that was set to 4 instead of the recommended 16 due to

hardware limitations. In Annex A.2 the full configuration files are available.

After the models were trained, the next step is to obtain the super resolution images for the test set

defined in section 4.1. To perform the super resolution task on the test set, low-resolution (LR) images

are first obtained. These LR images are obtained as recommended by the authors with a Matlab function

that performs resize using a bicubic kernel and a downscale factor of 4.

These LR images were fed to the ESRGAN Lo, Mi and Hi and the result are HR images that are

reconstructions of the original HR image with different levels of artefacts depending on which model

originated the image. As mentioned in the previous section the test material needs to be of size 940x880

and so a crop is performed to the HR GAN-generated images.

It is important to note that the crops mentioned in the previous section are done after the super resolution

image is obtained and not before. In Figure 36 it is shown an illustration of the pipeline that creates the

test images for the ESRGAN solution.

46

Figure 36 - Visual representation of the pipeline used to obtain ESRGAN test images

4.2.2. High-Fidelity Generative Image Compression

The compression solution presented in section 3.1. [30] also doesn’t have a publicly available software.

Moreover, recently a GAN-based image compression solution was proposed which is considered more

efficient and is nowadays recognized as highly efficient [82]; this solution is called High-Fidelity

Generative Image Compression (HiFiC), was proposed by Fabian Mentzer et al., and the software is

public available.

The HiFiC solution uses some of the same tools present in SC mode of the older model, such as, the

use of a Conditional GAN. Moreover, the model uses the additional information, such as, class labels or

a semantic map, to better control the generated content and to obtain better results in more challenging

scenarios.

A new objective function is introduced in the HiFiC model (12). This objective function is built with the

goal of minimizing the rate-distortion trade-off. That is to say, the network goal is to achieve the lowest

possible combined bitrate (𝑟(𝑦) where 𝑦 is the latent space representation of the image 𝑥) and distortion

(𝑑(𝑥, 𝑥′), where 𝑥′ is the reconstructed image from the latent space representation 𝑦 and 𝑥 is the test

image). As any other generator network, the objective function of the HiFiC’s generator has a term that

relates to the discriminator network (log(𝐷(𝑥′, 𝑦)).

ℒ𝐸𝐺𝑃 =𝔼𝑥~𝑝𝑥[𝜆𝑟(𝑦) + 𝑑(𝑥, 𝑥′) − 𝛽 log(𝐷(𝑥′, 𝑦))] (12)

The hyperparameters 𝜆 and 𝛽 both influence the bitrate, however in the experiments 𝛽 is fixed and 𝜆 is

replaced by an adaptive step that allows the model to follow more closely the desired bitrate. This

adaptive step (𝜆′) is given as a function (13) of a new hyperparameter (𝑟𝑡) which serves as a threshold

to decide what value of 𝜆 is adequate (𝜆(𝑎) or 𝜆(𝑏)).

𝜆′ = {
𝜆(𝑎), 𝑟(𝑦) > 𝑟𝑡
𝜆(𝑏), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where 𝜆(𝑎) ≫ 𝜆(𝑏) (13)

The hyperparameter 𝑟𝑡 relates directly to the desired bitrate in bpp and, typically, is a descriptive way to

47

identify a given HiFiC model. Along with the image compression solution, 3 pre-trained models, trained

under the same condition and with 3 distinct target bitrates 𝑟𝑡 = {0.14, 0.3, 0.45}bpp, were available.

For the subjective assessment experiments, it was crucial that the 3 models presented visible

differences in quality, from minor to severe degradations. However, after close inspection of the images

produced by these pretrained models it was clear that the difference in perceptual quality between the

models with 𝑟𝑡 = 0.14bpp and 𝑟𝑡 = 0.3bpp was almost nonexistent. Moreover, the pretrained models

lead to images with very few artifacts. Therefore, a new HiFiC model was trained, which is more

restrictive in terms of bitrate, in this case, the target rate was set to 0.06 bpp.

The training of this new model follows the methodology proposed by the authors of the proposed image

compression solution. The training has two steps: i) training the model without the adversarial training,

that is with a simple objective function and ii) training with discriminator, that is with the complete loss

function (12): In both cases, the distortion function (14) used is a weighted sum of a perceptual loss

(𝑑𝑃 = 𝐿𝑃𝐼𝑃𝑆) and a MSE loss.

𝑑 = 𝑘𝑀MSE + kPLPIPS (14)

Where 𝑘𝑀 and 𝑘𝑃 are hyperparameters that balance the weight of each component. These

hyperparameters are fixed in the experiments described by the authors and therefore, will also be fixed

in the same way in our training.

Besides changing the target rate 𝑟𝑡 it was also necessary change 𝜆(𝑎) while maintaining 𝜆(𝑏) fixed, as

illustrated by the authors experiments. The decision of adequate 𝜆(𝑎) value was not a obvious one and

lacking the time and insight of the model to make a better hyperparameter tunning it was chosen by

making a linear regression of the values of 𝜆(𝑎) used for each 𝑟𝑡 presented in the paper. This procedure

resulted in 𝜆(𝑎) = 2.44 and that was the value used while training the HiFiC model.

The training dataset used was the same as the experiments described in the paper, that is the Coco

2014 [77] dataset. It is also important to note that besides the configurations changed in order to set the

desired target rate it was also changed some configurations in the model.py file due to hardware

limitations. These changes are shown in Annex A.2. Configuration file of model HiFiC Lo and reflect a

reduction in the batch size used.

With the training concluded it was clear that the model did not reach the desired target rate as it is

depicted in Table 6. This could be improved with different 𝜆(𝑎), but since the results obtained with this

model were already different from those resulting of models with 𝑟𝑡 = {0.14, 0.3}bpp there was no need

to train another model with different hyperparameters. It is also important to note that for the pretrained

models the target bitrate is not always achieved this is due to the model’s rate-distortion trade-off. For

some images the compression task might be easier and the degradation allows for lower bitrates in

other images the model refuses the lower bitrates since the degradation is greater.

48

Table 6 – Bitrates per image in JPEGAI dataset obtained with the HiFiC models.

ID Name
Bitrate (bpp)

rt = 0.06 rt = 0.14 rt = 0.3 𝑟𝑡 = 0.45

00001 Matterhorn 0,142 0,214 0,382 0,587

00002 Racing car 0,099 0,164 0,33 0,532

00003 Sardinia festival 0,102 0,154 0,283 0,415

00004 Rotunda of Mosta 0,172 0,245 0,461 0,705

00005 Las Vegas sign 0,089 0,123 0,219 0,305

00006 Train 0,117 0,174 0,313 0,478

00007 Windows 0,133 0,184 0,343 0,482

00008 Transmission towers 0,079 0,136 0,276 0,456

00009 Port 0,2 0,292 0,535 0,849

00010 Curiosity Rover 0,075 0,129 0,256 0,38

00011 Bell pepper 0,192 0,275 0,497 0,74

00012 Woman 0,095 0,162 0,354 0,59

00013 Dog 0,135 0,205 0,369 0,532

00014 Beach 0,077 0,126 0,247 0,375

00015 Harbor 0,09 0,136 0,248 0,364

00016 Ponytail 0,052 0,099 0,232 0,384

Following the same nomenclature presented in the previous section, and going from lower to higher

perceived quality the models used this subjective assessment were as follows:

• HiFiC Lo: rt = 0,06bpp

• HiFiC Mi: rt = 0,14bpp (pretrained)

• HiFiC Hi: rt = 0,3bpp (pretrained)

And, once again, after the compressed images are obtained the crops are performed to obtain the
images that will be evaluated.

4.2.3. Image and Video Restoration and Compression Artefact

Removal using a NoGAN Approach

Once again, the model described for the artefact removal task in section 3.3. [68] did not have publicly

available software. After considering several models with public software available, the selected solution

for artefact removal was ArNet [83], a more recent and efficient model which had a public available

implementation along with a pretrained model. The main novelty of ArNet is the NoGAN [84] technique,

a new methodology to train the GANs. The NoGAN training pretrains the generator and discriminator

with straightforward, fast, and reliable conventional loss functions, which are then trained together in a

normal GAN setting. However, the number of iterations that the generator and discriminator are trained

is limited, resulting in a model that is faster to train and with higher quality (less artefacts).

To perform subjective assessment, 3 distinct levels of quality should be obtained as in the other GAN

based solutions. In this case, the network used to obtain the images was the pretrained available

49

network, and to achieve different levels of quality, the target JPEG decoded quality was varied and

consequently the difficulty of the artifact removal task. It is important to note that this model is trained

on a limited dataset, namely with images with similar degradations. In this case, the quality factor was

changed. The quality factor (QF) values used for the experiment and corresponding nomenclature used

in the experiment are as follow:

• ArNet Lo: 𝑄𝐹 = 7

• ArNet Mi: 𝑄𝐹 = 14

• ArNet Hi: 𝑄𝐹 = 21

The JPEG compressed images were obtained using the Python PIL module (save function). These

images are then fed to the pretrained ArNet and to the resulting reconstructed images is performed the

cropping to fit the images to the test environment.

4.2.4. Benchmarking Image Compression: HEVC Intra

To have a benchmark, the subjective test included images compressed with the High Efficiency Video

Coding (HEVC) codec. This was included to provide a better understanding of HiFiC’s performance

when compared with a traditional solution. In order to have a fair comparison between solutions the

HEVC images were obtain for similar bitrates by varying the quality parameter (QP) as presented in

Annex A.3.

The software used to compress the images was the official implementation of Rec. ITU-T H.265 |

ISO/IEC 23008-2 High efficiency video coding. This codec works over YUV format files and as such

there is the need to convert the images from RGB (PNG format) to YUV colorspace and after

compression the opposite conversion. This was done using the FFmpeg and running the following

commands:

• Conversion from PNG to YUV:

fmpeg -hide_banner -f rawvideo -pix_fmt yuv444p10le -video_size <image size> -

i <input image path> -y <output image path>

• Conversion from YUV to PNG:

ffmpeg -hide_banner -i <input image path> -pix_fmt yuv444p10le -

vf scale=out_color_matrix=bt709 -color_primaries bt709 -color_trc bt709 -

colorspace bt709 -y <output image path>

4.3. Subjective Test Methodology

This section describes the subjective assessment methodology, namely the design of the test and user

50

interface as other important information, such as the grading scale. The design choices are based on

the ITU-R Recommendation BT.500-14 [85] and some previous work on crowdsourcing subjective

assessment.

4.3.1. Subjective test design

Regarding the subjective quality test design, laboratory studies are nowadays well established due to

their accuracy and repeatability. In this case, the laboratory environment can be well controlled, e.g.

lighting conditions, distance to the screen, and all subjects screened and well trained. However, these

tests are time consuming and often difficult to perform, especially considering the COVID pandemic

situation. In contrast, crowdsourcing studies can be easily performed. Moreover, the reliability of

crowdsourcing has been proven to be good enough, if outlier removal is performed [86]. Considering

these reasons, a crowdsourcing quality evaluation procedure was used in this work.

A pairwise comparison methodology was selected to achieve high discriminatory power and thus high

accuracy. In this case, the 2-alternative forced-choice (2AFC) setting was used, where pairs of images

are shown to the observers. After, the observers must select the image in each pair with higher quality.

The main reasons for this choice are: 1) the selected GAN-models introduce small changes in the

perceived quality which requires a method that allows users to discriminate these differences in an

efficient and fast easy; 2) a pairwise comparison methodology is also easier (an faster) for the subjects

to perform comparisons, which is rather suitable for a crowdsourcing experiment that is always remote

without any close interaction.

The pairwise comparison method is an indirect measurement, and thus quality scores cannot be

obtained simply by averaging ratings as in other test designs, e.g. ITU-T double stimulus impairment

scale test. An algorithm is required to compute the underlying quality scores values from the binary

decisions of each subject, the methodology used in this experiment is described in 4.4.2.

4.3.2. Pairwise comparison test design

The test material consists of 8 different reference images (𝑛) which were obtained using 10 different

conditions for the GAN solutions under evaluation. These 10 conditions correspond to 3 levels of quality

(𝑘) for each task (compression, super resolution, and artefact removal) and the original image.

Moreover, a conventional solution for image compression, in this case, HEVC Intra was included as

benchmark.

To have a complete design of the subjective test, that is every image is compared with every other

image, each subject would need to perform 𝐶2
𝑛×𝑘 = 3160 evaluations, which would lead to a test with

an unacceptable long duration. To lower the number of comparisons and thus the time needed for a

subject to perform the pairwise comparison test, an image is not compared to all other images and thus

the test follows an incomplete design. The pairs of images compared were carefully selected as

51

described next:

• Within content across test conditions: For each content (reference and all GAN processed

images), all possible pairs are considered; this means that all images produced for different test

conditions are compared among themselves for the same content, which allows to achieve

accurate and reliable psychovisual scores. The number of comparisons associated are 𝑛 × 𝐶2
𝑘 =

360.

• Cross-content across test conditions: Cross-content pairs can increase the accuracy of the

obtained psychovisual scores and allow to have a single homogenous scale (with the same

meaning) between different content [87] with the same meaning. Therefore, cross-content pairs

were included to obtain more accurate psychometric scaling results and thus compare user

opinion for different contents. These cross-content pairs were selected by fixing the quality level

of the GAN solution under evaluation (compression, denoising and super-resolution) and

comparing images with adjacent ID’s. This translates to (𝑘 − 1)(𝑘 − 2) = 72 additional pairs.

• HEVC Intra benchmark: The HiFiC solution was compared against a conventional compression

solution, namely, HEVC Intra. The pairs used compared each HiFiC image (24 in total) with a

HEVC image obtained for similar bitrates. Which translates to 24 comparisons, leading to a total

of 456 comparisons.

Note that considering the incomplete design of the test, it is necessary to compute the psychovisual

scores using a computational model which supports such incomplete design, i.e. that not all scores are

available.

Regarding the duration of the subjective test assessment, two sessions of maximum 30 minutes each

were defined. This division was done to avoid subjects getting too fatigued to make accurate

judgements. To avoid fatigue, the subjects are asked to take a break of at least 15 minutes if the session

duration exceeds the recommended time.

Regarding the display environment in which the subjective test is performed some restrictions were

imposed. In this case, the screen resolution and size were restricted to a minimum of 1920x1080 and

13 inches, respectively.

4.3.3. Crowdsourcing platform

A crowdsourcing test environment which supports such pairwise comparisons was developed to perform

the subjective test and is publicly available (https://github.com/martafilipa/subjective_test). In this case,

a crowdsourcing web platform with three main components was built: HTTP server, database, and

clients with a common web browser. The architecture of such system is shown in Figure 37. The web

server provides the graphical environment and any information that the subject needs to perform the

test in the form of HTML pages. The server also collects any information transmitted by the subject and

https://github.com/martafilipa/subjective_test

52

connects to the database to store the data.

Figure 37 – Architecture of the crowdsourcing web platform

There are several frameworks that were used in the crowdsourcing web platform. In this case, due to

their popularity, the server uses Node JS [88] and the Express framework [89]. The event-driven

architecture of Node JS in conjunction with Express framework made the process of creating the

crowdsourcing platform, easy and intuitive.

In combination with the Node JS, a simple MongoDB database [90] was deployed. This database

contained 3 collections:

• Pairs collection: Serves the purpose of organizing the images in the test set and the pairs that

would be shown during the evaluation. Also, includes information relating to the ID of the

reference images in the pair, which is useful when restricting the viewing order to consecutive

pairs containing the same reference image. This translates to a schema as shown in Figure 38

(left).

• Session collection: Stores the information regarding each subject, namely personal information

(name, age, gender, and email) and viewing conditions (display size and resolution). It is also

stored a specific order in which the test pairs shown to the subject and the judgments make in

each comparison as well as the time-stamped of the binary decision. In Figure 38 (center), is

depicted the schema that this collection follows.

• Training collection: Includes the image pairs used for the training phase and the information

relevant to the training phase, namely which image is the least influenced by the GAN

introduced artefacts, which image is the correct choice in the context of this assessment. The

schema of this collection is presented in Figure 38 (right).

53

Figure 38 – Schema of the collections used in the subjective assessment web application. Namely,

pairs collection (left), sessions (center) and training (right). Where in bold are the keys of each

collection.

Regarding the user interface served from the server to the client it was developed using a template

engine called Pug [91]. This engine allows the deployment of HTML pages with complete abstraction

from the content that would be served to the client. The HTML pages contain placeholders for the content

that were filled accordingly by the server when responding to a given request from some subject. Finally,

to organize and style the resources in the web page layouts it was used Cascading Style Sheets (CSS).

The crowdsourcing web platform has the following flow: the subject connects by making a HTTP GET

request to the root (/) and the server presents the HTML page shown in Figure 39. This page provides

a description of the test and instructs the subject of the required steps. The client can select one of two

options in this page:

• Client is a new subject starting the subjective test: In the case of a new subject, the client is

required to provide some relevant personal information: name, email, age, gender, and display

size in inches. When the subject clicks on the start button a HTTP POST request is made and

the information introduced by the subject along with the resolution of the screen (determined

from a script in the HTML page) is added to a new entry in the database session collection. In

this new entry, the server computes and stores the order in which the test images will be shown

to the client. The order is pseudo-random and follows the restriction that consecutive pairs

cannot contain the same reference material. The subject is identified by the server using a

session cookie, which is also stored in the database and serves as a primary key.

• Client is returning for a second session of the test: The other option provided by this page is to

54

resume a subjective test, namely to continue the evaluation of the subjective test. The client

must provide the email used before, the server accesses the database with the session cookie

and the test is resumed from the point where it was left.

It is also important to note that there are some limitations imposed to prevent the test from starting. One

of these limitations is regarding the screen resolution that is set to a minimum of 1920x1080p. This

limitation guarantees that the images are presented side by side as intended by the test design, all parts

fully visible. Another limitation regards to the minimum display size, set to 13 inches to ensure that

displays which are considered difficult to observe the content degradations are not used.

Figure 39 -Homepage of the subjective test web application

When the subjective test starts, all subjects have to perform a small training phase, which serves the

purpose of familiarize the subject to the web quality evaluation environment. The user interface of this

phase, depicted in Figure 40 (left), has the same layout of the user interface of the evaluation phase.

However, provides additional information regarding correctness of the choice having into consideration

the context of the assessment and the quality of images presented. This forces the client to select the

correct image (with better quality) before continuing. The goal is to allow to familiarize the subject with

some of the artefacts that will find in future image (in the evaluation phase) and ensures that the subject

is understanding correctly the interface (e.g. meaning of the buttons) and the goal of the subjective test.

During the training or evaluation phase, the binary selection of an image can be done by clicking the

corresponding button or by pressing the right or left arrows on the keyboard. The corresponding left

arrow key is assigned to the option/button “A more natural than B” and the right arrow key to the “B more

55

natural than A” option. Both methods result in a HTTP POST /train message containing the decision

made.

During the training phase, the server accesses the training collection to check if the decision is correct.

If correct, the next page with another pair of images is shown, otherwise the page remains the same

and it is given a notification asking the client to repeat the evaluation. When the user reaches the end

of the training phase, an informative page is shown that creates the appropriate separation between the

training phase and the evaluation phase. When the user clicks the “Start Test” button the server

responds with the first page of the evaluation phase.

Figure 40 – Left, training phase user interface; right, information shown in the end of training phase

The evaluation phase user interface shown in Figure 41 (left), is very similar behavior to the training

user interface. In this case, the server connects to the database storing the decision and the associated

timestamp to the session collection.

At any point of the subjective test a subject can stop the test by simply closing the browser window.

Later, a subject can return to the exact point in which the test was stopped by returning to the

crowdsourcing web platform and introduce its user information (email address) in the home page. The

POST / with a valid email address results in the server connecting to the database to access the correct

state of the test session and then the server returns the page containing the pair of images that still need

to be evaluated before the pause, effectively resuming the subjective test.

Figure 41 - Test environment of the subjective test. On the left selection screen and on the right the

56

end of test screen.

When the last image pair is shown to the subjects the final page is shown to the user. This page is

merely informative and serves to inform the user that the test is finished, as illustrated in Figure 41

(right).

4.4. Data Processing: converting pairwise-comparison to

psychometric scores

This section describes all the processing made to the binary decisions data obtained from the subjective

test. First, the process that eliminates unreliable observers is described, thus removing some bad

decisions that could influence the final outcome. Then, the computation of the psychometric scores is

described, this means the transformation of the binary decision data to reliable scores that represent

the quality of each image in the subjective study.

4.4.1. Outlier Detection

Since subjects are not supervised, it is common practice to identify and remove any outliers. In this

case, subjects are mostly University students and researchers which understand the importance of this

study and thus have little incentive to submit malicious decisions. Nevertheless, outlier detection was

applied after the crowdsourcing experiment was completed, especially to filter subjects which do not

paid much attention or misunderstand the goal of the test. There are several outlier detection

procedures, but all aim to check if the responses of some subject in the study agree with the rest of the

subjects, while allowing some reasonable deviation.

To perform outlier detection in single or double stimulus quality assessment tests, ratings of a subject

are compared to the ratings of other subjects. However, outlier detection in pairwise comparison tests

can be performed by only inspecting the decisions made by each subject [92]. In this case, to verify the

reliability of a given subject, the transitivity rule is used [93] [94]. This rule states that for any given three

stimuli 𝐴, 𝐵 and 𝐶 if 𝐴 is preferred against 𝐵 and 𝐵 is preferred against 𝐶, then the relation is transitive

and 𝐴 should be preferred to 𝐶. Therefore, a subject breaks the transitivity rule when the the decisions

made result in the connected triad that verifies (15), and is identified by Batagelj et al. [95] by 030C.

(𝐴 > 𝐵) ∩ (𝐵 > 𝐶) ∩ (𝐶 > 𝐴) (15)

In the context of the outlier detection for a pairwise comparison test, a subject constantly breaking the

transitivity rule is considered as unreliable since its assessments are contradictory. To quantify the

violation of the transitivity rule, it is employed a metric called Transitivity Satisfaction Rate (𝑅𝑖), also

called consistency rate, defined by the frequency in which the rule was satisfied (16).

57

𝑅𝑖 = 1 −
𝑀𝑖

𝑁𝑖

 (16)

, where 𝑀𝑖 is the number of the circular triads of (15) and 𝑁𝑖 is the number of all possible triads. To

compute 𝑅𝑖 it was constructed an adjacency matrix from the raw data given by each user. These

adjacency matrixes (𝐴𝑘) have dimensions 𝑁 × 𝑁, where 𝑁 is the number of the images (104) under

evaluation and contain all the binary decisions made by the user. More specifically, the matrix is initially

set to 0 in all entries. Then, during the construction process, every entry (𝑖, 𝑗) set to 1 symbolizes the

choice of 𝑖 over 𝑗.Which means, if the subject 𝑘when comparing the images 𝑖 and j prefers 𝑖 over j in

the matrix 𝐴𝑘 the entry (𝑖, 𝑗) would be set to 1. Due to the incomplete design of this experiment the

adjacency matrixes are very sparse containing only the information that relates to the tested pairs. Pairs

that compare images 𝑖 and 𝑗 that are not included in the test are represented in this matrix by having

both entries 𝐴(𝑖, 𝑗) and 𝐴(𝑗, 𝑖) to 0, representing no preference for one over the other.

These matrixes can be interpreted as directed graphs which will facilitate the computation of 𝑅𝑖. The

python package [96] NetworkX is used to transform the adjacency matrixes in directed graphs and

compute the 𝑅𝑖 values for all the subjects in the study. To transform the adjacency matrix in a directed

graph is used the function DiGraph. Having the directed graph object created then it is applied the

function triadic_census to the graph object with the purpose of counting the number of occurrences

of triads described in (15). It is also created an auxiliary matrix that helps compute the number of possible

triads 𝑁𝑖.

As simple example of this process is presented in Figure 42 (left) a decision matrix (𝐴) that represents

the comparisons made between images A, B, C, D and E. This decision matrix translates an incomplete

design, similarly to our subjective assessment, where only 7 comparisons are made. This decision

matrix denotes the preference of image 𝑖 over image 𝑗 by setting 𝐴𝑖𝑗 = 1 and 𝐴𝑗𝑖 = 0. Furthermore, if the

pair (𝑖, 𝑗) is not compared in the assessment, then the matrix has 𝐴𝑖𝑗 = 0 and 𝐴𝑗𝑖 = 0.

This matrix can be interpreted as a directed graph where the nodes are the test images 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸

are the nodes and the comparisons made are the edges. Moreover, the preferences displayed in the

comparisons correspond to the direction of said edge. In Figure 42 (right) is shown the directed graph

(𝐺) corresponding to the matrix (𝐴).

The nodes 𝐵, 𝐷, 𝐸 follow the pattern described in (15), thus breaking the transitivity rule (𝑀𝑖 = 1). From

𝐺is also possible to see that it is the only case of this cycles present, and that the number of possible

decisions that break the transitivity rule are only 2 (𝑁𝑖 = 2).

This leads to a transitivity satisfaction rate of 0.5. As the number of images and comparisons increases

the visual analysis of these graphs becomes more and more daunting which motivates the usage of

NetworkX library.

58

 A B C D E

A - 1 1 0 0

B 0 - 0 1 0

C 0 0 - 0 0

D 0 0 1 - 1

E 0 1 1 0 -

Figure 42 – Example of decision matrix (left) and corresponding directed graph (right)

Any subject that presented a transitivity satisfaction rate lower than a threshold would be considered

unreliable and thus an outlier. All data from associated from an outlier subject is then removed. In this

work, the threshold applied was 0.8. For the crowdsourcing experiment performed in the context of this

Thesis, no users were identified as outliers, since 𝑅𝑖 was always lower than the predefined threshold.

The 𝑅𝑖 values are shown in Table 7.

Table 7 - Transitivity Satisfaction Rate (𝑅𝑖) associated with the ratings (binary decisions) of each

subject.

User ID 𝑹𝒊
 User ID 𝑹𝒊

8 0,9875 13 0,947917

16 0,986458 4 0,945833

25 0,986458 29 0,945833

22 0,984375 14 0,941667

1 0,98125 0 0,934375

11 0,98125 23 0,933333

2 0,979167 10 0,93125

17 0,975 27 0,927083

5 0,972917 9 0,898958

32 0,972917 21 0,892708

19 0,971875 31 0,889583

3 0,963542 6 0,869792

20 0,963542 7 0,865625

12 0,960417 15 0,865625

30 0,959375 18 0,844792

4.4.2. Psychometric Quality Scores Computation

The results of the paired comparison (raw binary data) experiment are often stored in a comparison

matrix 𝐶, in which element 𝑐𝑖𝑗 counts the number of times a stimulus (image) 𝑖 was selected as better

than 𝑗. The objective is to convert such comparison matrix to interpretable quality scores, often called

psychometric quality scores which are analogous to median opinion scores in double stimuli

experiments. This can be performed by several methods available in the literature, where the two most

widely used are based on the Thurstone [97] and the Bradley-Terry [98] observer models.

59

In other works [99], quality estimates are computed directly by summing up columns (or rows) of the

comparison matrix. For example, quality scores can be computed as the average number of votes (wins

in pairwise comparisons) that each stimuli received, more precisely, the number of votes of each image

divided by the number of times the image was included in a pair and considered for evaluation. This

approach is usually referred as vote counts or winning x. However, such simple method is not very

suitable for incomplete experiment designs and may not produce the correct ranking. Moreover, it also

lacks the ability to capture the perceptual magnitude of difference between the images in a principled

way and the quality scores obtained are not in a scale that can be easily interpretable.

To obtain more reliable quality scores, it is necessary to employ a probabilistic framework that provides

psychometric scaling, i.e., scales the data in a way to describe the full extent of variation of the image

quality.

In this work, it was applied the Bradley-Terry Model, which given a set of past results involving elements

𝑖and 𝑗 calculates the probability of 𝑖 winning against 𝑗. This model is extremely helpful since this

subjective assessment had an incomplete design, and the winning frequency can be reliably used as

subjective quality score. There are several variations of the Bradley-Terry model, in our analysis we use

the implementation provided by the python library Choix [100] that follow the approach presented by

Maystre et al. [101]. More specifically, it is used the function opt_pairwise that given a list of

comparison results computes a Maximum Likelihood Estimation (MLE) for each element present in the

comparisons. Furthermore, it maximizes the likelihood function (𝐿(𝑝)), presented in (17), where 𝑤𝑖𝑗

corresponds to outcomes of the previous comparisons between elements 𝑖and 𝑗, and the probability of

𝑖 or 𝑗 wining is given by 𝑝𝑖 and 𝑝𝑗, respectively.

L(p) = ∑∑[𝑤𝑖𝑗 ln(𝑝𝑖) − 𝑤𝑖𝑗 ln(𝑝𝑖 + 𝑝𝑗)]

𝑛

𝑗

𝑛

𝑖

 (17)

4.5. Test Results and Analysis

This section provides an analysis of the data collected in the subjective assessment. Starting with a

description of the subjects and the viewing conditions. Followed by an analysis of the winning frequency

by content that will serve to identify potential bias towards specific contents. Then it is presented a

winning frequency comparison between compression tasks, HiFiC and HEVC Intra, giving insight to the

GAN’s performance when compared with a traditional solution. Next is shown a winning frequency

comparison between the different GAN-based models. And, lastly, is presented psychometric scores,

the MLE values, for each GAN-based model.

60

4.5.1. Statistical characterization of the subjects and viewing

conditions

A total of 31 subjects have participated in this study. Some subjects were experts (in image processing

and compression) while others were non-experts; however, none had any prior contact with the test

material. Regarding gender, 21 subjects were male and 10 were female, as illustrated by Figure 43

(left). Regarding age, it ranges between 20 and 55 and follow the distribution shown in Figure 43 (right).

Figure 43 – Distribution of the subjects’ gender (left) and age (right)

Due to the crowdsourcing nature of the survey, the viewing conditions can vary from subject to subject,

most importantly the display characteristics. In this test, each subject had to submit the size and

resolution of the display before performing the test. These statistics are shown in Figure 44. As shown,

many subjects performed the test with a display at least of 20 inches; however, displays of 15 inches

were also very common. The most common display resolution is 1920x1080, which is the minimum

enforceable by the quality assessment framework.

Figure 44 - Distribution of the displays size (left) and resolution (right)

Every subject had to perform 456 comparisons resulting in a total of 14 136 judgements collected during

the study. Due to the high number of comparisons, the test was divided in two sessions. These 2

sessions had durations between 20 to 30 minutes depending on the user’s response time and fatigue.

Male
68%

Female
32%

Observers' Gender Distribution

0

2

4

6

8

10

12

N
u

m
b

er
 o

f
Su

b
je

ct
s

Age [years]

Observers' Age Distribution

0

10

20

30

13 14 15 16 22 23 24 27

P
er

ce
n

ta
ge

 o
f

O
cc

u
re

n
ce

s

Display Size [inches]

Display Size Distribution

1920x1080
85%

1920x1200
9%

2560x1440
6%

Display Resolution Distribution

61

The average total test duration was approximately 58 minutes. From the response times gathered during

the test, average response times were computed. These results are shown in Figure 45; most subjects

take on average less than 7 seconds to make a judgment.

Figure 45 – Distribution of observers’ average response time.

4.5.2. Winning Frequency by Content

The analysis of the results using the winning frequency as defined in Section 4.4.2. First, the subject’s

preference for content is computed, in this case, the winning frequency by content, i.e., the vote count

is obtained by grouping the assessments by reference image. If there is no bias towards the content of

the images, then the winning frequency would be 0.5 for every reference image. In Figure 46, the results

obtained for this experiment are shown, and, overall, the images fall very close to the 0.5 winning

frequency that implies no preference for content. However, some images such as Transmission Towers

(00008) and Woman (00012) present a considerably lower winning frequency when compared with other

images. This means that the GAN-based solutions evaluated performed worse on these images when

compared with others, i.e. the artifacts are more perceptually noticeable. The main focal point of the

Transmission Towers image is a set of towers that contain a lot of small intricate details that can be

challenging for the GAN-based solutions. Regarding the Woman image, the main focal point is a human

face, which has a complex texture and detail that is difficult to generate. On the other hand, the Racing

Car (00002) image presents a higher winning frequency suggesting a better performance of the GAN-

based solutions for this image. In this case, the image has some complex texture that can be hard to

reproduce by the solutions, however those areas are not main focal point of the image, which might

justify more lenient assessments.

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 29 30 31 32

Ti
m

e
[s

ec
o

n
d

s]

Observer's ID

Observers' Average Response Time

Average

62

Figure 46 – Distribution of the winning frequencies by image content.

4.5.3. Winning Frequency in Compression

The winning frequency for the test pairs with an HEVC Intra and a HiFiC image for a similar bitrate, as

describe in, is presented in Figure 47. These results show that the HiFiC GAN-based image coding

solution is largely preferred when compared with HEVC Intra. This means that the HiFiC solution

produces images that are considered more natural than one of the best conventional image codecs.

With the decrease in bitrate (Figure 47 right to left) there is an increase in preference for the images

produced by the HiFiC solution. This highlights the fact that HiFiC has better performance for lower

bitrates, where the generative capability of the decoder is more exploited. Also, the artefacts introduced

by the GAN-based image coding solution do not make the naturalness of the image lower, especially

compared to the usual blurring-type artifacts of HEVC Intra.

Figure 47 – Comparison of the winning frequency between HiFiC and HEVC-Intra for the same target

bitrate. Left: 0.06 bpp. Centre: 0.14 bpp. Right: 0.3 bpp.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7
W

in
n

in
g

Fr
eq

u
en

cy

Image Name

Winning Frequency per Image Content

No Bias Expected Value

0% 50% 100%

00002

00004

00005

00006

00008

00009

00010

00012

HiFiC vs HEVC - 0.06 bpp

HiFiC HEVC - Intra

0% 50% 100%

00002

00004

00005

00006

00008

00009

00010

00012

HiFiC vs HEVC - 0.14 bpp

HiFiC HEVC - Intra

0% 50% 100%

00002

00004

00005

00006

00008

00009

00010

00012

HiFiC vs HEVC - 0.3 bpp

HiFiC HEVC - Intra

63

In Table 8 is showcased an illustrative example of the impact of the blurring artefacts, produced by

HEVC Intra, when compared with the artefacts that derive of the generative model. This is particularly

noticeable when looking at the lower bitrate scenarios (Lo). These images also help illustrate the

increase in the gap of perceived quality from lower bitrates to higher, as mentioned before.

Table 8 - Side by side comparison the Train (00006) image compressed by HiFiC and HEVC Intra for

similar scenarios.

 HEVC HiFiC

Lo

Hi

4.5.4. Winning Frequency by GAN-based Solution

In this evaluation the winning frequency of each GAN-based solution is presented for all three models

trained (Lo, Mi, Hi), including also the original reference image. The results are shown in Figure 48. The

main difference between these models (Lo, Mi, Hi) regards the hyperparameter 𝜆, that controls the

weight of the generative content in the training process and that increases from Lo to Hi. When more

64

weight is given to the adversarial loss the generative capabilities of the GAN based solution is

augmented. As shown, there is an increasing preference for models with a larger weight for the

adversarial loss, which can lead to the conclusion that the GAN-based discriminator should play a large

role during training. Also, as expected, there is a large preference for the original reference image.

For the ESRGAN solution, Figure 48 (left) there is a constant increase in winning frequency,

approximately doubling as the model progress from Lo to Hi. Regarding the HiFiC solution the Figure

48 (center) shows that although it follows the expected increase in winning frequency, the HiFiC Mi and

HiFiC Hi models are more comparable with each other than with the HiFiC Lo model or the reference

original image. Also, there is an average winning frequency of less than 40% for the reference image

when compared with HiFiC images, which showcases the high performance of this solution. Finally, the

ArNet solution winning frequency distribution presented in Figure 48 (right) highlights the low

performance of the Lo model. This was expected since the model was trained for less severe

degradations then the one used in ArNet Lo.

Figure 48 - Comparison of the winning frequency of each model by solution. Left: ESRGAN.

center:HiFiC. Right: ArNet.

4.5.5. Psychometric scores by GAN-based Solution

Besides the winning frequency analysis, it was also performed a scaling of the raw data using the Choix

python library. More specifically, we obtained a penalised Maximum Likelihood Estimation (MLE) using

the Bradley-Terry model. These results are presented in Figure 51 and shown grouping by images’

contents, also including the average MLE.

Once again it is noticeable the increase of perceived quality (measured by psychometric scores)

progressively from the Lo to the Hi model, for all GAN-based solutions. However, for the specific case

of the Woman (00012) images obtained with HEVC-Intra coding it is visible that the psychometric scores

of the Mi model breaks this tendency since it has a very low value. This comes from the fact that the

HEVC codec was only introduced in the assessment by comparisons with HiFiC and had no votes

leading the MLE value to be very low. In Figure 49 are presented the images obtained from the Woman

0% 50% 100%

00002

00004

00005

00006

00008

00009

00010

00012

ESRGAN

Lo Mi Hi Original

0% 50% 100%

00002

00004

00005

00006

00008

00009

00010

00012

HiFiC

Lo Mi Hi Original

0% 50% 100%

00002

00004

00005

00006

00008

00009

00010

00012

ArNet

Lo Mi Hi Original

65

reference image using all the Mi model to further justify the MLE obtained does not translate the

perceived quality of the HEVC intra Mi but is a result of the Bradley-Terry model adjusting the lack of

victories of this image in the context of the study.

Figure 49 - Comparison of the Woman (00012) image obtained with different Mi models.

HiFiC Mi

ESRGAN Mi

ArNet Mi

HEVC Intra Mi

As shown in Figure 51, the compression solution HiFiC produced the more natural looking images. Once

again, the variation in quality between the Mi and Hi models are very small, confirming the analysis

made with the winning frequency data. The ArNet solution follows the HiFiC model when it comes to the

naturalness of its images for the model Mi and Hi. However, for the Lo model the ESRGAN takes second

place. The ArNet Lo produces images of poor quality as shown in the winning frequency analysis which

is a fact also supported by psychometric scores.

66

Although, the ESRGAN has the worst image quality when compared with other GAN-based solution in

this study, it is important to note that the 4x super resolution task is rather challenging when compared

with other tasks in this study. In the Racing car (00002) and Transmission Towers (00008) images the

ESRGAN produces very poor images which show the limitations of this solution in the reconstruction of

small details. In Figure 50 is highlighted an example in which the ArNet model has better performance

due to the difficulty of the super resolution task applied to the content of the Car (00002) image.

Figure 50 - Comparison of the Car (00002) images obtained with ESRGAN Mi and ArNet Mi.

ESRGAN Mi

ArNet Mi

67

Figure 51 -Comparison between different solutions MLE by image of reference.

68

Chapter 5

5. Quality Metric performance evaluation

The human eye is the best judge of image quality. Subjective test assessments of image quality, if

performed correctly, give a lot of insight to any solution performance. However, relying on subjective

assessments to evaluate image quality in unfeasible since it is very time consuming and is always

dependent on the participation of people outside the project. Which motivates the need to have objective

quality metrics that can accurately quantify the image quality. In this chapter will be briefly presented a

set of objective image quality metrics, will be described the procedure followed to apply these metrics

and lastly will be presented an analysis of performance of the metrics.

5.1. Quality Metrics

In this section is provided a brief overview of some objective image quality metrics. The metrics studied

in this chapter are divided into two sub-categories: Full-reference and no-reference. Full-reference

metrics are metrics that rely on the unaltered image and use it evaluate the degradation on the tested

image. On the other hand, no-reference metrics are blind to the expected image.

5.1.1. Full-Reference Metrics

There are a variety of full-reference metrics well known metrics, in this study we will focus only on the

following:

• Peak Signal-to-Noise Ratio (PSNR) – this metric is defined by the ratio of maximum possible

pixel value of the image (𝑀𝐴𝑋𝐼) and the Mean Square Error (MSE), as depicted in (18).

PSNR = 10 × log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) = 20 × log10 (

𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) (18)

69

Being the MSE computed as presented by (19). Where 𝑚 and 𝑛 are the image’s width and

height respectively. Also, 𝐼 denotes reference image and 𝐼′ refers to the altered image.

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐼′(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (19)

• Structural Similarity Index (SSIM) - Unlike the previously mentioned metric, the SSIM [102] is

designed with the human visual system (HVS) in mind. Moreover, this measure explores the

structural information of an image. That is, the aspects of an image that define its elements.

And can be calculated using (20)

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2

𝑥

𝑦
+ 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(
𝑥
2 +

𝑦
2 + 𝐶1) (𝜎𝑥

2 + 𝜎𝑦
2 + 𝐶2)

 (20)

Where 𝑥 and 𝑦 denote samples from the tested and reference images, respectively. And 𝜇

represents the mean of the signals and 𝜎 the variance. Regarding the variables 𝐶1 and 𝐶2, they

are constants and can be calculated as shown in (21). Where 𝐿is the dynamic range of the pixel

values and the default values of constants 𝐾1 and 𝐾2 are 0.01 and 0.03 respectively.

𝐶1 = (𝐾1𝐿)2

𝐶2 = (𝐾2𝐿)2𝑎𝑛𝑑𝐶3 = 𝐶2/2
 (21)

• Multi-Scale Structural Similarity Index (MS-SSIM) – The MS-SSIM [103] provides an

improvement over the SSIM metric by computing it on variations of the image resolution and

viewing conditions.

• Visual Information Fidelity (VIF) – The VIF [104] is another metric that explores the

characteristics of the HVS in order to better quantify image quality. This metric exploits natural

scene statistics (NSS) together with models for the distortion channel and the HVS. It computes

the mutual information between the reference image and the reference image as altered by the

HVS model to quantify the perceived information that the brain could under ideal conditions

obtain. Similarly, calculates the mutual information between the reference image and the image

affected by both the HVS model and the channel distortion model.

5.1.2. No-reference Quality Metrics

The no-reference images tested in this analysis were:

• Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) – This metric employs a

natural scene statics model to predict the severity of distortions present in a given image. That

is to say that BRISQUE [105] measures the deviation between some local luminance signal’s

statistics and the expected result using the natural image model.

• Unified No-reference Image Quality and Uncertainty Evaluator (UNIQUE) – This metric

70

consists of a DNN trained to infer the image quality. The UNIQUE [106] network has an ResNet

architecture and is trained on both synthetically and realistically distorted images.

• hyperIQA – The hyperIQA [107] is a metric that also consists of a NN. However, the architecture

of this NN differs from the simpler UNIQUE network. This NN first gets the semantic features

and then makes quality predictions. It also utilizes multi-scale content to better describe the

local and global distortions.

5.2. Quality Metrics Performance Evaluation Procedure

In order to evaluate the test set using the metrics mentioned previously we use a variety the python

libraries. Moreover, we use the skimage.metrics [108] to compute the PSNR and SSIM values. The

Sewar [109] package to obtain the values for MS-SSIM and VIF metrics.

Regarding, the no-reference images the BRISQUE implementation used was the image-quality [110]

package. The UNIQUE values were computed using the first party software. And for the hyperIQA metric

it was also used the official software.

5.3. Results and Analysis

Having obtained all the previously mentioned metric values for all images in the assessment it is

performed an analysis that will give insight to the correlation between objective and subjective quality

scores.

Starting with the full-reference metrics it was plotted, in Figure 52, each metric value as a function of the

corresponding both the winning frequency and MLE. These plots can help highlight possible correlations

between the objective and subjective scores. Moreover, if the sparsity of the scatter points is greater the

correlation between the variable is probably lower.

Metric Winning-Frequency MLE

PSNR

71

SSIM

MS-SSIM

VIF

Figure 52 -Wining frequency and MLE plots as function of full-reference metrics.

From the visual data presented in Figure 52 is evident that the PSNR metric does not seem to be

correlated to either the winning frequency or the MLE. The SSIM, MS-SSIM and VIF, look to be

comparable in terms of sparsity. These metrics are an improvement when compared with the PSNR,

however the correlation seems to be only moderate.

The intuitive notions provided by the visual data when studying the correlation between two variables is

clearly insufficient and, thus, the analysis continues by computing two different correlation metrics: the

Pearson Correlation Coefficient (PCC) and the Spearman’s Rank Correlation Coefficient (SRCC).

The PCC is widely used when it comes to quantifying correlations between 2 variables. This coeffienct

is given by (22) where 𝑋 and 𝑌 correspond to each variable, and 𝜎 and 𝑐𝑜𝑣 is the standard deviation

and covariance, respectively. Its values range from −1to 1, where −1 signifies to total negative

72

correlation and 1 total positive correlation.

𝑃𝐶𝐶 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

(22)

Even though SRCC is less used, it has some advantages when compared with the Pearson, namely the

is much more resistant to the existence of outliers and data entry. This correlation metric is given by

(23) where 𝑅(𝑋) and 𝑅(𝑌) correspond to the rank of each variable, and 𝜎 and 𝑐𝑜𝑣 is the standard

deviation and covariance, respectively.

𝑆𝑅𝐶𝐶 =
𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌))

𝜎𝑅(𝑋)𝜎𝑅(𝑌)

(23)

The values of PCC and SRCC were computed for every full-reference metric and are shown in Table 9.

Has suspected, the PSNR has a weak positive correlation to both winning frequency and MLE. Which

means it cannot accurately reflect the quality of the GAN-based solutions, which was expected as per

the motivation of this assessment.

The SSIM, MS-SSIM and VIF are an improvement over the PSNR being barely moderate correlated to

the subjective quality scores.

Table 9 - Correlation coefficients for full-reference metrics. Left: PCC. Right: SRCC.

Metric
Winning-

Frequency
MLE

Metric
Winning-

Frequency
MLE

PSNR 0.12468232379228833 0.2537244253360623

PSNR 0.13491130896638656 0.36734943027672273

SSIM 0.3371972436546484 0.40622694269718496

SSIM 0.33821214312811415 0.5414047879493028

MS-
SSIM

0.46789373458246747 0.5207435643611026

MS-

SSIM
0.5131871916870002 0.6731424045067567

VIF 0.5427486783070593 0.4603639832940975

VIF 0.43608015080889506 0.6135602261815855

Regarding the no-reference metrics the methodology was the same. Firstly, are obtained the plots of

winning frequency and MLE with each metric. From the graphics shown in Figure 53 is evident that

UNIQUE metric seems to be uncorrelated to the subjective scores. And BRISQUE and hyperIQA having

apparently some correlation with the winning frequency and MLE, having BRISQUE a negative

correlation and hyperIQA positive correlation.

Metric Winning-Frequency MLE

73

BRISQUE

UNIQUE

hyperIQA

Figure 53 - Wining frequency and MLE plots as function of no-reference metrics.

Once again, the procedure is the same has the one used for the full-reference images and are calculated

both PCC and SRCC scores. Analysing the correlation coefficients displayed in Table 10 is clear that

BRISQUE is the best no-reference metric to evaluate this type of solutions since is the one with the

highest correlation with the subjective scores. Nevertheless, this correlation is only moderate thus not

constituting a very reliable assessment.

Table 10 - Correlation coefficients for no-reference metrics. Left: PCC. Right: SRCC.

Metric
Winning-

Frequency
MLE

Metric
Winning-

Frequency
MLE

BRISQUE -0.5857174895442 -0.3593243584985
BRISQUE -0.585645492201680 -0.42889149685266

74

UNIQUE 0.114379791057289 -0.10306306383169
UNIQUE 0.1355992920662703 -0.12975568121199

hyperIQA 0.33866825570325 0.3731512515146372
hyperIQA 0.3620766330363353 0.483697855542515

Overall, the full-reference metrics showed better correlation coefficients when compared with the no-

reference metrics, like it was expected since the no-reference assessment is a more complex task.

The results enforce the idea that there is a need to develop better suited metrics for solutions that utilize

generative networks, being the no-reference metric of particular relevancy since some computer vision

tasks might not allow for the use of a ground truth image by design.

75

Chapter 6

6. Summary and Future Work Plan

The focus of this Thesis was to design, perform and analyze the outcome of a subjective quality

assessment test for GAN-based solutions and measure the performance of well-known objective image

quality metrics. To perform the subjective assessment study, 3 GAN-based solutions for different image

processing tasks, were first identified and selected. These solutions are ESRGAN, a solution that

performs super resolution, HiFiC, an image compression solution and finally ArNet, an artefact removal

solution. Then, a crowdsourcing pairwise comparison methodology was applied for the results obtained

were processed in order to obtain a reliable quality measure.

The results obtained provided information about the performance of each solution, namely the

perceptual impact of increasing the generative capabilities of each GAN. It was found that that the

naturalness of the GAN-derived images was found very satisfactory. Moreover, regarding image

compression, the GAN based solution has outperformed the HEVC Intra codec very significantly.

Regarding the objective metrics evaluated during this study, the results show the low correlation of

almost every metric to the scores obtained for the subjective experiment. Moreover, no-reference quality

metrics have a lower correlation (and thus are less suitable) when compared to full-reference metrics.

With the information collected from this study a dataset was built for image quality assessment

consisting of generative images and the results of the subjective evaluation. Moreover, a crowdsourcing

pairwise comparison platform was developed to allow pairwise comparison subjective studies. Both the

dataset and the platform are relevant contributions of this Thesis and will be public available for future

work.

Considering the low performance of image quality metrics to evaluate GAN-based solutions, future work

should address this limitation by: 1) study the performance of other objective quality metrics available in

literature not shown in this Thesis and 2) development of a new quality metric with a higher performance

for GAN-based solutions.

76

77

References

[1] D. Chai and A. Bouzerdoum, “JPEG2000 image compression: an overview,” in Australian and

New Zealand Conference on Intelligent Information Systems, Perth, Western Australia, Australia,

November 2001.

[2] D. M. Cabrita and W. Godoy, “PNG Optimization Techniques Applied to Lossless Web Images,”

IEEE Latin America Transactions, vol. 10, no. 1, pp. 1398-1401, January 2012.

[3] M. Marcellin, “An overview of JPEG-2000,” in Proceedings DCC 2000. Data Compression

Conference, 2000.

[4] J. Li, S. Huang, R. He and K. Qian, “Image Classification Based on Fuzzy Support Vector

Machine,” in International Symposium on Computational Intelligence and Design, Wuhan, China,

October 2008.

[5] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep Convolutional

Neural Networks,” in Neural Information Processing Systems, Lake Tahoe, NV, USA, December

2012.

[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”

International Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, December 2015.

[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and

Y. Bengio, “Generative Adversarial Networks,” arXiv:1406.2661v1 [stat.ML] , June 2014.

[8] A. Radford, L. Metz and S. Chintala, “Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks,” arXiv:1511.06434v2 [cs.LG] , January 2016.

[9] M.-Y. Liu and O. Tuzel, “Coupled Generative Adversarial Networks,” arXiv:1606.07536v2 [cs.CV],

September 2016.

[10] T. Karras, T. Aila, S. Laine and J. Lehtinen, “Progressive Growing of GANs for Improved Quality,

Stability, and Variation,” arXiv:1710.10196v3 [cs.NE], February 2018 .

[11] T. Karras, S. Laine and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial

78

Networks,” arXiv:1812.04948v3 [cs.NE], March 2019.

[12] Stanford University, "CS231n Convolutional Neural Networks for Visual Recognition," [Online].

Available: http://cs231n.github.io/. [Accessed 10 October 2019].

[13] R. Solomon and J. Leo van Hemmen, “Accelerating backpropagation through dynamic self-

adaptation,” Neural Networks, vol. 9, no. 4, pp. 589-601, June 1996.

[14] M. Mahsereci, L. Balles, C. Lassner and P. Hennig, “Early Stopping without a Validation Set,”

arXiv:1703.09580v3 [cs.LG], June 2017.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A Simple

Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning Research, vol.

15, no. 56, pp. 1929-1958, June 2014.

[16] W. Wang and J. Gang, “Application of Convolutional Neural Network in Natural Language

Processing,” in International Conference on Information Systems and Computer Aided Education,

Changchun, China, July 2018.

[17] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich Feature Hierarchies for Accurate Object

Detection and Semantic Segmentation,” in Conference on Computer Vision and Pattern

Recognition, Columbus, OH, USA, June 2014.

[18] C. Szegedy et. all, “Going deeper with convolutions,” in Conference on Computer Vision and

Pattern Recognition, Boston, MA, USA, June 2015.

[19] A. Soleimany, "Deep Learning for Computer Vision MIT 6.S191," January 2019. [Online].

Available: http://introtodeeplearning.com/2019/materials/2019_6S191_L3.pdf. [Accessed 21

November 2019].

[20] I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning,” MIT Press, November 2016.

[21] J. T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, “Striving for Simplicity: The All

Convolutional Net,” arXiv:1412.6806v3 [cs.LG], April 2015.

[22] S. Flores, “Variational Autoencoders are Beautiful,” April 2019. [Online]. Available:

https://www.compthree.com/blog/autoencoder/. [Accessed 29 February 2020].

[23] A. Dertat, “Applied Deep Learning - Part 3: Autoencoders,” October 2017. [Online]. Available:

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798.

79

[Accessed 29 February 2020].

[24] C. Doersch, “Tutorial on Variational Autoencoders,” arXiv:1606.05908v2 [stat.ML], August 2016.

[25] D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders,” Foundations and

Trends in Machine Learning, vol. 12, no. 4, pp. 307-392, November 2019.

[26] K. Kurita, “Machine Learning Explained,” December 2017. [Online]. Available:

https://mlexplained.com/2017/12/28/an-intuitive-explanation-of-variational-autoencoders-vaes-

part-1/. [Accessed 6 March 2020].

[27] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen and T. Aila, “Analyzing and Improving the

Image Quality of StyleGAN,” arXiv:1912.04958v2 [cs.CV], March 2020.

[28] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang and D. N. Metaxas, “StackGAN++: Realistic

Image Synthesis with Stacked Generative Adversarial Networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1947-1962, August 2019.

[29] P. Isola, J. Zhu, T. Zhou and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial

Networks,” in Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July

2017.

[30] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte and L. V. Gool, “Generative Adversarial

Networks for Extreme Learned Image Compression,” in International Conference on Computer

Vision, Seoul, Korea (South), November 2019.

[31] Y. Kwon and M. Park, “Predicting Future Frames Using Retrospective Cycle GAN,” in Conference

on Computer Vision and Pattern Recognition, Long Beach, CA, USA, June 2019.

[32] T. Silva, “An intuitive introduction to Generative Adversarial Networks (GANs),” January 2018.

[Online]. Available: https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-

adversarial-networks-gans-

7a2264a81394/?utm_content=buffere27d9&utm_medium=social&utm_source=twitter.com&utm

_campaign=buffer. [Accessed 16 March 2020].

[33] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta and A. A. Bharath, “Generative

Adversarial Networks: An Overview,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53-65,

January 2018.

80

[34] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen, “Improved

Techniques for Training GANs,” arXiv:1606.03498v1 [cs.LG], June 2016.

[35] J. Ballé, D. Minnen, S. Singh, S. J. Hwang and N. Johnston, “Variational image compression with

a scale hyperprior,” arXiv:1802.01436v2 [eess.IV] , May 2018.

[36] Google, “WebP Image Format,” July 2019. [Online]. Available:

https://developers.google.com/speed/webp. [Accessed 29 April 2020].

[37] F. Bellard, “BPG Image format,” April 2018. [Online]. Available: https://bellard.org/bpg/. [Accessed

28 April 2020].

[38] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv:1411.1784v1 [cs.LG],

November 2014.

[39] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid Scene Parsing Network,” in Conference on

Computer Vision and Pattern Recognition, Honolulu, HI, USA, July 2017.

[40] K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-CNN,” in International Conference on

Computer Vision, Venice, Italy, October 2017.

[41] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte and L. V. Gool, “Generative Adversarial

Networks for Extreme Learned Image Compression,” arXiv:1804.02958v3 [cs.CV] , August 2019.

[42] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte and L. V. Gool, “Conditional Probability

Models for Deep Image Compression,” in Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, June 2018.

[43] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom, J. Uijlings, S.

Popov, A. Veit, S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik, D. Cai, Z. Feng, D.

Narayanan and K. Murphy, “Open Images Dataset,” [Online]. Available:

https://opensource.google/projects/open-images-dataset. [Accessed 4 April 2020].

[44] Eastman Kodak Company, “ Kodak Lossless True Color Image Suite,” [Online]. Available:

http://r0k.us/graphics/kodak/. [Accessed 3 April 2020].

[45] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter and G. Boato, “RAISE – A Raw Images Dataset for

Digital Image Forensics,” ACM Multimedia Systems, Portland, Oregon, March 2015. [Online].

Available: http://loki.disi.unitn.it/RAISE/. [Accessed 4 April 2020].

81

[46] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth and

a. B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Conference

on Computer Vision and Pattern Recognition , Las Vegas, NV, USA, June 2016.

[47] Z. Wang, J. Chen and S. C. H. Hoi, “Deep Learning for Image Super-resolution: A Survey,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, March 2020.

[48] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue and Q. Liao, “Deep Learning for Single Image

Super-Resolution: A Brief Review,” IEEE Transactions on Multimedia, vol. 21, no. 12, p. 3106–

3121, 12 December 2019.

[49] A. Ducournau and R. Fablet, “Deep learning for ocean remote sensing: an application of

convolutional neural networks for super-resolution on satellite-derived SST data,” in Pattern

Recogniton in Remote Sensing, Cancun, Mexico, December 2016.

[50] J. Lu and W. Liu, “Unsupervised Super-Resolution Framework for Medical Ultrasound Images

Using Dilated Convolutional Neural Networks,” in International Conference on Image, Vision and

Computing, Chongqing, China, June 2018.

[51] A. Singh and J. Singh, “Review and Comparative analysis of various Image Interpolation

Techniques,” in International Conference on Intelligent Computing, Instrumentation and Control

Technologies, Kannur, Kerala, India, July 2019.

[52] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J.

Totz, Z. Wang and W. Shi, “Photo-Realistic Single Image Super-Resolution Using a Generative

Adversarial Network,” in Conference on Computer Vision and Pattern Recognition, Honolulu, HI,

USA, July 2017.

[53] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” in

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June 2016.

[54] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift,” in International Conference on International Conference on Machine

Learning, Lille, France, July 2015.

[55] K. He, X. Zhang, S. Ren and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification,” in International Conference on Computer Vision,

Santiago, Chile, December 2015.

82

[56] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert and Z. Wang, “Real-

Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural

Network,” in Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June

2016.

[57] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” arXiv:1409.1556v6 [cs.CV], April 2015.

[58] M. Bevilacqua, A. Roumy, C. Guillemot and M.-L. Alberi Morel, “Low-Complexity Single-Image

Super-Resolution based on Nonnegative Neighbor Embedding,” in British Machine Vision

Conference , Guildford, Surrey, United Kingdom, September 2012.

[59] R. Zeyde, M. Elad and M. Protter, “On Single Image Scale-Up Using Sparse-Representations,” in

International Conference on Curves and Surfaces, Avignon, France, June 2010.

[60] D. Martin, C. Fowlkes, D. Tal and J. Malik, “A database of human segmented natural images and

its application to evaluating segmentation algorithms and measuring ecological statistics,” in

International Conference on Computer Vision., Vancouver, BC, Canada, July 2001.

[61] C. Dong, C. C. Loy, K. He and X. Tang, “Image Super-Resolution Using Deep Convolutional

Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp.

295-307, February 2016.

[62] J. Huang, A. Singh and N. Ahuja, “Single image super-resolution from transformed self-

exemplars,” in Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June

2015.

[63] J. Kim, J. K. Lee and K. M. Lee, “Deeply-Recursive Convolutional Network for Image Super-

Resolution,” in Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,

USA, June 2016.

[64] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical

Image Database,” in Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,

June 2009.

[65] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980v9 [cs.LG]

, January 2017.

[66] K. N. Satone, A. S. Deshmukh and P. B. Ulhe, “A review of image compression techniques,” in

83

International Conference of Electronics, Communication and Aerospace Technology, Coimbatore,

India, April 2017.

[67] E. Aldemir, G. Tohumoglu and M. A. Selver, “Performance Evaluation of Lossless Compression

Algorithms for Medical Images,” in Signal Processing and Communications Applications

Conference, Sivas, Turkey, April 2019.

[68] L. Galteri, L. Seidenari, M. Bertini and A. D. Bimbo, “Deep Universal Generative Adversarial

Compression Artifact Removal,” IEEE Transactions on Multimedia, vol. 21, no. 8, pp. 2131-2145,

August 2019.

[69] A. Odena, V. Dumoulin and C. Olah, “Deconvolution and Checkerboard Artifacts,” Distill, October

2016.

[70] L. Galteri, L. Seidenari, M. Bertini and A. D. Bimbo, “Deep Generative Adversarial Compression

Artifact Removal,” in International Conference on Computer Vision , Venice, Italy, October 2017.

[71] C. Yim and A. C. Bovik, “Quality Assessment of Deblocked Images,” IEEE Transactions on Image

Processing, vol. 20, no. 1, pp. 88-98, January 2011.

[72] H. Sheikh, Z. Wang, L. Cormack and A. Bovik, “LIVE image quality assessment database release

2,” April 2014. [Online]. Available: https://live.ece.utexas.edu/research/quality/subjective.htm.

[Accessed 4 March 2020].

[73] A. Foi, V. Katkovnik and K. Egiazarian, “Pointwise Shape-Adaptive DCT for High-Quality

Denoising and Deblocking of Grayscale and Color Images,” IEEE Transactions on Image

Processing, vol. 16, no. 5, pp. 1395-1411, May 2007.

[74] C. Dong, Y. Deng, C. C. Loy and X. Tang, “Compression Artifacts Reduction by a Deep

Convolutional Network,” in International Conference on Computer Vision, Santiago, Chile,

December 2015.

[75] P. Svoboda, M. Hradis, D. Barina and P. Zemcik, “Compression Artifacts Removal Using

Convolutional Neural Networks,” arXiv:1605.00366v1 [cs.CV] , May 2016.

[76] L. Cavigelli, P. Hager and L. Benini, “CAS-CNN: A deep convolutional neural network for image

compression artifact suppression,” in International Joint Conference on Neural Networks,

Anchorage, AK, USA, May 2017.

84

[77] T.-Y. Zitnick, L. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. Lawrence,

“Microsoft COCO: Common objects in context,” in European Conference on Computer Vision,

Zurich, Switzerland, September 2014.

[78] J. Ascenso and P. Akayzi, “JPEG AI Image Coding Common Test Conditions,” in ISO/IEC JTC

1/SC 29/WG 1 N84035, 84th Meeting, Brussels, Belgium, July 2019.

[79] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao and C. Change Loy, “ESRGAN: Enhanced

Super-Resolution Generative Adversarial Networks,” in Proceedings of the European Conference

on Computer Vision (ECCV) Workshops, 2018.

[80] A. Jolicoeur-Martineau, “ The relativistic discriminator: a key element missing from standard GAN,”

in International Conference on Learning Representations, 2019.

[81] E. Agustsson and R. Timofte, “NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset

and Study,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, 2017.

[82] F. Mentzer, G. D. Toderici, M. Tschannen and E. Agustsson, “High-Fidelity Generative Image

Compression,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[83] F. Mameli, M. Bertini, L. Galteri and A. Del Bimbo, “Image and Video Restoration and

Compression Artefact Removal Using a NoGAN Approach,” in Proceedings of the 28th ACM

International Conference on Multimedia, New York, NY, USA, 2020.

[84] J. Antic, J. Howard and U. Manor, Decrappification, DeOldification, and Super Resolution, 2019.

[85] International Telecommunication Union, “Methodology for the subjective assessment of the quality

of television images,” ITU-R BT.500-14, October 2019.

[86] F. Ribeiro, D. Florencio and V. Nascimento, “Crowdsourcing subjective image quality evaluation,”

in 2011 18th IEEE International Conference on Image Processing, 2011.

[87] E. Zerman, V. Hulusic and G. Valenzise, “Rafal Mantiuk„ Frederic Dufaux. The relation between

MOS and pairwise comparisons and the importance of cross-content comparisons,” in Human

Vision and Electronic Imaging Conference, IS&T International Symposium on Electronic Imaging

(EI 2018), Burlingame, United, 2018.

[88] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-Performance Network

85

Programs,” IEEE Internet Computing, vol. 14, pp. 80-83, 2010.

[89] OpenJS Foundation, “Express JS,” [Online]. Available: http://expressjs.com/. [Accessed 4 March

2021].

[90] MongoDB, Inc., “MongoDB,” [Online]. Available: https://www.mongodb.com/. [Accessed 4 March

2021].

[91] “PUG,” [Online]. Available: pugjs.org. [Accessed 9 March 2021].

[92] J.-S. Lee, “Paired comparison for subjective multimedia quality assessment: Theory and practice,”

in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2013.

[93] K.-T. Chen, C.-C. Wu, Y.-C. Chang and C.-L. Lei, “A Crowdsourceable QoE Evaluation

Framework for Multimedia Content,” in Proceedings of the 17th ACM International Conference on

Multimedia, New York, NY, USA, 2009.

[94] Z. Zhang, J. Zhau, N. Liu, X. Gu and Y. Zhang, “An improved pairwise comparison scaling method

for subjective image quality assessment,” in 2017 IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB), 2017.

[95] V. Batagelj and A. Mrvar, “A subquadratic triad census algorithm for large sparse networks with

small maximum degree,” Social Networks, vol. 23, pp. 237-243, 2001.

[96] A. Hagberg, D. Schult and P. Swart, “NetworkX - Network Analysis in Python,” [Online]. Available:

https://networkx.org/. [Accessed 7 June 2021].

[97] L. Thurstone, “A law of comparative judgment,” Psychological Review, vol. 34, p. 273–286, 1927.

[98] R. A. Bradley and M. E. Terry, “Rank Analysis of Incomplete Block Designs: I. The Method of

Paired Comparisons,” Biometrika, vol. 39, p. 324–345, 1952.

[99] H. Ko, D. Y. Lee, S. Cho and A. C. Bovik, “Quality Prediction on Deep Generative Images,” IEEE

Transactions on Image Processing, vol. 29, pp. 5964-5979, 2020.

[10

0]

L. Maystre, “choix,” [Online]. Available: https://github.com/lucasmaystre/choix. [Accessed 4 July

2021].

[10 L. Maystre and M. Grossglauser, “ChoiceRank: Identifying Preferences from Node Traffic in

86

1] Networks,” in Proceedings of the 34th International Conference on Machine Learning, 2017.

[10

2]

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: from error

visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, pp. 600-612,

2004.

[10

3]

Z. Wang, E. P. Simoncelli and A. C. Bovik, “Multiscale structural similarity for image quality

assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003,

2003.

[10

4]

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Transactions on Image

Processing, vol. 15, pp. 430-444, 2006.

[10

5]

A. Mittal, A. K. Moorthy and A. C. Bovik, “Blind/Referenceless Image Spatial Quality Evaluator,”

in 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and

Computers (ASILOMAR), 2011.

[10

6]

W. Zhang, K. Ma, G. Zhai and X. Yang, “Uncertainty-Aware Blind Image Quality Assessment in

the Laboratory and Wild,” IEEE Transactions on Image Processing, vol. 30, pp. 3474-3486, 2021.

[10

7]

S. Su, Q. Yan, Y. Zhu, C. Zhang, X. Ge, J. Sun and Y. Zhang, “Blindly Assess Image Quality in

the Wild Guided by a Self-Adaptive Hyper Network,” in 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2020.

[10

8]

S. V. D. Walt, J. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart

and T. Yu, “ scikit-image: Image processing in Python,” PeerJ, vol. 2, p. 453, 2014.

[10

9]

A. Khalel, “Sewar,” [Online]. Available: https://github.com/andrewekhalel/sewar. [Accessed 4 July

2021].

[11

0]

R. Ocampo, “Image Quality,” [Online]. Available: https://github.com/ocampor/image-quality.

[Accessed 2021 July 7].

[11

1]

H. Ko, D. Y. Lee, S. Cho and A. C. Bovik, “Quality Prediction on Deep Generative Images,” IEEE

Transactions on Image Processing, vol. 29, p. 5964–5979, April 2020.

[11

2]

A. Jolicoeur-Martineau, “The relativistic discriminator: a key element missing from standard GAN,”

arXiv preprint arXiv:1807.00734, 2018.

87

[11

3]

K. Tsukida and M. R. Gupta, “How to analyze paired comparison data,” 2011.

[11

4]

M. P. Ortiz, R. Mantiuk and A. Mikhailiuk, “pwcmp,” [Online]. Available:

https://github.com/mantiuk/pwcmp. [Accessed 2021 June 6].

[11

5]

M. Perez-Ortiz and R. K. Mantiuk, A practical guide and software for analysing pairwise

comparison experiments, 2017.

[11

6]

S. Su, Q. Yan, Y. Zhu, C. Zhang, X. Ge, J. Sun and Y. Zhang, “HyperIQA,” [Online]. Available:

https://github.com/SSL92/hyperIQA. [Accessed 4 July 2021].

[11

7]

P. Rao and L. Kupper, “Ties in Paired-Comparison Experiments: A Generalization of the Bradley-

Terry Model,” Journal of the American Statistical Association, vol. 62, p. 194–204, 1967. July

2021.

88

Annexes

A.1 Subjective Test Images Cropped Areas

In Figures Figure 54 to Figure 61 are presented the crops performed on the test set as described in

Section 4.1. and the corresponding cropping details used are shown in Table 11.

Figure 54 - Cropped area on the Racing Car (00002) image (left) and final test image (right)

89

Figure 55 - Cropped area on Rotunda of Mosta (00004) image (left) and final test image (right)

Figure 56 - Cropped area on Las Vegas Sign (00005) image (left) and final test image (right)

Figure 57 - Cropped area on Train (00006) image (left) and final test image (right)

90

Figure 58 - Cropped area on Transmission Towers (00008) image (left) and final test image (right)

Figure 59 - Cropped area on Port (00009) image (left) and final test image (right)

Figure 60 - Cropped area on Curiosity Rover (00010) image (left) and final test image (right)

91

Figure 61 - Cropped area on Woman (00012) image (left) and final test image (right)

Table 11 – Subjective test images cropping details-

Input image
Original

size
Crop size

Top left corner point
(x,y)

Racing Car (00002) 2144x1424 940 × 880 (330, 200)

Rotunda of Mosta (00004) 1808x1352 940 × 880 (150, 50)

Las Vegas Sign (00005) 1336x872 940 × 872 (195, 0)

Train (00006) 1544x1120 940 × 880 (235, 200)

Transmission Towers
(00008)

1912x1272 940 × 880 (300, 150)

Port (00009) 1976x1312 940 × 880 (260, 300)

Curiosity Rover (00010) 2000x1128 940 × 880 (545, 185)

Woman (00012) 1512x2016 940 × 880 (260, 290)

A.2 Models Training Configuration Files

The training configuration files representing the training details employed in the models trained during

this study are presented in

A.2.1 Configuration file of model ESRGAN Lo

general settings
name: ESRGAN_X4_DIV2K_5e-2
model_type: ESRGANModel
scale: 4

92

num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0

dataset and data loader settings
datasets:
 train:
 name: DIV2K
 type: PairedImageDataset
 # dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub
 # dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub
 # (for lmdb)
 dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
 dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
 filename_tmpl: '{}'
 io_backend:
 # type: disk
 # (for lmdb)
 type: lmdb

 gt_size: 128
 use_flip: true
 use_rot: true

 # data loader
 use_shuffle: true
 num_worker_per_gpu: 1
 batch_size_per_gpu: 4
 dataset_enlarge_ratio: 100
 prefetch_mode: ~

 val:
 name: Set14
 type: PairedImageDataset
 dataroot_gt: datasets/Set14/GTmod12
 dataroot_lq: datasets/Set14/LRbicx4
 io_backend:
 type: disk

network structures
network_g:
 type: RRDBNet
 num_in_ch: 3
 num_out_ch: 3
 num_feat: 64
 num_block: 23

network_d:
 type: VGGStyleDiscriminator128
 num_in_ch: 3
 num_feat: 64

path
path:
 pretrain_network_g: ~
 strict_load_g: true
 resume_state: ~

training settings
train:
 optim_g:
 type: Adam
 lr: !!float 1e-4
 weight_decay: 0
 betas: [0.9, 0.99]
 optim_d:
 type: Adam
 lr: !!float 1e-4
 weight_decay: 0
 betas: [0.9, 0.99]

93

 scheduler:
 type: MultiStepLR
 milestones: [50000, 100000, 200000, 300000]
 gamma: 0.5

 total_iter: 400000
 warmup_iter: -1 # no warm up

 # losses
 pixel_opt:
 type: L1Loss
 loss_weight: !!float 1e-2
 reduction: mean
 perceptual_opt:
 type: PerceptualLoss
 layer_weights:
 'conv5_4': 1 # before relu
 vgg_type: vgg19
 use_input_norm: true
 range_norm: false
 perceptual_weight: 1.0
 style_weight: 0
 criterion: l1
 gan_opt:
 type: GANLoss
 gan_type: vanilla
 real_label_val: 1.0
 fake_label_val: 0.0
 #lambda value
 loss_weight: !!float 5e-2

 net_d_iters: 1
 net_d_init_iters: 0

validation settings
val:
 val_freq: !!float 5e3
 save_img: true

 metrics:
 psnr: # metric name, can be arbitrary
 type: calculate_psnr
 crop_border: 4
 test_y_channel: false

logging settings
logger:
 print_freq: 100
 save_checkpoint_freq: !!float 5e3
 use_tb_logger: true
 wandb:
 project: ~
 resume_id: ~

dist training settings

A.2.2 Configuration file of model ESRGAN Mi

general settings
name: ESRGAN_X4_DIV2K_1e-2
model_type: ESRGANModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0

dataset and data loader settings
datasets:
 train:
 name: DIV2K

94

 type: PairedImageDataset
 # dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub
 # dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub
 # (for lmdb)
 dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
 dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
 filename_tmpl: '{}'
 io_backend:
 # type: disk
 # (for lmdb)
 type: lmdb

 gt_size: 128
 use_flip: true
 use_rot: true

 # data loader
 use_shuffle: true
 num_worker_per_gpu: 1
 batch_size_per_gpu: 4
 dataset_enlarge_ratio: 100
 prefetch_mode: ~

 val:
 name: Set14
 type: PairedImageDataset
 dataroot_gt: datasets/Set14/GTmod12
 dataroot_lq: datasets/Set14/LRbicx4
 io_backend:
 type: disk

network structures
network_g:
 type: RRDBNet
 num_in_ch: 3
 num_out_ch: 3
 num_feat: 64
 num_block: 23

network_d:
 type: VGGStyleDiscriminator128
 num_in_ch: 3
 num_feat: 64

path
path:
 pretrain_network_g: ~
 strict_load_g: true
 resume_state: ~

training settings
train:
 optim_g:
 type: Adam
 lr: !!float 1e-4
 weight_decay: 0
 betas: [0.9, 0.99]
 optim_d:
 type: Adam
 lr: !!float 1e-4
 weight_decay: 0
 betas: [0.9, 0.99]

 scheduler:
 type: MultiStepLR
 milestones: [50000, 100000, 200000, 300000]
 gamma: 0.5

 total_iter: 400000
 warmup_iter: -1 # no warm up

95

 # losses
 pixel_opt:
 type: L1Loss
 loss_weight: !!float 1e-2
 reduction: mean
 perceptual_opt:
 type: PerceptualLoss
 layer_weights:
 'conv5_4': 1 # before relu
 vgg_type: vgg19
 use_input_norm: true
 range_norm: false
 perceptual_weight: 1.0
 style_weight: 0
 criterion: l1
 gan_opt:
 type: GANLoss
 gan_type: vanilla
 real_label_val: 1.0
 fake_label_val: 0.0
 #lambda value
 loss_weight: !!float 1e-2

 net_d_iters: 1
 net_d_init_iters: 0

validation settings
val:
 val_freq: !!float 5e3
 save_img: true

 metrics:
 psnr: # metric name, can be arbitrary
 type: calculate_psnr
 crop_border: 4
 test_y_channel: false

logging settings
logger:
 print_freq: 100
 save_checkpoint_freq: !!float 5e3
 use_tb_logger: true
 wandb:
 project: ~
 resume_id: ~

dist training settings

A.2.3 Configuration file of model HiFiC Lo (𝒓𝒕𝟎. 𝟎𝟔𝒃𝒑𝒑)

"""Configurations for HiFiC."""

from . import helpers

_CONFIGS = {

 'hific': helpers.Config(

 model_type=helpers.ModelType.COMPRESSION_GAN,

 lambda_schedule=helpers.Config(

 vals=[2., 1.],

 steps=[50000]),

 lr=1e-4,

 lr_schedule=helpers.Config(

 vals=[1., 0.1],

 steps=[500000]),

 num_steps_disc=1,

 loss_config=helpers.Config(

 # Constrain rate:

 # Loss = C * (1/lambda * R + CD * D) + CP * P

 # where

 # lambda = lambda_a if current_bpp > target

96

 # lambda_b otherwise.

 CP=0.1 * 1.5 ** 1, # Sweep over 0.1 * 1.5 ** x

 C=0.1 * 2. ** -5,

 CD=0.75,

 target=0.06, # This is r_t in the paper.

 lpips_weight=1.,

 target_schedule=helpers.Config(

 vals=[0.20/0.14, 1.], # Factor is independent of target.

 steps=[50000]),

 lmbda_a=0.1 * 0.409 * 2. ** -5,

 lmbda_b=0.1 * 2. ** -1,

)

),

 'mselpips': helpers.Config(

 model_type=helpers.ModelType.COMPRESSION,

 lambda_schedule=helpers.Config(

 vals=[2., 1.],

 steps=[50000]),

 lr=1e-4,

 lr_schedule=helpers.Config(

 vals=[1., 0.1],

 steps=[500000]),

 num_steps_disc=None,

 loss_config=helpers.Config(

 # Constrain rate:

 # Loss = C * (1/lambda * R + CD * D) + CP * P

 # where

 # lambda = lambda_a if current_bpp > target

 # lambda_b otherwise.

 CP=None,

 C=0.1 * 2. ** -5,

 CD=0.75,

 target=0.06, # This is r_t in the paper.

 lpips_weight=1.,

 target_schedule=helpers.Config(

 vals=[0.20/0.14, 1.], # Factor is independent of target.

 steps=[50000]),

 lmbda_a=0.1 * 2. ** -6,

 lmbda_b=0.1 * 2. ** 1,

)

)

}

def get_config(config_name):

 if config_name not in _CONFIGS:

 raise ValueError(f'Unknown config_name={config_name} not in '

 f'{_CONFIGS.keys()}')

 return _CONFIGS[config_name]

def valid_configs():

 return list(_CONFIGS.keys())

A.3 HEVC-Intra Configurations

In Table 12 is presented the quality parameter used for each level of target quality.

97

Table 12 -Values of quality parameter used when compressing images with HEVC-Intra for each

target quality.

ID Lo Mi Hi

00001 43 41 37

00002 40 37 33

00003 41 37 32

00004 40 38 34

00005 40 37 31

00006 43 40 36

00007 36 33 28

00008 40 38 34

00009 44 42 39

00010 39 35 30

00011 41 39 34

00012 38 36 32

00013 40 37 32

00014 40 37 32

00015 40 37 33

00016 37 33 29

