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Abstract 

Nowadays, visual information and communication systems are essential for humans everyday life. 

There are many services and applications that rely on visual data, from medical imaging to 

entertainment, many in widespread use in smartphones and social media platforms. In the past decade, 

Machine Learning (ML) algorithms, more precisely Deep Neural Networks (DNN) have been able to 

solve complex and difficult image processing and computer vision problems, such as image 

compression, image super-resolution, image denoising, etc. and able to extract semantic information 

from images, with much success.  

Generative models are rather recent but have been very successful in many multimedia applications. It 

all started with the creation of fake images which can challenge the human perceived notion of reality. 

Nowadays, it is possible to create faces of persons that never existed and even entire visual scenes 

which look realistic and plausible. Generative Adversarial Networks (GANS) have risen in popularity 

among the generative models that can learn high-dimensional distributions of data, i.e. the manifold of 

the entire set of natural images, which are then sampled to create new never seen images. More 

importantly, GANs are now able to create realistic-looking images and have been applied for several 

image processing problems such as super-resolution or image compression.  

In this context, it is rather important to assess the perceptual quality of the generative images produced 

by GAN-based solutions. This M.Sc. thesis aims to study and analyze the quality of the images 

generated with GAN based framework, for three different fields: super-resolution, denoising and 

compression. More importantly, other quality factors besides fidelity that play an important role in this 

context, such as the naturalness/fakeness of the image, will be addressed in such analysis. To achieve 

this objective, a crowdsourcing-based subjective evaluation of the GAN based solutions was performed 

and the performance of objective quality metrics was evaluated. 
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Resumo 

Nos dias que correm, informação visual e os sistemas de comunicação são essenciais e dominam o 

nosso quotidiano. Há imensos serviços e aplicações que estão dependentes de dados visuais como é 

caso da imagiologia medica ou do entretenimento, muitos em larga escala usados nos nossos 

telemóveis e nas redes sociais. Na última década, algoritmos de aprendizagem automática, 

nomeadamente Deep Neural Networks (DNN), começaram a ser usados para resolver problemas 

difíceis e complexos no ramo da visão computacional e do processamento de imagem, como por 

exemplo, compressão, super-resolução, denoising (redução de ruído), etc. e alcançaram grande 

sucesso nestas tarefas por serem capazes de extrair informações semânticas contidas nas imagens.  

Modelos generativos são relativamente recentes e têm vindo a provar ser muito bem-sucedido em 

diversas aplicações de multimédia. Tendo começo na criação de imagens ou de vídeos falsos que 

conseguem desafiar a perceção humana da realidade. Hoje em dia é possível criar caras de pessoas 

que nunca existiram ou até mesmo cenários visuais que parecem reais e plausíveis, não o sendo. 

Generative Adversarial Networks (GAN) têm vindo a crescer em popularidade entre os modelos 

generativos capazes de aprender distribuições de dados de alta dimensionalidade (isto é, a variedade 

de todo o conjunto de imagens naturais, que são utilizadas para gear novas images). Principalmente, 

as GANS são agora capazes de criar imagens realistas e têm sido aplicadas com sucesso a várias 

tarefas como a compressão de imagens como por exemplo compressão ou super resolução.  

Neste contexto, é fundamental avaliar a qualidade percetual das imagens geradas por soluções que 

utilizem GANs. Esta tese tem como objetivo fazer uma análise da qualidade de imagens geradas por 

soluções baseadas em GANs em três ramos diferentes: super resolução, remoção de ruido e 

compressão. Visto que neste contexto outros fatores, para além da fidelidade, influenciam grandemente 

a qualidade de imagem, como é caso da naturalidade/falsidade da imagem, irá ser feita essa análise. 

Para isso é feito um estudo crowdsourcing subjetivo da qualidade de imagem das soluções que utilizam 

GANs onde se avalia a qualidade das imagens, assim como, o desempenho de métricas objetivas na 

avaliação da qualidade de imagem.  
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Chapter 1 

 

1. Introduction 

 

This chapter aims to introduce this thesis. First, by setting the context and motivations behind this work. 

And then, by defining the objective and structure that the thesis will follow.  

1.1 Context and Motivation 

The need to develop algorithms capable of processing, analysing and understanding images have 

appeared with the first digital image back in the 1950s. At the time, this was a purely academic subject, 

and the focus was mainly to compress the images due to limitations in storage. By the end of the century, 

the advances in image compression were very significant with the introduction of well-known image 

compression algorithms, such as JPEG [1], PNG [2] and JPEG 2000 [3]. This was also a turning point 

for the field of computer vision and machine learning (ML), with techniques such as SVM (Support Vector 

Machine) [4] and the first neural networks, which have started to gain momentum to address more 

complex tasks such as image segmentation and classification. These were the first steps in creating 

algorithms that not only process images but also have some visual analysis capabilities.  

The first wave of machine learning algorithms applied to image processing problems encountered some 

limitations due to the lack of training datasets and overall poor generalization capabilities. This was 

mainly due to the high dimensionality of visual data and the need to develop models that could represent 

it more efficiently. In the early 2010s, another wave in machine learning occurred, especially when a 

deep convolutional network (AlexNet) [5] won the ImageNet Large Scale Visual Recognition Challenge 

[6]. This neural network combined a somewhat high number of convolutional layers (deep learning), to 

extract progressively higher-level features from the dataset and fully connected layers to perform image 

classification using the extracted features. 

In 2014, Generative Adversarial Networks proposed by Ian Goodfellow [7] introduced the concept of 

adversarial training, where two neural networks (Generator and Discriminator) are trained 
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simultaneously and in competition with each other. The generator goal is to create new images while 

the discriminator is trained to distinguish between the images in the training dataset and the images 

created by the generator. This training method allows the generator to implicitly learn the underlying 

distribution of the images of the training dataset. This type of NN is discussed in more detail in Section 

2.3.3 of this thesis. 

Since the introduction of GANs, several developments were made in the generation of high-quality 

images. The initial promising results of adversarial networks caught the attention of several researchers, 

creating an explosion of studies on GANs in the following years, as illustrated by Figure 1 (left). These 

studies were focused mainly on improving the generated image quality and the convergence of the 

training process. Nowadays, many variants of the original GAN have been proposed which can generate 

high quality attracting images, as illustrated in Figure 1 (right). These GANs have been applied to several 

image processing problems such as text-to-image or image-to-image translation, image compression, 

super-resolution, denoising, and other natural image generation applications.  

 
 

Figure 1 - Number of citations of the paper where GANs were introduced [7] between 2016 and 2019 

(left). Evolution of the fake images generated by GANs between 2014 and 2018 [7, 8, 9, 10, 11] (right). 

Typically, generative algorithms create images with very different characteristics of natural images and 

thus existing subjective assessment methodologies and objective image quality models are not suitable. 

For example, the images generated by GANs can still have some artefacts that show evidence that the 

image was synthetically generated (fake); usually, the artifacts are very different from the usual artefacts 

created by a super-resolution or image compression solution. This motivates the need for new image 

quality subjective assessment experiments (also requiring some changes in the methodology) to faithfull 

analyse the performance of such solutions. 

Moreover, the conventional metrics used to quantify image quality are quite ineffective when applied to 

the content generated by GANs, mainly because generative models can produce images that appear 

realistic and attractive but do not match when pixel-based comparisons are made. This behaviour occurs 

often in image compression, super-resolution or denoising GAN based systems which have shown 

superior perceived quality but low objective quality when popular full-reference quality metrics such as 

PSNR and SSIM are used. On the other hand, no-reference quality metrics do not consider the original 

information and thus are missing valuable (and important) information. This implies that the performance 
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of available objective quality metrics must be revisited in this context, to understand if they are suitable 

to assess the performance of GAN based solutions and which quality metrics have the best 

performance. 

1.2 Objective and Structure  

The main objective of this Thesis is to perform a subjective quality assessment study to evaluate images 

obtained from generative adversarial network solutions. This means the use of an appropriate subjective 

test methodology, which was designed to measure the naturalness/fakeness of the images. The level 

of how much an image is fake is intrinsically connected to the perception of quality by humans and thus 

a well-known subjective methodology should provide a s olid measure. Thus, the main contribution is a 

generative image dataset which contains: 1) distorted images obtained from several GAN based 

solutions, in the fields of image super-resolution, artifact removal and compression; 2) results of a 

subjective test using a pairwise comparison methodology, providing a perceptual score for every image 

of the dataset. Moreover, recognizing the importance of objective metrics to accurately translate the 

human perception of quality, the correlation performance of well-known objective quality metrics are 

studied. To report the Thesis achievements, this document is divided into six chapters, which are 

described next: 

• Chapter 1 presents the context and objectives. 

• Chapter 2 provides an overview of the basic concepts of Neural Networks (NN), as well as a 

review of some selected types of NNs. This chapter culminates in a review of GANs.  

• Chapter 3 presents the review three selected GAN-based solutions, namely in the following 

contexts: image compression, single image super-resolution, and artifact removal. These 

solutions were selected having into account: the importance of the problems that tackle, its 

popularity, and overall performance.  

• Chapter 4 presents the crowdsourcing based subjective assessment test, namely the 

methodological approach, data processing, the solutions under evaluation and the experimental 

results obtained.  

• Chapter 5 provides an analysis of different image quality metrics applied to the selected GAN-

based solutions.  

• Chapter 6 presents a summary and the future work plan. 
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Chapter 2 

 

2. Neural Networks: Foundations and Architectures 

 

The idea of having a human-like intelligence in machines is the ground base for Artificial Intelligence 

(AI). AI is a scientific field whose focus is the development of computing systems with cognitive abilities. 

For example, a commonly used word, spoken clearly by any person, is entirely recognizable for any 

speaker of that language who might hear it. On the other hand, to a machine, the same word said by 

different orators corresponds to distinct audio signals with no clear correlation. Due to the idiosyncrasies 

of problems like this one, scientists begun to lean on the idea of making the computer learn from 

experience. This simple notion gave birth to the AI sub-field of Machine Learning, a computer science 

field that has recently received increasing attention by the research community. In ML, the idea of 

“learning from experience” may corresponds to a computational model that adjusts itself when presented 

with a large amount of data to later be able to make accurate output predictions when exposed to a 

different set of inputs. This chapter will focus on a specific set of ML models called Artificial Neural 

Networks, or Neural Networks for short. 

2.1. Neural Networks Foundations Basics 

The idea of having a machine mimicking the way a human brain solves some real-life tasks motivated 

the creation of biological brain-inspired ML models, such as Neural Networks. In a very simplified way, 

a biological brain, more specifically the nervous system, encloses a very large set of basic processing 

units, the so-called neurons, highly interconnected with each other through the so-called synapses. In 

the same way, an NN is a computing system that may also enclose a high number of artificial neurons 

connected with each other. However, the artificial neuron mathematical representation, illustrated in 

Figure 2 (right), is rather simpler when compared to representation of the biological neuron. Figure 2 

provides a side by side visual comparison of biological and artificial neurons. 
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Figure 2 - Representation of a biological neuron (left) and artificial neuron (right) [12]. 

As shown in Figure 2, each artificial neuron receives a set of inputs (𝑥𝑖) and associates to each of them 

a weight (𝑤𝑖) that indicates the influence of said input to the neuron’s output (𝑦). These weights are 

learnable and can be positive or negative, exhibiting an excitatory or inhibitory effect of one neuron to 

another, respectively. The product 𝑥𝑖 . 𝑤𝑖 is a simplified representation of a synapse and the weight 𝑤𝑖 

corresponds to the synaptic strength. Another important concept in NNs is the activation function, 

which defines the non-linear response of a neuron given the weighted sum of its inputs and a bias (𝑏). 

The bias is another learnable parameter of the neuron, which shifts the activation function along the x-

axis to a desired triggering value. Mathematically speaking, the overall behaviour of an artificial neuron 

is represented in (1). 

 𝑦 = 𝑓 (𝑏 + ∑ 𝑥𝑖 𝑤𝑖

𝑖

) (1) 

Figure 3 shows some of the activation functions typically used in NNs, such as the Sigmoid, the 

Hyperbolic Tangent (Tanh) and the Rectified Linear Unit (ReLU) functions. These non-linear 

functions allow simulating behaviours more complex than the simple linear one, and this way, more 

powerful NNs can be defined to solve a given task. 

   

Figure 3 – Graphical representation of Sigmoid (left), Tanh (centre) and ReLU (right). 

In a NN the neurons are organized into layers, as illustrated in Figure 4; within a layer, all neurons are 

connected in the same way and process the received data using the same non-linear activation function. 

While the first and last layers in a NN are called input layer and output layer, respectively, the layers 

in between, which may or may not exist, are called hidden layers. The role of the input layer is to feed 

the network with the input data, without any processing involved, thus being the starting layer in any NN 

architecture. Hidden layers are the heart and soul of any NN since they are responsible for the 
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processing of information through the combination of the data received from the previous (input or 

hidden) layer, thus allowing to learn different representation levels from the input data. The number of 

hidden layers (0, 1, . . . , 𝑁) in a NN typically increases with the complexity of the problem at hand. The 

last layer of a NN’s architecture, i.e. output layer, is, as the name suggests, responsible to output the 

solution to the problem the NN was designed for. The output layer is typically a fully connected (FC) 

layer, which means that every neuron on that layer is connected to all the neurons in the previous layer 

(see Figure 4); FC layer is, in fact, the most common layer type used in regular NNs. The number of 

neurons in a layer is typically called layer size or layer height and the number of layers in a NN is called 

depth; the higher the number of layers in a NN, the deeper the NN is and, consequently, the higher is 

the power of the NN to solve the problem at hand. 

 

Figure 4 – Example of a fully connected neural network architecture with two layers. 

Interpreting a NN as a graph, where the nodes correspond to neurons, the NN can be classified as cyclic 

or acyclic depending on whether the connections between nodes (i.e. neurons) form loops or not, 

respectively. The popular Feedforward Neural Networks are an example of acyclic NNs, while the 

Recurrent Neural Networks are an example of cyclic NNs. Recurrent neural networks are, due to its 

architecture, very good at finding patterns in sequences of inputs and have many applications (grammar 

learning, time series prediction, etc.). On the other hand, Feedforward Neural Networks do not have this 

notion of sequence but are excellent at handling image processing and other similar problems. 

The architecture of a NN depends on the target application and is characterized by a set of 

hyperparameters that, unlike weighs and bias, are not learnable but rather set to a fixed value before 

training. Some examples of hyperparameters are the depth and height of the network and the learning 

rate; while the former two hyperparameters define the NN structure, the latter one establishes how the 

network is trained. In the context of a NN, the hyperparameters strongly influence its performance, and 

therefore they should be carefully set.  

2.2. Model Learning 

The model learning process is a crucial part of the creation of a functional NN. This process, also 

known as NN model training, is responsible for determining the weights and biases of all neuros in the 

network using some training data (training samples). The training samples are extracted from the so-

called training dataset and are used to train the NN in order to perform the task is intended for.  

Learning methods can be divided into two main categories: unsupervised and supervised. In 
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supervised learning, the training data is labelled, this means that the training samples are pairs of 

inputs-outputs. The labels (i.e. ground truth) provide a guideline to the learning process. On the other 

hand, in unsupervised learning no target output values, i.e. ground truth, are given, which means that 

only the training samples are used to learn and model the training dataset’s underlying structure. 

Although unsupervised learning can be applied in the context of NN, the most common approach to 

train the NN model is supervised learning. In supervised learning algorithms, the goal is to determine 

the network model from the training dataset by learning to minimize the error between the predictions 

made by the network and the ground truth (target output associated to the training samples). In this 

context, a loss function is used to measure the prediction error, which may vary depending on the 

problem at hand. Some examples of frequently used loss functions are the mean square error, the mean 

absolute error, and the hinge loss. 

The gradient descent is a widely used supervised learning iterative algorithm that, in its simplest form, 

can be described by the flowchart depicted in Figure 5. Briefly, the gradient descent algorithm finds, in 

an iterative way, the NN model parameters (i.e. weights and biases) that minimize the loss function.  

 

Figure 5 - Simplified gradient descent algorithm flowchart. 

In more detail, the steps of this algorithm can be described as:  

• Initialization: The algorithm attributes values to all the weights and biases of the NN. Typically, 

these initial values are randomly picked to create some asymmetry in the NN, and 

consequentially make each neuron have a different starting point in the learning process.  

• Forward propagation: The NN makes predictions with the available input training data by 

propagating it forward through all the network layers. The outputs generated by the NN in the 

first iterations of the gradient descent algorithm are most likely far from the target outputs. 

However, it will provide valuable information that can guide the algorithm in future steps. 

• Loss function computation: Computes the loss function between the predicted and the target 



 

9 

 

values. This loss function assesses the performance of the network for its current weights and 

biases. 

• Stop Condition: The value obtained for the loss function is evaluated at each iteration and can 

be used as a stop condition for the algorithm. However, other factors can be used as stop 

conditions, such as the maximum number of iterations. When one of the stopping criteria is met 

the algorithm terminates, and the current weights and biases are the result of the learning 

process, defining the network model. 

• Gradient Computation: In this step starts the refinement of the parameters. This is possible 

with the computation of the gradient of the loss function with respect to the model parameters. 

In general, the gradient is an operator that given a certain function as input, outputs the 

corresponding direction and rate in which the function's increase is larger. Mathematically 

speaking, the gradient is a vector of partial derivatives of the function, as define in (2). Since the 

main goal of the gradient descent algorithm is to learn the network model parameters that 

minimize the loss function, the computation of the gradient indicates in which direction and with 

which speed/rate the model parameters should be changed such that the prediction error is 

minimized.  

 ∇ℒ =

[
 
 
 
 

𝜕

𝜕𝑤1

ℒ

⋮
𝜕

𝜕𝑤𝑗

ℒ
]
 
 
 
 

 (2) 

In order to compute the gradient of the loss function with respect to every model parameter, the 

backpropagation algorithm is used. This algorithm recursively applies the chain rule making 

the loss gradient with respect to a given weight or bias only dependent on the output value of 

the neuron associated with said parameter and the derivative of the inputs with respect to the 

output value. Naturally, for this to happen, the derivatives of the activation functions used in the 

NN have to be known. Since the objective in this step is to calculate the gradient of the loss 

function, the loss gradient with respect to the NN output is first computed and this result is then 

propagated backwards through all the network layers. 

• Parameters update: This operation depends on the previous value of the weight or bias , 𝑤𝑗
(𝑖)

, 

the partial derivative of the loss function with respect to the parameter to be updated, 
𝜕

𝜕𝑤𝑗
(𝑖) ℒ

(𝑖), 

and the learning rate, 𝜂. The learning rate is a hyperparameter that scales the size of the 

gradient step given in the weights updating for the loss function to decrease and is typically set 

manually after some experimentation. The weights updating is performed as defined in (3), 

where 𝑤𝑗
(𝑖+1)

 is the updated weight in iteration (𝑖 + 1). 

 
𝑤𝑗

(𝑖+1)
= 𝑤𝑗

(𝑖)
− 𝜂

𝜕

𝜕𝑤𝑗
(𝑖)

ℒ (𝑖) 
(3) 
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When all the weights of the NN are updated, the iteration is completed and the algorithm initiates 

a new iteration, starting with the forward propagation with the new parameters.  

The convergence of the gradient descent is not guaranteed, as illustrated in Figure 6, and depends 

heavily on the learning rate. When a poor choice of the learning rate is made, the algorithm might never 

achieve de expected results, diverging. The divergence risk can be reduced by using techniques, such 

as, the momentum term or the adaptive step size [13] 

 

Figure 6 - Example of gradient descent converging (left) and diverging (right). 

The most straightforward variant of the gradient descent algorithm, the so-called Batch Gradient 

Descent or Vanilla Gradient Descent, uses all the training data in each iteration to update the model 

parameters. However, depending on the number of samples in the training dataset, it might be useful to 

update the model parameters for a set of training samples or even for each training sample, as the 

amount of training data used, in each iteration, to update the model parameters has a direct impact on 

the computational resources consumption (e.g. memory). While the former variant is commonly known 

as Mini-Batch Gradient Descent, the latter is known as Stochastic Gradient Descent and presents 

a huge performance improvement when compared with the Batch Gradient Descent, especially when 

the training dataset is rather redundant. 

After the model learning process is concluded, the NN is ready to be used in realistic conditions, i.e. 

using input samples that the NN has never seen before (notably during the training stage), the so-called 

test samples, thus allowing to evaluate the real NN’s performance in the accomplishment of the task it 

has been designed for. Depending on how the network model is learned, the NN might become too 

specialized in the training dataset resulting in overfitting; when this happens, the model’s generalization 

capability for unseen (test) data tends to be low, which results in poor performance. In order to guarantee 

that the learning process does not lead to an overfitted model, regularization techniques must be 

employed. Some examples of regularization techniques are the early stopping [14] and dropout [15]. 

2.3. Main Neural Network Types  

Nowadays, there is a large variety of Neural Networks with different types of layers, topologies, and 

purposes. Considering the thesis focus on the application of neural networks (more specifically GANs) 

to some computer vision problems, this section is dedicated to reviewing the most relevant types of NN 

in the field. The main types identified were Convolutional Neural Networks (Section 2.3.1), Autoencoder 
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(Section 2.3.2), and GANs (Section 2.3.3). 

2.3.1. Convolutional Neural Networks 

Using neural networks composed only of fully connected layers for image processing tasks is far from 

ideal since the model would have a large number of parameters, making the training process slow and 

the network prone to overfitting. This problem motivated the creation of convolutional neural networks 

(CNN). CNN are feedforward neural networks that, contrarily to regular neural networks, take advantage 

of the spatial dependence of its inputs leading to more efficient feature extraction and fewer parameters. 

The architecture of a CNN may vary greatly depending on the type of problem at hand, but typically 

there are two key building blocks: convolutional layers and pooling layers.  

Due to its properties CNN are commonly applied in problems of image classification, natural language 

processing [16], computer vision [17], among others. In Figure 7 is illustrated the architecture of a CNN 

designed for image classification and is divided into two functional parts: feature learning and 

classification. The convolutional and pooling layers are used in the feature extraction portion of the 

network and exhibit a hierarchical organization. This means that layers closer to the input will identify 

lower-level features, for example, edges or dark spots, and layers further away from the input will identify 

higher-level features, with more semantic meaning to that specific problem. In other words, deeper NN 

will have higher feature extraction capabilities. [18] 

 

Figure 7 - Architecture of a CNN used for image classification [19]. 

The classification part of the CNN has a set of fully connected layers since the desired output, in this 

case, is a probability distribution. In other applications, this functional part of the network varies 

depending on the desired output. 

2.3.1.1. Convolutional Layers 

Convolutional layers, as its name suggests, are the main elements of this type of NN. These layers are 

composed of a set of filters or kernels. A kernel is an array of weights, learned through the typical 

training process of a NN, that represent some characteristic of the data relevant to the NN. These filters 

can be 1,2 or 3-dimensional arrays depending on the input’s dimension. In this type of layer, the output 

is computed by sliding the kernels over the input data and performing a dot product. Which makes the 

model insensitive to translations in the data in the feature extraction process. This operation is also 
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known as a convolution and is represented with a very simple example in Figure 8. The result of the 

convolution is summed a bias, and to that sum is applied some activation function (typically the ReLU). 

 

Figure 8 - Example of a 2-D convolution with stride equal to 1 and without padding [20]. 

The number of filters used by a certain layer is a hyperparameter and is adjusted having into account 

the complexity of the tasks delegated to that layer. This hyperparameter will influence the size of the 

layer’s output, more specifically, will affect the depth of the output volume.  

Other hyperparameters that affect the output size, and the number of neurons in the layer, is the stride 

(𝑆), the size of the filters (𝐹) and the amount of padding (𝑃). The stride controls the sliding of the filter 

that the stride is to equal the number of pixels jumped. Sometimes the desired stride and kernel size 

don’t fit the input data size nicely, as shown in Figure 8, thus the need to use padding. Padding consists 

of adding to the input an extra border of pixels. There are several types of padding, like zero-padding 

that consists of adding a border of zeros to the data or the reflection padding, where the data added is 

the result of reflecting the input image about the border, among others. This technique is used to control 

the output size without changing the behavior of the layer. 

The different paradigm of operation of these NN leads to a 3-dimensional arrangement of neurons, as 

shown in Figure 9.  

 

Figure 9 - Simplified representation of the neurons’ organization in a convolutional layer. 
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Each neuron is associated with a given feature (filter) and a given set of inputs. With the filter sliding 

along the input, the same weights are shared between different neurons, promoting the reduction of 

parameters. That is to say that neurons in the same vertical cut of the layer (depth slice) share the 

same kernel. Likewise, neurons in the same horizontal cut (depth column) share the same input area 

(receptive field), as highlighted in Figure 9. 

2.3.1.2. Pooling Layers 

In a CNN, the chain of convolutional layers, responsible for feature extraction, is usually intertwined with 

pooling layers. The pooling layers follow the convolutional layers and serve the purpose of 

downsampling the output of the previous convolutional layer, as illustrate in Figure 10. The need to 

downsample the output of the convolutional layers comes from the fact that chaining convolutional layers 

greatly increases the number of parameters. These pooling layers work with sliding filters, like the 

convolutional layers. These filters have a function associated with them in order to transform the input 

of the filter into a single output. The most common pooling layer is the max-pooling layer, that as the 

name suggests, returns the maximum value of the inputs.  

 

Figure 10 - Illustration of the input-output relationship in a pooling layer with filter size 2x2 and stride 2 

[12]. 

The pooling layer makes the model lose information that may or may not be relevant for the NN. This 

motivates some architectures that don’t use pooling layers, relying on other techniques to oppose the 

increase in parameters [21].  

2.3.2. Autoencoders 

 Autoencoders (AE) are a type of unsupervised learning algorithm. More specifically are designed to 

have the output approximate the input with some constrains or restrictions, most often requiring the input 

to be represented also with lower dimensionality. These restrictions built into the neural network allow 

to represent the input data in some compressed way (as the name auto-encoder suggests) and in this 

process learn the most important features of the input data. This compressed representation (also called 

code) lies on some latent space [20]. 
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As shown in Figure 11, an AE is composed of an encoder that maps the input to its latent space, followed 

by a decoder that attempts to revert the data to its original form using the code provided by the encoder. 

 

Figure 11 - Architecture of an autoencoder [22] with encoder. 

The encoding performed in an AE is lossy, meaning that output of the network will never be exactly the 

same as the input. During the training of the auto-encoder, the encoder and decoder work together 

trying to recreate as closely as possible the input but with certain restrictions (typically in the architecture 

design) to prevent a simple copy of the data along the network. 

This learning process is performed by minimizing a loss function as described in Section 2.2. The AE’s 

performance heavily dependent on the type of data that is trained on. That is to say that the AE is a data 

specific solution.  

The layer in which the data is represented in a compressed way, i.e. the latent space representation is 

usually called the bottleneck layer. The number of neurons in the bottleneck can be used to categorize 

different types of AE, namely, an AE is said undercomplete if the dimension (usually the number of 

neurons) of the bottleneck is smaller than the number of neurons in the input layer and overcomplete 

otherwise. In an undercomplete autoencoder, the restriction that prevents the NN to output a copy of its 

input is the reduced bottleneck layer size. In an overcomplete AE, the restriction is different, most often 

a sparsity regularization on the responses of bottleneck layer (e.g. forcing the output of some neurons 

to zero).  

2.3.2.1. Sparse Autoencoders 

The Sparse Autoencoder (SAE) is an overcomplete AE that relies on sparsity penalties to enforce the 

good generalization of the model. The structure of an SAE allows for a large number of neurons in the 

bottleneck layer, but the computation of the loss function includes some penalties on the output values 

of this layer. For example, the target may correspond to have very small activations at the output of the 

bottleneck layer. Thus, a term is added to the cost function which increases its cost if the average 

activation value (over all the training samples) is not close to zero. This is called L1 regularization and 

the loss function penalizes the absolute value of the activations. 

Other possibility is to use a sparsity regularization that can be imposed by adding a Kullback-Leibler 
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(KL) divergence term to the loss function computation. In general, the KL divergence is a function that 

measures the similarities between two probability distributions. In the context of the AE sparsity 

regularization, the KL divergence is used to infer if the number of active neurons in the bottleneck layer 

is close to what is expected. This guides the learning process to obtain a compact code in the bottleneck 

layer.  

2.3.2.2. Denoising Autoencoders 

In the Denoising Autoencoder (DAE) the training data is slightly corrupted before being fed to the neural 

network but still maintain the original (uncorrupted data) as the target output. This makes the 

overcomplete autoencoder learn a good data representation, i.e. a model is obtained that is 

generalizable, since input (with noise) and target output are no longer the same. Naturally, it is important 

to guarantee that by adding noise the data is not degraded to the point of making the DAE uncapable 

of recovering the input. In Figure 12 is shown the typical architecture of this type of models. 

 

Figure 12 - Block diagram of the general architecture of a Denoising Autoencoder [23]. 

2.3.2.3. Variational Autoencoders 

The variational autoencoders (VAE) [24, 25] encode and decode as the previously described AEs, but 

the code (in the latent space) elements do not correspond to a single value but to a probability 

distribution (in general Gaussian Distributions). The structure of an VAE is depicted in Figure 13. As 

shown, the latent space representation of the data is composed of two vectors: the mean value (𝜇) and 

the standard deviation (𝜎). This is a change in paradigm from the previously mentioned autoencoders 

since the variational autoencoder (VAE) describes the input in the latent space in a probabilistic way 

and the others don’t. Where the DAE and the SAE are considered discriminative models, the VAE is 

considered a generative model. The VAE creates a powerful representation of the data in the latent 

space which can be sampled, and the decoder network is capable of create new data similar to what 

was observed during training.   
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Figure 13 - Representation of the typical architecture of a Variational Autoencoder [26]. 

The training of these neural networks is similar to other AE in the sense that the minimization of the loss 

function is the main goal. However, in variational auto-encoders it is also used the KL divergence on the 

bottleneck layer to ensure that the distributions at the bottleneck layer are close to a normal distribution. 

This additional constraint in the loss function, forces the encoder to generate a vector of means and a 

vector of standard deviations. 

2.3.3. Generative Adversarial Network 

Generative Adversarial Autoencoders are a type of generative model proposed in 2014 by Ian 

Goodfellow et al. [7]. GANs have several applications, such as generate photographs [27], text-to-image 

synthesis [28], image-to-image translation [29], compression [30], video prediction [31], among others.  

This model, unlike other generative models (e.g. the VAE described in the previous section), does not 

estimates explicitly a probability distribution but learns it implicitly during training from examples. GANs 

are composed of two separable neural networks, the Generator (𝐺(𝑥)) and the Discriminator (𝐷(𝑥)) 

and exploit a game-theory approach where the two NNs compete against each other as adversaries. 

Moreover, the goal of the Generator is to create synthetic (fake) data that resembles as closely as 

possible to real data and thus, fool the Discriminator, whose goal is to distinguish between fake data 

and real data.  

The GAN architecture is shown in Figure 14. In practice, the Generator receives samples from a simple 

distribution (e.g. random noise) which is processed by a sequence of neural network layers, and the 

output corresponds to data that resembles the data from the training set at least in a semantic way. 

However, the Generator is blind to the training dataset, being dependent on the Discriminator to guide 

its learning process. The Discriminator receives data samples and outputs probabilities that represents 

if the sample belongs to the training dataset or not. This means that the discriminator evaluates the 

authenticity of images or how close the images produced by the generator are close the images of the 

training dataset. When the generator reaches a high level of performance (this means produces realistic 

looking images), the Discriminator is unable to distinguish between real and fake data, which means 

𝐷(𝑥) = 0.5 for every sample. Thus, Generator goal is to produce images that are considered realistic 
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(i.e. act as a forger without being caught) and the discriminator goal is to assess if these images are 

fake or not (i.e. act as the police to detect forgeries).  

 

Figure 14 – Architecture of a Generative Adversarial Network. 

The random noise is the input of the generator that drives the creation of fake image. This fake image 

and the training set (real) images are fed to the Discriminator, that classifies each image as being either 

fake or real [32]. This design of a GAN imposes that the cost function (4) to be a minimax game, where 

the Discriminator try to maximize the cost and the generator to minimize it. In (4), 𝐷(𝑥) is the 

discriminator output for real data of the training set (i.e. probability that some real data sample is real) 

and 𝐷(1 − 𝐺(𝑧)) is the discriminator output for fake data (i.e. the probability that a fake instance is real). 

In (4), 𝑝𝑑𝑎𝑡𝑎(𝑥) corresponds to the distribution of probabilities of the training dataset and 𝑝𝑧(𝑧) is the 

random noise distribution. Furthermore, 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] is the expectation over all the samples 

belonging to the training set and 𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))] corresponds to the expectation over all the 

samples produced by the Generator. This means that a discriminator model needs to be found that 

maximizes (this means recognizes) real data and fake data, while a generator model also needs to be 

found to generate realistic fake data.  

 min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧))] (4) 

During the learning process this cost function will be used and, ideally, the Generator will reach 𝑝𝑔 =

𝑝𝑑𝑎𝑡𝑎, where 𝑝𝑔 is the implicitly learned probability distribution, i.e. the generator can fool the 

discriminator. The learning process, as depicted in Figure 15, can be described by the following steps:  

1. Obtain a minibatch of size 𝑚 from both the training dataset (𝑥(1) …𝑥(𝑚)) and the random noise 

source (𝑧(1) …𝑧(𝑚)). 

2. Compute the gradient ascent, as shown in (5), since the goal of the Discriminator is to maximize 

the cost function. 

 Δ𝜃𝑑

1

𝑚
∑[log (𝐷(𝑥(𝑖))) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

 (5) 

3. Update the discriminator’s parameters with the computed gradient.  

4. Sample another minibatch of size 𝑚 of random noise samples (𝑧(1) … 𝑧(𝑚)).  

5. Compute the gradient descent, as shown in (6). As aforementioned, the generator is not directly 

exposed to the training dataset samples, and as such, the gradient computation is done 
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independently of (𝑥(1) …𝑥(𝑚)). 

 Δ𝜃𝑔

1

𝑚
∑ [log (1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

 (6) 

6. Update the generator’s parameters with the computed gradient. 

These steps (1 through 6) correspond to one iteration of training. The number of training iterations done 

in the learning process depends on the stop condition imposed, as mentioned in Section 2.2. In each 

training iteration, steps 1 through 3 are repeated 𝑘 times (hyperparameter).  

 

Figure 15 – Main loop of the training process of a GAN [33]. 

At the beginning of the training process, the generator produces images that don’t resemble the real 

data. Consequently, the discriminator is not fooled, which means 𝐷(𝐺(𝑧)) is close to 0. With the 

formulation presented in (4), this leads to a problem of vanishing gradients when computing the gradient 

descent needed to update the generator’s parameters. Usually, alternative formulations are used to 

prevent this. A common practice is maximizing to the probability of the Discriminator being wrong 

(−log(𝐷(𝐺(𝑧))) instead of minimizing the probability of the Discriminator being right for generator data 

(log(1 − 𝐷(𝐺(𝑧))). This formulation leads to the same solution as the previous, but, as depicted in 

Figure 16, produces higher gradient signals in early training [7, 33]. 

It’s also important to note that even though this minimax game has a theoretical solution in practice the 

convergence of this model might not be achieved if the training is not properly made [34].  
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Figure 16 – Comparison between log(1 − 𝐷(𝐺(𝑧)) and −log(𝐷(𝐺(𝑧)), illustrating the saturation of 

the log(1 − 𝐷(𝐺(𝑧)) curve for small values of 𝐷(𝐺(𝑧)). 
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Chapter 3 

 

3. Relevant GAN-Based Image Processing Solutions 

 

In this chapter, it is described the application of GAN-based solutions to some selected relevant image 

processing problems, such as image compression, super-resolution, and artifact removal. The selected 

solutions were selected due to its performance and overall popularity and will serve as a starting point 

to achieving this Thesis goals. 

For each solution, a brief contextualization of the problem itself is made followed by the detailed 

description of the entire solution including reported experimental results. The review of each solution is 

divided into the following 4 parts:  

A. Identification of the objectives and technical approach. 

B. Overview of the architecture and walkthrough. 

C. Identification and review and the key tools used. 

D. Performance reporting and analysis, comparing the solution to other relevant state-of-art.  

3.1. Generative Adversarial Networks for Extreme Learned Image 

Compression 

Nowadays, deep neural networks have become a feasible and promising solution for the image 

compression problem [35]. Image codecs based on neural networks offer competitive results, when 

compared to conventional image compression solutions, such as WebP [36], JPEG2000 [1] or BPG 

[37]. The most distinctive aspect in neural network image compression is that the transform (and 

sometimes the entropy coding model) is end-to-end learned with a large amount of data and is not hand-

crafted as traditional image codecs. 

This solution targets extremely low bitrates, where is hard to preserve many visual elements of an image 
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with high fidelity. The solution described in this section proposes to generate artificial elements and can 

be classified as extreme compression, where the pixel-wise preservation becomes less important when 

compared to the global structure and the semantic meaning of the image.  

A. Objective and Technical Approach 

Agustsson et al. proposed two GAN based frameworks for image compression [30] which target bitrates 

lower than 0.1 bpp. In this context, the use of GANs tries to deliver more appealing images by implicitly 

learning a suitable latent space representation (i.e. the natural image manifold). The proposed solutions 

optimize the image coding process beyond the usual conventional image quality metrics used in the 

training process, with a loss function that includes an adversarial loss term. This framework has two 

operation modes, namely: 

• Generative Compression (GC): This mode of operation exploits the generative capabilities of 

GANs to aid in image compression, preserving the content as much as possible. This solution 

is similar to the vanilla GAN described in Section 2.3.3 but introduces a new loss function and 

instead of sampling from a random noise distribution, the generator (decoder) uses the encoded 

image as its input. 

• Selective Generative Compression (SC): This mode of operation preserves some elements 

of the original image with high fidelity and other elements are only generated based on semantic 

information about these elements. The SC uses some additional information about the image, 

namely, its semantic label map, which can be seen as a Conditional GAN (cGAN) [38]. This 

solution is particularly suitable in scenarios where a part of the image is perceptually very 

relevant, while other parts are less relevant.  

Regarding these two modes, the SC mode requires additional information, which is not available in the 

GC mode, namely the input image segmented with regions with a semantic meaning and some 

additional indication which regions should be preserved and which can be artificially generated (a binary 

heatmap).   

B. Architecture and Walkthrough 

The two modes of operation in this framework are based on GANs and obtain decoded images where 

texture and other elements of the image are fully synthesized without receiving any information from the 

encoder about these elements. In this context, distortion (or quality) metrics such as PSNR and MS-

SSIM cannot account how real the image is, since local changes in structure of the image are severe 

penalized and thus, cannot evaluate how the global structure of the image is preserved. 

 Generative Compression 

Figure 17 shows the block diagram architecture of the proposed solution GC mode. The input (𝑥), with 

dimensions 𝑊 × 𝐻, is feed to the Encoder (E) which convolutionally processes the input into feature 

maps with lower spatial resolution (16 down-sampling factor). The down-sampling is performed with 
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strided convolutions. This results in a feature map of dimension 
𝑊

16
×

𝐻

16
× 𝐶, where C is the number of 

activation maps. The output of the encoder (𝑤) passes through a Quantizer (𝑞) which outputs a 

discretization of the feature map (�̂�), with a pre-defined number of levels.  

The following blocks, Generator (G) and Discriminator (D) behave as a classic GAN. This means that 

the generator tries to reconstruct the image (𝑥) using the (�̂�) feature map and the discriminator attempts 

to distinguish the fake images created by the generator (�̂�) and the real images. However, the loss 

function guiding the training process is not the typical GAN loss presented in Section 2.3.3. The GC’s 

loss function includes the standard GAN loss and one additional term that includes the distortion 

between original and decoded images and the bitrate. This loss function allows to balance the artificially 

generated content with the preservation of the original image. 

 

Figure 17 - Architecture of the proposed GC network [30]. 

 Selective Generative Compression 

The architecture of the SC mode is presented in Figure 18 and shares some functional blocks with the 

GC architecture. In this sense, the behaviour of the encoder and quantizer is the same. However, unlike 

the GC, this solution requires:  

• Semantic label map (𝑠): provides additional semantic information with a segmentation of the 

images into regions and the classification of each one (label map). This information is very 

important for the generator to distinguish the regions in which it must perform full generation 

and the regions where it should preserve the original content.  

• Heatmap (𝑚): is a binary map with equal dimensions as the feature map (�̂�) that indicates 

which elements should be preserved with higher fidelity and which elements can be fully 

generated. This heatmap is typically defined by the user.  

As shown in Figure 18, the semantic label map is passed to the feature extractor (𝐹) that process and 

feeds it to the generator. In a real scenario, the semantic map s is lossless coded using some suitable 

solution and thus is available at both encoder and decoder. The heatmap (𝑚) is used to mask the feature 

map (�̂�) before being transmitted to the generator (at the decoder side). This step defines which regions 

should be preserved and which regions should be fully synthesized using only the semantic map 

information. 

The SC solution depends on the semantic label map which is required not only during training but also 

during compression. The semantic label map can be obtained through an image semantic segmentation 

network, such as PSPNet [39] or Mask R-CNN [40], for example.  
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Regarding training, two modes are considered: Random Instance (RI) and Random Box (RB). In RI 

some instances (regions) of the semantic label map are picked randomly to be preserved. In RB a 

square region of the image is selected in a random way, which is also preserved. This last one is more 

challenging since it is difficult to integrate synthetic and preserved content in a seamless way using a 

square region. 

 

Figure 18 - Proposed SC network architecture [41]. 

C. Main Tools 

Some of the key tools introduced in this image coding framework are:  

• New training objective: The introduction of a new loss function in the GC and SC models 

makes for more balanced models, in the sense that there is a trade-off between preserving 

the overall structure of the image and its pixel-wise similarities with the original. Moreover, 

the GC’s loss function (7) is composed of the typical GAN loss function 𝓛𝐺𝐴𝑁, presented in 

Section 2.3.3, and a distortion plus rate term. This term is (𝜆𝔼[𝑑(𝑥, 𝐺(𝑧))] + 𝛽𝐻(�̂�))and 

allows to obtain better reconstruction quality with a small amount of bitrate. The function 𝑑 

measures the reconstruction error of the generator’s output. This function can be, for 

example, a simple MSE (Mean Squared Error) or a more complex MS-SSIM [42]. The 𝜆 

(𝜆 > 0) parameter is used to balance the relative importance of the pixel-wise distortion. 

The parameter 𝛽 (𝛽 ∈ [0, 1]) is used to limit the bitrate, however in this application the bitrate 

can be limited by design (quantization) to avoid having a loss function dependent on an 

entropy term (𝐻(�̂�)).  

 min
𝐸,𝐺

𝓛𝐺𝐴𝑁 + 𝜆𝔼[𝑑(𝑥, 𝐺(𝑧))] + 𝛽𝐻(�̂�) 
(7) 

• Improved discriminator with segmentation data: An extension of the SC mode is also 

proposed, that consists of feeding the discriminator with a semantic label map (𝑠) (𝐺𝐷(𝐷+)). 

This dependence with 𝑠 only exists during training, i.e., the actual 𝐺𝐶(𝐷+) image compression 

operation (inference) does not require the semantic label map. Naturally, it is also used in the 

SC mode. The use of semantic label maps at the discriminator side allows to improve the 

discriminator performance.  

D. Performance Assessment 

To assess the proposed solution performance, the GC model was trained without semantic label maps. 

The training dataset is composed of several natural images, namely 188k images from the Open Images 
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[43] dataset. After training, the model was evaluated on the Kodak [44], RAISE-1k [45] and Cityscapes 

[46] datasets.  

Figure 19 shows an example of the proposed GC mode output for an image in the Cityscape dataset. 

In this example, GC is compared to the BPG codec (an implementation of HEVC) and to the MSE 

baseline. The MSE baseline corresponds to a solution similar to GC but instead of having the adversarial 

loss guiding the learning process it has a simple MSE loss. This means, the discriminator is not present 

in the MSE baseline and that MSE baseline was trained on a subset of the Cityscapes dataset which 

gives an advantage in specialization when compared to the GC model. 

To evaluate the performance for an objective quality metric, the PSNR was still used despite the 

limitations. The GC model is outperformed by its benchmarks with respect to PSNR. This was expected 

since PSNR favors pixel-wise similarities and the GC model was not trained with that goal, unlike the 

other BPG and MSE baseline solutions. However, when it comes to the subjective quality of the image, 

the GC model is superior, obtaining a sharper and more detailed overall image as shown. This highlights 

the inadequacy of metrics such as PSNR to evaluate image quality. 

 

Figure 19 - Evaluation between GC, BPG and MSE baseline using an image from the Cityscapes 

dataset (Adapted from [30]). 

As aforementioned, the GC model was also tested on the Kodak and RAISE-1k datasets. Figure 20 

shows a comparison between an original image, the GC model and BPG codec, for each of these 

datasets. Regarding the subjective quality of the compressed images, the BPG's images are overall 

blurrier, lacking texture and detail due to the low bitrate and the limitations of this conventional solution. 

On the other hand, the GC model can generate more realistic textures and maintain sharper details. 

However, the GC solution has some visible shortcomings, e.g., in one of the Kodak images (Figure 20 

- Top), some windows have annoying artefacts that contribute to an unnatural appearance. 
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Figure 20 - Visual comparison between original image (left), GC (middle) and BPG (right) using 

images from different datasets: Kodak (top) and RAISE 1k (bottom) (Adapted from [41, 44, 45]). 

The SC solution was trained in the Cityscapes dataset using the RI and RB training modes. For the RB 

training, the model was able to combine the preserved and generated (synthetic) contents even in cases 

where an object is a combination of preserved and generated content (i.e. the box limits cut the object), 

as depicted in Figure 21. In this figure, it is presented two different base images, and for each image is 

showcased two different RB scenarios (box location changes). Moreover, the lower left corner of the 

images is the heatmap of each scenario, where the white region corresponds to the RB.  

 

Figure 21 - Example of visual comparison for different random boxes using the SC model with RB 

training [41]. 

Figure 22 shows the visual quality (and bitrate savings) when the SC model is used with RI training and 

different elements to preserve are selected. In the lower left corner of the images is the heatmap of each 

scenario, where the white colored regions corresponds to the RI. It is also shown the bpp for each image 

and the relative savings due to the selective generation when compared to the no synth case.  

The SC model obtains images without major degradations of the visual quality of the image, especially 

if a suitable decision on which elements to preserve is made. This is particularly evident in scenarios 
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where the synthesized elements have a repetitive pattern or texture, such as trees, streets or the sky. 

Moreover, very low bitrates (bitrate savings) can be obtained if compared to the no synth case for which 

no image element was synthesized (i.e. information of all image regions was transmitted). 

 

Figure 22 – Example of visual comparison for different synthesised elements of the image using the 

SC model with RI training [30]. 

3.2. Photo-Realistic Single Image Super-Resolution Using a Generative 

Adversarial Network 

In Super Resolution (SR) a higher resolution image (HR) is obtained from one or more lower resolutions 

(LR) images [47, 48]. Super resolution algorithms have several applications, such as enhancement of 

satellite and aerial images [49], medical image processing [50], among others. DL-based solutions have 

often proven to be more efficient than traditional SR solutions, such as those based on hand-crafted 

interpolation filters [51]. This is mainly due to the ability to extract relevant higher-level features when 

finding a mapping between the LR and HR images [52]. 

Deep convolutional networks designed for this problem and trained using the MSE as loss function result 

in high peak signal-to-noise (PSNR) ratios, but usually lack the fine texture details that are characteristic 

of an HR image. To meet the fidelity expected from an HR image, this section presents a GAN-based 

solution that attempts to minimize this shortcoming by introducing a new objective function.  

A. Objective and Technical Approach 

In 2017, Ledig et al. [52] proposed a generative adversarial network for image super-resolution (SRGAN) 

that can up-sample images up to 4x using a single low-resolution image. The introduction of the GAN 

adversarial loss makes the HR images richer in high-frequency details, when compared to other SR 

algorithms that use MSE in the loss function. When the MSE loss function is used, pixel-wise similarities 

between the ground-truth and the SR image are accounted and thus, high PSNR quality scores are 

obtained; however, this often results in perceptually unsatisfying HR images. 

Also, this work introduces a perceptual loss function that balances the generation of content with the 
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preservation of original LR image content. This new training objective coupled with a ResNet [53] 

inspired architecture creates a solution that outperforms previous state-of-the-art models. 

B. Architecture and Walkthrough 

In this work, two different models for the super-resolution problem are proposed: 

• SRResNet model: an application of a ResNet [53] trained with the MSE as its loss function. 

This network is composed of 16 residual blocks that are briefly described in Section 3.2 - C. The 

fact that the model is optimized for MSE makes it more sensible to pixel changes and invariant 

to perceptual changes. This model sets a new state of the art in image SR in PSNR and SSIM 

measures, as showcased in Section 3.2 - D and, as such, serves as reference when testing the 

other model proposed in this paper.  

• SRGAN model: GAN based solution composed of the usual Generator-Discriminator pair. The 

generator creates reconstructed images very similar to the real images and thus difficult to 

classify by the discriminator, which attempts to distinguish between the real images and the 

reconstructed high-resolution images created by the generator.  

The proposed generator network is shown in Figure 23 and reuses the residual blocks and skip 

connections as defined in ResNet (see Section 3.2 - C). A block composed of two convolutional (Conv) 

layers with 3 × 3 kernels, 64 feature maps and stride 1 are followed by a batch-normalization (BN) layer 

[54] and a parametric ReLU (PreLU) [55] as the activation function. These six layers form a residual 

block since the input of the block is added by an element-wise sum to the block output. Moreover, a skip 

connection is also present that adds the input of the B residual blocks to their output after processing by 

a Conv+BN layers. 

After the last element-wise sum, the next network layers are responsible to perform the actual up-

sampling operation. This upscaling is achieved using sub-pixel convolutions as proposed by Shi et al. 

in [56]. These layers are composed of a convolutional layer with 3 × 3 kernels, 256 feature maps and 

stride 1, followed by a PixelShuffler layer with an upscale factor of 2 and end with a PReLU activation 

layer. The last layer is a convolutional layer with a 9 × 9 kernel, 3 feature maps and stride 1 which 

produces the high-resolution image. The training of this generator is the same as described in Section 

2.3.3. However, the learning process is guided by a perceptual loss function, described in Section 3.2 - 

C, that weights the contributions of the adversarial loss with a content loss. 
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Figure 23 - Architecture of the Generator Network with corresponding kernel size (k), number of 

feature maps (n) and stride (s) shown for each convolutional block [52]. 

The discriminator network is shown in Figure 24 and is also a convolutional network with 8 convolutional 

layers. These layers have 3 × 3 kernels, and the number of kernels doubles every 2 convolutional layers, 

starting with 64 and ending with 512 kernels. The image resolution is reduced using stride 2 in the 

convolutional layers, each time the number of features is doubled. The convolutional layers are followed 

by a chain of dense layer (fully connected layer) with height 1024, LeakyReLU activation and a dense 

layer with height 1. The last layer is a sigmoid activation function that makes the output range from 0 to 

1, representing a probability of the image belonging to the training dataset.  

 

Figure 24 - Architecture of the Discriminator Network with corresponding kernel size (k), number of 

feature maps (n) and stride (s) indicated for each convolutional layer [52]. 

C. Main Tools 

The most relevant processing tools defined or used in this solution are:  

• Perceptual loss function:  this work defines an objective loss function that attempts to follow 

more closely the human perception of image quality compared to previous MSE optimized SR 

deep neural network solutions. The proposed perceptual loss function is a weighted sum of two 

terms: 1) content loss 𝑙𝑋
𝑆𝑅, which measures image similarity, and 2) adversarial loss 𝑙𝐺𝑒𝑛

𝑆𝑅 . The 

content loss function can be the any function that measures the similarities between two images, 

however in this paper it is either the MSE or the VGG loss that is define next. Regarding the 

adversarial loss, it is computed as described in Section 2.3.3, since is the typical adversarial 

loss.  

 𝑙𝑆𝑅 = 𝑙𝑋
𝑆𝑅 + 10−3𝑙𝐺𝑒𝑛

𝑆𝑅  (8) 

With this loss function it is possible to obtain a balance between the generated textures (fine 
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details) with the preservation/fidelity of the original image. The use of a GAN framework allows 

to learn an efficient mapping between the LR and the HR (desired) images and the adversarial 

loss term pushes the model to output HR images with superior perceptual quality, i.e. the 

generator is able to create realistic-looking images. However, in the context of the SR problem, 

fidelity is also important. Thus, the content loss term is responsible for guaranteeing that not 

only is the HR realistic, but also maintains a close relationship with its LR counterpart.  

• VGG loss: the VGG loss tries to mitigate the blurry effect (lack of detail and smooth textures) 

that the MSE produces. This loss is computed on the feature maps of the VGG19 network 

proposed by Simonyan and Zisserman [57] composed of 19 convolutional layers. Thus, the 

ground truth (𝐼𝐻𝑅) and the prediction of the generator (𝐺𝜃𝐺
(𝐼𝐿𝑅)) are passed through the VGG 

network. Then the VGG loss is computed as the Euclidean distance between the feature map 

in the j-th convolutional layer and before the i-th maxpooling layer of the NN (𝜙𝑖,𝑗), as depicted 

in (9). 

 𝑙𝑉𝐺𝐺/𝑖.𝑗
𝑆𝑅 =

1

𝑊𝑖,𝑗𝐻𝑖,𝑗 
∑ ∑ (𝜙𝑖,𝑗(𝐼

𝐻𝑅)𝑥,𝑦 − 𝜙𝑖,𝑗(𝐺𝜃𝐺
(𝐼𝐿𝑅)

𝑥,𝑦
)

2

𝐻𝑖,𝑗

𝑦=1

𝑊𝑖,𝑗

𝑥=1

 (9) 

The introduction of this loss allows to make the comparison between the ground truth and the 

generator predictions in a more perceptual space compared to the usual MSE loss.  

• ResNet: Kaiming et al. [53] proposed a deep residual network for image recognition (ResNet) 

where residual blocks, convolutional blocks with non-linearities that employ skip connections, 

are proposed. Deeper NN tends to be harder to train, as such, the introduction of skip 

connections (or residuals blocks) in the architecture of the generator, facilitates the training 

process. The skip connection is a connection between the output of one layer with the input of 

a previous layer. The residual blocks guarantee that the performance of deeper networks is not 

degraded (i.e. deals with the vanishing gradient problem). This type of blocks was used in this 

SR solution since it is easier to optimize and can produce more accurate results than the typical 

convolutional blocks. 

 

Figure 25 - Architecture of a generic residual block [53]. 

D. Performance Assessment 

The proposed models SRResNet and SRGAN, with VGG54 as the content loss function, were evaluated 

on three datasets, namely Set5 [58], Set14 [59], and BSD100 [60]. Some reference methods 

(benchmarks) were selected, namely nearest neighbor, bicubic, SRCN [61]. SelfExSR [62], DRCN [63], 
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and ESPCN [56]always for an 4x up-scale factor.  

All solutions were trained on 350 thousand images obtained from the ImageNet dataset [64, 6]. To obtain 

the LR images, a bicubic kernel with a down-sampling factor of 4 is employed. The LR and HR images 

were scaled to the range, [0,1] and [−1,1], respectively. Consequently, the MSE loss computed varies 

from [−1,1] and the VGG loss was also scaled to be on the same range of the MSE loss. The Adam 

optimizer [65] was used with the momentum term equal to 0.9 and the generator network was initialized 

with the trained MSE-based SRResNet network to guarantee that some desired local minima can be 

found during training. The SR solutions based on the GAN framework were trained with 𝑘 = 1, where 

𝑘corresponds is the GAN framework hyperparameter described in Section 2.3.3, and were performed 

two times 105 update iterations, first with a learning rate of 10−4and then with learning rate of 10−5.  

To assess the objective quality of the HR images, the PSNR and SSIM objective metrics were used. 

Subjective experiments were performed and MOS (Mean Opinion Score) computed from the scores of 

the experiment subjects. This objective (PSNR and SSIM) and subjective (MOS) quality evaluation 

ensures a complete analysis of the performance of all models. Regarding the MOS, 26 participants 

classified a total of 1128 images each, from 1(bad quality) to 5 (excellent quality).  

The results obtained in the aforementioned conditions are presented in Table 1. The SRResNet 

proposed solution outperforms its benchmarks regarding objective metrics (PSNR and SSIM). 

Moreover, the MOS results highlights the fact that the SRGAN is superior in perceptual quality when 

compared to the competition. However, the objective metrics do not show the same behaviour as the 

MOS, which allows to conclude that these metrics do not fully account the image quality with respect to 

the human visual system.  

Table 1 – Experimental results of NN, bicubic, SRCNN, SelfExSR, DRCN, ESPCN, SRResNet, 

SRGAN and the original HR on benchmark data. Highest measures (PSNR [dB], SSIM, MOS) in bold 

[4×upscaling] [52]. 

  

In Figure 26, some examples of the images produced by the Bicubic, SRResNet and SRGAN are shown 

along with the original image. As shown in these examples, the quality improvements of SRResNet and 

SRGAN are visible, especially in high frequency details from the bicubic to the SRResNet, and from the 

SRResNET to the SRGAN. 
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Figure 26 -Visual comparison between Bicubic, SRResNet, SRGAN and the Original image using 

images from different datasets: Set5 (top), Set14 (middle) and BSD100 (bottom) (Adapted from [52]). 

3.3. Deep Universal Generative Adversarial Compression Artifact 

Removal 

Compression algorithms are used in several contexts to increase the efficiency of storage and 

transmission of data. There are two main types of compression [66], lossless compression, and lossy 

compression. In lossless compression algorithms, the compressed version of the data retains all the 

information contained in the original, where in lossy compression some of the information is discarded, 

typically information that is considered less relevant, to achieve higher compression ratios.  

Only a few applications, such as medical imaging [67], require lossless image compression, which 

means that lossy compression algorithms are more often used. Unfortunately, lossy compression 

introduces quality loss and produces some compression artifacts, such as blocking, posterizing, 

contouring, blurring, and ringing effects. These artifacts not only degrade the visual quality of the images 

but also impair the performance of computer vision algorithms, such as an object detector.  

In the past, several conventional solutions have been proposed to remove these artifacts, mainly based 

on statistical modelling, without any learning from a dataset of examples. In this section an ensemble of 

GAN based convolutional neural networks is described with the aim to obtain more realistic 

reconstructions. 
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A. Objective and Technical Approach 

Galteri et al. [68] proposed, in 2019, a compression artifact removal solution that is efficient even in 

highly degraded images and works in scenarios where the encoding parameters are unknown. This is 

different from previous deep learning based methods which assume that the encoding parameters are 

known, namely the compression factor QF. To achieve this objective, the authors introduce an ensemble 

of deep convolutional residual networks, trained for different compression quality factors (QF), coupled 

with a quality predictor model. Each model its trained for different compression qualities, i.e. from lower 

to higher compression rates, allowing for a tailored image reconstruction.  

The core of this solution is a neural network that can be trained with direct supervision or with adversarial 

training. The authors explore several configurations for this model, namely using the GAN framework 

and balancing the adversarial loss with a content loss or using direct supervision with MSE and SSIM. 

Regarding the content loss several alternatives were evaluated, such as the MSE, SSIM, and VGG19 

[57].  

B. Architecture and Walkthrough 

The architecture of the proposed compression artifact removal solution is shown in Figure 27. The 

proposed solution introduces an ensemble of GAN models (generators), which are convolutional 

networks trained with decoded images compressed with different quality factor. The input compressed 

image (𝐼𝑐) is passed to a compression quality predictor NN, described with more detail in Section 3.3 - 

C, that estimates the image QF. With this estimation the QF switcher passes the 𝐼𝑐 to the better suited 

GAN and the reconstructed  𝐼𝑅 image is obtained. 

 

Figure 27 - Architecture of the universal compression artifact removal solution [68]. 

The GAN model that performs the quality enhancement includes the generator network shown in Figure 

28. It follows a generative approach which given an input image is able to output an improved version 

of the same image. This neural network is composed of convolutional layers with 3 × 3 kernels and 64 

feature maps with Leaky ReLU as its activation function. The convolutional layers all have stride 1, 

except for the 2nd layer that has stride 2 to reduce the feature map to half of its original size. This layer 

is followed by 15 similar residual blocks, inspired by K. He et al. [53] work, that have a skip connection 
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every two convolutional layers. The output of this chain of residual blocks is up-sampled (after a 

convolutional layer) using nearest-neighbour [69], which allows to obtain feature maps with the same 

size as the original image. To mitigate the impact of some undesired up-sampling artifacts, another two 

convolutional layers with the same parameters as before is used. The last layer of the NN is a 

convolutional layer with one feature map and Tanh as its activation function, this non-linearity makes 

the resulting images range from [−1, 1].  

 

Figure 28 – Architecture of the deep convolutional residual neural network, where 𝑛 is number of filters 

and 𝑠 is the stride [70]. 

The architecture of the proposed Discriminator is shown in Figure 29. In a similar way as the Generator, 

the discriminator is composed of convolutional layers with 3 × 3 kernels, stride 1 and Leaky ReLU as its 

activation function. The number of filters doubles every 2 layers until reaching 256. The last 

convolutional layer has 2 × 2 kernels and a feature map of size 1. Finally, a non-linearity is applied, 

namely a sigmoid, to make the output range from 0 to 1 and represents the adversarial loss to be used 

during training. The discriminator divides the input images into patches (similar to blocks) of size 16 × 16 

making the evaluation at the patch level instead of an evaluation of the entire image. This is done since 

compression algorithms typically decompose images into patches before compression, thus creating 

artifacts within patches. Which means, that the better the generator is at reconstructing each patch the 

more accurate the reconstructions will be. This approach allows to remove existing high frequency noise, 

like mosquito noise and thus improves the overall reconstruction quality. 

 

Figure 29 – Discriminator Network Architecture, where 𝑛 is number of filters and 𝑠 is the stride [68]. 
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C. Main Tools 

The main tools used in this solution are: 

• New training objective: training with MSE and SSIM as the loss function typically produces 

images that lack some of its finer details and consequentially are less appealing to the human 

eyes. To mitigate this problem, adversarial training can be used to generate more photorealistic 

images. However, similar to the SR problem described in Section 3.2 [52], the preservation of 

the original content is also crucial for compression artefact removal and thus, requires to be 

balanced with the generation of new content. The authors introduce an adversarial patch loss 

(10) that weights the typical adversarial loss (𝑙𝑎𝑑𝑣), described in Section 2.3.3, with a perceptual 

loss term (𝑙𝑃), that evaluates the similarities between the compressed image 𝐼𝐶 and the 

reconstructed image𝐼𝑅. These terms are weighted with the parameter 𝜆. 

 𝑙𝐴𝑅 = 𝑙𝑃 + 𝜆𝑙𝑎𝑑𝑣 (10) 

• Perceptual loss: functions such as MSE and SSIM can be used to evaluate the similarities 

between 𝐼𝐶 and 𝐼𝑅, but often do not represent well the human visual perception of image 

similarity. To improve this comparison, and consequently have more reliable 𝑙𝑃 values, it is 

introduced a loss computed in the feature maps of a pre-trained VGG19 network [57]. This is a 

similar approach to the perceptual loss function introduced in the SR model described in Section 

3.2, where the VGG19 network is explained with more detail (see Section 3.2 - C).  

• Quality predictor network: this network is extremely important in order to have an ensemble 

of NN that work efficiently. This network correctly identifies the better suited GAN in the 

ensemble to reconstruct any given compressed image. The main purpose of this network is to 

produce accurate estimations of the compression quality used in the input image (𝐼𝑐). The 

predictor network proposed in this work is described in Table 2 and is a convolutional neural 

network composed of 8 convolutional layers with kernels of size 3 × 3 and stride alternating 

between 1 and 2. The layers with stride 2 produce a reduction in the feature map size by half, 

each time. After the 8𝑡ℎ convolutional layer two fully connected layers combine the previous 

output maps and translate them to a single value corresponding to the quality estimation.  

Table 2 – Architecture of the proposed quality predictor network [68]. 
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D. Performance Assessment 

The evaluation of performance is presented in three different studies: 

• Evaluation A – GAN model: objective evaluation of just the proposed generator network, i.e.  

without the ensemble depicted in Figure 27, using metrics such as PSNR, PSNR-B [71] and SSIM.  

• Evaluation B – Ensemble of GANs: objective evaluation of the proposed ensemble of GANs using 

the same metrics of the first evaluation.  

• Evaluation C – GAN subjective evaluation: subjective evaluation that compares the MOS results 

of just the generator model when trained with and without adversarial loss. 

Evaluation A: GAN model 

The generator network was evaluated on the BDS500 [60] and LIVE1 [72] datasets and compared with 

some state-of-the-art approaches, namely SA-DCT [73], AR-CNN [74] and, in some cases with the work 

of Svoboda et al. [75] and CAS-CNN [76]. Twelve different versions of the proposed generator NN were 

tested, for the three of the training loss functions described next, for each JPEG compression factor 

(QF) of 10, 20, 30 and 40:  

• Perceptual loss: uses the capabilities of adversarial training and corresponds to the “our GAN” 

entry in the results presented in Table 3; 

• MSE: corresponding to the “our MSE” entry in the results presented in Table 3; 

• SSIM, corresponding to the “our SSIM” entry in the results presented in Table 3; 

These models were trained on 16 random 128 × 128 patches from the MS-COCO [77] dataset, with 

random flipping and rotation for data augmentation. The images were compressed using the MATLAB 

JPEG compressor at the corresponding QF parameter. The training is done with the Adam optimizer 

with the momentum term equal to 0.9 and a learning rate equal to 10−4 on the first 50k iterations and 

the last 50k iterations have a smaller learning rate of 10−5.  

The quality assessment is performed on luminance only, which means that 𝐼𝐶 and 𝐼𝑅 images are 

transformed to gray-scale before evaluation. The models are evaluated on PSNR, PSNR-B and SSIM 

for both test sets and the results are presented in Table 3. The proposed models shows better results 

on objective metrics than the other deep models, except for the PSNR-B measures at QFs of 10 and 40 

where the model proposed by Cavigelli et al. (CAS-CNN) [76] slightly outperforms it.  
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Table 3 - Evaluation of the proposed generator NN and selected benchmarks using the PSNR, PNSR-

B and SSIM quality metrics on BDS500 and LIVE1, with the best result for each metric and respective 

QF group in bold [68]. 

 

Figure 30 shows the results for two images for some region highlighted in yellow in the original image. 

Both the JPEG 20 decoded image, the proposed GAN artifact removal algorithm along with the AR-

CNN benchmark output are shown. The JPEG compression algorithm with QF 20 introduces some 

undesired artifacts, namely blocking, ringing and color quantization. The reconstruction performed by 

the AR-CNN removes the artifacts of the decoded image, but the image is somewhat blurry, lacking 

some textures and finer details. The GAN proposed in this paper not only eliminates the compression 

artifacts but is also able to produce more faithful reconstructions of the image.   

 

Figure 30 - Visual comparison between JPEG (QF = 20), AR-CNN, the proposed solution and the 

Original [68]. 

Evaluation B: Ensemble of GANs  

The proposed ensemble of GANs is evaluated with different configurations. Each ensemble combines 

the generator networks trained for the same loss function but each GAN network for a different QF and 
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is driven by a quality predictor network. The following ensembles are evaluated:  

• QF predictor GAN: Ensemble of 4 generator networks trained with the proposed perceptual loss. 

• QF predictor MSE: Ensemble of 4 generator networks trained with MSE loss function. 

• QF predictor SSIM: Ensemble of 4 generator networks trained with SSIM loss function.  

These models are evaluated against other three variants of the proposed generator network not in 

ensemble, for the same loss functions previously presented (perceptual loss, MSE and SSIM). However, 

these networks are not trained with a training data comprised of images compressed under the same 

condition (that is, same QF). The Multi-QF models are trained over images compressed with different 

QFs using the three loss functions and are referred as Multi-QF GAN, Multi-QF MSE, Multi-QF SSIM. 

The ensemble models and the Multi-QF networks are compared with the generator by himself trained 

as described in Evaluation A. This means that for each target QF, there is a network trained with images 

compressed with always the same target QF. Again, different loss functions are used, and the networks 

obtained are referred as Oracle GAN, Oracle MSE and Oracle SSIM.  

All of these models are evaluated under the same in the conditions of the previous experiments, which 

means that are evaluated with the same QFs, metrics and datasets. The experimental results obtained 

are shown in Table 4. It is clear that the ensemble performs better than Multi-QF. The ensemble shows 

the same results as its oracle corresponding networks, highlighting the correct behaviour of the QF 

predictor.  

Table 4 - Comparison between the proposed ensemble of NN and the Multi-QF NN regarding the 

PSNR, PNSR-B and SSIM on BDS500 and LIVE1, with the best result for each metric and respective 

QF group in bold [68]. 
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Evaluation C – GAN subjective evaluation 

Two different generator networks without ensemble, one trained with SSIM as the loss function and 

another with the proposed perceptual loss, are evaluated with subjective experiments (thus collecting 

MOS scores). Ten subjects participated in these experiments. These subjects compare the 

reconstruction of the images with the original giving a score of 0 to 100 on a scale of similarity between 

them. This experiment was done over 50 random images from the BSD500 [60] and only includes the 

reconstructions obtained with the model directly trained by the SSIM and the proposed GAN approach. 

Figure 31 illustrates the MOS scores obtained in this subjective evaluation. The results obtained in this 

experiment show an overall preference to the GAN reconstruction with only a few exceptions. In general, 

the GAN model obtains a MOS of 68.32 with a standard deviation of 20.75, whereas the SSIM model 

only achieved a MOS of 49.51 with a comparable standard deviation of 22.72.  

 

Figure 31 - MOS scores and confidence intervals for the 50 random BSD500 images used in the 
subjective evaluation [68]. 
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Chapter 4 

 

4. GAN-based Image Processing: Subjective Quality 

Evaluation 

 

In recent years, GANs have become progressively more capable of generating realistic images and 

have reached a point where, perceptually, the images generated can be confused as real images. These 

advances propelled the development of a variety of GAN-based solutions for several image processing 

tasks such as super-resolution, compression, artifact removal, etc. This, in turn, created the need to 

accurately evaluate the image quality of these solutions. In this context, subjective evaluations are 

crucial in the quality assessment process and this chapter provides an overview of the methodologies 

and conditions under which some GAN-based solutions are evaluated.  

The results obtained from this study are publicly available and ca be seen at 

https://github.com/martafilipa/gan-image-database. 

4.1. Test Material and Preparation 

To design a subjective assessment, it is important to define what will constitute the test material. That 

is to say, which images will compose the study, how will the images be shown and what preparations 

need to be done beforehand. 

4.1.1.  Dataset selection 

The JPEG AI dataset [78] was used for this subjective quality evaluation seeing that it was designed to 

evaluate the performance of state-of-the-art learning-based image coding solutions. Due to its nature, 

this dataset is divided into 2 subsets. The test material used in this assessment belonged to the test 

subset since it provides a diverse and well-balanced set of images that allows the evaluation to be 

representative.  

https://github.com/martafilipa/gan-image-database
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To keep the test session restrained to less than 60 minutes from the 16 total images that compose this 

test set only 8 are used in the subjective assessment. The selection of the 8 test images is done by 

visual inspection and considering the need for diversity. Moreover, to aid in the decision process the 

test set contents are categorized as presented in Table 5. This categorization helps when it comes to 

choosing a diverse set of scenes, however, the set needs to be balanced when it comes to the 

complexity of said scenes. That being said, the images are selected to range from less to more complex 

when it comes to high-frequency components, color saturation, etc. 

Table 5 -Categorization of JPEG AI test set images by its contents. Highlighted in green are the 

selected test images and in orange are the images included in the training phase. 

Landscapes Synthetic Texture Subjects 

Matterhorn (00001) Curiosity Rover (00010) Rotunda of Mosta (00004) Racing car (00002) 

Train (00006)  Windows (00007) Sardinia festival (00003) 

Transmission towers (00008)  Port (00009) Las Vegas sign (00005) 

Beach (00014)  Bell pepper (00011) Woman (00012) 

Harbor (00015)   Dog (00013) 

   Ponytail (00016) 

 

That being said, the images selected are presented in Figure 32. Besides the images used in the test it 

was also necessary a set of extra images to include in the training phase of the assessment. The training 

phase as the goal of getting the user familiar with the test environment and with the type of content that 

will evaluate in the test. This leads to the need of having a set of images that are not included in the test 

set and are representative of the type of artefacts produced by the GAN-based solutions. With this is 

mind the images selected were Matterhorn (00001) and Harbor (00005). 

 

Racing car (00002) 
 

Rotunda of Mosta (00004) 

 

Las Vegas sign (00005) 
 

Train (00006) 
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Transmission towers 
(00008) 

 

Port (00009) 

 

Curiosity Rover (00010) 

 

Woman (00012) 

Figure 32 - Images from JPEG AI test dataset selected for subjective assessment. 

4.1.2.  Display Conditions 

Normally the subjective assessment would be done in a controlled environment where all subjects would 

visualize the images in the same monitor with the same configurations. However, due to the limitations 

imposed by the global pandemic, the approach shifted in the direction of an online crowdsourcing 

survey. 

With the assessment done in different devices, there are consequently different viewing conditions of 

the test material. This creates the need to control as much as possible the conditions under which the 

survey is taken. In order to do so, the app developed to employ subjective assessment imposes 

restrictions regarding the resolution and size of the display. Particularly, it enforces a resolution of at 

least 1920x1080 and a display size of at least 13 inches. 

4.1.3.  Content Preparation 

Considering that this assessment follows a Forced Choice (FC) design, meaning that two images need 

to be displayed side-by-side, it is important to determine the target size for the test material. With the 

previously mentioned target resolution of 1920x1080 and the layout presented in Figure 33 the desired 

resolution for the test images is 940x880.  
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Figure 33 – Example of test layout highlighting the requirements for image sizes targeting the screen 

size of 1920x1080. 

In order to adapt the dataset to the desired resolution are performed crops taking into consideration the 

need to preserve the relevant elements of each image. In Figure 34 is presented an example of a crop 

performed over the Train image. The remaining example of crops and corresponding resolution 

information is included in Annex A.1.  

  

Figure 34 - Example of the original JPEG AI image (left) and respective crop (right). 

4.2. GAN-based Image Processing Solutions and Benchmark 

This section provides an overview of the solutions used to obtain the images that will make part of the 

subjective assessment. In this case, the preprocessing of the images, the training of the model, the 
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postprocessing of the images and other related aspects. The goal is to make the pipeline that produces 

the test images clear to the reader.  

Regarding the GAN-based solutions used in this section, they were selected having in mind the 

importance of the task performed, the performance, and the availability of software. For each solution 

the objective is to obtain 3 levels of image quality (Lo, Mi, Hi) to evaluate the perceptual impacts of the 

artefacts generated by GAN based solutions.  

4.2.1. Enhanced Super-Resolution Generative Adversarial Networks 

In section 3.2. a GAN that performs super resolution [52] is described, however we could not find an 

official publicly available software for this solution. Considering other choices, it was selected the 

ESRGAN proposed by Xintao Wang et al. in [79] for which an implementation was available. The 

ESRGAN model is an improved version of the solution reviewed in section 3.2 and introduces some 

new tools. Among those, a Residual-in-Residual Dense Block (RDDB) illustrated in Figure 35, the 

removal of batch normalization layers and an improved discriminator network based on Relativistic 

average GAN (RaGAN) [80].  

The RDDB has a higher number of layers and connections when compared with the generic residual 

block. Which leads to deeper and more complex structure. These blocks also employ residual learning 

to different levels, i.e., the skip connections are not only between the input and output, but rather connect 

different points of the block to each other.  

 

Figure 35 - Architecture of the Residual in Residual Dense Block (RRDB) 

The lack of batch normalization layers in the network helped reduce the computational complexity of the 

training task while mitigating the artefacts produced by these layers, when coupled with a dense network 

trained under the GAN framework. 

When it comes to the discriminator the architecture is the same as described in section 3.2 with the 

relativistic GAN loss. This loss, instead of estimating the probability of a given sample being fake or real, 

it estimates if the sample is more real than a randomly sampled fake data. This change leads to a more 

stable network that creates higher quality images.  

Regarding the generator used, it follows an SRResNet [52] architecture and has 32 layers of RRDB 

blocks. This architecture is joined with a loss function (11) that balances a perceptual loss (𝐿𝑝𝑟𝑒𝑐𝑒𝑝), a 

content loss (𝐿1) and the relativistic adversarial loss (𝐿𝐺
𝑅𝑎). The perceptual loss it is computed using a 

VGG19 network, the content loss is a 1-norm distance between the generated image and the ground 

truth, and the adversarial loss is obtained using the generator/discriminator pair described previously.  



 

45 

 

The weight of these losses in the total generator loss (𝐿𝐺) is controlled by 𝜆 and 𝜂, hyperparameters.  

𝐿𝐺 = 𝐿𝑝𝑒𝑟𝑐𝑒𝑝 + 𝜆𝐿𝐺
𝑅𝑎 + 𝜂𝐿1 (11) 

Three variants of the proposed solution were used in this study. These variants are defined to obtain 

three distinct level of artifacts caused by the content generation capabilities of the network. This is done 

by changing the weight (𝜆) of the adversarial loss (𝐿𝐺
𝑅𝑎). Which means that the adversarial loss varies in 

importance, and thus may lead to images with higher apparent quality but less real, i.e., more fake. The 

different ESRGAN models used can be defined as follows, where perceived quality of the generated 

images increasing from Lo to Mi, and from Mi to Hi:  

• ESRGAN Lo: 𝜆 = 5 × 10−2 

• ESRGAN Mi: 𝜆 = 10−2 

• ESRGAN Hi: 𝜆 = 5 × 10−3 (pretrained model) 

The ESRGAN Lo and ESRGAN Mi models were trained specifically for this study, while the ESRGAN 

Hi was a pretrained model provided by the authors. The models trained followed closely the 

recommendations made by the authors to maintain a fair comparison.  

As recommended, the training set used was the DIV2K [81] as. More specifically, the subset of training 

data that refers to high resolution images, and the corresponding low-resolution images obtained with a 

bicubic kernel and a downscale factor of 4. And for validation is used the entirety of Set14 [59]. 

These datasets follow some pre-processing that is done to decrease access times and reduce training 

duration. This pre-processing consists of creating patches of size 480x480 for the HR images and 

patches of size 120x120 for the LR images. 

Other relevant training parameters used are the Adam optimizer [65] with 𝛽1 = 0.9, 𝛽2 = 0.99 and a 

learning rate of 10−4. The mini-batch size that was set to 4 instead of the recommended 16 due to 

hardware limitations. In Annex A.2 the full configuration files are available. 

After the models were trained, the next step is to obtain the super resolution images for the test set 

defined in section 4.1. To perform the super resolution task on the test set, low-resolution (LR) images 

are first obtained. These LR images are obtained as recommended by the authors with a Matlab function 

that performs resize using a bicubic kernel and a downscale factor of 4. 

These LR images were fed to the ESRGAN Lo, Mi and Hi and the result are HR images that are 

reconstructions of the original HR image with different levels of artefacts depending on which model 

originated the image. As mentioned in the previous section the test material needs to be of size 940x880 

and so a crop is performed to the HR GAN-generated images.  

It is important to note that the crops mentioned in the previous section are done after the super resolution 

image is obtained and not before. In Figure 36 it is shown an illustration of the pipeline that creates the 

test images for the ESRGAN solution. 
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Figure 36 - Visual representation of the pipeline used to obtain ESRGAN test images 

4.2.2. High-Fidelity Generative Image Compression 

The compression solution presented in section 3.1. [30] also doesn’t have a publicly available software. 

Moreover, recently a GAN-based image compression solution was proposed which is considered more 

efficient and is nowadays recognized as highly efficient [82]; this solution is called High-Fidelity 

Generative Image Compression (HiFiC), was proposed by Fabian Mentzer et al., and the software is 

public available.  

The HiFiC solution uses some of the same tools present in SC mode of the older model, such as, the 

use of a Conditional GAN. Moreover, the model uses the additional information, such as, class labels or 

a semantic map, to better control the generated content and to obtain better results in more challenging 

scenarios.  

A new objective function is introduced in the HiFiC model (12). This objective function is built with the 

goal of minimizing the rate-distortion trade-off. That is to say, the network goal is to achieve the lowest 

possible combined bitrate (𝑟(𝑦) where 𝑦 is the latent space representation of the image 𝑥) and distortion 

(𝑑(𝑥, 𝑥′), where 𝑥′ is the reconstructed image from the latent space representation 𝑦 and 𝑥 is the test 

image). As any other generator network, the objective function of the HiFiC’s generator has a term that 

relates to the discriminator network (log(𝐷(𝑥′, 𝑦)).  

ℒ𝐸𝐺𝑃 =𝔼𝑥~𝑝𝑥[𝜆𝑟(𝑦) + 𝑑(𝑥, 𝑥′) − 𝛽 log(𝐷(𝑥′, 𝑦))] (12) 

The hyperparameters 𝜆 and 𝛽 both influence the bitrate, however in the experiments 𝛽 is fixed and 𝜆 is 

replaced by an adaptive step that allows the model to follow more closely the desired bitrate. This 

adaptive step (𝜆′) is given as a function (13) of a new hyperparameter (𝑟𝑡) which serves as a threshold 

to decide what value of 𝜆 is adequate (𝜆(𝑎) or 𝜆(𝑏)).  

𝜆′ = {
𝜆(𝑎), 𝑟(𝑦) > 𝑟𝑡
𝜆(𝑏), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   where   𝜆(𝑎) ≫ 𝜆(𝑏) (13) 

The hyperparameter 𝑟𝑡 relates directly to the desired bitrate in bpp and, typically, is a descriptive way to 
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identify a given HiFiC model. Along with the image compression solution, 3 pre-trained models, trained 

under the same condition and with 3 distinct target bitrates 𝑟𝑡 = {0.14, 0.3, 0.45}bpp, were available.  

For the subjective assessment experiments, it was crucial that the 3 models presented visible 

differences in quality, from minor to severe degradations. However, after close inspection of the images 

produced by these pretrained models it was clear that the difference in perceptual quality between the 

models with 𝑟𝑡 = 0.14bpp and 𝑟𝑡 = 0.3bpp was almost nonexistent. Moreover, the pretrained models 

lead to images with very few artifacts. Therefore, a new HiFiC model was trained, which is more 

restrictive in terms of bitrate, in this case, the target rate was set to 0.06 bpp.  

The training of this new model follows the methodology proposed by the authors of the proposed image 

compression solution. The training has two steps: i) training the model without the adversarial training, 

that is with a simple objective function and ii) training with discriminator, that is with the complete loss 

function (12): In both cases, the distortion function (14) used is a weighted sum of a perceptual loss 

(𝑑𝑃 = 𝐿𝑃𝐼𝑃𝑆) and a MSE loss.  

𝑑 = 𝑘𝑀MSE + kPLPIPS (14) 

Where 𝑘𝑀 and 𝑘𝑃 are hyperparameters that balance the weight of each component. These 

hyperparameters are fixed in the experiments described by the authors and therefore, will also be fixed 

in the same way in our training.  

Besides changing the target rate 𝑟𝑡 it was also necessary change 𝜆(𝑎) while maintaining 𝜆(𝑏) fixed, as 

illustrated by the authors experiments. The decision of adequate 𝜆(𝑎) value was not a obvious one and 

lacking the time and insight of the model to make a better hyperparameter tunning it was chosen by 

making a linear regression of the values of 𝜆(𝑎) used for each 𝑟𝑡 presented in the paper. This procedure 

resulted in 𝜆(𝑎) = 2.44 and that was the value used while training the HiFiC model.  

The training dataset used was the same as the experiments described in the paper, that is the Coco 

2014 [77] dataset. It is also important to note that besides the configurations changed in order to set the 

desired target rate it was also changed some configurations in the model.py file due to hardware 

limitations. These changes are shown in Annex A.2. Configuration file of model HiFiC Lo and reflect a 

reduction in the batch size used.  

With the training concluded it was clear that the model did not reach the desired target rate as it is 

depicted in Table 6. This could be improved with different 𝜆(𝑎), but since the results obtained with this 

model were already different from those resulting of models with 𝑟𝑡 = {0.14, 0.3}bpp there was no need 

to train another model with different hyperparameters. It is also important to note that for the pretrained 

models the target bitrate is not always achieved this is due to the model’s rate-distortion trade-off. For 

some images the compression task might be easier and the degradation allows for lower bitrates in 

other images the model refuses the lower bitrates since the degradation is greater.  
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Table 6 – Bitrates per image in JPEGAI dataset obtained with the HiFiC models. 

ID Name 
Bitrate (bpp) 

rt = 0.06 rt = 0.14 rt = 0.3 𝑟𝑡 = 0.45 

00001 Matterhorn 0,142 0,214 0,382 0,587 

00002 Racing car 0,099 0,164 0,33 0,532 

00003 Sardinia festival 0,102 0,154 0,283 0,415 

00004 Rotunda of Mosta 0,172 0,245 0,461 0,705 

00005 Las Vegas sign 0,089 0,123 0,219 0,305 

00006 Train 0,117 0,174 0,313 0,478 

00007 Windows 0,133 0,184 0,343 0,482 

00008 Transmission towers 0,079 0,136 0,276 0,456 

00009 Port 0,2 0,292 0,535 0,849 

00010 Curiosity Rover 0,075 0,129 0,256 0,38 

00011 Bell pepper 0,192 0,275 0,497 0,74 

00012 Woman 0,095 0,162 0,354 0,59 

00013 Dog 0,135 0,205 0,369 0,532 

00014 Beach 0,077 0,126 0,247 0,375 

00015 Harbor 0,09 0,136 0,248 0,364 

00016 Ponytail 0,052 0,099 0,232 0,384 

Following the same nomenclature presented in the previous section, and going from lower to higher 

perceived quality the models used this subjective assessment were as follows:  

• HiFiC Lo: rt = 0,06bpp  

• HiFiC Mi: rt = 0,14bpp (pretrained) 

• HiFiC Hi: rt = 0,3bpp (pretrained) 

And, once again, after the compressed images are obtained the crops are performed to obtain the 
images that will be evaluated. 

4.2.3. Image and Video Restoration and Compression Artefact 

Removal using a NoGAN Approach 

Once again, the model described for the artefact removal task in section 3.3. [68] did not have publicly 

available software. After considering several models with public software available, the selected solution 

for artefact removal was ArNet [83], a more recent and efficient model which had a public available 

implementation along with a pretrained model. The main novelty of ArNet is the NoGAN [84] technique, 

a new methodology to train the GANs. The NoGAN training pretrains the generator and discriminator 

with straightforward, fast, and reliable conventional loss functions, which are then trained together in a 

normal GAN setting. However, the number of iterations that the generator and discriminator are trained 

is limited, resulting in a model that is faster to train and with higher quality (less artefacts).  

To perform subjective assessment, 3 distinct levels of quality should be obtained as in the other GAN 

based solutions. In this case, the network used to obtain the images was the pretrained available 
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network, and to achieve different levels of quality, the target JPEG decoded quality was varied and 

consequently the difficulty of the artifact removal task. It is important to note that this model is trained 

on a limited dataset, namely with images with similar degradations. In this case, the quality factor was 

changed. The quality factor (QF) values used for the experiment and corresponding nomenclature used 

in the experiment are as follow:  

• ArNet Lo: 𝑄𝐹 = 7 

• ArNet Mi: 𝑄𝐹 = 14 

• ArNet Hi: 𝑄𝐹 = 21 

The JPEG compressed images were obtained using the Python PIL module (save function). These 

images are then fed to the pretrained ArNet and to the resulting reconstructed images is performed the 

cropping to fit the images to the test environment.  

4.2.4.  Benchmarking Image Compression: HEVC Intra 

To have a benchmark, the subjective test included images compressed with the High Efficiency Video 

Coding (HEVC) codec. This was included to provide a better understanding of HiFiC’s performance 

when compared with a traditional solution. In order to have a fair comparison between solutions the 

HEVC images were obtain for similar bitrates by varying the quality parameter (QP) as presented in 

Annex A.3. 

The software used to compress the images was the official implementation of Rec. ITU-T H.265 | 

ISO/IEC 23008-2 High efficiency video coding. This codec works over YUV format files and as such 

there is the need to convert the images from RGB (PNG format) to YUV colorspace and after 

compression the opposite conversion. This was done using the FFmpeg and running the following 

commands: 

• Conversion from PNG to YUV: 

fmpeg -hide_banner -f rawvideo -pix_fmt yuv444p10le -video_size <image size> -

i <input image path> -y <output image path> 

• Conversion from YUV to PNG: 

ffmpeg -hide_banner -i <input image path> -pix_fmt yuv444p10le -

vf scale=out_color_matrix=bt709 -color_primaries bt709 -color_trc bt709 -

colorspace bt709 -y <output image path> 

 

4.3. Subjective Test Methodology 

This section describes the subjective assessment methodology, namely the design of the test and user 
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interface as other important information, such as the grading scale. The design choices are based on 

the ITU-R Recommendation BT.500-14 [85] and some previous work on crowdsourcing subjective 

assessment. 

4.3.1.  Subjective test design 

Regarding the subjective quality test design, laboratory studies are nowadays well established due to 

their accuracy and repeatability. In this case, the laboratory environment can be well controlled, e.g. 

lighting conditions, distance to the screen, and all subjects screened and well trained. However, these 

tests are time consuming and often difficult to perform, especially considering the COVID pandemic 

situation. In contrast, crowdsourcing studies can be easily performed. Moreover, the reliability of 

crowdsourcing has been proven to be good enough, if outlier removal is performed [86]. Considering 

these reasons, a crowdsourcing quality evaluation procedure was used in this work.  

A pairwise comparison methodology was selected to achieve high discriminatory power and thus high 

accuracy. In this case, the 2-alternative forced-choice (2AFC) setting was used, where pairs of images 

are shown to the observers. After, the observers must select the image in each pair with higher quality. 

The main reasons for this choice are: 1) the selected GAN-models introduce small changes in the 

perceived quality which requires a method that allows users to discriminate these differences in an 

efficient and fast easy; 2) a pairwise comparison methodology is also easier (an faster) for the subjects 

to perform comparisons, which is rather suitable for a crowdsourcing experiment that is always remote 

without any close interaction.  

The pairwise comparison method is an indirect measurement, and thus quality scores cannot be 

obtained simply by averaging ratings as in other test designs, e.g. ITU-T double stimulus impairment 

scale test. An algorithm is required to compute the underlying quality scores values from the binary 

decisions of each subject, the methodology used in this experiment is described in 4.4.2.  

4.3.2.  Pairwise comparison test design 

The test material consists of 8 different reference images (𝑛) which were obtained using 10 different 

conditions for the GAN solutions under evaluation. These 10 conditions correspond to 3 levels of quality 

(𝑘) for each task (compression, super resolution, and artefact removal) and the original image. 

Moreover, a conventional solution for image compression, in this case, HEVC Intra was included as 

benchmark. 

To have a complete design of the subjective test, that is every image is compared with every other 

image, each subject would need to perform 𝐶2
𝑛×𝑘 = 3160 evaluations, which would lead to a test with 

an unacceptable long duration. To lower the number of comparisons and thus the time needed for a 

subject to perform the pairwise comparison test, an image is not compared to all other images and thus 

the test follows an incomplete design. The pairs of images compared were carefully selected as 
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described next: 

• Within content across test conditions: For each content (reference and all GAN processed 

images), all possible pairs are considered; this means that all images produced for different test 

conditions are compared among themselves for the same content, which allows to achieve 

accurate and reliable psychovisual scores. The number of comparisons associated are 𝑛 × 𝐶2
𝑘 =

360.  

• Cross-content across test conditions: Cross-content pairs can increase the accuracy of the 

obtained psychovisual scores and allow to have a single homogenous scale (with the same 

meaning) between different content [87] with the same meaning. Therefore, cross-content pairs 

were included to obtain more accurate psychometric scaling results and thus compare user 

opinion for different contents. These cross-content pairs were selected by fixing the quality level 

of the GAN solution under evaluation (compression, denoising and super-resolution) and 

comparing images with adjacent ID’s. This translates to (𝑘 − 1)(𝑘 − 2) = 72 additional pairs. 

• HEVC Intra benchmark: The HiFiC solution was compared against a conventional compression 

solution, namely, HEVC Intra. The pairs used compared each HiFiC image (24 in total) with a 

HEVC image obtained for similar bitrates. Which translates to 24 comparisons, leading to a total 

of 456 comparisons.  

Note that considering the incomplete design of the test, it is necessary to compute the psychovisual 

scores using a computational model which supports such incomplete design, i.e. that not all scores are 

available.  

Regarding the duration of the subjective test assessment, two sessions of maximum 30 minutes each 

were defined. This division was done to avoid subjects getting too fatigued to make accurate 

judgements. To avoid fatigue, the subjects are asked to take a break of at least 15 minutes if the session 

duration exceeds the recommended time. 

Regarding the display environment in which the subjective test is performed some restrictions were 

imposed. In this case, the screen resolution and size were restricted to a minimum of 1920x1080 and 

13 inches, respectively. 

4.3.3. Crowdsourcing platform 

A crowdsourcing test environment which supports such pairwise comparisons was developed to perform 

the subjective test and is publicly available (https://github.com/martafilipa/subjective_test). In this case, 

a crowdsourcing web platform with three main components was built: HTTP server, database, and 

clients with a common web browser. The architecture of such system is shown in Figure 37. The web 

server provides the graphical environment and any information that the subject needs to perform the 

test in the form of HTML pages. The server also collects any information transmitted by the subject and 

https://github.com/martafilipa/subjective_test


 

52 

 

connects to the database to store the data.  

 

Figure 37 – Architecture of the crowdsourcing web platform 

There are several frameworks that were used in the crowdsourcing web platform. In this case, due to 

their popularity, the server uses Node JS [88] and the Express framework [89]. The event-driven 

architecture of Node JS in conjunction with Express framework made the process of creating the 

crowdsourcing platform, easy and intuitive.  

In combination with the Node JS, a simple MongoDB database [90] was deployed. This database 

contained 3 collections:  

• Pairs collection: Serves the purpose of organizing the images in the test set and the pairs that 

would be shown during the evaluation. Also, includes information relating to the ID of the 

reference images in the pair, which is useful when restricting the viewing order to consecutive 

pairs containing the same reference image. This translates to a schema as shown in Figure 38 

(left). 

• Session collection: Stores the information regarding each subject, namely personal information 

(name, age, gender, and email) and viewing conditions (display size and resolution). It is also 

stored a specific order in which the test pairs shown to the subject and the judgments make in 

each comparison as well as the time-stamped of the binary decision. In Figure 38 (center), is 

depicted the schema that this collection follows.  

• Training collection: Includes the image pairs used for the training phase and the information 

relevant to the training phase, namely which image is the least influenced by the GAN 

introduced artefacts, which image is the correct choice in the context of this assessment. The 

schema of this collection is presented in Figure 38 (right). 
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Figure 38 – Schema of the collections used in the subjective assessment web application. Namely, 

pairs collection (left), sessions (center) and training (right). Where in bold are the keys of each 

collection. 

Regarding the user interface served from the server to the client it was developed using a template 

engine called Pug  [91]. This engine allows the deployment of HTML pages with complete abstraction 

from the content that would be served to the client. The HTML pages contain placeholders for the content 

that were filled accordingly by the server when responding to a given request from some subject. Finally, 

to organize and style the resources in the web page layouts it was used Cascading Style Sheets (CSS).  

The crowdsourcing web platform has the following flow: the subject connects by making a HTTP GET 

request to the root (/) and the server presents the HTML page shown in Figure 39. This page provides 

a description of the test and instructs the subject of the required steps. The client can select one of two 

options in this page: 

• Client is a new subject starting the subjective test: In the case of a new subject, the client is 

required to provide some relevant personal information: name, email, age, gender, and display 

size in inches. When the subject clicks on the start button a HTTP POST request is made and 

the information introduced by the subject along with the resolution of the screen (determined 

from a script in the HTML page) is added to a new entry in the database session collection. In 

this new entry, the server computes and stores the order in which the test images will be shown 

to the client. The order is pseudo-random and follows the restriction that consecutive pairs 

cannot contain the same reference material. The subject is identified by the server using a 

session cookie, which is also stored in the database and serves as a primary key.  

• Client is returning for a second session of the test: The other option provided by this page is to 



 

54 

 

resume a subjective test, namely to continue the evaluation of the subjective test. The client 

must provide the email used before, the server accesses the database with the session cookie 

and the test is resumed from the point where it was left.  

It is also important to note that there are some limitations imposed to prevent the test from starting. One 

of these limitations is regarding the screen resolution that is set to a minimum of 1920x1080p. This 

limitation guarantees that the images are presented side by side as intended by the test design, all parts 

fully visible. Another limitation regards to the minimum display size, set to 13 inches to ensure that 

displays which are considered difficult to observe the content degradations are not used. 

 

Figure 39 -Homepage of the subjective test web application 

When the subjective test starts, all subjects have to perform a small training phase, which serves the 

purpose of familiarize the subject to the web quality evaluation environment. The user interface of this 

phase, depicted in Figure 40 (left), has the same layout of the user interface of the evaluation phase. 

However, provides additional information regarding correctness of the choice having into consideration 

the context of the assessment and the quality of images presented. This forces the client to select the 

correct image (with better quality) before continuing. The goal is to allow to familiarize the subject with 

some of the artefacts that will find in future image (in the evaluation phase) and ensures that the subject 

is understanding correctly the interface (e.g. meaning of the buttons) and the goal of the subjective test.  

During the training or evaluation phase, the binary selection of an image can be done by clicking the 

corresponding button or by pressing the right or left arrows on the keyboard. The corresponding left 

arrow key is assigned to the option/button “A more natural than B” and the right arrow key to the “B more 
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natural than A” option. Both methods result in a HTTP POST /train message containing the decision 

made.  

During the training phase, the server accesses the training collection to check if the decision is correct. 

If correct, the next page with another pair of images is shown, otherwise the page remains the same 

and it is given a notification asking the client to repeat the evaluation. When the user reaches the end 

of the training phase, an informative page is shown that creates the appropriate separation between the 

training phase and the evaluation phase. When the user clicks the “Start Test” button the server 

responds with the first page of the evaluation phase.  

 

  

Figure 40 – Left, training phase user interface; right, information shown in the end of training phase 

The evaluation phase user interface shown in Figure 41 (left), is very similar behavior to the training 

user interface. In this case, the server connects to the database storing the decision and the associated 

timestamp to the session collection.  

At any point of the subjective test a subject can stop the test by simply closing the browser window. 

Later, a subject can return to the exact point in which the test was stopped by returning to the 

crowdsourcing web platform and introduce its user information (email address) in the home page. The 

POST / with a valid email address results in the server connecting to the database to access the correct 

state of the test session and then the server returns the page containing the pair of images that still need 

to be evaluated before the pause, effectively resuming the subjective test. 

  

Figure 41 - Test environment of the subjective test. On the left selection screen and on the right the 
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end of test screen. 

When the last image pair is shown to the subjects the final page is shown to the user. This page is 

merely informative and serves to inform the user that the test is finished, as illustrated in Figure 41 

(right). 

4.4. Data Processing: converting pairwise-comparison to 

psychometric scores 

This section describes all the processing made to the binary decisions data obtained from the subjective 

test. First, the process that eliminates unreliable observers is described, thus removing some bad 

decisions that could influence the final outcome. Then, the computation of the psychometric scores is 

described, this means the transformation of the binary decision data to reliable scores that represent 

the quality of each image in the subjective study. 

4.4.1. Outlier Detection  

Since subjects are not supervised, it is common practice to identify and remove any outliers. In this 

case, subjects are mostly University students and researchers which understand the importance of this 

study and thus have little incentive to submit malicious decisions. Nevertheless, outlier detection was 

applied after the crowdsourcing experiment was completed, especially to filter subjects which do not 

paid much attention or misunderstand the goal of the test. There are several outlier detection 

procedures, but all aim to check if the responses of some subject in the study agree with the rest of the 

subjects, while allowing some reasonable deviation.  

To perform outlier detection in single or double stimulus quality assessment tests, ratings of a subject 

are compared to the ratings of other subjects. However, outlier detection in pairwise comparison tests 

can be performed by only inspecting the decisions made by each subject [92]. In this case, to verify the 

reliability of a given subject, the transitivity rule is used [93] [94]. This rule states that for any given three 

stimuli 𝐴, 𝐵 and 𝐶 if 𝐴 is preferred against 𝐵 and 𝐵 is preferred against 𝐶, then the relation is transitive 

and 𝐴 should be preferred to 𝐶. Therefore, a subject breaks the transitivity rule when the the decisions 

made result in the connected triad that verifies (15), and is identified by Batagelj et al. [95] by 030C.  

(𝐴 > 𝐵) ∩  (𝐵 > 𝐶) ∩ (𝐶 > 𝐴) (15) 

In the context of the outlier detection for a pairwise comparison test, a subject constantly breaking the 

transitivity rule is considered as unreliable since its assessments are contradictory. To quantify the 

violation of the transitivity rule, it is employed a metric called Transitivity Satisfaction Rate (𝑅𝑖), also 

called consistency rate, defined by the frequency in which the rule was satisfied (16).  
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𝑅𝑖 = 1 −
𝑀𝑖

𝑁𝑖

 (16) 

, where 𝑀𝑖 is the number of the circular triads of (15) and 𝑁𝑖 is the number of all possible triads. To 

compute 𝑅𝑖 it was constructed an adjacency matrix from the raw data given by each user. These 

adjacency matrixes (𝐴𝑘) have dimensions 𝑁 × 𝑁, where 𝑁 is the number of the images (104) under 

evaluation and contain all the binary decisions made by the user. More specifically, the matrix is initially 

set to 0 in all entries. Then, during the construction process, every entry (𝑖, 𝑗) set to 1 symbolizes the 

choice of 𝑖 over 𝑗.Which means, if the subject 𝑘when comparing the images 𝑖 and j prefers 𝑖 over j in 

the matrix 𝐴𝑘 the entry (𝑖, 𝑗) would be set to 1. Due to the incomplete design of this experiment the 

adjacency matrixes are very sparse containing only the information that relates to the tested pairs. Pairs 

that compare images 𝑖 and 𝑗 that are not included in the test are represented in this matrix by having 

both entries 𝐴(𝑖, 𝑗) and 𝐴(𝑗, 𝑖) to 0, representing no preference for one over the other.  

These matrixes can be interpreted as directed graphs which will facilitate the computation of 𝑅𝑖. The 

python package [96] NetworkX is used to transform the adjacency matrixes in directed graphs and 

compute the 𝑅𝑖 values for all the subjects in the study. To transform the adjacency matrix in a directed 

graph is used the function DiGraph. Having the directed graph object created then it is applied the 

function triadic_census to the graph object with the purpose of counting the number of occurrences 

of triads described in (15). It is also created an auxiliary matrix that helps compute the number of possible 

triads 𝑁𝑖.  

As simple example of this process is presented in Figure 42 (left) a decision matrix (𝐴) that represents 

the comparisons made between images A, B, C, D and E. This decision matrix translates an incomplete 

design, similarly to our subjective assessment, where only 7 comparisons are made. This decision 

matrix denotes the preference of image 𝑖 over image 𝑗 by setting 𝐴𝑖𝑗 = 1 and 𝐴𝑗𝑖 = 0. Furthermore, if the 

pair (𝑖, 𝑗) is not compared in the assessment, then the matrix has 𝐴𝑖𝑗 = 0 and 𝐴𝑗𝑖 = 0. 

This matrix can be interpreted as a directed graph where the nodes are the test images 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 

are the nodes and the comparisons made are the edges. Moreover, the preferences displayed in the 

comparisons correspond to the direction of said edge. In Figure 42 (right) is shown the directed graph 

(𝐺) corresponding to the matrix (𝐴).  

The nodes 𝐵, 𝐷, 𝐸 follow the pattern described in (15), thus breaking the transitivity rule (𝑀𝑖 = 1). From 

𝐺is also possible to see that it is the only case of this cycles present, and that the number of possible 

decisions that break the transitivity rule are only 2 (𝑁𝑖 = 2).  

This leads to a transitivity satisfaction rate of 0.5. As the number of images and comparisons increases 

the visual analysis of these graphs becomes more and more daunting which motivates the usage of 

NetworkX library.  
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 A B C D E 

A - 1 1 0 0 

B 0 - 0 1 0 

C 0 0 - 0 0 

D 0 0 1 - 1 

E 0 1 1 0 -  

Figure 42 – Example of decision matrix (left) and corresponding directed graph (right)  

Any subject that presented a transitivity satisfaction rate lower than a threshold would be considered 

unreliable and thus an outlier. All data from associated from an outlier subject is then removed. In this 

work, the threshold applied was 0.8. For the crowdsourcing experiment performed in the context of this 

Thesis, no users were identified as outliers, since 𝑅𝑖 was always lower than the predefined threshold. 

The 𝑅𝑖 values are shown in Table 7. 

Table 7 - Transitivity Satisfaction Rate (𝑅𝑖 ) associated with the ratings (binary decisions) of each 

subject. 

User ID 𝑹𝒊 
 User ID 𝑹𝒊 

8 0,9875  13 0,947917 

16 0,986458  4 0,945833 

25 0,986458  29 0,945833 

22 0,984375  14 0,941667 

1 0,98125  0 0,934375 

11 0,98125  23 0,933333 

2 0,979167  10 0,93125 

17 0,975  27 0,927083 

5 0,972917  9 0,898958 

32 0,972917  21 0,892708 

19 0,971875  31 0,889583 

3 0,963542  6 0,869792 

20 0,963542  7 0,865625 

12 0,960417  15 0,865625 

30 0,959375  18 0,844792 

4.4.2. Psychometric Quality Scores Computation 

The results of the paired comparison (raw binary data) experiment are often stored in a comparison 

matrix 𝐶, in which element 𝑐𝑖𝑗 counts the number of times a stimulus (image) 𝑖 was selected as better 

than 𝑗. The objective is to convert such comparison matrix to interpretable quality scores, often called 

psychometric quality scores which are analogous to median opinion scores in double stimuli 

experiments. This can be performed by several methods available in the literature, where the two most 

widely used are based on the Thurstone [97] and the Bradley-Terry [98] observer models.  
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In other works [99], quality estimates are computed directly by summing up columns (or rows) of the 

comparison matrix. For example, quality scores can be computed as the average number of votes (wins 

in pairwise comparisons) that each stimuli received, more precisely, the number of votes of each image 

divided by the number of times the image was included in a pair and considered for evaluation. This 

approach is usually referred as vote counts or winning x. However, such simple method is not very 

suitable for incomplete experiment designs and may not produce the correct ranking. Moreover, it also 

lacks the ability to capture the perceptual magnitude of difference between the images in a principled 

way and the quality scores obtained are not in a scale that can be easily interpretable.  

To obtain more reliable quality scores, it is necessary to employ a probabilistic framework that provides 

psychometric scaling, i.e., scales the data in a way to describe the full extent of variation of the image 

quality.  

In this work, it was applied the Bradley-Terry Model, which given a set of past results involving elements 

𝑖and 𝑗 calculates the probability of 𝑖 winning against 𝑗. This model is extremely helpful since this 

subjective assessment had an incomplete design, and the winning frequency can be reliably used as 

subjective quality score. There are several variations of the Bradley-Terry model, in our analysis we use 

the implementation provided by the python library Choix [100] that follow the approach presented by 

Maystre et al. [101]. More specifically, it is used the function opt_pairwise that given a list of 

comparison results computes a Maximum Likelihood Estimation (MLE) for each element present in the 

comparisons. Furthermore, it maximizes the likelihood function (𝐿(𝑝)), presented in (17), where 𝑤𝑖𝑗 

corresponds to outcomes of the previous comparisons between elements 𝑖and 𝑗, and the probability of 

𝑖 or 𝑗 wining is given by 𝑝𝑖 and 𝑝𝑗, respectively.  

L(p) = ∑∑[𝑤𝑖𝑗 ln(𝑝𝑖) − 𝑤𝑖𝑗 ln(𝑝𝑖 + 𝑝𝑗)]

𝑛

𝑗

𝑛

𝑖

 (17) 

4.5. Test Results and Analysis 

This section provides an analysis of the data collected in the subjective assessment. Starting with a 

description of the subjects and the viewing conditions. Followed by an analysis of the winning frequency 

by content that will serve to identify potential bias towards specific contents. Then it is presented a 

winning frequency comparison between compression tasks, HiFiC and HEVC Intra, giving insight to the 

GAN’s performance when compared with a traditional solution. Next is shown a winning frequency 

comparison between the different GAN-based models. And, lastly, is presented psychometric scores, 

the MLE values, for each GAN-based model.  



 

60 

 

4.5.1. Statistical characterization of the subjects and viewing 

conditions 

A total of 31 subjects have participated in this study. Some subjects were experts (in image processing 

and compression) while others were non-experts; however, none had any prior contact with the test 

material. Regarding gender, 21 subjects were male and 10 were female, as illustrated by Figure 43 

(left). Regarding age, it ranges between 20 and 55 and follow the distribution shown in Figure 43 (right). 

  

Figure 43 – Distribution of the subjects’ gender (left) and age (right) 

Due to the crowdsourcing nature of the survey, the viewing conditions can vary from subject to subject, 

most importantly the display characteristics. In this test, each subject had to submit the size and 

resolution of the display before performing the test. These statistics are shown in Figure 44. As shown, 

many subjects performed the test with a display at least of 20 inches; however, displays of 15 inches 

were also very common. The most common display resolution is 1920x1080, which is the minimum 

enforceable by the quality assessment framework.  

  

Figure 44 - Distribution of the displays size (left) and resolution (right) 

Every subject had to perform 456 comparisons resulting in a total of 14 136 judgements collected during 

the study. Due to the high number of comparisons, the test was divided in two sessions. These 2 

sessions had durations between 20 to 30 minutes depending on the user’s response time and fatigue. 
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The average total test duration was approximately 58 minutes. From the response times gathered during 

the test, average response times were computed. These results are shown in Figure 45; most subjects 

take on average less than 7 seconds to make a judgment.  

 

Figure 45 – Distribution of observers’ average response time. 

4.5.2. Winning Frequency by Content 

The analysis of the results using the winning frequency as defined in Section 4.4.2. First, the subject’s 

preference for content is computed, in this case, the winning frequency by content, i.e., the vote count 

is obtained by grouping the assessments by reference image. If there is no bias towards the content of 

the images, then the winning frequency would be 0.5 for every reference image. In Figure 46, the results 

obtained for this experiment are shown, and, overall, the images fall very close to the 0.5 winning 

frequency that implies no preference for content. However, some images such as Transmission Towers 

(00008) and Woman (00012) present a considerably lower winning frequency when compared with other 

images. This means that the GAN-based solutions evaluated performed worse on these images when 

compared with others, i.e. the artifacts are more perceptually noticeable. The main focal point of the 

Transmission Towers image is a set of towers that contain a lot of small intricate details that can be 

challenging for the GAN-based solutions. Regarding the Woman image, the main focal point is a human 

face, which has a complex texture and detail that is difficult to generate. On the other hand, the Racing 

Car (00002) image presents a higher winning frequency suggesting a better performance of the GAN-

based solutions for this image. In this case, the image has some complex texture that can be hard to 

reproduce by the solutions, however those areas are not main focal point of the image, which might 

justify more lenient assessments.   
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Figure 46 – Distribution of the winning frequencies by image content.  

4.5.3. Winning Frequency in Compression 

The winning frequency for the test pairs with an HEVC Intra and a HiFiC image for a similar bitrate, as 

describe in, is presented in Figure 47. These results show that the HiFiC GAN-based image coding 

solution is largely preferred when compared with HEVC Intra. This means that the HiFiC solution 

produces images that are considered more natural than one of the best conventional image codecs.  

With the decrease in bitrate (Figure 47 right to left) there is an increase in preference for the images 

produced by the HiFiC solution. This highlights the fact that HiFiC has better performance for lower 

bitrates, where the generative capability of the decoder is more exploited. Also, the artefacts introduced 

by the GAN-based image coding solution do not make the naturalness of the image lower, especially 

compared to the usual blurring-type artifacts of HEVC Intra.  

   

Figure 47 – Comparison of the winning frequency between HiFiC and HEVC-Intra for the same target 

bitrate. Left: 0.06 bpp. Centre: 0.14 bpp. Right: 0.3 bpp.  
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In Table 8 is showcased an illustrative example of the impact of the blurring artefacts, produced by 

HEVC Intra, when compared with the artefacts that derive of the generative model. This is particularly 

noticeable when looking at the lower bitrate scenarios (Lo). These images also help illustrate the 

increase in the gap of perceived quality from lower bitrates to higher, as mentioned before.  

Table 8 - Side by side comparison the Train (00006) image compressed by HiFiC and HEVC Intra for 

similar scenarios.  

 HEVC HiFiC 

Lo 

  

Hi 

  

4.5.4. Winning Frequency by GAN-based Solution 

In this evaluation the winning frequency of each GAN-based solution is presented for all three models 

trained (Lo, Mi, Hi), including also the original reference image. The results are shown in Figure 48. The 

main difference between these models (Lo, Mi, Hi) regards the hyperparameter 𝜆, that controls the 

weight of the generative content in the training process and that increases from Lo to Hi. When more 
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weight is given to the adversarial loss the generative capabilities of the GAN based solution is 

augmented. As shown, there is an increasing preference for models with a larger weight for the 

adversarial loss, which can lead to the conclusion that the GAN-based discriminator should play a large 

role during training. Also, as expected, there is a large preference for the original reference image. 

For the ESRGAN solution, Figure 48 (left) there is a constant increase in winning frequency, 

approximately doubling as the model progress from Lo to Hi. Regarding the HiFiC solution the Figure 

48 (center) shows that although it follows the expected increase in winning frequency, the HiFiC Mi and 

HiFiC Hi models are more comparable with each other than with the HiFiC Lo model or the reference 

original image. Also, there is an average winning frequency of less than 40% for the reference image 

when compared with HiFiC images, which showcases the high performance of this solution. Finally, the 

ArNet solution winning frequency distribution presented in Figure 48 (right) highlights the low 

performance of the Lo model. This was expected since the model was trained for less severe 

degradations then the one used in ArNet Lo.  

   

Figure 48 - Comparison of the winning frequency of each model by solution. Left: ESRGAN. 

center:HiFiC. Right: ArNet.  

4.5.5. Psychometric scores by GAN-based Solution 

Besides the winning frequency analysis, it was also performed a scaling of the raw data using the Choix 

python library. More specifically, we obtained a penalised Maximum Likelihood Estimation (MLE) using 

the Bradley-Terry model. These results are presented in Figure 51 and shown grouping by images’ 

contents, also including the average MLE.  

Once again it is noticeable the increase of perceived quality (measured by psychometric scores) 

progressively from the Lo to the Hi model, for all GAN-based solutions. However, for the specific case 

of the Woman (00012) images obtained with HEVC-Intra coding it is visible that the psychometric scores 

of the Mi model breaks this tendency since it has a very low value. This comes from the fact that the 

HEVC codec was only introduced in the assessment by comparisons with HiFiC and had no votes 

leading the MLE value to be very low. In Figure 49 are presented the images obtained from the Woman 
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reference image using all the Mi model to further justify the MLE obtained does not translate the 

perceived quality of the HEVC intra Mi but is a result of the Bradley-Terry model adjusting the lack of 

victories of this image in the context of the study.  

Figure 49 - Comparison of the Woman (00012) image obtained with different Mi models. 

 

HiFiC Mi 

 

ESRGAN Mi 

 

ArNet Mi 

 

HEVC Intra Mi 

As shown in Figure 51, the compression solution HiFiC produced the more natural looking images. Once 

again, the variation in quality between the Mi and Hi models are very small, confirming the analysis 

made with the winning frequency data. The ArNet solution follows the HiFiC model when it comes to the 

naturalness of its images for the model Mi and Hi. However, for the Lo model the ESRGAN takes second 

place. The ArNet Lo produces images of poor quality as shown in the winning frequency analysis which 

is a fact also supported by psychometric scores. 
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Although, the ESRGAN has the worst image quality when compared with other GAN-based solution in 

this study, it is important to note that the 4x super resolution task is rather challenging when compared 

with other tasks in this study. In the Racing car (00002) and Transmission Towers (00008) images the 

ESRGAN produces very poor images which show the limitations of this solution in the reconstruction of 

small details. In Figure 50 is highlighted an example in which the ArNet model has better performance 

due to the difficulty of the super resolution task applied to the content of the Car (00002) image.   

Figure 50 - Comparison of the Car (00002) images obtained with ESRGAN Mi and ArNet Mi. 
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Figure 51 -Comparison between different solutions MLE by image of reference. 
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Chapter 5 

 

5. Quality Metric performance evaluation 

 

The human eye is the best judge of image quality. Subjective test assessments of image quality, if 

performed correctly, give a lot of insight to any solution performance. However, relying on subjective 

assessments to evaluate image quality in unfeasible since it is very time consuming and is always 

dependent on the participation of people outside the project. Which motivates the need to have objective 

quality metrics that can accurately quantify the image quality. In this chapter will be briefly presented a 

set of objective image quality metrics, will be described the procedure followed to apply these metrics 

and lastly will be presented an analysis of performance of the metrics. 

5.1. Quality Metrics 

In this section is provided a brief overview of some objective image quality metrics. The metrics studied 

in this chapter are divided into two sub-categories: Full-reference and no-reference. Full-reference 

metrics are metrics that rely on the unaltered image and use it evaluate the degradation on the tested 

image. On the other hand, no-reference metrics are blind to the expected image. 

5.1.1. Full-Reference Metrics 

There are a variety of full-reference metrics well known metrics, in this study we will focus only on the 

following:  

• Peak Signal-to-Noise Ratio (PSNR) – this metric is defined by the ratio of maximum possible 

pixel value of the image (𝑀𝐴𝑋𝐼) and the Mean Square Error (MSE), as depicted in (18). 

PSNR = 10 × log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) = 20 × log10 (

𝑀𝐴𝑋𝐼

√𝑀𝑆𝐸
) (18) 
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Being the MSE computed as presented by (19). Where 𝑚 and 𝑛 are the image’s width and 

height respectively. Also, 𝐼 denotes reference image and 𝐼′ refers to the altered image.   

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐼′(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (19) 

• Structural Similarity Index (SSIM) - Unlike the previously mentioned metric, the SSIM [102] is 

designed with the human visual system (HVS) in mind. Moreover, this measure explores the 

structural information of an image. That is, the aspects of an image that define its elements. 

And can be calculated using (20) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2

𝑥


𝑦
+ 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(
𝑥
2 + 

𝑦
2 + 𝐶1) (𝜎𝑥

2 + 𝜎𝑦
2 + 𝐶2)

 (20) 

Where 𝑥 and 𝑦 denote samples from the tested and reference images, respectively. And 𝜇 

represents the mean of the signals and 𝜎 the variance. Regarding the variables 𝐶1 and 𝐶2, they 

are constants and can be calculated as shown in (21). Where 𝐿is the dynamic range of the pixel 

values and the default values of constants 𝐾1 and 𝐾2 are 0.01 and 0.03 respectively. 

𝐶1 = (𝐾1𝐿)2

𝐶2 = (𝐾2𝐿)2𝑎𝑛𝑑𝐶3 = 𝐶2/2
 (21) 

• Multi-Scale Structural Similarity Index (MS-SSIM) – The MS-SSIM [103] provides an 

improvement over the SSIM metric by computing it on variations of the image resolution and 

viewing conditions.  

• Visual Information Fidelity (VIF) – The VIF [104] is another metric that explores the 

characteristics of the HVS in order to better quantify image quality. This metric exploits natural 

scene statistics (NSS) together with models for the distortion channel and the HVS. It computes 

the mutual information between the reference image and the reference image as altered by the 

HVS model to quantify the perceived information that the brain could under ideal conditions 

obtain. Similarly, calculates the mutual information between the reference image and the image 

affected by both the HVS model and the channel distortion model. 

5.1.2. No-reference Quality Metrics 

The no-reference images tested in this analysis were: 

• Blind/Referenceless Image Spatial QUality Evaluator (BRISQUE) – This metric employs a 

natural scene statics model to predict the severity of distortions present in a given image. That 

is to say that BRISQUE [105] measures the deviation between some local luminance signal’s 

statistics and the expected result using the natural image model. 

• Unified No-reference Image Quality and Uncertainty Evaluator (UNIQUE) – This metric 
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consists of a DNN trained to infer the image quality. The UNIQUE [106] network has an ResNet 

architecture and is trained on both synthetically and realistically distorted images.  

• hyperIQA – The hyperIQA [107] is a metric that also consists of a NN. However, the architecture 

of this NN differs from the simpler UNIQUE network. This NN first gets the semantic features 

and then makes quality predictions. It also utilizes multi-scale content to better describe the 

local and global distortions.  

5.2. Quality Metrics Performance Evaluation Procedure 

In order to evaluate the test set using the metrics mentioned previously we use a variety the python 

libraries. Moreover, we use the skimage.metrics [108] to compute the PSNR and SSIM values. The 

Sewar [109] package to obtain the values for MS-SSIM and VIF metrics.  

Regarding, the no-reference images the BRISQUE implementation used was the image-quality [110] 

package. The UNIQUE values were computed using the first party software. And for the hyperIQA metric 

it was also used the official software.  

5.3. Results and Analysis 

Having obtained all the previously mentioned metric values for all images in the assessment it is 

performed an analysis that will give insight to the correlation between objective and subjective quality 

scores.  

Starting with the full-reference metrics it was plotted, in Figure 52, each metric value as a function of the 

corresponding both the winning frequency and MLE. These plots can help highlight possible correlations 

between the objective and subjective scores. Moreover, if the sparsity of the scatter points is greater the 

correlation between the variable is probably lower.  

Metric Winning-Frequency MLE 

PSNR 
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SSIM 

  

MS-SSIM 

  

VIF 

  

Figure 52 -Wining frequency and MLE plots as function of full-reference metrics. 

From the visual data presented in Figure 52 is evident that the PSNR metric does not seem to be 

correlated to either the winning frequency or the MLE. The SSIM, MS-SSIM and VIF, look to be 

comparable in terms of sparsity. These metrics are an improvement when compared with the PSNR, 

however the correlation seems to be only moderate.  

The intuitive notions provided by the visual data when studying the correlation between two variables is 

clearly insufficient and, thus, the analysis continues by computing two different correlation metrics: the 

Pearson Correlation Coefficient (PCC) and the Spearman’s Rank Correlation Coefficient (SRCC).  

The PCC is widely used when it comes to quantifying correlations between 2 variables. This coeffienct 

is given by (22) where 𝑋 and 𝑌 correspond to each variable, and 𝜎 and 𝑐𝑜𝑣 is the standard deviation 

and covariance, respectively. Its values range from −1to 1, where −1 signifies to total negative 
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correlation and 1 total positive correlation.  

𝑃𝐶𝐶 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

 
(22) 

Even though SRCC is less used, it has some advantages when compared with the Pearson, namely the 

is much more resistant to the existence of outliers and data entry. This correlation metric is given by 

(23) where 𝑅(𝑋) and 𝑅(𝑌) correspond to the rank of each variable, and 𝜎 and 𝑐𝑜𝑣 is the standard 

deviation and covariance, respectively. 

𝑆𝑅𝐶𝐶 =
𝑐𝑜𝑣(𝑅(𝑋), 𝑅(𝑌))

𝜎𝑅(𝑋)𝜎𝑅(𝑌)
 

(23) 

The values of PCC and SRCC were computed for every full-reference metric and are shown in Table 9. 

Has suspected, the PSNR has a weak positive correlation to both winning frequency and MLE. Which 

means it cannot accurately reflect the quality of the GAN-based solutions, which was expected as per 

the motivation of this assessment.  

The SSIM, MS-SSIM and VIF are an improvement over the PSNR being barely moderate correlated to 

the subjective quality scores.  

Table 9 - Correlation coefficients for full-reference metrics. Left: PCC. Right: SRCC. 

Metric 
Winning-

Frequency 
MLE 

 

Metric 
Winning-

Frequency 
MLE 

PSNR 0.12468232379228833 0.2537244253360623 

 

PSNR 0.13491130896638656 0.36734943027672273 

SSIM 0.3371972436546484 0.40622694269718496 

 

SSIM 0.33821214312811415 0.5414047879493028 

MS-
SSIM 

0.46789373458246747 0.5207435643611026 

 
MS-

SSIM 
0.5131871916870002 0.6731424045067567 

VIF 0.5427486783070593 0.4603639832940975 

 

VIF 0.43608015080889506 0.6135602261815855 

Regarding the no-reference metrics the methodology was the same. Firstly, are obtained the plots of 

winning frequency and MLE with each metric. From the graphics shown in Figure 53 is evident that 

UNIQUE metric seems to be uncorrelated to the subjective scores. And BRISQUE and hyperIQA having 

apparently some correlation with the winning frequency and MLE, having BRISQUE a negative 

correlation and hyperIQA positive correlation. 

Metric Winning-Frequency MLE 
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BRISQUE 

  

UNIQUE 

  

hyperIQA 

  

Figure 53 - Wining frequency and MLE plots as function of no-reference metrics. 

Once again, the procedure is the same has the one used for the full-reference images and are calculated 

both PCC and SRCC scores. Analysing the correlation coefficients displayed in Table 10 is clear that 

BRISQUE is the best no-reference metric to evaluate this type of solutions since is the one with the 

highest correlation with the subjective scores. Nevertheless, this correlation is only moderate thus not 

constituting a very reliable assessment.  

Table 10 - Correlation coefficients for no-reference metrics. Left: PCC. Right: SRCC. 

Metric 
Winning-

Frequency 
MLE 

 

Metric 
Winning-

Frequency 
MLE 

BRISQUE -0.5857174895442 -0.3593243584985  
BRISQUE -0.585645492201680 -0.42889149685266 
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UNIQUE 0.114379791057289 -0.10306306383169  
UNIQUE 0.1355992920662703 -0.12975568121199 

hyperIQA 0.33866825570325 0.3731512515146372  
hyperIQA 0.3620766330363353 0.483697855542515 

Overall, the full-reference metrics showed better correlation coefficients when compared with the no-

reference metrics, like it was expected since the no-reference assessment is a more complex task.  

The results enforce the idea that there is a need to develop better suited metrics for solutions that utilize 

generative networks, being the no-reference metric of particular relevancy since some computer vision 

tasks might not allow for the use of a ground truth image by design.  
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Chapter 6 

 

6. Summary and Future Work Plan 

The focus of this Thesis was to design, perform and analyze the outcome of a subjective quality 

assessment test for GAN-based solutions and measure the performance of well-known objective image 

quality metrics. To perform the subjective assessment study, 3 GAN-based solutions for different image 

processing tasks, were first identified and selected. These solutions are ESRGAN, a solution that 

performs super resolution, HiFiC, an image compression solution and finally ArNet, an artefact removal 

solution. Then, a crowdsourcing pairwise comparison methodology was applied for the results obtained 

were processed in order to obtain a reliable quality measure. 

The results obtained provided information about the performance of each solution, namely the 

perceptual impact of increasing the generative capabilities of each GAN. It was found that that the 

naturalness of the GAN-derived images was found very satisfactory. Moreover, regarding image 

compression, the GAN based solution has outperformed the HEVC Intra codec very significantly.  

Regarding the objective metrics evaluated during this study, the results show the low correlation of 

almost every metric to the scores obtained for the subjective experiment.  Moreover, no-reference quality 

metrics have a lower correlation (and thus are less suitable) when compared to full-reference metrics.  

With the information collected from this study a dataset was built for image quality assessment 

consisting of generative images and the results of the subjective evaluation. Moreover, a crowdsourcing 

pairwise comparison platform was developed to allow pairwise comparison subjective studies. Both the 

dataset and the platform are relevant contributions of this Thesis and will be public available for future 

work. 

Considering the low performance of image quality metrics to evaluate GAN-based solutions, future work 

should address this limitation by: 1) study the performance of other objective quality metrics available in 

literature not shown in this Thesis and 2) development of a new quality metric with a higher performance 

for GAN-based solutions. 

 



 

76 

 

  



 

77 

 

References 

 

[1]  D. Chai and A. Bouzerdoum, “JPEG2000 image compression: an overview,” in Australian and 

New Zealand Conference on Intelligent Information Systems, Perth, Western Australia, Australia, 

November 2001.  

[2]  D. M. Cabrita and W. Godoy, “PNG Optimization Techniques Applied to Lossless Web Images,” 

IEEE Latin America Transactions, vol. 10, no. 1, pp. 1398-1401, January 2012.  

[3]  M. Marcellin, “An overview of JPEG-2000,” in Proceedings DCC 2000. Data Compression 

Conference, 2000.  

[4]  J. Li, S. Huang, R. He and K. Qian, “Image Classification Based on Fuzzy Support Vector 

Machine,” in International Symposium on Computational Intelligence and Design, Wuhan, China, 

October 2008.  

[5]  A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep Convolutional 

Neural Networks,” in Neural Information Processing Systems, Lake Tahoe, NV, USA, December 

2012.  

[6]  O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, 

M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” 

International Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, December 2015.  

[7]  I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and 

Y. Bengio, “Generative Adversarial Networks,” arXiv:1406.2661v1 [stat.ML] , June 2014. 

[8]  A. Radford, L. Metz and S. Chintala, “Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks,” arXiv:1511.06434v2 [cs.LG] , January 2016. 

[9]  M.-Y. Liu and O. Tuzel, “Coupled Generative Adversarial Networks,” arXiv:1606.07536v2 [cs.CV], 

September 2016. 

[10]  T. Karras, T. Aila, S. Laine and J. Lehtinen, “Progressive Growing of GANs for Improved Quality, 

Stability, and Variation,” arXiv:1710.10196v3 [cs.NE], February 2018 . 

[11]  T. Karras, S. Laine and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial 



 

78 

 

Networks,” arXiv:1812.04948v3 [cs.NE], March 2019. 

[12]  Stanford University, "CS231n Convolutional Neural Networks for Visual Recognition," [Online]. 

Available: http://cs231n.github.io/. [Accessed 10 October 2019]. 

[13]  R. Solomon and J. Leo van Hemmen, “Accelerating backpropagation through dynamic self-

adaptation,” Neural Networks, vol. 9, no. 4, pp. 589-601, June 1996.  

[14]  M. Mahsereci, L. Balles, C. Lassner and P. Hennig, “Early Stopping without a Validation Set,” 

arXiv:1703.09580v3 [cs.LG], June 2017. 

[15]  N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A Simple 

Way to Prevent Neural Networks from Overfitting,” Journal of Machine Learning Research, vol. 

15, no. 56, pp. 1929-1958, June 2014.  

[16]  W. Wang and J. Gang, “Application of Convolutional Neural Network in Natural Language 

Processing,” in International Conference on Information Systems and Computer Aided Education, 

Changchun, China, July 2018.  

[17]  R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich Feature Hierarchies for Accurate Object 

Detection and Semantic Segmentation,” in Conference on Computer Vision and Pattern 

Recognition, Columbus, OH, USA, June 2014.  

[18]  C. Szegedy et. all, “Going deeper with convolutions,” in Conference on Computer Vision and 

Pattern Recognition, Boston, MA, USA, June 2015.  

[19]  A. Soleimany, "Deep Learning for Computer Vision MIT 6.S191," January 2019. [Online]. 

Available: http://introtodeeplearning.com/2019/materials/2019_6S191_L3.pdf. [Accessed 21 

November 2019]. 

[20]  I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning,” MIT Press, November 2016. 

[21]  J. T. Springenberg, A. Dosovitskiy, T. Brox and M. Riedmiller, “Striving for Simplicity: The All 

Convolutional Net,” arXiv:1412.6806v3 [cs.LG], April 2015. 

[22]  S. Flores, “Variational Autoencoders are Beautiful,” April 2019. [Online]. Available: 

https://www.compthree.com/blog/autoencoder/. [Accessed 29 February 2020]. 

[23]  A. Dertat, “Applied Deep Learning - Part 3: Autoencoders,” October 2017. [Online]. Available: 

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798. 



 

79 

 

[Accessed 29 February 2020]. 

[24]  C. Doersch, “Tutorial on Variational Autoencoders,” arXiv:1606.05908v2 [stat.ML], August 2016. 

[25]  D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders,” Foundations and 

Trends in Machine Learning, vol. 12, no. 4, pp. 307-392, November 2019.  

[26]  K. Kurita, “Machine Learning Explained,” December 2017. [Online]. Available: 

https://mlexplained.com/2017/12/28/an-intuitive-explanation-of-variational-autoencoders-vaes-

part-1/. [Accessed 6 March 2020]. 

[27]  T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen and T. Aila, “Analyzing and Improving the 

Image Quality of StyleGAN,” arXiv:1912.04958v2 [cs.CV], March 2020. 

[28]  H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang and D. N. Metaxas, “StackGAN++: Realistic 

Image Synthesis with Stacked Generative Adversarial Networks,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1947-1962, August 2019.  

[29]  P. Isola, J. Zhu, T. Zhou and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial 

Networks,” in Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July 

2017.  

[30]  E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte and L. V. Gool, “Generative Adversarial 

Networks for Extreme Learned Image Compression,” in International Conference on Computer 

Vision, Seoul, Korea (South), November 2019.  

[31]  Y. Kwon and M. Park, “Predicting Future Frames Using Retrospective Cycle GAN,” in Conference 

on Computer Vision and Pattern Recognition, Long Beach, CA, USA, June 2019.  

[32]  T. Silva, “An intuitive introduction to Generative Adversarial Networks (GANs),” January 2018. 

[Online]. Available: https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-

adversarial-networks-gans-

7a2264a81394/?utm_content=buffere27d9&utm_medium=social&utm_source=twitter.com&utm

_campaign=buffer. [Accessed 16 March 2020]. 

[33]  A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta and A. A. Bharath, “Generative 

Adversarial Networks: An Overview,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 53-65, 

January 2018.  



 

80 

 

[34]  T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen, “Improved 

Techniques for Training GANs,” arXiv:1606.03498v1 [cs.LG], June 2016. 

[35]  J. Ballé, D. Minnen, S. Singh, S. J. Hwang and N. Johnston, “Variational image compression with 

a scale hyperprior,” arXiv:1802.01436v2 [eess.IV] , May 2018. 

[36]  Google, “WebP Image Format,” July 2019. [Online]. Available: 

https://developers.google.com/speed/webp. [Accessed 29 April 2020]. 

[37]  F. Bellard, “BPG Image format,” April 2018. [Online]. Available: https://bellard.org/bpg/. [Accessed 

28 April 2020]. 

[38]  M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv:1411.1784v1 [cs.LG], 

November 2014. 

[39]  H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, “Pyramid Scene Parsing Network,” in Conference on 

Computer Vision and Pattern Recognition, Honolulu, HI, USA, July 2017.  

[40]  K. He, G. Gkioxari, P. Dollár and R. Girshick, “Mask R-CNN,” in International Conference on 

Computer Vision, Venice, Italy, October 2017.  

[41]  E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte and L. V. Gool, “Generative Adversarial 

Networks for Extreme Learned Image Compression,” arXiv:1804.02958v3 [cs.CV] , August 2019. 

[42]  F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte and L. V. Gool, “Conditional Probability 

Models for Deep Image Compression,” in Conference on Computer Vision and Pattern 

Recognition, Salt Lake City, UT, USA, June 2018.  

[43]  I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom, J. Uijlings, S. 

Popov, A. Veit, S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik, D. Cai, Z. Feng, D. 

Narayanan and K. Murphy, “Open Images Dataset,” [Online]. Available: 

https://opensource.google/projects/open-images-dataset. [Accessed 4 April 2020]. 

[44]  Eastman Kodak Company, “ Kodak Lossless True Color Image Suite,” [Online]. Available: 

http://r0k.us/graphics/kodak/. [Accessed 3 April 2020]. 

[45]  D.-T. Dang-Nguyen, C. Pasquini, V. Conotter and G. Boato, “RAISE – A Raw Images Dataset for 

Digital Image Forensics,” ACM Multimedia Systems, Portland, Oregon, March 2015. [Online]. 

Available: http://loki.disi.unitn.it/RAISE/. [Accessed 4 April 2020]. 



 

81 

 

[46]  M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth and 

a. B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Conference 

on Computer Vision and Pattern Recognition , Las Vegas, NV, USA, June 2016.  

[47]  Z. Wang, J. Chen and S. C. H. Hoi, “Deep Learning for Image Super-resolution: A Survey,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, March 2020.  

[48]  W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue and Q. Liao, “Deep Learning for Single Image 

Super-Resolution: A Brief Review,” IEEE Transactions on Multimedia, vol. 21, no. 12, p. 3106–

3121, 12 December 2019.  

[49]  A. Ducournau and R. Fablet, “Deep learning for ocean remote sensing: an application of 

convolutional neural networks for super-resolution on satellite-derived SST data,” in Pattern 

Recogniton in Remote Sensing, Cancun, Mexico, December 2016.  

[50]  J. Lu and W. Liu, “Unsupervised Super-Resolution Framework for Medical Ultrasound Images 

Using Dilated Convolutional Neural Networks,” in International Conference on Image, Vision and 

Computing, Chongqing, China, June 2018.  

[51]  A. Singh and J. Singh, “Review and Comparative analysis of various Image Interpolation 

Techniques,” in International Conference on Intelligent Computing, Instrumentation and Control 

Technologies, Kannur, Kerala, India, July 2019.  

[52]  C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. 

Totz, Z. Wang and W. Shi, “Photo-Realistic Single Image Super-Resolution Using a Generative 

Adversarial Network,” in Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 

USA, July 2017.  

[53]  K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recognition,” in 

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June 2016.  

[54]  S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing 

Internal Covariate Shift,” in International Conference on International Conference on Machine 

Learning, Lille, France, July 2015.  

[55]  K. He, X. Zhang, S. Ren and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level 

Performance on ImageNet Classification,” in International Conference on Computer Vision, 

Santiago, Chile, December 2015.  



 

82 

 

[56]  W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert and Z. Wang, “Real-

Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural 

Network,” in Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June 

2016.  

[57]  K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image 

Recognition,” arXiv:1409.1556v6 [cs.CV], April 2015. 

[58]  M. Bevilacqua, A. Roumy, C. Guillemot and M.-L. Alberi Morel, “Low-Complexity Single-Image 

Super-Resolution based on Nonnegative Neighbor Embedding,” in British Machine Vision 

Conference , Guildford, Surrey, United Kingdom, September 2012.  

[59]  R. Zeyde, M. Elad and M. Protter, “On Single Image Scale-Up Using Sparse-Representations,” in 

International Conference on Curves and Surfaces, Avignon, France, June 2010.  

[60]  D. Martin, C. Fowlkes, D. Tal and J. Malik, “A database of human segmented natural images and 

its application to evaluating segmentation algorithms and measuring ecological statistics,” in 

International Conference on Computer Vision., Vancouver, BC, Canada, July 2001.  

[61]  C. Dong, C. C. Loy, K. He and X. Tang, “Image Super-Resolution Using Deep Convolutional 

Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp. 

295-307, February 2016.  

[62]  J. Huang, A. Singh and N. Ahuja, “Single image super-resolution from transformed self-

exemplars,” in Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, June 

2015.  

[63]  J. Kim, J. K. Lee and K. M. Lee, “Deeply-Recursive Convolutional Network for Image Super-

Resolution,” in Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 

USA, June 2016.  

[64]  J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical 

Image Database,” in Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 

June 2009.  

[65]  D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv:1412.6980v9 [cs.LG] 

, January 2017. 

[66]  K. N. Satone, A. S. Deshmukh and P. B. Ulhe, “A review of image compression techniques,” in 



 

83 

 

International Conference of Electronics, Communication and Aerospace Technology, Coimbatore, 

India, April 2017.  

[67]  E. Aldemir, G. Tohumoglu and M. A. Selver, “Performance Evaluation of Lossless Compression 

Algorithms for Medical Images,” in Signal Processing and Communications Applications 

Conference, Sivas, Turkey, April 2019.  

[68]  L. Galteri, L. Seidenari, M. Bertini and A. D. Bimbo, “Deep Universal Generative Adversarial 

Compression Artifact Removal,” IEEE Transactions on Multimedia, vol. 21, no. 8, pp. 2131-2145, 

August 2019.  

[69]  A. Odena, V. Dumoulin and C. Olah, “Deconvolution and Checkerboard Artifacts,” Distill, October 

2016. 

[70]  L. Galteri, L. Seidenari, M. Bertini and A. D. Bimbo, “Deep Generative Adversarial Compression 

Artifact Removal,” in International Conference on Computer Vision , Venice, Italy, October 2017.  

[71]  C. Yim and A. C. Bovik, “Quality Assessment of Deblocked Images,” IEEE Transactions on Image 

Processing, vol. 20, no. 1, pp. 88-98, January 2011.  

[72]  H. Sheikh, Z. Wang, L. Cormack and A. Bovik, “LIVE image quality assessment database release 

2,” April 2014. [Online]. Available: https://live.ece.utexas.edu/research/quality/subjective.htm. 

[Accessed 4 March 2020]. 

[73]  A. Foi, V. Katkovnik and K. Egiazarian, “Pointwise Shape-Adaptive DCT for High-Quality 

Denoising and Deblocking of Grayscale and Color Images,” IEEE Transactions on Image 

Processing, vol. 16, no. 5, pp. 1395-1411, May 2007.  

[74]  C. Dong, Y. Deng, C. C. Loy and X. Tang, “Compression Artifacts Reduction by a Deep 

Convolutional Network,” in International Conference on Computer Vision, Santiago, Chile, 

December 2015.  

[75]  P. Svoboda, M. Hradis, D. Barina and P. Zemcik, “Compression Artifacts Removal Using 

Convolutional Neural Networks,” arXiv:1605.00366v1 [cs.CV] , May 2016. 

[76]  L. Cavigelli, P. Hager and L. Benini, “CAS-CNN: A deep convolutional neural network for image 

compression artifact suppression,” in International Joint Conference on Neural Networks, 

Anchorage, AK, USA, May 2017.  



 

84 

 

[77]  T.-Y. Zitnick, L. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. Lawrence, 

“Microsoft COCO: Common objects in context,” in European Conference on Computer Vision, 

Zurich, Switzerland, September 2014.  

[78]  J. Ascenso and P. Akayzi, “JPEG AI Image Coding Common Test Conditions,” in ISO/IEC JTC 

1/SC 29/WG 1 N84035, 84th Meeting, Brussels, Belgium, July 2019.  

[79]  X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao and C. Change Loy, “ESRGAN: Enhanced 

Super-Resolution Generative Adversarial Networks,” in Proceedings of the European Conference 

on Computer Vision (ECCV) Workshops, 2018.  

[80]  A. Jolicoeur-Martineau, “ The relativistic discriminator: a key element missing from standard GAN,” 

in International Conference on Learning Representations, 2019.  

[81]  E. Agustsson and R. Timofte, “NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset 

and Study,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 

Workshops, 2017.  

[82]  F. Mentzer, G. D. Toderici, M. Tschannen and E. Agustsson, “High-Fidelity Generative Image 

Compression,” Advances in Neural Information Processing Systems, vol. 33, 2020.  

[83]  F. Mameli, M. Bertini, L. Galteri and A. Del Bimbo, “Image and Video Restoration and 

Compression Artefact Removal Using a NoGAN Approach,” in Proceedings of the 28th ACM 

International Conference on Multimedia, New York, NY, USA, 2020.  

[84]  J. Antic, J. Howard and U. Manor, Decrappification, DeOldification, and Super Resolution, 2019.  

[85]  International Telecommunication Union, “Methodology for the subjective assessment of the quality 

of television images,” ITU-R BT.500-14, October 2019.  

[86]  F. Ribeiro, D. Florencio and V. Nascimento, “Crowdsourcing subjective image quality evaluation,” 

in 2011 18th IEEE International Conference on Image Processing, 2011.  

[87]  E. Zerman, V. Hulusic and G. Valenzise, “Rafal Mantiuk„ Frederic Dufaux. The relation between 

MOS and pairwise comparisons and the importance of cross-content comparisons,” in Human 

Vision and Electronic Imaging Conference, IS&T International Symposium on Electronic Imaging 

(EI 2018), Burlingame, United, 2018.  

[88]  S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-Performance Network 



 

85 

 

Programs,” IEEE Internet Computing, vol. 14, pp. 80-83, 2010.  

[89]  OpenJS Foundation, “Express JS,” [Online]. Available: http://expressjs.com/. [Accessed 4 March 

2021]. 

[90]  MongoDB, Inc., “MongoDB,” [Online]. Available: https://www.mongodb.com/. [Accessed 4 March 

2021]. 

[91]  “PUG,” [Online]. Available: pugjs.org. [Accessed 9 March 2021]. 

[92]  J.-S. Lee, “Paired comparison for subjective multimedia quality assessment: Theory and practice,” 

in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2013.  

[93]  K.-T. Chen, C.-C. Wu, Y.-C. Chang and C.-L. Lei, “A Crowdsourceable QoE Evaluation 

Framework for Multimedia Content,” in Proceedings of the 17th ACM International Conference on 

Multimedia, New York, NY, USA, 2009.  

[94]  Z. Zhang, J. Zhau, N. Liu, X. Gu and Y. Zhang, “An improved pairwise comparison scaling method 

for subjective image quality assessment,” in 2017 IEEE International Symposium on Broadband 

Multimedia Systems and Broadcasting (BMSB), 2017.  

[95]  V. Batagelj and A. Mrvar, “A subquadratic triad census algorithm for large sparse networks with 

small maximum degree,” Social Networks, vol. 23, pp. 237-243, 2001.  

[96]  A. Hagberg, D. Schult and P. Swart, “NetworkX - Network Analysis in Python,” [Online]. Available: 

https://networkx.org/. [Accessed 7 June 2021]. 

[97]  L. Thurstone, “A law of comparative judgment,” Psychological Review, vol. 34, p. 273–286, 1927.  

[98]  R. A. Bradley and M. E. Terry, “Rank Analysis of Incomplete Block Designs: I. The Method of 

Paired Comparisons,” Biometrika, vol. 39, p. 324–345, 1952.  

[99]  H. Ko, D. Y. Lee, S. Cho and A. C. Bovik, “Quality Prediction on Deep Generative Images,” IEEE 

Transactions on Image Processing, vol. 29, pp. 5964-5979, 2020.  

[10

0]  

L. Maystre, “choix,” [Online]. Available: https://github.com/lucasmaystre/choix. [Accessed 4 July 

2021]. 

[10 L. Maystre and M. Grossglauser, “ChoiceRank: Identifying Preferences from Node Traffic in 



 

86 

 

1]  Networks,” in Proceedings of the 34th International Conference on Machine Learning, 2017.  

[10

2]  

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: from error 

visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, pp. 600-612, 

2004.  

[10

3]  

Z. Wang, E. P. Simoncelli and A. C. Bovik, “Multiscale structural similarity for image quality 

assessment,” in The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003, 

2003.  

[10

4]  

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Transactions on Image 

Processing, vol. 15, pp. 430-444, 2006.  

[10

5]  

A. Mittal, A. K. Moorthy and A. C. Bovik, “Blind/Referenceless Image Spatial Quality Evaluator,” 

in 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and 

Computers (ASILOMAR), 2011.  

[10

6]  

W. Zhang, K. Ma, G. Zhai and X. Yang, “Uncertainty-Aware Blind Image Quality Assessment in 

the Laboratory and Wild,” IEEE Transactions on Image Processing, vol. 30, pp. 3474-3486, 2021.  

[10

7]  

S. Su, Q. Yan, Y. Zhu, C. Zhang, X. Ge, J. Sun and Y. Zhang, “Blindly Assess Image Quality in 

the Wild Guided by a Self-Adaptive Hyper Network,” in 2020 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition (CVPR), 2020.  

[10

8]  

S. V. D. Walt, J. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart 

and T. Yu, “ scikit-image: Image processing in Python,” PeerJ, vol. 2, p. 453, 2014.  

[10

9]  

A. Khalel, “Sewar,” [Online]. Available: https://github.com/andrewekhalel/sewar. [Accessed 4 July 

2021]. 

[11

0]  

R. Ocampo, “Image Quality,” [Online]. Available: https://github.com/ocampor/image-quality. 

[Accessed 2021 July 7]. 

[11

1]  

H. Ko, D. Y. Lee, S. Cho and A. C. Bovik, “Quality Prediction on Deep Generative Images,” IEEE 

Transactions on Image Processing, vol. 29, p. 5964–5979, April 2020.  

[11

2]  

A. Jolicoeur-Martineau, “The relativistic discriminator: a key element missing from standard GAN,” 

arXiv preprint arXiv:1807.00734, 2018.  



 

87 

 

[11

3]  

K. Tsukida and M. R. Gupta, “How to analyze paired comparison data,” 2011. 

[11

4]  

M. P. Ortiz, R. Mantiuk and A. Mikhailiuk, “pwcmp,” [Online]. Available: 

https://github.com/mantiuk/pwcmp. [Accessed 2021 June 6]. 

[11

5]  

M. Perez-Ortiz and R. K. Mantiuk, A practical guide and software for analysing pairwise 

comparison experiments, 2017.  

[11

6]  

S. Su, Q. Yan, Y. Zhu, C. Zhang, X. Ge, J. Sun and Y. Zhang, “HyperIQA,” [Online]. Available: 

https://github.com/SSL92/hyperIQA. [Accessed 4 July 2021]. 

[11

7]  

P. Rao and L. Kupper, “Ties in Paired-Comparison Experiments: A Generalization of the Bradley-

Terry Model,” Journal of the American Statistical Association, vol. 62, p. 194–204, 1967. July 

2021.  

 

 

  



 

88 

 

 

 

 

Annexes 

 

A.1 Subjective Test Images Cropped Areas  

In Figures Figure 54 to Figure 61 are presented the crops performed on the test set as described in 

Section 4.1. and the corresponding cropping details used are shown in Table 11. 

 
 

Figure 54 - Cropped area on the Racing Car (00002) image (left) and final test image (right) 
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Figure 55 - Cropped area on Rotunda of Mosta (00004) image (left) and final test image (right) 

 
 

Figure 56 - Cropped area on Las Vegas Sign (00005) image (left) and final test image (right) 

 
 

Figure 57 - Cropped area on Train (00006) image (left) and final test image (right) 
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Figure 58 - Cropped area on Transmission Towers (00008) image (left) and final test image (right) 

 
 

Figure 59 - Cropped area on Port (00009) image (left) and final test image (right) 

 

 

Figure 60 - Cropped area on Curiosity Rover (00010) image (left) and final test image (right) 
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Figure 61 - Cropped area on Woman (00012) image (left) and final test image (right) 

 

Table 11 – Subjective test images cropping details- 

Input image 
Original 

size 
Crop size 

Top left corner point 
(x,y) 

Racing Car (00002) 2144x1424 940 × 880 (330, 200) 

Rotunda of Mosta (00004) 1808x1352 940 × 880 (150, 50) 

Las Vegas Sign (00005) 1336x872 940 × 872 (195, 0) 

Train (00006) 1544x1120 940 × 880 (235, 200) 

Transmission Towers 
(00008) 

1912x1272 940 × 880 (300, 150) 

Port (00009) 1976x1312 940 × 880 (260, 300) 

Curiosity Rover (00010) 2000x1128 940 × 880 (545, 185) 

Woman (00012) 1512x2016 940 × 880 (260, 290) 

A.2 Models Training Configuration Files 

The training configuration files representing the training details employed in the models trained during 

this study are presented in  

A.2.1 Configuration file of model ESRGAN Lo 

# general settings 
name: ESRGAN_X4_DIV2K_5e-2 
model_type: ESRGANModel 
scale: 4 
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num_gpu: 1  # set num_gpu: 0 for cpu mode 
manual_seed: 0 
 
# dataset and data loader settings 
datasets: 
  train: 
    name: DIV2K 
    type: PairedImageDataset 
    # dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub 
    # dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub 
    # (for lmdb) 
    dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb 
    dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb 
    filename_tmpl: '{}' 
    io_backend: 
      # type: disk 
      # (for lmdb) 
      type: lmdb 
 
    gt_size: 128 
    use_flip: true 
    use_rot: true 
 
    # data loader 
    use_shuffle: true 
    num_worker_per_gpu: 1 
    batch_size_per_gpu: 4 
    dataset_enlarge_ratio: 100 
    prefetch_mode: ~ 
 
  val: 
    name: Set14 
    type: PairedImageDataset 
    dataroot_gt: datasets/Set14/GTmod12 
    dataroot_lq: datasets/Set14/LRbicx4 
    io_backend: 
      type: disk 
 
# network structures 
network_g: 
  type: RRDBNet 
  num_in_ch: 3 
  num_out_ch: 3 
  num_feat: 64 
  num_block: 23 
   
 
network_d: 
  type: VGGStyleDiscriminator128 
  num_in_ch: 3 
  num_feat: 64 
 
# path 
path: 
  pretrain_network_g: ~ 
  strict_load_g: true 
  resume_state: ~ 
 
# training settings 
train: 
  optim_g: 
    type: Adam 
    lr: !!float 1e-4 
    weight_decay: 0 
    betas: [0.9, 0.99] 
  optim_d: 
    type: Adam 
    lr: !!float 1e-4 
    weight_decay: 0 
    betas: [0.9, 0.99] 
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  scheduler: 
    type: MultiStepLR 
    milestones: [50000, 100000, 200000, 300000] 
    gamma: 0.5 
 
  total_iter: 400000 
  warmup_iter: -1  # no warm up 
 
  # losses 
  pixel_opt: 
    type: L1Loss 
    loss_weight: !!float 1e-2 
    reduction: mean 
  perceptual_opt: 
    type: PerceptualLoss 
    layer_weights: 
      'conv5_4': 1  # before relu 
    vgg_type: vgg19 
    use_input_norm: true 
    range_norm: false 
    perceptual_weight: 1.0 
    style_weight: 0 
    criterion: l1 
  gan_opt: 
    type: GANLoss 
    gan_type: vanilla 
    real_label_val: 1.0 
    fake_label_val: 0.0 
    #lambda value 
    loss_weight: !!float 5e-2 
 
  net_d_iters: 1 
  net_d_init_iters: 0 
 
# validation settings 
val: 
  val_freq: !!float 5e3 
  save_img: true 
 
  metrics: 
    psnr: # metric name, can be arbitrary 
      type: calculate_psnr 
      crop_border: 4 
      test_y_channel: false 
 
# logging settings 
logger: 
  print_freq: 100 
  save_checkpoint_freq: !!float 5e3 
  use_tb_logger: true 
  wandb: 
    project: ~ 
    resume_id: ~ 
 
# dist training settings 

 

A.2.2 Configuration file of model ESRGAN Mi 

# general settings 
name: ESRGAN_X4_DIV2K_1e-2 
model_type: ESRGANModel 
scale: 4 
num_gpu: 1  # set num_gpu: 0 for cpu mode 
manual_seed: 0 
 
# dataset and data loader settings 
datasets: 
  train: 
    name: DIV2K 
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    type: PairedImageDataset 
    # dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub 
    # dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic/X4_sub 
    # (for lmdb) 
    dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb 
    dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb 
    filename_tmpl: '{}' 
    io_backend: 
      # type: disk 
      # (for lmdb) 
      type: lmdb 
 
    gt_size: 128 
    use_flip: true 
    use_rot: true 
 
    # data loader 
    use_shuffle: true 
    num_worker_per_gpu: 1 
    batch_size_per_gpu: 4 
    dataset_enlarge_ratio: 100 
    prefetch_mode: ~ 
 
  val: 
    name: Set14 
    type: PairedImageDataset 
    dataroot_gt: datasets/Set14/GTmod12 
    dataroot_lq: datasets/Set14/LRbicx4 
    io_backend: 
      type: disk 
 
# network structures 
network_g: 
  type: RRDBNet 
  num_in_ch: 3 
  num_out_ch: 3 
  num_feat: 64 
  num_block: 23 
   
 
network_d: 
  type: VGGStyleDiscriminator128 
  num_in_ch: 3 
  num_feat: 64 
 
# path 
path: 
  pretrain_network_g: ~ 
  strict_load_g: true 
  resume_state: ~ 
 
# training settings 
train: 
  optim_g: 
    type: Adam 
    lr: !!float 1e-4 
    weight_decay: 0 
    betas: [0.9, 0.99] 
  optim_d: 
    type: Adam 
    lr: !!float 1e-4 
    weight_decay: 0 
    betas: [0.9, 0.99] 
 
  scheduler: 
    type: MultiStepLR 
    milestones: [50000, 100000, 200000, 300000] 
    gamma: 0.5 
 
  total_iter: 400000 
  warmup_iter: -1  # no warm up 
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  # losses 
  pixel_opt: 
    type: L1Loss 
    loss_weight: !!float 1e-2 
    reduction: mean 
  perceptual_opt: 
    type: PerceptualLoss 
    layer_weights: 
      'conv5_4': 1  # before relu 
    vgg_type: vgg19 
    use_input_norm: true 
    range_norm: false 
    perceptual_weight: 1.0 
    style_weight: 0 
    criterion: l1 
  gan_opt: 
    type: GANLoss 
    gan_type: vanilla 
    real_label_val: 1.0 
    fake_label_val: 0.0 
    #lambda value 
    loss_weight: !!float 1e-2 
 
  net_d_iters: 1 
  net_d_init_iters: 0 
 
# validation settings 
val: 
  val_freq: !!float 5e3 
  save_img: true 
 
  metrics: 
    psnr: # metric name, can be arbitrary 
      type: calculate_psnr 
      crop_border: 4 
      test_y_channel: false 
 
# logging settings 
logger: 
  print_freq: 100 
  save_checkpoint_freq: !!float 5e3 
  use_tb_logger: true 
  wandb: 
    project: ~ 
    resume_id: ~ 
 
# dist training settings 

A.2.3 Configuration file of model HiFiC Lo (𝒓𝒕𝟎. 𝟎𝟔𝒃𝒑𝒑) 

"""Configurations for HiFiC.""" 

 
from . import helpers 

 
_CONFIGS = { 

    'hific': helpers.Config( 

        model_type=helpers.ModelType.COMPRESSION_GAN, 

        lambda_schedule=helpers.Config( 

            vals=[2., 1.], 

            steps=[50000]), 

        lr=1e-4, 

        lr_schedule=helpers.Config( 

            vals=[1., 0.1], 

            steps=[500000]), 

        num_steps_disc=1, 

        loss_config=helpers.Config( 

            # Constrain rate: 

            #   Loss = C * (1/lambda * R + CD * D) + CP * P 

            #       where 

            #          lambda = lambda_a if current_bpp > target 
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            #                   lambda_b otherwise. 

            CP=0.1 * 1.5 ** 1,  # Sweep over 0.1 * 1.5 ** x 

            C=0.1 * 2. ** -5, 

            CD=0.75, 

            target=0.06,  # This is $r_t$ in the paper. 

            lpips_weight=1., 

            target_schedule=helpers.Config( 

                vals=[0.20/0.14, 1.],  # Factor is independent of target. 

                steps=[50000]), 

            lmbda_a=0.1 * 0.409 * 2. ** -5, 

            lmbda_b=0.1 * 2. ** -1, 

            ) 

        ), 

    'mselpips': helpers.Config( 

        model_type=helpers.ModelType.COMPRESSION, 

        lambda_schedule=helpers.Config( 

            vals=[2., 1.], 

            steps=[50000]), 

        lr=1e-4, 

        lr_schedule=helpers.Config( 

            vals=[1., 0.1], 

            steps=[500000]), 

        num_steps_disc=None, 

        loss_config=helpers.Config( 

            # Constrain rate: 

            #   Loss = C * (1/lambda * R + CD * D) + CP * P 

            #       where 

            #          lambda = lambda_a if current_bpp > target 

            #                   lambda_b otherwise. 

            CP=None, 

            C=0.1 * 2. ** -5, 

            CD=0.75, 

            target=0.06,  # This is $r_t$ in the paper. 

            lpips_weight=1., 

            target_schedule=helpers.Config( 

                vals=[0.20/0.14, 1.],  # Factor is independent of target. 

                steps=[50000]), 

            lmbda_a=0.1 * 2. ** -6, 

            lmbda_b=0.1 * 2. ** 1, 

            ) 

        ) 

} 

 

def get_config(config_name): 

  if config_name not in _CONFIGS: 

    raise ValueError(f'Unknown config_name={config_name} not in ' 

                     f'{_CONFIGS.keys()}') 

  return _CONFIGS[config_name] 

 

def valid_configs(): 

  return list(_CONFIGS.keys()) 

A.3 HEVC-Intra Configurations 

In Table 12 is presented the quality parameter used for each level of target quality.  
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Table 12 -Values of quality parameter used when compressing images with HEVC-Intra for each 

target quality.  

ID Lo Mi Hi 

00001 43 41 37 

00002 40 37 33 

00003 41 37 32 

00004 40 38 34 

00005 40 37 31 

00006 43 40 36 

00007 36 33 28 

00008 40 38 34 

00009 44 42 39 

00010 39 35 30 

00011 41 39 34 

00012 38 36 32 

00013 40 37 32 

00014 40 37 32 

00015 40 37 33 

00016 37 33 29 

 


