
Glass-Box Quality Estimation for Neural Machine
Translation

João Pinto Correia de Moura

Thesis to obtain the Master of Science Degree in

Mechanical Engineering

Supervisors: Prof. André Filipe Torres Martins
Prof. João Miguel da Costa Sousa

Examination Committee

Chairperson: Prof. Carlos Cardeira
Supervisor: Prof. André Filipe Torres Martins

Members of the Committee: Prof. Bruno Emanuel da Graça Martins
Dr. Fabio Natanael Kepler

October, 2021

ii

Para o meu avô Álvaro, colega Engenheiro.

iii

iv

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

v

vi

Acknowledgments

First, I would like thank my supervisors Prof. João Sousa, and especially Prof. André Martins; his

support and meaningful discussions provided me with the most rewarding intelectual experience I had

in my time at IST, and kindled my passion for Artificial Intelligence, which I’m sure will accompany me

for the foreseeable future. This was also paramount for the success of my work, and I could not have

asked for better guidance.

I had the opportunity to develop this thesis in an incredibly dynamic environment at Unbabel, a

company for which I have deep appreciation, and regard as a beacon of talent and innovation in Portugal.

I want to especially thank Fabio Kepler, Miguel Vera, and Daan van Stigt, ever-present to share their

knowledge, and who also strongly collaborated and guided me through the process of publishing a

scientific paper with our findings.

Additionally, I am very grateful for the group of amazing people at IST who I worked with during all

these years, and that I am honoured to call my friends. My time here would not be the same without

them, and I hope to see them flourish for many years to come in their professional and personal lives.

Last, but absolutely not least, a big thank-you to my parents and brothers, who relentlessly strove to

make my path possible, and without whom no good thing in life would be as rewarding; to my girlfriend,

who has supported me unwaveringly through thick and thin, and everyday helps me become a better

person; and to my late grandfather, my role model, who I would have given everything to share the news

of my graduation with.

vii

viii

Resumo

A Estimação de Qualidade de Tradução tem-se tornado cada vez mais relevante nos últimos anos

para o desenvolvimento de aplicações de Tradução Automática prácticas, com avanços recentes no

campo de Processamento de Linguagem Natural a desbloquear novas abordagens à tarefa. Apesar

das grandes melhorias que os sistemas de Estimação de Qualidade mais avançados demonstram, a

maior parte negligencia uma fonte de informação promissora: o sistema de tradução sob avaliação é

tratado como uma caixa negra, e apenas o seu input e output são considerados.

Nesta tese, introduzimos um método que integra informação extraı́da dos mecanismos internos de

modelos de Tradução Automática, no processo de treino de modelos de Estimação de Qualidade -

ao qual chamamos Estimação de Qualidade de Caixa de Vidro. Primeiro, com o objectivo de extrair

esta informação interna, aproveitamos métodos de quantificação de incerteza existentes baseados em

Monte Carlo dropout, os quais publicações recentes demonstraram levar à criação de representações

relevantes à estimação de qualidade de traduções automáticas. Depois, propomos uma arquitectura de

modelo original baseada no padrão Predictor-Estimator, acompanhada de um método que permite inte-

grar as representações extraı́das no processo de treino deste mesmo modelo. Finalmente, realizamos

uma análise empı́rica, baseada em seis pares de linguagens no contexto da WMT Quality Estimation

Shared Task, com resultados animadores. A análise do modelo proposto que levamos a cabo sugere

várias direções para exploração e melhorias no futuro.

Palavras-chave: Aprendizagem Profunda, Processamento de Linguagem Natural, Estimação

de Qualidade, Quantificação de Incerteza

ix

x

Abstract

Quality Estimation has become increasingly relevant in the last few years for practical and confidence-

aware Machine Translation applications, with recent advancements in the field of Natural Language Pro-

cessing having enabled new approaches to the task. Despite the great improvements that state-of-the-

art Quality Estimation systems boast, most overlook a promising source of information: the translation

system under evaluation is treated as a black box, with only its input and output being regarded.

In this thesis, we introduce a method which allows for the integration of information extracted from

the internal mechanisms of Machine Translation models, into the training process of Quality Estimation

models, which we call Glass-Box Quality Estimation. First, in order to extract this internal information,

we leverage existing model uncertainty quantification methods based on Monte Carlo dropout, which

recent work has shown to yield features highly relevant to estimating the quality of machine translated

text. We then propose a novel model architecture based on the Predictor-Estimator framework, and an

accompanying method to integrate the extracted features into the model’s training procedure. Finally, we

provide an empirical evaluation based on six language pairs in the context of the WMT Quality Estimation

Shared Task, with encouraging results. Our analysis of the proposed model suggests various directions

for future improvements.

Keywords: Deep Learning, Natural Language Processing, Quality Estimation, Uncertainty

Quantification

xi

xii

Contents

Acknowledgments . vii

Resumo . ix

Abstract . xi

List of Tables . xv

List of Figures . xvii

Acronyms . xix

1 Introduction 1

1.1 Motivation and Related Work . 2

1.2 Contributions . 6

1.3 Document outline . 6

2 Concepts and Related Work 9

2.1 Neural Networks . 9

2.1.1 Feedforward NN’s . 9

2.1.2 Recurrent Neural Networks . 13

2.2 Neural Machine Translation . 14

2.2.1 Encoder-Decoder Architecture . 14

2.2.2 Transformers . 18

2.2.3 Pre-trained Contextualized Embeddings . 20

2.3 Quality Estimation . 23

2.3.1 Sentence and Word-Level Task . 23

2.3.2 Predictor-Estimator Architecture . 26

xiii

3 Glass-Box Quality Estimation 31

3.1 Glass-Box QE Features . 31

3.1.1 Feature Description . 32

3.1.2 Implementation of Feature Extraction . 34

3.2 QE Model Implementation . 35

3.2.1 XLM-Roberta . 36

3.2.2 Base Kiwi System . 37

3.2.3 Integrating Glass-Box Features . 39

4 Experiments and Results 43

4.1 Dataset and Model Resources . 43

4.2 Evaluation Metrics . 44

4.3 Experimental Results . 46

4.3.1 Glass-Box Features . 46

4.3.2 Glass-Box QE . 47

5 Conclusions 51

5.1 Summary of Contributions . 51

5.2 Future Work . 52

5.2.1 Explore NMT Corpus Size Influence . 52

5.2.2 Feature Granularity and Integration . 52

5.2.3 End-to-end Training . 52

Bibliography 55

xiv

List of Tables

1.1 Data involved in both the word and sentence-level QE tasks. Poorly translated words

are labelled BAD and correct words labelled OK ; HTER is calculated from the number of

operations needed to correct - or post-edit (PE in table) - a translation, and Z-standardized

DA is derived from direct human judgements. These quality scores are described in detail

in section 2.3.1. 2

4.1 Pearson correlation (r) between the employed glass-box features and human DA’s for

every language pair (validation set) - best results are in bold. 46

4.2 Task 1 results on the validation and test sets for all language pairs in terms of Pearson’s

r correlation. Systems in bold were officially submitted to the 2020 Quality Estimation

Shared Task. (*) Lines with an asterisk use LASSO regression to tune ensemble weights

on the validation set, therefore their numbers cannot be directly compared to the other

models. 48

4.3 Task 2 word and sentence-level results on the validation and test sets. Results for OPENKIWI-

BASE and KIWI-GLASS-BOX were obtained from a single model trained by multi-tasking on

the 3 different subtasks. (*) Baseline results on the validation set were not made available

by the organizers. 49

xv

xvi

List of Figures

1.1 Schematic of QE system, trained to predict word labels and/or sentence scores, with no

access to reference translations. 2

2.1 The exclusive-or (XOR), a non-linear function that returns 0 when its two binary inputs

are both 0 (false) or both 1 (true). No line can be fitted to this data without incorrectly

classifying some data points. Figure taken from Spears et al. [60]. 10

2.2 A Multi-Layer Perceptron with one single hidden layer, the simplest of Feed-Forward Neu-

ral Networks. Grey neurons are a part of the hidden-layer, while in red is the ouput neuron.

. 10

2.3 The ReLU activation function. 12

2.4 Simplified representation of a recurrent neural network. 13

2.5 Simplified representation of the RNN-based encoder-decoder architecture. 15

2.6 Simplified representation of the RNN-based encoder-decoder, based on the attention im-

plementation of Bahdanau et al. [4]. 17

2.7 The Transformer model architecture. Figure taken from Vaswani et al. [70]. 19

2.8 (Left) Scaled Dot-Product Attention. (Right) Multi-Head Attention, consisting of several

attention layers running in parallel. Figure taken from Vaswani et al. [70]. 20

2.9 High level pre-training and finetuning procedures for BERT. The same pre-trained model

parameters are used to initialize models for different down-stream tasks. During fine-

tuning, all parameters are updated (classification heads + BERT). [CLS] is a special sym-

bol added at the beginning of every input example, and [SEP] is a special separator token

(e.g. separating two consecutive segments of text). Figure taken from Devlin et al. [14]. . 22

2.10 Next Sentence Prediction (NSP) and Masked Language Modeling (MLM) tasks in BERT’s

pre-training. Embeddings output by BERT can be used in a straightforward way for clas-

sification. 23

2.11 Simplified schematic of the Predictor-Estimator architecture; the Predictor is pre-trained

on parallel data (generally more available), and then the whole system - Predictor + Esti-

mator - is trained on QE data. 26

xvii

3.1 Confidence histograms (top) and reliability diagrams (bottom) for a 5-layer LeNet (left) and

a 110-layer ResNet (right) on CIFAR-100. Figure taken from Guo et al. [23]. 32

3.2 Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-

100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100

increases the amount of data by several orders of magnitude, in particular for low-resource

languages. Figure taken from Conneau et al. [12]. 36

3.3 Architecture of the Kiwi-Base baseline system as implemented using the OpenKiwi frame-

work. 38

3.4 Autoencoder architecture; the model is trained to reconstruct input X by creating X’. This

requires the learning of an efficient input representation - or code - at the bottleneck. . . . 40

3.5 Architecture of the ”Quality Estimator” module modified to include glass-box features. . . 40

xviii

Acronyms

DL Deep Learning.

DNN Deep Neural Network.

GPU Graphics Processing Unit.

MT Machine Translation.

NLP Natural Language Processing.

NMT Neural Machine Translation.

QE Quality Estimation.

RNN Recurrent Neural Network.

SMT Statistical Machine Translation.

XLU Cross-Lingual Language Understanding.

xix

xx

Chapter 1

Introduction

The beginning of the 21st century has seen developments in the field of Artificial Intelligence (AI) at

an unprecedented rate. It has ever since revolutionized several industries, as the adoption of its methods

to solve specific problems increases, and AI-based systems become part of everyday digital life.

The use of Deep Neural Networks (DNN) in particular has seeped into virtually every field of scientific

study [1]. Although these were invented in their simplest form in the late 50’s [53], it was only in 2009

that advances in parallel computing hardware and software enabled the feasibility and practicality of

their training in large-scale applications [8], namely with the novel use of Graphics Processing Units

(GPU’s) for the purpose [51]. This method was consolidated in 2012, when AlexNet [36] was trained

on such accelerated hardware to classify images from the popular dataset ImageNet using a deeper,

wider network than ever before [13]. This resulted in a large performance increase in comparison to

former traditional Machine Learning and Computer Vision approaches, becoming an achievement widely

regarded as the inflection point in academic interest in Deep Learning (DL) [2].

Recently, the field of Natural Language Processing started enjoying its ”ImageNet moment”. The

invention of the Transformer model in 2017 (originally applied to Machine Translation) [70] has been fu-

eling the development of very useful models, which achieve state-of-the-art performance and robustness

in NLP tasks, leveraging large amounts of data through novel unsupervised learning approaches. Most

importantly, the fact that most of these models are made available for research purposes, exploited by

the use of transfer learning techniques, has empowered and democratized Research & Development in

many different downstream tasks.

Machine Translation (MT) in specific has enjoyed a big transformation, both as a research field and

industry. The replacement of Statistical MT (SMT) by Neural MT (NMT) is widespread in commercial

settings, and translation engines are now almost ubiquitously powered by Deep Neural Networks. The

improvement of translation quality obtained from these models, more user-friendly tools and higher

demand for translation has universalized the use of MT models in the translation industry; this setting

brings added importance to the development of solutions for a different set of problems, such as:

• which segments need revision by a human translator?

• how much effort will be needed to fix a poorly translated segment?

• which one of many translations created by different models should be picked as the best one?

1

This thesis’ work will address and explore methods that can be used to answer the question stated

above.

1.1 Motivation and Related Work

MT evaluation methods have typically relied on manually produced references obtained from profes-

sional translators, in order to assess translation quality; such methods compare the translations gener-

ated by an MT model to one or many provided reference translations. Various MT evaluation metrics

have been proposed over the years, such as BLEU [46], NIST [15], METEOR [5], TER [58], and more

recently COMET [52], PRISM [69] and BERTScore [73]. These are in general computationally inex-

pensive to calculate, and enable MT technology research and development, by providing the frequent

evaluation of models that is needed in order to assess their improvement over previous iterations.

However, one of the shortcomings of these methods is that they cannot be used to provide quality

scores when a reference translation is not available; this is above all impractical in a live translation

scenario.

MT Quality Estimation (QE) is the task that addresses this situation. It consists of predicting the

quality of a system’s output for a given input, without any information or reference about the expected

output, therefore being aimed at MT models in use [62]. This type of system can be designed for

prediction at different granularity levels, from word or sentence, to paragraph or document. Table 1.1

shows an example of the type of data involved in the QE task, as well as the desired predictions - OK

and BAD tags for word-level, HTER or DA score for sentence-level (these metrics will be detailed in

section 2.3.1). Figure 1.1 shows a high-level schematic of a QE model’s functioning.

Source And it’s SO HORRIBLE when I do not get that hour.

MT Y es HORRIBLE cuando no consigo esa hora.

QE (word) OK OK BAD BAD OK BAD OK OK OK

PE (reference) Y es TERRIBLE si no tengo esa hora.

QE (sentence) HTER =33.3 % ‖ Z-standardized DA =-0.42

Table 1.1: Data involved in both the word and sentence-level QE tasks. Poorly translated words are labelled BAD and correct
words labelled OK ; HTER is calculated from the number of operations needed to correct - or post-edit (PE in table) - a translation,
and Z-standardized DA is derived from direct human judgements. These quality scores are described in detail in section 2.3.1.

QE System

Source

MT

OK/BAD Labels

Sentence Score

Figure 1.1: Schematic of QE system, trained to predict word labels and/or sentence scores, with no access to reference transla-
tions.

2

The first efforts in estimating MT quality were mainly focused on assessing how confident the MT

model was in its output translation. This task was called Confidence Estimation (CE) [7, 50, 19], and

differed from what is understood today as QE in that it made indispensable the availability of the MT

model, and the usage of features internal to it. Being based on information obtained from structures

inherent to a specific MT model implementation, these are refered to as glass-box features. On the

other side of the spectrum, black-box features are those independent of any MT model, and extracted

solely from source and target sentences, therefore treating the MT system opaquely.

Systems that leverage the latter have the advantage of being useful even when inspection of MT

models’ internals is not a possibility, which is often the case. With the increase of interest in this task,

fostered and supported by the many insights gathered in annual editions of the WMT Shared Task on

Quality Estimation1 [9] which started in 2012 - and also its practical applicability - the usage of black-

box, linguistics-based features was explored more heavily in the literature. The QuEst framework [63]

proposed 17 quality indicators - some glass-box, some black-box - that became for a long period of time

the standard baseline features for the task, leveraged and adapted in many pieces of further research.

On a somewhat distinct direction, works such as [59] and [56] used features based on the comparison

between the translation being evaluated and pseudo-references - translations generated by different MT

models, for the same input.

Generally across this era of QE research, in order to predict a sentence score, sets of the aforemen-

tioned features - glass-box, black-box or both - were used to train a classification or regression model,

depending on what type of score was being predicted. Several supervised learning algorithms were

used for this purpose, perhaps the most commonly applied being those based on Support Vector Ma-

chines [59, 25, 6]. Other algorithms such as regression trees [59] and partial least squares [61] were

put to use. Earlier work focused on predicting ”OK ”/”BAD” labels or integer scores from 1-4/1-5, but

later the focus shifted to predicting a score in the range of [0,1], meant to reflect the post-editing effort

needed to correct a machine translated sentence, in order for it to match the semantic meaning of a

reference translation(s). This measure is the Human-targeted Translation Error Rate, or HTER [58], and

it has since then become the standard prediction target and quality indicator on a sentence level, due

to its stronger correlation with human judgements, when compared to contemporary counterparts like

TER, BLEU and METEOR.

Regardless of the features used, all work in this line of research was bound in common by one

aspect: the hand-crafting of the features. The choices made on how to engineer individual features,

or what features to use for a given task, are part of a completely empirical process, mainly based on

linguistic intuition at an initial stage, proceeded by trial and error and feature selection. This process is

also task dependent, and therefore posits added research effort for every new or updated NLP task. In

2011, Collobert et al. [11] was one of the first works to propose the use of Neural Networks to address

the problem in a radically different way. Instead of using engineered features derived from text and

1http://www.statmt.org/wmt12/quality-estimation-task.html

3

thought to be relevant for a given task, the system was fed raw text and learned internal representations

- or embeddings - in an end-to-end fashion, iteratively trained by backpropagation [55] to be relevant

to the task. In fact, the authors argued that the benchmark features commonly used were indirect

measurements of the relevance of these representations which, discovered by the learning procedure,

were more general than any of the benchmarks.

The success achieved by this method sparked a research direction more focused on improving

the NN architectures that learned the embeddings, and less influenced by prior linguistic knowledge.

QUETCH [35] proposed a window-based Feed-Forward NN architecture predominantly based on the

one proposed in Collobert et al. [11]. In this word-level approach, the input to the NN is a bilingual con-

text window, comprised of a target context window centered on the target word, and a source context

window centered on the corresponding source word, from a source sentence that has been ”aligned”

- or mapped back, on a word or multiword basis - to the target sentence; this was obtained using a

word alignment tool [16]. Advancing on this work, Patel and M [47] developed an approach based on

Recurrent Neural Networks (RNN)’s. Despite putting the same bilingual context window to use, the lever-

aging of RNN’s allowed for the modelling of sequential dependence between output QE labels. Martins

et al. [41] proposed three variations of QUETCH, with slight changes to the bilingual context window:

a convolutional model, a bidirectional RNN model, and a convolutional RNN model. Additionally taking

advantage of linguistic knowledge, they ensembled all three models, along with a feature-enriched linear

model trained on hand-crafted features.

The bilingual context windows used as inputs across these contributions involved the need for an

additional Statistical MT module, given that a word alignment component was additionally required.

In a seminal publication by Kim et al. [33], the Predictor-Estimator architecture was proposed as the

first entirely neural approach to QE, a modification of the RNN encoder-decoder [10]) widely used for

translation. Here, Predictor and Estimator address two different tasks, and are therefore separately

trained with different training data. The Predictor component is pre-trained with the task of correctly

predicting each word in a target sentence, conditioned on all other source and target words (except for

the one being predicted). A bidirectional bilingual RNN is employed for this purpose, and parallel data is

fed to the model for training. In the process, the Predictor learns internal representations relevant to the

task; these are then extracted, neurally combined into QE Feature Vectors (QEFV’s), and used to train

the Estimator component, with the objective of estimating translation quality at different granularity levels.

It is shown that the QEFV’s approximate the role of the transferred knowledge from word prediction to

quality estimation. Although modified in terms of the neural components used, the Predictor-Estimator

architecture continues to be the state-of-the-art for both word and sentence level QE.

The invention of the Transformer model in 2017 by Vaswani et al. [70] had a technical paradigm

shifting effect. Akin to RNN’s, the Transformer is effective at modelling sequences and dependencies

within them. However, it strongly leverages a self-attention mechanism, which removes the need for

recurrence; this factor allows for sequences to be processed in parallel (i.e. all words at the same

4

time) instead of sequentially, and enables great improvements on the long-range dependency modelling

capabilities of RNN’s. Originally proposed for the task of NMT, the Transformer is composed of an

Encoder - which creates a high-dimensional bidirectional representation of the source sentence -, and

a Decoder - which takes this representation and tries to correctly predict the target sentence word by

word.

Taking notice of the sentence-level representational power of the Transformer Encoder, Devlin et al.

[14] proposed the BERT model short after, a standalone modified Encoder. Like the original, its at-

tention mechanism is allowed to attend to all words in a sequence, but is instead pre-trained using a

”masked language model” (MLM) objective. Inspired by the Cloze Task [68], this consists of randomly

masking some of the tokens from the input, and training the model to predict what words correspond to

the masks. In addition, a second objective of ”next sentence prediction” was used, which trains text-pair

representations jointly with the MLM task. One of the most emphasised observations from this work

was the state-of-the-art performance achieved by fine-tuning BERT on a variety of different NLP tasks,

by adding a simple task-specific final classification layer. More impressively, performance reduction was

shown to be almost negligible whether BERT was fine-tuned along with the new classification layer on

the downstream task, or not updated at all, and just used for its word and sentence embeddings, already

independently valuable due to the vast amount of data used in pre-training. Their quality solidified the

transformer encoder/MLM objective pair as the state-of-the-art and tool of choice for creating language

representations, launching a research direction that has since seen many proposals of BERT descen-

dants: multilingual versions of BERT, models with optimizations/add-ons to the original training objec-

tives, benefiting from architectural changes which improved performance [38, 39], and most interestingly

for QE, models that are trained on a vast set of languages [37, 12]. In these publications, it is shown

that training on many languages at the same time greatly benefits the model’s power to learn common

representations between them, resulting in improved performance when putting the model to use on

downstream cross-lingual tasks (especially benefiting ones where low-resource languages are involved,

for which little data is available), while at the same time maintaining a performance level comparable to

monolingual models, tested on monolingual tasks.

The characteristics of these models and the multi-lingual richness of their embeddings made them

an obvious choice to serve as the Predictor in a Predictor-Estimator QE architecture, and used for QE

by leveraging transfer-learning. As of this writing, said approach has proved to be the most performant

method of doing Quality Estimation, being a part (in varying levels) of winning submissions in the last

two editions of the WMT Quality Estimation Shared Task (Kepler et al. [31], Hu et al. [29]).

In parallel with supervised QE’s improvements, unsupervised QE saw interesting advancements on

its own front, hosted by the revisiting of glass-box QE features. Leveraging uncertainty quantification

methods, Gal and Ghahramani [18] and Fomicheva et al. [17] showed that features engineered from

the mechanisms internal to state-of-the-art Transformers, constitute a rich source of information on

translation quality, competitive with supervised QE methods. These newly proposed features are much

5

different to the glass-box features used in the Confidence Estimation era, both because of the process

used to extract and engineer them, but also due to the neural structures that originate them, much

deeper and denser in information than their Statistical MT ancestors.

This thesis addresses the topic of combining the richness of the aforementioned features, extracted

from NMT models, with the current state-of-the-art in supervised QE, described as Glass-Box QE hence-

forth. We hypothesize that doing so will inform the QE model’s training process with valuable information

on the state of the NMT model at translation time, making the former more accurate and robust.

1.2 Contributions

The main contributions of this thesis are the following:

• We introduce a new approach to Glass-Box QE, where internal NMT model features are used to

enrich the training of QE models. Its goal is to provide information about the NMT model’s state

upon translation of the input data fed to the QE model, increasing the latter’s overall accuracy and

robustness. This approach is based on the features presented in Fomicheva et al. [17], shown to

be highly relevant for the estimation of sentence-level translation quality scores.

• We apply the proposed method on different QE models using a novel transformer-based Predictor-

Estimator architecture [33], which leverages pre-trained Language Models as the Predictor com-

ponent, and applying various architectural variations. This is implemented as an extension of the

OpenKiwi framework [32].

• We perform a comprehensive analysis of the proposed method’s effects on the task of predict-

ing word and sentence-level scores, namely on the accuracy and robustness of models across

different languages.

Additionally, as a part of this thesis we participated in the Quality Estimation Shared Task and pub-

lished a paper (Moura et al. [43]) on the 2020 Conference on Machine Translation (WMT), using the

developed models and method on part of our submission, and obtaining leaderboard results.

1.3 Document outline

This dissertation starts by addressing the theoretical foundations that will serve as required back-

ground to contextualize our proposed work. Chapter 2 begins with a brief introduction of Neural Net-

works (Section 2.1). Then, the task of Neural Machine Translation is described in Section 2.2, along

with the most relevant neural models and architectural patterns that have historically or presently been

used in approaches to the problem (Sections 2.2.1, 2.2.2 and 2.2.3). The last Section (2.3) focuses on

the Quality Estimation task itself, and details the roots of the current state-of-the-art approach to QE, the

Predictor-Estimator architecture (Section 2.3.2).

6

Having established the necessary background, Chapter 3 explains the core of our developed ap-

proach. Section 3.1 explores the nature of the glass-box features extracted from NMT models, and how

this extraction is implemented; Section 3.2 describes the design considerations and architecture of the

developed neural model, as well as the way glass-box features are integrated into its training process.

All experiments we conducted, and their corresponding results are revealed in Chapter 4. Details on

the dataset and NMT models used are included in Section 4.1, and a description of the metrics chosen

to evaluate/compare our model to others is in Section 4.2. The results we obtained for all experiments

are presented, and their meaning is discussed in Section 4.3.

Finally, Chapter 5 introduces future considerations for improvements and possible experiments upon

the work we have developed, as well as the most important takeways from this dissertation.

7

8

Chapter 2

Concepts and Related Work

In this chapter, we present the key theoretical concepts used throughout this work. First, we provide

a brief introduction to neural networks. Second, the problem of Machine Translation will be explained,

as well the current paradigm and state-of-the-art of the approaches used to solve it. This will help lay

the context for the third and final section, which concerns the Quality Estimation problem definition, and

the approach we have used as basis for developing this work.

2.1 Neural Networks

Neural networks are defined in this section as a means of mapping a given input x ∈ RN to an output

y, which will vary depending on the objective and can take on many forms. The focus will be set on the

simplest of neural networks, where information flows in only one direction, and there are no feedback

connections - feedforward neural networks -, and on networks where such loops do occur - recurrent

neural networks.

2.1.1 Feedforward NN’s

Machine learning differs from traditional algorithms in that, instead of having rules defined upfront

that will outline how to perform a task, a model that defines a set of possible rules is used, and improved

by means of an optimization method by using given sample data (or ”training data”). Typically, the

optimization strategy is to minimize the error between the models’ predictions and what is observed

in that data. The simplest example of this is a linear model, where some output y is obtained for a

given input x = (x1, ..., xN) by means of affine transformation, i.e. the dot product between the input

vector x and a vector of weights w, added a bias term b. Each weight represents the relevance of its

corresponding input element to the final output. This is represented by:

y(x,w) =

N∑
i−1

wixi + b (2.1)

This is the basic computation that each individual neuron in a neural network is responsible for.

However, the model described above is utterly incapable of solving non-linear problems, a space where

9

many interesting and complex problems lay. One of the typical examples of this, is the exclusion-or

boolean operator (XOR) depicted in Figure 2.1, which no linear model can solve. Intuitively we can see

that it is not possible to accurately separate the data points in classes (0 or 1) by drawing a straight line.

Figure 2.1: The exclusive-or (XOR), a non-linear function that returns 0 when its two binary inputs are both 0 (false) or both 1
(true). No line can be fitted to this data without incorrectly classifying some data points. Figure taken from Spears et al. [60].

The simplest form of neural network that can solve this type of problems - depicted in Figure 2.2 - is

the Multi-Layer Perceptron (MLP), a class of Feed-Forward NN’s.

∑

∑

∑

b11

b21

b31

w1,11

w1,21

w1,31

w2,21

w2,11

w2,31

w3,21

w3,11

x1

x2

x3

g1()

g1()

h11

h21

h31

∑
b12

w12

w22

w32

g2()
y

w3,31

g1()

Figure 2.2: A Multi-Layer Perceptron with one single hidden layer, the simplest of Feed-Forward Neural Networks. Grey neurons
are a part of the hidden-layer, while in red is the ouput neuron.

It consists of multiple layers of neurons, interconnected in a feed-forward way; this means that con-

nections between nodes do not form a cycle, there are no feedback connections, and information moves

in only one direction. The difference between these and the linear model we have just described, is that

the former includes one or more intermediate hidden layers between input and output, consisting of the

same affine transformation in 2.1.1, but followed by a non-linear function g(.), also called an activation

function. The intermediate outputs computed in hidden layers are called hidden states, and typically

represented by h. An MLP with M hidden layers can be formally described as:

10

h1 = g(W 1·x+ b1)

hm = g(Wm·hm−1 + bm)

y = g(W y·hm + by)

(2.2)

The choice of activation function has a large impact on the capability and performance of a neural

network, given that it will transform the output of every neuron within it. Different activation functions may

be used in different parts of the model, but typically all hidden layers have the same activation function,

and a different one is used for the output layer depending on what type of prediction is required by the

model. For example, for a binary classification task - a problem where a neural network would require

one output neuron to make a prediction - , the sigmoid function is commonly used, defined as:

σ(x) =
1

1 + exp(−x)
. (2.3)

Given that this function yields a real value between 0 and 1, the output can be taken as a probability, and

a threshold of 0.5 can be defined to separate both classes. However, if our problem had more than one

class we needed to identify (multi-class classification), we would require a probability distribution over

the N classes. The Softmax activation function is used for this purpose, defined as:

softmax(z)n =
exp zn∑N
j=1 exp zj

, (2.4)

where z is the vector of raw, unnormalized outputs from the neural networks - or logits. This activation

function yields a probability for each of the existing classes, and guarantees that the sum of those

probabilities is 1. We can then easily take the approach of choosing the predicted class, by evaluating

the highest probability attributed to any class.

The choice of activation function to be used in the hidden layers is approached quite differently,

given that there is no requirement to normalize the outputs of each layer; in this context, the choice is

made based on the function’s observed performance on a specific task and network architecture. Many

activation functions exist with different characteristics; the Rectified Linear Unit (ReLU) [44] is the most

commonly used one, yielding the input value untouched, if that input is larger than 0. Figure 2.3 depicts

ReLU’s formal definition and graphical plot.

11

Figure 2.3: The ReLU activation function.

Training

The way to employ neural networks to a given problem is to train them on that problem. Training

generally means updating the weights of neurons, described in the previous paragraphs, guided by a

loss function optimization objective. The purpose of this loss function is to estimate how well a neural

network is modelling the data it is presented with, and is commonly some function of the difference

between a true value for an instance of data, and the value estimated by the neural network.

The choice of loss function is of high relevance to the solution itself, as it will be the single measure

of error used to update the network weights in the right direction. Different functions have typically been

used for different problems, and as we will see, two of them are of greater importance to this thesis,

namely:

• the Mean Squared Error Loss, used in regression problems. It is defined by 1
N

∑N
n=1(Yn − Ŷn)2,

where N is the number of samples in the dataset or batch, Ŷn is the model’s prediction for that

sample, and Yn is the true value;

• the Cross-Entropy Loss, used in classification problems; it is defined by 1
N

∑N
n=1

∑C
c=1 yn,c log(pn,c),

where C is the number of existing classes, pn,c is the predicted probability that sample n is of class

c, and yn,c is a binary indicator (0 or 1) of whether class c is the correct classification for sample n.

After choosing a loss function, the network weights need to be iteratively updated. The standard

method to do so is by making use of the backpropagation algorithm [54]. In short, this algorithm prop-

agates the error obtained upon estimation, from the output to the input layer. The loss function is first

derived with respect to each individual weight; the magnitude of each weight’s gradient is then used

to update it’s value, in a way defined by a chosen optimization technique - for which there are various

choices, with different advantages.

12

2.1.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN’s) are another type of NN, which hold great interest and applica-

bility for language tasks due to their recurrent nature. RNN’s can process inputs of different sizes - such

as sentences -, while not changing the size of the model. This type of model is capable of capturing

relationships between components of the input - such as words in a sentence. Their recurrency comes

from the fact that, at each time step (an RNN processes each of the input’s components in sequence),

the hidden state computed in the previous timestep is fed back to the network, together with the current

input. In this configuration, hidden states and output are defined as:

ht = gh
(
W xxt +W hht−1 + bh

)
yt = gy (W yht + by)

(2.5)

,where gh and gy are non-linear activation functions applied to hidden states or the output respectively.

In Natural Language Processing problems, the output space is typically discrete, therefore gy is usually

the softmax function (Equation 2.4).

For context and ease of understanding, Figure 2.4 depicts a simplified schematic of an RNN.

h0 h1 h2 hM

y1 y2 yM

. . .

x1 x2 xM

W	h W	h W	h

W	x W	x W	x

W	yW	yW	y

Figure 2.4: Simplified representation of a recurrent neural network.

It is the capacity to pass information from previous inputs, to be incorporated and passed to next

states, which gives RNN’s the ability to capture long term dependencies in data.

Training

Just like the feed-forward network we previously described, RNN’s need to be trained by iteratively

updating their weights, based upon the optimization of a specific loss function. The mechanism to do

this is similar, although in this case - due to the RNN’s recurrent nature - the loss needs to also be

13

propagated throughout all time steps. This is done with backpropagation through time [72].

A side-effect of using this adapted backpropagation is that, as we use the chain rule on the derivative

of the loss, effectively multiplying gradients, the gradient gets smaller at each time step; for longer sen-

tences, it can become so small that the network’s weights will effectively not change. This phenomenon

is called the vanishing gradient problem [27].

Various basic RNN units have been devised to overcome this problem, of which the most commonly

used is the Long Short-Term Memory (LSTM) unit [28]. In short, this unit introduces a memory cell ct,

which is capable of maintaining the gradient constant across the time steps of backpropagation.

2.2 Neural Machine Translation

Machine Translation is the task of automatically converting source text in one language, to text in

another language. This has historically been one of the most challenging problems in AI, due to the

fluidity and ambiguity of human language; in this domain, inputs do not have a clean mapping to outputs.

Classically, rule-based systems were used to create translations, which were replaced by statistical

methods during the 1990’s. Recently, deep neural networks have become the ubiquitous way to solve

the problem for various reasons, achieving state-of-the-art performance on the task. The field is today

addressed as Neural Machine Translation (NMT).

Formally, the goal of NMT is to translate a sequence of words from the source language X =

x1, x2, ..., xM , into a sequence of words in a target language, Y = y1, y2, ..., yT , by learning to model

the conditional probability:

P (Y|X) =

T∏
t=1

P (yt|y1, y2, ..., yt−1,X) (2.6)

2.2.1 Encoder-Decoder Architecture

The most successful approach in tackling the problem of Neural Machine Translation is the encoder-

decoder architecture [30, 10, 4, 66]. The concept of this architecture - which is independent of the

components/networks used to accomplish it - consists of a two-step process: first, an encoder compo-

nent outputs a vector, which encodes the full source language sentence; then, a decoder component

uses this sentence representation, and outputs the target sentence word by word, conditioned at each

step by the source sentence representation, and all the previous words it has created.

Until recently, RNN’s with LSTM’s as unit cells were the typical networks used for this approach; the

encoder RNN would take all the source words as input, and its final hidden state would be taken as the

representation of the sentence. The decoder RNN would then use it as its initial hidden state, to start

generating the target sentence. Figure 2.5 depicts an RNN-based encoder-decoder architecture, taking

14

in a source sentence of size M , and outputting a sentence of size P .

he0 …

x1 x2 xM

he1 he2 hd0 hd1 hd2 hdP

y1

…

<s>

heM

yP-1

Encoder Decoder

Output sentence

Target sentenceInput sentence

𝑦$1 𝑦$2 𝑦$P

Figure 2.5: Simplified representation of the RNN-based encoder-decoder architecture.

A prominent issue with this architecture is that the final hidden state of the encoder has to hold

information about the entire source sentence, no matter how long it might be. For longer sentences,

this becomes exceedingly inefficient, and paired with the fact that some words might need to be trans-

lated into others that are on opposite ends of source and target sentences, the long range dependency

between them might not be learned.

This problem is addressed by the attention mechanism, introduced by Bahdanau et al. [4]. Attention

is a soft alignment model, which allows the decoder to partially attend to source words at each decoding

step. It both replaces the need for a rich hidden state to contain all the information about the source

sentence , and provides a better context for the prediction of each word in the target sentence.

Encoder

As previously described, the encoder’s objective is to capture the meaning of the source sentence.

Using attention with the approach devised in [4], that objective is extended to creating contextualized

embeddings of all words in the source sentence, which will then be weighted by the attention mechanism

to be used in decoding. Given that the encoder has access to the entire source sentence, and with the

objective of getting context on both sides of each word instead of only on previous words (as explained

to this point), the authors use a bidirectional RNN [57]. This entails using one RNN to process words in

their normal direction - from left to right in the case of English -, and a second RNN to process words in

reverse order. The resulting hidden states created for each word by each network are then concatenated

to form a word embedding contextualized on both directions. Specifically, hidden states at position m of

the source sentence are described as

−→
h e
m = RNN

(−→
h e
m−1,E[xm]

)
←−
h e
m = RNN

(←−
h e
m+1,E[xm]

)
,

(2.7)

15

with E[xm] being the embedding of word xm of the input sentence. The bidirectional word embedding is

described by

hem =
[←−
h e
m,
−→
h e
m

]
. (2.8)

The final hidden state of the encoder (hem for a sentence with M words) is used as initial hidden state

for the decoder hd0.

Decoder

The decoder’s objective is to produce the target sentence, word by word, until a end-of-sentence

token is output . With an exclusively RNN-based decoder, that would mean initializing it with the sentence

embedding produced by the encoder, and then sequentially generating every word in the target, at each

step feeding the model with both the previous hidden state hdt−1, and the embedding vector for the last

generated word E[yt−1]. When leveraging the attention mechanism, at each time step the decoder will

also take into consideration a context vector ct, so that the hidden state is described by:

hdt = RNN
(
hdt−1, ct,E[yt−1]

)
(2.9)

At each time step, the output logits yt can be used to obtain a probability distribution over the entire

considered vocabulary, using the softmax (Equation 2.4). When dealing with sequential outputs such as

text, choosing at each time step the word that was attributed the highest probability (in a greedy manner)

may not be the optimal solution, and in fact can unexpectedly lead to a poor ending translation. Because

of this, the output word is usually chosen according to a decoding strategy; we will not detail these

strategies in the context of this thesis, as they are not directly relevant to the task of Quality Estimation.

Attention

As explained in the previous section, the attention mechanism allows the decoder to enrich its pre-

diction at each time step with relevant information from the source sentence, namely by making use of

the context vector ct. This vector is a weighted sum of the hidden states computed by the encoder for

each source word , defined as:

ct =

M∑
m=1

αtmhem, (2.10)

with M being the number of words in the source sentence, and α the normalized vector of attention

scores, defined by:

16

αtm =
exp (ztm)∑M
k=1 exp (ztk)

(2.11)

This is in fact the softmax equation (Equation 2.4), which shows us that the attention scores are

nothing more than a probability distribution over all the source words, with each of its values effectively

representing the importance of its corresponding source word m to the output decoding step t.

The scores ztm are given by an alignment model, which models how important source words next to

position m are for the output decoding at t. The approach developed in [4] uses a feedforward neural

network for this purpose, which concatenates the previous decoder hidden state hdt−1 with the hidden

state for each source word he
m, to obtain each value ztj = f(he

m,h
d
t−1). Figure 2.6 depicts how the

attention mechanism is incorporated into a standard RNN-based encoder-decoder introduced in the

above Section.

Encoder

ℎ!" …

…ℎ!"

xMx3x2x1

ℎ%& ℎ'& ℎ(& ℎ)&

∑

𝛼*,%
𝛼*,' 𝛼*,(

𝛼*,)

ytyt-1

ℎ!"#$ ℎ!$…

…
ct

Decoder

Figure 2.6: Simplified representation of the RNN-based encoder-decoder, based on the attention implementation of Bahdanau
et al. [4].

17

2.2.2 Transformers

The fundamental process that underpins RNN’s - sequential computation - is also one of its down-

falls. Paralelizing the training process within each training example is not possible when using these

networks, which becomes critical with longer sequence lengths, as memory constraints limit batching

across examples.

The aptly named publication Attention Is All You Need by Vaswani et al. [70] adresses this long

standing issue for on sequential data-dependent tasks, by introducing the Transfomer model. This model

discards recurrence all together, and uses only attention mechanisms to learn global dependencies

between input and output. Since attention weights are computed for all words in a sequence at the same

time, the Transformer allows for significantly more paralelization, and since its inception has reached

state-of-the-art performance in translation quality.

This model is proposed as an encoder-decoder architecture. Additionally to using the same type

of attention we have described in the previous section - between output and input - it also uses self-

attention; this mechanism relates different positions within a single sequence, in order to compute a

representation of the sequence, and representations of each word, contextualized by the full context

of the sequence. Furthermore, self-attention is much less computationally expensive than computing

sentence and word representations from sequential hidden states, as is the case with RNN’s.

Specifically, the Transformer follows the overall architecture described in Figure 2.7 , using stacked

self-attention and point-wise, fully connected feed-forward layers for both the encoder and decoder.

Encoder

The encoder is composed of a stack of N = 6 identical layers. Within each a layer, the input goes

through a multi-head self-attention mechanism first, followed by a fully-connected feed-forward network.

A residual connection [26] is employed around each of the sub-layers (attention/feedforward + add &

norm in context of the figure), followed by layer normalization [3], which together make the output of

each sub-layer to be LayerNorm(x+ Sublayer(x)).

Decoder

The decoder is also composed of N = 6 identical layers. Within them, two different attention mech-

anisms are used: one (Multi-Head attention in Figure 2.7) is similar in nature to the encoder’s attention

block, albeit in this case attention scores are computed between a word in the output sentence, and

words in the input sentence. The other is precisely a self-attention block, slightly changed to allow for

focus only on the preceding words of the output sentence: all values in the input to the attention softmax

which correspond to positions subsequent to the word being predicted are masked, by being set to −∞

- equivalent to zero after softmax is computed.

18

Figure 2.7: The Transformer model architecture. Figure taken from Vaswani et al. [70].

Attention

The attention mechanism used in the Transformer, which the authors call scaled dot-product at-

tention, is presented with some changes in formulation and usage, when compared to its most basic

version in the encoder-decoder context (Section 2.2.1). Namely, in [4] it is redescribed as the mapping

of a query and a set of key-value pairs to an output; drawing a parallel between what we have describe

thus far regarding attention, the query can be seen as the output word, whose embedding we are trying

to influence by contextualizing with all source words - the keys. The attention score between each key

and the query is nothing more than the dot-product of these two vectors, scaled by the square root of

both vectors’ dimension dk. This dot-product calculation in fact plays the role of ”compatibility function”

in this case - analogous to the alignment model described in section 2.2.1 -, departing from the use of

a feed forward NN, in pursuit of much faster and space-efficient computation. This is formally described

as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (2.12)

where Q ∈ Rdk is the query, K ∈ Rdk is the key, and V ∈ Rdv is the value.

Instead of applying a single attention function, the queries, keys and values are projected h times with

19

different, learned linear projections - WQ
i ,W

K
i and WV

i - , and each set then processed by a different

attention head in parallel. Results from all attention heads are concatenated, and projected back to the

initial dimensions that a single head would output, by use of a final learned linear projection W 0. This is

described by the equation:

MultiHead(Q,K, V) = Concat (head1, ...,headh) ,

where headi = Attention(QWQ
i ,KQ

K
i , V W

V
i).

(2.13)

Using multiple attention heads allows the model to jointly attend to information from different repre-

sentation subspaces, by focusing on different positions; averaging with a single attention head would

inhibit this capability. Figure 2.8 depicts the composition of a single scaled dot-product attention head,

and the configuration when h heads are used.

Figure 2.8: (Left) Scaled Dot-Product Attention. (Right) Multi-Head Attention, consisting of several attention layers running in
parallel. Figure taken from Vaswani et al. [70].

Even though the Transformer model was first introduced in the context of NMT, it has been used with

great success on a variety of different tasks, some leveraging the whole encoder-decoder architecture

that it originally modelled, and others rethinking and iterating on components of the Transformer for

specific purposes. The next section explains how this has been done with relevant examples.

2.2.3 Pre-trained Contextualized Embeddings

Machine Learning models in the field of NLP have always needed to handle words in some form

of numeric representation, therefore creating accurate and contextualized word embeddings has been

evolving for longer than the models and architectures described in the previous section exist.

For years, several methods of approaching this problem such as Word2Vec [42] and GloVe [48]

had proven to be capable of capturing semantic relationships between words (such as telling if words

are opposites, or that the relationship between two words like ”Lisbon” and ”Portugal” is the same as

20

between ”Madrid” and ”Spain”), and also syntactic ones. When training models for use in NLP tasks, it

has long been a common practice to take advantage of embeddings previously trained on vast amounts

of text data, instead of doing so from scratch - which might be impossible due to lack of data available

for the task, or even compute power.

But the above examples of word embeddings made it so that each embedding would always be

the same, regardless of the context where its corresponding word was used. ELMo [49] introduced

an approach that would come to change this condition. This model was composed of a bidirectional

LSTM followed by a feedforward layer, and trained on a simple objective, refered to in the literature as

Language Modelling: given all previous words in a sentence, predict the next one. Given a sequence of

M words (or tokens) t1, t2, ..., tm, the probability that the next word being predicted is correct, is formally

described as:

p(t1, t2, ..., tm) =

M∏
k=1

p(tk|t1, t2, ..., tk−1). (2.14)

This objective allows for training on larger and larger amounts of data, because being self-supervised

(uses next word as ground truth, with no need for human labelling), no limitations due to data labelling

effort apply.

Training for this objective, and capturing context on both sides of each word in a sentence by using a

bidirectional setting, gave ELMo the power to output different embeddings for the same word, depending

on what context was used in a sentence.

Although we will not detail all the developments made in this field up until the current state-of-the-art,

it is worth pointing out the leap that was made from this era of Language Models, to the Transformer-

based ones which have become today’s standard. The increase in performance that Transformers fueled

in different NLP tasks warranted great interest by the research field. In an important breakthrough, Devlin

et al. [14] took the Encoder component of the Transformer model, and proposed a pre-training method

which is still improved and iterated upon in various directions to this day.

Bidirectional Encoder Representations from Transformers - or BERT - is a model trained with the

overarching purpose of providing a solid Language Understanding basis for easy use and minimal fine-

tuning on downstream tasks, which equates to training powerful embeddings. Its architecture is the exact

same as the original encoder component of a Transformer, albeit having more Transformer blocks (12 for

the BASE version of the model, and 24 for the LARGE version). There are two steps in BERT’s training: pre-

training and fine-tuning. This is depicted in Figure 2.9, where different fine-tuning objectives are used,

like Textual Entailment (MNLI), Named Entity Recognition (NER) and Question Answering (SQuAD):

BERT is trained on two distinct tasks in the pre-training stage. First is a modification of the objective

described in 2.2.3, called Masked Language Modelling (MLM) - originally the Cloze task [67]. Instead

21

Figure 2.9: High level pre-training and finetuning procedures for BERT. The same pre-trained model parameters are used to
initialize models for different down-stream tasks. During fine-tuning, all parameters are updated (classification heads + BERT).

[CLS] is a special symbol added at the beginning of every input example, and [SEP] is a special separator token (e.g. separating
two consecutive segments of text). Figure taken from Devlin et al. [14].

of next word prediction, it focuses on predicting masked words; 15% of all input token positions are

replaced with a special token [MASK], and the final hidden vectors corresponding to those tokens are

fed into an output softmax over the vocabulary, effectively yielding a prediction of the missing word. This

special token would not appear in any downstream task however, so as to mitigate the creation of a

mismatch between both pre-training and fine-tuning, the 15% of total token positions chosen at random

for prediction are replaced with [MASK] 80% of the time, by a random token 10% of the time, and are

left unchanged the remaining 10% of the time. This task allows for capturing context on both sides of

the predicted words, circumventing the problem shared by standard conditional language models: they

could only train left-to-right or right-to-left, given that a bidirectional conditioning would allow each word

to indirectly ”see itself”, enabling the model to trivially predict the target word.

The other task in pre-training is Next Sentence Prediction (NSP). Many important downstream tasks

such as Question Answering and Natural Language Inference are based on understanding the rela-

tionship between two sentences, something which is not directly captured by language modeling. The

authors demonstrate that NSP trains BERT to understand sentence relationships, while still being able

to take advantage of self-supervision. They do this by passing in two sentences A and B as input to

BERT, separated by a special [SEP] token; 50% of the time, sentence B is the actual next sentence that

follows A, and is therefore labeled as IsNext. The other 50%, it is a random sentence from the corpus

(labeled as NotNext). The first embedding in any input to BERT, the special classifier [CLS] token, is

the one taken as the feature to train a binary classifier for NSP; because of its training objective, this

embedding is not a meaningful sentence representation without fine-tuning, and that’s what the authors

show can be done relatively inexpensively in terms of computational resources, yielding state-of-the-art

results on sentence-level tasks. Figure 2.10 depicts both tasks in BERT’s pre-training.

Fine-tuning is straightforward with BERT, given that the self-attention mechanism in the Transformer

encoder allows for the modeling of many downstream tasks, by simply swapping out the appropriate

22

Figure 2.10: Next Sentence Prediction (NSP) and Masked Language Modeling (MLM) tasks in BERT’s pre-training. Embeddings
output by BERT can be used in a straightforward way for classification.

inputs and outputs. For tasks depending on text pairs the benefit is even greater, given that self-attention

will effectively include bidirectional cross attention between the two sentences. In general, fine-tuning

involves feeding the pre-trained token or [CLS] embeddings to an output layer, and then training the

whole model end-to-end, including BERT’s parameters.

A key in BERT’s whole training process - and a dominant factor in its capabilities - is the amount of

data with which it is trained. The BooksCorpus (800M words) and English Wikipedia (2,500M words)

dataset are leveraged; this data volume, paired with MLM and NSP, creates a model with powerful word

and sentence embeddings, which has been the bedrock of many tasks in NLP research for the past

years.

2.3 Quality Estimation

As previously explained in Section 1.1, Quality Estimation is the task of predicting the quality of a

system’s output for a given input, without any information or reference about the expected output. In this

section, we will clarify and formally describe this task regarding its different granularity levels (Section

2.3.1), and also describe the originally proposed Predictor-Estimator architecture (Section 2.3.2), which

still serves as fundamental framework to modern QE approaches.

2.3.1 Sentence and Word-Level Task

The two QE sub-tasks we will be exploring are those of predicting quality labels/scores for words

and/or sentences. Different techniques are applied at a document-level, which were not included in the

scope of this thesis.

23

As detailed in Section 1.1, both tasks have evolved a great deal and been approached quite differently

throughout the years; this Section formalizes them, and lays the foundational concepts for the work we

have developed.

Word-Level

Word-level QE focuses on predicting quality labels - BAD or OK - for all tokens in a translated sen-

tence. If we consider that no internal information was leveraged about the NMT system that generated

the translation - a black-box approach -, the task can be described as learning to predict the right la-

bel (or class) c, given a sequence of words in a source language X = x1, x2, ..., xM , and its machine

translation in a target language Y = y1, y2, ..., yT , or p(c|X,Y).

As you might recall, what we have just described is in fact a binary classification task; the loss used

for this type of problem, which will guide model training, is the Cross-Entropy Loss (Section 2.1.1), with

C = 2 classes. In this case, the loss for each sample becomes the log-probability predicted by the model

for the correct class log(p(c)).

From previous sections, we have seen that a typical and effective pattern for text classification is

to create powerful embeddings of that text, with the intention of gathering all the important information

for the task within it, and then simply using a classifier ”component” to predict a label. State-of-the-art

word-level approaches fall into this same pattern, focusing most efforts on creating better embeddings,

as we will see in Section 3.2.

Sentence-Level

Sentence-level QE, on the other hand, is perfectly described as a regression task: meaning, the

objective is to predict a real value, that quantifies the quality of a sentence’s machine translation. Making

the same consideration of a black-box approach as we did for word-level QE, this means predicting a

value ŷ = f (X,Y). The function f will be implemented by our system.

A few different measurements have been used in the literature as a true label for quality. The most

common one historically is the Human-Targeted Translation Error Rate (HTER) [58]; this indicator is

defined as:

HTER =
Insertions + Deletions + Substitutions + Shifts

Number of words in reference
(2.15)

Each inserted/deleted/modified word or punctuation mark counts as one error, and shifting a string of

any number of words, by any distance, also counts as one error. The reference translation, in this case,

is the post-edit created by a human translator. A post-edit is nothing more than a ”fix”, or correction, to

a machine translated piece of text.

24

Another commonly used quality indicator is the Direct Assessment score. This is a score directly

obtained from a professional translator’s assessment of a particular translated sentence, and is normally

defined as a score of 0-100, 100 being a perfect translation.

A disclaimer must be raised when discussing these indicators; stemming from subjective editing

and/or linguistic patterns of specific translators, both HTER and DA scores are at best strongly correlated

with human judgement - increasing with the size and diversity of the sample group of translators which

participated in the creation of a QE dataset. Given the inherent complexity and ambiguity of human

language, where it is common that two grammatically different sentences hold the same meaning and

validity as a translation, there is frequently no single true reference, or well defined theoretical quality

score for a sentence.

25

2.3.2 Predictor-Estimator Architecture

The Predictor-Estimator, originally proposed by Kim et al. [33], is an RNN-based architecture very

inspired upon the Encoder-Decoder (Section 2.5), which effectively standardized the end-to-end neural

model approach still used in modern QE, and was also an early motivator of the contextualized learning

of embeddings made popular with models like BERT (Section 2.2.3).

The concept of this architecture is a two-step training process, each focused on a component of

the whole system: first, the Predictor is pre-trained using parallel data, i.e source sentences and ref-

erence translations. This component is nothing more than a word prediction model; very similar to the

Encoder-Decoder, the big difference to it is that target context is used on both sides of the word that is

being predicted, instead of just the preceding context. In the initial pre-task of training the Predictor, for

each sample a random target word is replaced with X, and the model then tries to predict the original

target word by conditioning on the whole source and target context. The authors assumed such a task

to enable the word prediction model to transfer useful knowledge for QE (later found to be true with

transformer-based ”word-predictors” like BERT, and holding up for many other language tasks), which

is passed forward in the form of Quality Estimation Feature Vectors (QEFV’s). The second step is to

train the Estimator, this time with QE data (source sentences, machine translations and quality annota-

tions). This component takes the Predictor’s output, and is responsible for estimating the quality of the

word/sentence in question.

Figure 2.11 depicts the schematic of a Predictor-Estimator architecture.

source sentence
(𝒙𝟏, … , 𝒙𝑴)

target sentence
(𝒚𝟏, … , 𝒚𝑻)

RNN-based Word Predictor

QE feature vectors
(𝑸𝑬𝑭𝑽𝟏, … , 𝑸𝑬𝑭𝑽𝑻)

extraction

Neural Quality Estimator

Parallel Data

source
sentences

reference
translations

QE Data
source

sentences
machine

translations
quality

annotations

QE score
word/sentence level

Figure 2.11: Simplified schematic of the Predictor-Estimator architecture; the Predictor is pre-trained on parallel data (generally
more available), and then the whole system - Predictor + Estimator - is trained on QE data.

26

Predictor

Formally, given source and target sentences X = x1, x2, ..., xM and Y = y1, y2, ..., yT , the RNN-

based word predictor defines the probability of predicting target word y conditioned on the source context

x and target context y−j (target sentence without the jth target word):

p(yt|y1, ..., yt−1, yt+1, ..., yT ,x)

= g([
−→
h t−1;

←−
h t+1], [yt−1; yt+1], ct)

=
exp(y>Wo1Wo2tt)∑Ky

k=1 exp(v
>
k Wo1Wo2tt)

,

(2.16)

tt = [max{t̃t,2k−1, t̃t,2k}]>k=1,...,l,

t̃t = So[
−→
h t−1;

←−
h t+1] + Vo[Eyyt−1;Eyyt+1] + Coct,

(2.17)

where
−→
h t−1 and

←−
h t+1 are the hidden states of the forward and backward RNN’s on the target sentence,

ct is the source context vector resulting from the attention mechanism when predicting the current target

word as described in Section 2.2.1, Ky is the vocabulary size of the target language, vk is the kth word

in that vocabulary, l is the dimension of the maxout units, and Ey is the target word embedding matrix.

Wo1 , Wo2 , Vo, So and Co are learned weight matrices.

After training the Predictor, Feature Vectors are extracted from the model components that affect

each target word prediction, which will then be fed into the Estimator for Quality Estimation. The authors

propose two types of QEFVs: pre-prediction (Pre-QEFVs), and post-prediction (Post-QEFVs).

Pre-QEFVs are the summary representation for the ”pre-prediction” computational graph, which in-

dicates the set of ”pre”-computed nodes ”before” making the prediction of the target word. For the tth

target word, this can be defined as:

Pre-QEFVt = ytWo1 �Wo2tt, (2.18)

where � is the element-wise multiplication operator. This is based on word prediction using feature

weights ytWo1 , and the tth position feature vector Wo2tt, related to [
−→
h t−1;

←−
h t+1] and [yj−1; yj+1 for

surrounding target words.

Post-QEFVs are the summary representations for the ”post-prediction” computation graph, defined

as the set of ”post”-computed nodes ”after” making the prediction of the target word. For the tth target

word, this can be defined as:

27

Post-QEFVt = [
−→
h t;
←−
h t], (2.19)

which is nothing more than the direct hidden states for target word yt.

Estimator

Finally, the Estimator takes QEFVs at all target word positions as input vectors and estimates transla-

tion qualities at word or sentence levels. Since QE data and the parallel data used to train the Predictor

are not fully compatible given the qualities of their target sentences (with parallel data, the reference

translation is always correct), this stage of training is considered as a form of adaptation of QEFVs to

the QE task, and the Predictor can continue to be trained in conjunction with the Estimator.

For sentence-level QE, all QEFVs are first transformed into a single summary vector s and a logistic

regression is then applied to it, defined as:

QEsentence(y,x)

= QEsentence(QEFV1, ...,QEFVt)

= σ(Wss),

(2.20)

where Ws is the learned weight matrix used for the affine transformation applied to the summary vector.

In regard to the summary vector, the authors experiment with three different approaches to create it:

using a feed-forward NN (taking the average of the resulting hidden representations for each QEFV), an

RNN (processing the sequence of QEFVs, and using the last hidden representation
−→
h T), and a Bi-RNN

(using the concatenated last two hidden representations [
−→
h T ;
←−
h 1].

For word-level QE, QEFVs are also processed in all three ways, but are used directly as summary

vector of each corresponding target position, instead of composed as previously. In this model, the

binary classification function is applied at the tth target position, described as:

QEwordt(y,x)

= QEwordt
(QEFV1, ...,QEFVT)

=

 OK, if σ (Wwht) ≥ threshold

BAD, if σ (Wwht) < threshold,

(2.21)

where Ww is the weight matrix of an affine transformation used to compute output nodes.

28

As we will see in the succeeding sections, the model developed in this thesis follows the architectural

layout of the original Predictor-Estimator, although not RNN-based.

29

30

Chapter 3

Glass-Box Quality Estimation

This section details the approach taken in implementing the extraction of glass-box features, and their

use in the QE models developed throughout the duration of this thesis. Open source tools were heavily

leveraged for the purpose, and adapted in ways described in the following sections. First, in section 3.1,

we describe how glass-box features are extracted according to the supporting methodology outlined in

Fomicheva et al. [17], as by-products from the translation process of pre-trained NMT models provided

in the context of the WMT20 Quality Estimation Shared Task. The Fairseq1 sequence modeling toolkit

is used for this task, being the same tool used to train the available MT models. Then, in section 3.2, the

model architecture is explained, along with the way uncertainty measures are integrated into its training;

the OpenKiwi2 Quality Estimation framework, a tool which implements the best performing QE systems

from previous editions of the WMT Quality Estimation Shared Task, is relied upon for this task. Both

tools are based on the PyTorch3 framework, which uses Python4 as its main programming language.

3.1 Glass-Box QE Features

The work that serves as basis for this section (Fomicheva et al. [17]) focuses on approaching the

Quality Estimation task as an unsupervised problem. State-of-the-art QE models typically treat the MT

system creating the translations under evaluation as a black-box; they also require large amounts of

parallel data for pretraining (namely the Predictor) and in-domain translations annotated with quality

labels for training. This is a problem in general, and more so when dealing with low-resource languages,

when much less data is generally available for research purposes.

The authors of [17] posit that encoder-decoder NMT models offer a rich source of information for

directly estimating translation quality, with the most promising source of this richness being: the output

probability distribution from the NMT system (i.e. the probabilities obtained by applying the softmax

function over the entire vocabulary of the target language). The assumption supporting this hypothesis

is that, the more confident the decoder is, the higher the quality of the translation.

However, while sequence-level probabilities of top MT hypothesis have been used for confidence

estimation (as alluded to in section 1.1), the output probabilities from Deep Neural Networks should

1www.github.com/pytorch/fairseq
2www.github.com/Unbabel/OpenKiwi
3www.pytorch.org
4www.python.org

31

Figure 3.1: Confidence histograms (top) and reliability diagrams (bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Figure taken from Guo et al. [23].

not be directly taken as reliable quality indicators, as they have been shown to generally not be well

calibrated (Guo et al. [23]), i.e, the probability that they assign to a prediction does not correspond to

the true likelihood of the prediction. Figure 3.1 illustrates this problem by comparing a shallow network’s

(LeNet) average confidence and accuracy, with that of a much deeper one (ResNet). This phenomena

is not bound to computer vision tasks, as it has been observed in NLP, and MT in particular [71], where

softmax output probabilities are found to often be overconfident, assigning large probability mass to

predictions that are far away from the training data. To overcome this issue, and enable the exploit

of output distributions beyond the top-1 prediction, the authors use uncertainty quantification methods

and metrics derived from them, namely Monte Carlo Dropout (Gal and Ghahramani [18]). This method

consists of applying dropout5 at test time before every layer in the network, performing several forward

passes for the same inputs (each affected differently by the applied dropout), and collecting posterior

probabilities generated by the model. The mean and variance of the resulting distribution is then used

to represent model uncertainty.

3.1.1 Feature Description

In the context of the encoder-decoder networks used for NMT, the encoder maps an input sequence

of I words (or tokens) x = x1, ..., xI into a sequence of hidden states, which are summarized into a single

vector using an attention mechanism. This is then taken by the decoder, which generates the output

sequence y = y1, ..., yT of length T . The probability of generating y is therefore represented by:

5Dropout randomly masks neurons to zero based on a Bernoulli distribution, reducing overfitting during training [65].

32

p(y | x, θ) =
T∏
t=1

p (yt | y<t,x, θ) (3.1)

The decoder produces the probability distribution p (yt | y<t,x, θ) over the system vocabulary at each

time step using the softmax function, and the model is trained to minimize cross-entropy loss (Section

2.1.1.

Seven features are extracted and made use of for downstream QE training, which can be divided into

two categories: 1) deterministic features, using the output probability distribution created upon inference

not affected by dropout, and 2) uncertainty-based features, computed across different inference runs

affected by MC dropout.

Softmax Distribution-Based

The first QE measure is simply the sequence-level translation probability (§3.1) in log-space, normal-

ized by length:

TP =
1

T

T∑
t=1

log p (yt | y<t,x, θ) (3.2)

However, due to the previously mentioned over-estimation issue that top-1 predictions suffer from,

TP alone would not serve as a reliable indicator. Two other metrics are used to go beyond this limitation.

The first is the entropy of the softmax output distribution over target vocabulary of size V at each

decoding step, averaged across the sentence length:

Softmax-Ent =
1

T

T∑
t=1

H(yt) = −
1

T

T∑
t=1

V∑
v=1

p (yvt) log p (y
v
t) (3.3)

In this expression, the H(yt) component is called Shannon’s entropy, and it is the typical measure of

uncertainty used in information theory. Entropy is at its maximum value when all words in the vocabulary

are assigned the same probability value, essentially representing a pick from a uniform distribution –

which means the quality of the translation is likely to be low – , and at its lowest when most of the

probability mass is concentrated on a few vocabulary words, which indicates that the generated target

word is likely to be correct.

The second is the variance of word-level log-probabilities for each predicted sentence, expressed by:

Sent-Var =
√
E [P 2]− (E[P])2, (3.4)

33

where P = p(y1), ..., p(yT) represents the word log-probabilities. The rationale behind this measure is that

a great disparity between probabilities assigned to individual words within the same sentence indicates

very different behaviour of the NMT system and, consequently, different output quality; this information

would be lost if only using the average of probabilities.

Uncertainty Quantification-Based

As explained, in this case the model’s softmax probability distribution is captured for each of N

stochastic forward passes through the MT model, with parameters θ̂ perturbed by dropout. The first two

measures are the expected value and variance for the set of sentence-level probability estimates across

different MC Dropout runs:

D-TP =
1

N

N∑
n=1

TPθ̂n (3.5)

D-Var = E
[
TP2

θ̂

]
−
(
E[TPθ̂]

)2 (3.6)

where TP is sentence-level probability as defined in §3.2. A combination of the two is also used:

D-Combo = 1− D-TP
D-Var

(3.7)

Finally, the lexical variation between the outputs generated in different runs for the same source

segment is quantified. Great differences between translations might indicate model high uncertainty or

a very ambiguous or complex source sentence. This is achieved by computing an average similarity

score (sim) between the set of translation hypotheses:

D-Lex-Sim =
1

C

H∑
i=1

H∑
j=1

sim(hi, hj) (3.8)

where hi, hj ∈ H, i 6= j and C = 2−1|H|(|H| − 1) is the number of pairwise comparisons for |H| hypothe-

ses. Meteor (Banerjee and Lavie [5]) is used to compute each similarity score.

3.1.2 Implementation of Feature Extraction

The glass-box feature extraction process about to be detailed is central to this work. I decided

to separate both processes - feature extraction and QE model training -, first creating separate input

artifacts containing the features, and then feeding them into the QE models’ training process. This

decision was made for three reasons:

34

1. reducing development complexity, and decoupling the experimentation done within the two different

processes and tools;

2. the reduced size of 7000 sentences shared by the main QE datasets used for development meant

small resulting input feature artifacts, and did not justify an end-to-end ”extraction and QE training”

process;

3. the computational burden of loading both MT and QE model into memory, and performing 20 to

30 forward passes with each batch of sentences before passing them to the QE model for training,

was absolutely prohibitive given the available resources.

The inference step within Fairseq’s sequence generator component was looped over n = 30 times,

with dropout affecting the MT model differently in each iteration. Output probability distributions are cap-

tured on a word prediction level in each run, processed on a sentence basis - as needed for deterministic

features -, and again processed across different iterations - as needed for uncertainty-based features.

In order to achieve scale-independence and speed up training and convergence - a common practice

in ML model training - the features are then normalized, according to their mean and standard deviation

in the training set. The features corresponding to the validation set are also transformed in such a way,

but are not included in the calculation of mean and standard deviation, given that the QE model will only

learn and have its weights updated from the distribution of features in the training set, but still needs to

use validation set features in a common reference frame upon inference. The full process returns a .tsv

file for each dataset partition, having 7 columns (each column being one type of glass-box feature), and

as many rows as the size of the corresponding partition.

3.2 QE Model Implementation

Implementation details for the developed QE models are outlined in this section. As mentioned

before, they come as an extension of the open-source QE framework OpenKiwi, specifically designed

for such modular experimentation.

The previous edition of the WMT QE Shared Task saw great success in leveraging transfer learning

techniques with pretrained Language Models to train QE engines. The best submitted systems hinted

towards this promising research direction, and therefore this approach was adopted as basis for all

developed models. The LM most heavily used across experiments was XLM-Roberta [12] (described

in the following section, named XLM-R henceforth), an improvement on XLM [37], which was part of

the 2019 Shared Task winning individual model submission. XLM-R has recently been reported to

display state-of-the-art performance on cross-lingual tasks, especially taking advantage of relationships

between high and low resource languages to better perform with the latter; this was assessed and

verified in preliminary experiments.

In the following two sections, both the system used as baseline, and the improved system adapted

35

to use glass-box features are thoroughly described.

3.2.1 XLM-Roberta

XLM-R is another example of leveraging the Transformer architecture (2.2.2) to pre-train rich and

contextualized embeddings. Like BERT, the encoder module of a Transformer is used as its structure,

with a few important differences in the scale and training procedure.

The focus of this model’s development was to train a multilingual Language Model on a wide array

of idioms, in order to improve Cross-Lingual Language Understanding (XLU); meaning, the learning

of cross-lingual representations and their transfer to discriminative tasks. An important factor, which

separates XLM-R from other models trained on a large number of languages, is the scale at which it is

trained; 100 languages are learned, and the filtered CommonCrawl dataset composed (2.5TB) is orders

of magnitude larger than the one used to train other models along the same line of research (such as

mBERT and XLM), especially increasing the amount of data for low-resource languages. This follows

the rationale of previous studies, which have shown both that: 1) training on larger amounts of data

unlocks the potential for higher performance even when training existing model architectures (Liu et al.

[39]), and 2) more low-resource language data is effective for learning high quality word embeddings in

multiple languages (Grave et al. [21]). Fig 3.2 shows the comparison between CommonCrawl-100 and

the dataset used to train previous models, Wikipedia-100.

Figure 3.2: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and
XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular

for low-resource languages. Figure taken from Conneau et al. [12].

Furthermore, drawing inspiration from the RoBERTa model, the authors found that such earlier mul-

tilingual models are undertuned, and that much better performance can be obtained by simple improve-

ments in the learning procedure of unsupervised MLM:

• the Next Sentence Prediction (NSP) objective used in the original BERT implementation is dropped,

as it is found to hinder performance on down-stream tasks, and the sampling of input sequences

is also changed: instead of passing in a pair of segments, which may each contain multiple natural

sentences (the pair is used for the NSP objective), full sentences are sampled contiguously from

one or more documents of the same language, such that the total length is at most 512 tokens (the

same maximum length as BERT);

36

• unlike its predecessor XLM, no language embedding is passed to the model (i.e. an extra input that

specifies what language is the input in), which allows XLM-R to better deal with code-switching;

• originally, the masking of tokens to be predicted was done once during data processing, and

kept for the whole training procedure, being therefore a static mask. This is replaced by dynamic

masking, which means that a new mask is generated every time a sequence is fed to the model.

This is found to perform slightly better than static masking, with the added benefit of being more

computationally efficient;

• the batch size is increased dramatically and learning rate is increased accordingly, which has been

shown to improve optimization speed and end-task performance in LM pre-training;

• sub-word tokenization methods used in previous multilingual models assume that input text uses

spaces to separate words - which is not the case in many languages -, relying on different language-

specific tokenization tools, and making them more difficult to use on raw text; instead, a Sentence

Piece model is trained and used with XML-R. This unsupervised text tokenizer is trained on raw

sentences, where whitespaces are treated as any other unicode symbol, and uses either BPE

or unigram algorithm to construct the appropriate vocabulary. This allows for language agnostic

tokenization, in a easy end-to-end process, and also for very easy detokenization.

The authors show how the degradation in performance caused by the increase in number of learned

languages - the curse of multilinguality, a previously studied phenomenon - can be counteracted by

increasing model and vocabulary size. Implementing these changes, along with the previously described

ones, yielded a model that performs better on low-resource languages than any other - proving that

positive language transfer from high to low-resource is achieved -, while maintaining equal or even

greater performance on a single language basis, than monolingual models trained solely on that specific

language.

For these reasons, and in the interest of developing one simplified architecture able to deal with all

7 languages present in the main dataset used in this thesis, XLM-R was chosen as the basis for all

experiments.

3.2.2 Base Kiwi System

The architecture we will explore and build upon follows the overall pattern introduced originally in

the Predictor-Estimator model, described in Section 2.3.2. This is comprised of a ”Feature Extractor”

module, with a ”Quality Estimator” stacked on it - or rather, multiple similar estimators, each one used

for its objective: sentence score, target tag or source tag prediction. The system can be trained using

either one of the estimators independently, or all at the same time, in a multi-task learning setup. Figure

3.3 depicts the general architecture, which will be refered to as Kiwi-Base henceforth.

The Feature Extractor module consists of a pretrained XLM-R model, with some further process-

37

<s> A translated sentence . </s> <s> Uma frase traduzida . </s>

Tokenization

XLM-R

Average Target EmbeddingsCLS Embedding

FF

FF

Sentence Score

Estimators

FF

Feature
Extractor

tgt src

FF

FF

FF

FF

FF

FF

Word Label(tgt) Word Label(src)

FF

Figure 3.3: Architecture of the Kiwi-Base baseline system as implemented using the OpenKiwi framework.

ing applied on its outputs so that individual token features are combined into sentence representa-

tions. Both the model and its corresponding language-independent tokenizer (an implementation of

SentencePiece6) are part of the Transformers7 python package.

Source and target sentences are passed to XLMR as inputs in the format <s> target </s> <s>

source </s>, with <s> representing beginning of sentence (BOS) and </s> representing end of sen-

tence (EOS). In order to structure the input for the sentence-level estimator, a compact sentence rep-

resentation is returned by pooling, namely averaging XLM-R’s output embeddings for all tokens in the

target sentence, and then concatenating the result with the classifier token embedding (first <s> in the

input). Although XLM-R’s pretraining does not include a Next Sentence Prediction objective - which

means the classifier embedding has not been used to learn sentence representations -, it shows quick

adaption to the new sentence-level objective, and using said token with the pooling strategy described

above reliably outperforms others, like only using the pooled target embeddings, only the the classifier

token itself, classifier token concatenated with pooled source embeddings, and others.

The Estimator modules are composed of neural feedforward layers, instead of a bi-LSTM (as used in

6https://github.com/google/sentencepiece
7https://huggingface.co/transformers/

38

the original Predictor-Estimator architecture); experiments conducted by WMT participants for the 2019

edition showed that replacing this component resulted in a similar performance, when using pre-trained

LM’s as Predictors. Three layers are used, progressively halving in dimension until reaching the output

layer; here the model outputs either/both of the following: 1) a sentence score (Direct Assessment or

HTER), optimized with a regression objective, using a Mean Squared Error loss, and 2) target and

source tags, optimized with a classification objective, using a Binary Cross-Entropy objective.

If the model is trained in a multi-task learning setting , the losses calculated for each active estimator

block’s predictions are then summed, and used as the global system loss. In this case, the feed-forward

layer placed after the Feature Extractor serves as a shared weight basis, used so that different tasks

inform and benefit each other’s individual performance, a practice used in various successful approaches

to the QE task, such as [31].

The activation function used between all layers (excluding XLM-R) is ReLU ([45]), and the optimizer

is AdamW ([40]) - an improvement on the Adam ([34]) optimizer, which decouples the gradient update

from the weight decaying, instead of including an L2 regularization term in the loss function. This has

been shown to yield better training loss and much better generalization capabilities than models trained

with Adam.

3.2.3 Integrating Glass-Box Features

The extracted features described in section 3.1 are now introduced into Kiwi-Base. Different con-

figurations were attempted in order to accomplish this, on the basis of integrating a 7-element vector

(containing all glass-box features) somewhere in the architecture, where it influenced final performance.

First the feature vector was simply concatenated to the final hidden state before the output, then to

other ones processed by preceding linear layers. Preliminary experiments proved this method to have

no impact on accuracy, which indicated that the QE model was not able to properly incorporate the

features with this setup.

A simple method worked best, showing promising results. First, the pooled sentence representation

obtained from XLM-R was put through a feed-forward layer, and its dimensions reduced by about five-

fold, creating a bottleneck; the feature vector is appended to the resulting hidden-state. Then, that hidden

state is again put through a feed-forward layer and expanded back to a higher dimensional state. This

idea draws inspiration from the autoencoder architecture (portrayed in figure 3.4) , where a bottleneck is

created between the encoder and decoder parts of the model, and it is trained to reconstruct the input

it was given. This requires creating a compressed representation of the input in the bottleneck, which

condenses the most relevant features. While a reconstruction loss is not used to train the QE model (as

is with the autoencoder), works in the area of Speech Technology (such as Grézl et al. [22]) have shown

that training a feed-forward NN with a bottleneck in the middle, on a simple classification objective,

results in rich features being created in the bottleneck (in the case of the cited work, the ”decoder”

39

I
n
p
u
t

L
a
y
e
r

X h

Code

X’

O
u
t
p
u
t

L
a
y
e
r

Encoder

Decoder

Figure 3.4: Autoencoder architecture; the model is trained to reconstruct input X by creating X’. This requires the learning of an
efficient input representation - or code - at the bottleneck.

portion is removed after pretraining, and the bottleneck features are then used for downstream tasks). I

posit that the same effect happens in the QE Feature Extractor, and by appending glass-box features to

the bottleneck hidden state before it is processed by the feed-forward layer, each individual feature gets

the chance to have more ”relevance” in the network’s training dynamic. A schematic of the described

integration can be seen in figure 3.5.

Feed Forward

Sentence Representation

Feed Forward

Hidden
State

Glass-Box
Features

Feed Forward

Hidden State

. .
 .

Output Score

feed forward layers
halving in size

Figure 3.5: Architecture of the ”Quality Estimator” module modified to include glass-box features.

40

The rest of the architecture resembles Kiwi-Base in every other way, although introducing foreign

features into an int ermediate hidden state requires a different range of hyperparameters in order to

make training work.

In the next section, this approach will be compared to its base architecture with respect to perfor-

mance, and quantitatively evaluated.

41

42

Chapter 4

Experiments and Results

This chapter presents the evaluation of the designed model, and the results of that process. Section

4.1 introduces the dataset we used for the addressed task, and other relevant model resources. Section

4.2 formalizes the metrics that measure performance for word and sentence-level estimation, which allow

for a meaningful comparison with previous work, and incremental iterations on our model architecture.

Finally, in section 4.3 we report the obtained results - comparing them with baselines on the task - and

discuss their meaning in the context of our work.

4.1 Dataset and Model Resources

The dataset we used for developing the models presented in this thesis had a strong influence on the

direction of the work itself. A part of the 2020 edition of the WMT Quality Estimation Shared Task [64],

there were two tasks relevant to our work: task 1, for predicting Direct Assessment scores (sentence-

level), and task 2, for predicting Post-Editing effort (word and sentence-level).

Task 1 was newly proposed for the 2020 workshop; previous works such as Graham et al. [20] had

advised for the employment of DA scores instead of HTER for the evaluation of quality estimation sys-

tems, given that 1) although the correlation found between HTER and human assessment is fairly strong,

it is not a sufficient stand-in for the latter, and 2) DA’s provide a valid human assessment without an au-

tomatic component, and have been shown to produce replicable sentence-level human assessment

scores for translations.

Task 2 has been standard in the workshop since its very creation in 2012; it evaluates the application

of QE for post-editing purposes, and consists of 1) predicting OK and BAD labels for every token in both

the target and source sentence, and additionally for each gap between two words where something is/is

not missing, and 2) predicting the sentence-level HTER score, which is defined as the ratio between the

number of edits (insertions/deletions/replacements) and the reference translation length.

Both tasks share the same dataset, newly sourced mainly from Wikipedia articles. It includes six

language-pairs - 2 high, 2 medium, and 2 low-resource - namely English-German and English-Chinese

(high), Romanian-English and Estonian-English (medium), Nepalese-English and Sinhala-English (low).

An extra high-resource language-pair was added, Russian-English, however separated from the rest

when it comes to content, being comprised of Russian Reddit forums (75%), and Russian WikiQuotes

43

(25%). Datasets for all language-pairs were divided into 7K sentences for training, and 1K sentences for

development. Only a subset of the full dataset was annotated and made available for task 2, specifically

for the English-German and English-Chinese language pairs.

For task 1, each sentence was annotated following the FLORES setup [24], which presents a form

of DA. Here, at least 3 professional translators rate sentences from 0-100 according to their perceived

translation quality. DA scores are then standardized using the z-score by rater; this score is the number

of standard deviations by which the value of a raw score is above or below the mean value of all ratings

that a given translator has provided, defined by:

z =
x− µ
σ

(4.1)

,where x is a raw DA score, µ is the mean of all ratings, and σ is the standard deviation of ratings for

a given evaluator. Standardizing scores in this manner ensures that the raw score is not used as an

absolute and independent value, but that the evaluator’s rating distribution is taken into account. There-

fore, the data available for each sentence is the original and translated sentences, the raw translations

scores from the 3 evaluators and their mean, the z-scores and their mean (named z-mean henceforth),

as well as the NMT model score for the sentence. The measure taken to describe quality, and used as

prediction target to train the QE model, is the z-mean value.

Furthermore, the NMT models used to create the dataset were made available, so that system-

internal information could be exploited for the task. For all language-pairs, these are standard Trans-

former models, with 6 encoder blocks and 6 decoder blocks. This resource helped motivate the idea for

this thesis, as it is very in line with the efforts required for the task itself.

4.2 Evaluation Metrics

The word and sentence-level tasks are of two distinct natures; the former is a binary classification

problem, while the latter is a regression problem. We will break up the two objectives in this section,

which by their very nature are evaluated differently.

Sentence-Level (DA and HTER)

A regression task entails learning the mapping from input X to a continuous output variable Y - in this

case, a real value.

Performance in regression tasks is usually assessed using some form of error measurement focused

on the magnitude of the predicted value. When training a model to predict the appropriate market value

of real-estate based on several of its features, for example, the desired outcome is that the predicted

absolute value is as close as possible to the real absolute value. The most common metric to evaluate

44

precisely this - which is also often used as the loss function to train the model itself - is the Mean Squared

Error (MSE); it measures the average squared difference between predictions and real values, and is

defined by:

MSE =
1

n

n∑
i=1

(
Yi − Ŷi

)2
(4.2)

where Yi is the prediction, and Ŷi is the real value. However, the broad research objective regarding

the sentence-level QE task has veered away from an ”absolute value” approach. Starting some years

ago - in particular, influenced by the 2015 Quality Estimation Shared Task -, systems have typically

been evaluated on the direction of their predictions. Plainly, the desired outcome is to achieve a greater

correlation with sentence scores, be it HTER or DA.

The most common and generally used correlation metric is the Pearson correlation coefficient (or

Pearson’s r). This is a measure of linear correlation between two sets of data (in this case, z-mean scores

and model predictions for each language pair), defined by the covariance of the two sets, normalized by

the product of their standard deviations:

ρX,Y =
cov(X,Y)

σXσY
(4.3)

We use Pearson’s r as the metric to assess all the models trained in the context of this thesis.

Word-Level (OK/BAD labels)

The quality of binary (two-class) predictions – such as predicting an OK or BAD label for each word

– is generally measured by the Matthews correlation coefficient (MCC). In essence, this is a correlation

coefficient between the observed and predicted binary classifications. It returns a value between 1

and +1, being that +1 represents a perfect prediction, 0 equivalent to random prediction, and -1 total

disagreement between prediction and observation. Is is defined by:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.4)

, where TP, TN, FP and FN are true positives, true negatives, false positives and false negatives, in

order. The MCC is a balanced measure which can be used even if the classes are of very different

sizes (i.e. imbalanced). While there is no perfect way of describing a confusion matrix of true and false

positives and negatives by a single number, MCC is generally regarded as being one of the best such

measures.

45

4.3 Experimental Results

This section presents the experimental results obtained with the approach proposed in Chapter 3.

First, in section 4.3.1, glass-box features will be independently assessed, and compared to past perfor-

mance on this task. Section 4.3.2 will focus on the performance of the Base OpenKiwi System (3.2.2),

and how that performance is affected when taking the approach described in 3.2.3.

The shared baseline for the comparison of results consists of a neural predictor-estimator system,

as described in 2.3.2, and as implemented in Kepler et al. [31]. The predictor is pre-trained on the same

parallel data used to train the available NMT models 4.1. This model will be refered to as OpenKiwi

henceforth.

4.3.1 Glass-Box Features

The original premise and results of the publication which suggested the use of glass-box features (as

they are presented in this thesis) as a quality indicator [17], was that these were on par with supervised

quality estimation methods, in terms of correlation with human judgement. In order to test this - both for

validation of the feature extraction process implementation, and for future comparison with the developed

method - glass-box features were extracted from the provided models, using the validation sets for each

language pair. Then, the Pearson r correlation was calculated for each feature-language pair. The

results can be seen in Table 4.1.

Feature Language Pair
En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En

(i)
TP 0.0993 0.2808 0.5951 0.3992 0.3653 0.3658 0.3658
Softmax-Ent 0.0858 0.2919 0.5595 0.3546 0.4133 0.4077 0.3790
Sent-Std 0.0691 0.3252 0.5049 0.3985 0.3669 0.3912 0.3510

(ii)

D-TP 0.1078 0.3158 0.6404 0.4936 0.3905 0.3797 0.4441
D-Var 0.0782 0.1943 0.3550 0.2780 0.2336 0.2338 0.2329
D-Combo 0.0487 0.1259 0.2620 0.1335 0.2938 0.2244 0.2013
D-Lex-Sim 0.0994 0.2903 0.6210 0.3940 0.4751 0.4318 0.4092

Table 4.1: Pearson correlation (r) between the employed glass-box features and human DA’s for every language pair (validation
set) - best results are in bold.

Features in group (i) are softmax distribution-based, in a standard deterministic inference scenario ,

while the ones in group (ii) are uncertainty quantification-based, as detailed in section 3.1.1.

As expected, group (ii) features consistently display higher correlation to human DA’s across lan-

guage pairs, D-TP being the most effective for high and medium resource languages, and D-Lex-Sim

for low resource languages. This is in accordance with intuition, given that MT models trained on low-

resource languages have had less data points to train and converge on, and might therefore create more

variable outputs for the same source, when affected by dropout.

In the same line of analysis, we see that correlations on high resource languages are lower than

46

for the rest of the language-pairs. Since we are in fact measuring uncertainty with these features,

it seems that, the more trained - and therefore confident - the model is, the less signal we get from

the uncertainty quantification method used, which results in features that are less fit to independently

estimate translation quality. Although this is an observable pattern for the obtained results, it cannot be

generalized to all models, language pairs and datasets, as results are highly dependent on a multitude of

factors, ranging from training hyperparameters, to dataset domain, content and size. A deeper analysis

on this subject could is deffered to future work.

4.3.2 Glass-Box QE

In this section, comparisons are drawn between results obtained with:

• baseline Predictor-Estimator implemented in OpenKiwi;

• glass-box features independently (namely, the one which is the most correlated with DA’s for each

language pair);

• two variants of the Base Kiwi System described in Section 3.2.2: Kiwi-Base, and Kiwi-Large.

These model’s predictor module is respectively comprised of an XLM-Roberta base model (∼270M

parameters with 12-layers, 768-hidden-state, 3072 feed-forward hidden-state, 8-heads) and a large

model (∼550M parameters with 24-layers, 1024-hidden-state, 4096 feed-forward hidden-state, 16-

heads). Our objective is to take advantage of the experiments that were done, to understand how

much performance impact does the size of the predictor have on a downstream task;

• the model described in Section 3.2.3, named Kiwi-Glass-Box; this is Kiwi-Large, modified with the

architectural changes developed in this thesis, which accommodate the introduction of glass-box

features into the training process;

• finally, Kiwi-Glass-Box-Ensemble. As was mentioned previously, we submitted the developed mod-

els to the 2020 WMT Quality Estimation Shared Task. The Shared Task presents a gamified ap-

proach to research, where participants use their developed models to submit predictions on a blind

test set; there is then a leaderboard of participant scores, and therefore an elected winner. In the

effort of obtaining a final performance boost, we ensemble the 5 best glass-box models obtained

in the process of hyperparameter tuning, for each language pair. This is accomplished by using

Lasso regression to tune their combined predictions on the validation set. Since we did not have

access to the test set labels, these ensembles were trained using k-cross validation (k=10) on the

validation set).

Tables 4.2 and 4.3 show the results obtained on both tasks.

47

Pair System Pearson
VAL TEST

En-De

(*)KIWI-GLASS-BOX-ENSEMBLE 0.5715 0.5230
KIWI-GLASS-BOX 0.5263 -
KIWI-LARGE 0.4794 -
OPENKIWI-BASE 0.3499 0.2670
BEST GB FEATURE 0.1078 -
Openkiwi 1.0 - 0.1455

En-Zh

(*)KIWI-GLASS-BOX-ENSEMBLE 0.5711 0.4940
KIWI-GLASS-BOX 0.5461 -
KIWI-LARGE 0.5258 -
OPENKIWI-BASE 0.4199 0.3460
BEST GB FEATURE 0.3252 -
OpenKiwi 1.0 - 0.1902

Ro-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.8968 0.8910
KIWI-GLASS-BOX 0.8841 -
KIWI-LARGE 0.8790 -
OPENKIWI-BASE 0.6672 0.7080
BEST GB FEATURE 0.6404 -
OpenKiwi 1.0 - 0.6845

Et-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7697 0.7700
KIWI-GLASS-BOX 0.7611 -
KIWI-LARGE 0.7496 -
OPENKIWI-BASE 0.6728 0.6900
BEST GB FEATURE 0.4936 -
OpenKiwi 1.0 - 0.4770

Ne-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7994 0.7920
KIWI-GLASS-BOX 0.7804 -
KIWI-LARGE 0.7711 -
OPENKIWI-BASE 0.6987 0.6040
BEST GB FEATURE 0.4751 -
OpenKiwi 1.0 - 0.3860

Si-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.6896 0.6390
KIWI-GLASS-BOX 0.6604 -
KIWI-LARGE 0.6521 -
OPENKIWI-BASE 0.5727 0.5650
BEST GB FEATURE 0.4318 -
OpenKiwi 1.0 - 0.3737

Ru-En

(*)KIWI-GLASS-BOX-ENSEMBLE 0.7391 0.7670
KIWI-GLASS-BOX 0.7137 -
KIWI-LARGE 0.6938 -
OPENKIWI-BASE - -
BEST GB FEATURE 0.4441 -
OpenKiwi 1.0 - 0.5479

Table 4.2: Task 1 results on the validation and test sets for all language pairs in terms of Pearson’s r correlation. Systems in bold
were officially submitted to the 2020 Quality Estimation Shared Task. (*) Lines with an asterisk use LASSO regression to tune
ensemble weights on the validation set, therefore their numbers cannot be directly compared to the other models.

48

Pair System Target MCC Source MCC Pearson
Val Test Val Test Val Test

En-De
KIWI-GLASS-BOX 0.460 0.465 0.357 0.349 0.618 0.633
OPENKIWI-BASE 0.445 0.432 0.330 0.324 0.561 0.531
(*)OpenKiwi 1.0 - 0.358 - 0.266 - 0.392

En-Zh
KIWI-GLASS-BOX 0.567 0.567 0.348 0.287 0.691 0.651
OPENKIWI-BASE 0.576 0.575 0.298 0.287 0.615 0.593
(*)OpenKiwi 1.0 - 0.509 - 0.270 - 0.506

Table 4.3: Task 2 word and sentence-level results on the validation and test sets. Results for OPENKIWI-BASE and KIWI-GLASS-
BOX were obtained from a single model trained by multi-tasking on the 3 different subtasks. (*) Baseline results on the validation
set were not made available by the organizers.

Most comparisons we draw from the obtained results in the following paragraphs are expressed for

task 1; this task was initially worked on more deeply, and was the one used as experimentation and

feedback mechanism to understand the impact of the developed method. Once validated, the method

was applied in a straightforward way to task 2. Analyzing the results, we can answer a series of questions

that help assess the different components and experiments we led:

Are glass-box features good unsupervised quality estimators?

As we alluded to in section 4.3.1, the extracted features by themselves achieve a very comparable

- and for some language pairs, even better - performance than the best approach from previous years,

OpenKiwi 1.0. This is all the more of an impressive result, considering that these features are extracted

in a completely unsupervised manner, and points to potential use cases where labelled data is not

available - either at all, or in a big enough quantity to train an accurate QE model.

Are pre-trained contextualized embeddings a better choice than training a Predictor from

scratch?

Using pre-trained contextualized embeddings with XLMRoberta proves to greatly outperform the

baseline system OpenKiwi 1.0 in both tasks, even when not taking XLMR-large into account. The

fact that RNN’s are replaced by a Transformer architecture, the optimization for multilingual pre-training

implemented in XLMR (3.2.1), and the sheer amount of data that XLMR is pre-trained with, all contribute

to this difference. It also highlights the virtues of using transfer-learning in NLP tasks; pre-training a

neural model with the size and amount of data that has been proven to be required for powerful language

representation is impossible in most cases, and taking advantage of the computational expense incurred

by large research entities enables explorations such as the one developed for this thesis.

What effect does increasing the Predictor’s capacity have?

Switching from using XLMR Base to Large as the Predictor component has a very strong impact in

performance, with the increase in correlation averaging 11,3% across language-pairs (tested on task 1

only). This is in line with findings from the original XLMR paper [12], which indicated that adding capacity

to a multilingual model alleviates the curse of multilinguality (degrading performance caused by training

49

on many languages), and results in higher performance for the same number of languages involved in

the training process.

Do glass-box features positively inform the training of QE models?

The developed Kiwi-Glass-Box approach consistently increases performance across language pairs

and in both tasks. Sentence-level improvements are more visible in predicting HTER (task 2), with the

increase averaging 6,6% for both language-pairs, but DA prediction performance benefits nonetheless

(task 1), averaging 2% across language-pairs, and as high as 4.7% in the case of En-De. The glass-

box features are leveraged by the model during training, resulting in a stronger correlation with human

judgement than either one separately. It is curious to note that, even though features extracted for high-

resource language pairs show the lowest correlations independently, the QE models trained on those

language pairs make the best use of them, judging by performance increase. This could be a factor of

the language itself, or alternatively, the translation patterns of a more extensively trained NMT model,

learned by the QE model, which might find in uncertainty measurements more signal for determining

translation quality.

In the multi-task setting of task 2, results show that is possible for word-level performance to be

positively influenced by added information at the sentence-level. Apart from the case of target label

prediction for En-Zh, the word-level task and its corresponding component in the model architecture

(the final binary classification block) benefits from the extra information on which the shared layers are

trained (refer to Section 3.2.2).

All in all, the proposed method improves performance across the board on both word and sentence-

level prediction.

50

Chapter 5

Conclusions

In this chapter we summarize the main contributions and findings of this dissertation. Then, we

suggest some of the possible directions for future work regarding the proposed method.

5.1 Summary of Contributions

In Section 1.1, we described the task of Translation Quality Estimation and discussed its relevance

for the applicability of Machine Translation systems. We also described the aim of our work: enhancing

state-of-the-art QE models, by allowing them to leverage internal features from NMT models - or glass-

box features.

Our starting point was the set of glass-box features introduced in Fomicheva et al. [17], originally

used directly as unsupervised quality estimators, and proven to be effective at representing NMT model

uncertainty. We began by implementing the extraction of these features for the NMT models used, as

described in Section 3.1.

Then, in Section 3.2.2 we proposed a QE model architecture on which to apply these features,

leveraging the Natural Language Understanding capabilities of a multi-lingual, pre-trained Language

Model (XLM-Roberta). Independently, this architecture yielded results that surpassed the performance

of RNN-based QE systems - the state-of-the-art up until this point -, as we show in Section 4.3.2.

Finally, in Section 3.2.3 we developed a method to introduce glass-box features into the proposed

model’s training process. We validated our design choices, confirmed the independent relevance of the

features as quality indicators, and at last showed that the QE model’s performance in the sentence-level

task consistently increases across language pairs, when using them as extra input information. We also

showed that, although features are extracted on a sentence-level granularity only, multi-task learning

paired with weight sharing between sentence and word-level Estimator components has a positive in-

fluence on the model’s performance in predicting word-level labels. These conclusions are part of the

evaluation drawn from results across two tasks and six language pairs, obtained as the result of our par-

ticipation in the WMT Quality Estimation Shared Task (Moura et al. [43]), and according to the proposed

metrics.

51

5.2 Future Work

5.2.1 Explore NMT Corpus Size Influence

One of the conclusions that were taken from the obtained results, was that even though the glass-

box features extracted for high-resource language pairs showed the lowest correlations with human

judgements as unsupervised quality indicators, the QE models trained on those language pairs seem

to make the best use of them. To explore the reason for this phenomena, an experiment could be

conducted, consisting of training a pair of (or more) NMT models on each language pair (with emphasis

on high resource), using increasing portions of the full training data set. Corresponding QE models

would be trained on each NMT model’s translation outputs, and the increase in performance by using

glass-box features could then be compared for each model, when tested on a validation/test data set.

This would allow to more deeply isolate the influences of specific language pairs, and size of NMT

Corpus on the final results for QE model performance. However, this experiment would require the

human quality labelling of all translation outputs, for each model and the respective dataset portion it

was trained on. Time, and most importantly resource constraints prevented us from conducting the

described experiment in the context of this thesis.

5.2.2 Feature Granularity and Integration

In our work, we extracted and used sentence-level glass-box features only. It would be interesting to

extract these features - and even other suitable ones - on the basis of each word prediction made by the

NMT model, and then test how these will impact prediction of word labels, using the same method as

the one we have developed. Since the sentence-level features are always pooled/aggregated in some

way in order to represent the prediction uncertainty of the whole sentence, important information may

come from more granular glass-box features.

In another direction, it would be interesting to integrate the internal information coming from the NMT

model with the QE training process in a different way; the trend we have empirically observed to work

best for most Deep Learning approaches is not to hand-craft features at all, but contrarily to start with a

model’s raw hidden states, and let the Neural Network optimize on how to better make use of them. In

this context, it would be interesting to see the effects of applying uncertainty quantification methods to

internal states of NMT models, and integrating them in their raw form with the proposed QE model.

5.2.3 End-to-end Training

Carrying on with the line of thought begun in the previous section, both for the case of using crafted

features that we explored in this work, and for the possible use of raw NMT model hidden states, training

the NMT and QE model jointly in an end-to-end fashion would be a relevant setting to experiment.

However, such an experiment would be expensive computation-wise (two large models would have to

52

be loaded into GPU memory and used at the same time), which may require some form of parameter

sharing for computational viability.

53

54

Bibliography

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad. State-of-the-

art in artificial neural network applications: A survey. Heliyon, 4(11):e00938, 2018. ISSN 2405-

8440. doi: https://doi.org/10.1016/j.heliyon.2018.e00938. URL http://www.sciencedirect.com/

science/article/pii/S2405844018332067.

[2] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C. V. Esesn, A. A. S.

Awwal, and V. K. Asari. The history began from alexnet: A comprehensive survey on deep learning

approaches, 2018.

[3] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization, 2016.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and

translate, 2016.

[5] S. Banerjee and A. Lavie. METEOR: An automatic metric for MT evaluation with improved correla-

tion with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evalua-

tion Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan,

June 2005. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/

W05-0909.

[6] E. Biçici, Q. Liu, and A. Way. Referential translation machines for predicting translation quality and

related statistics. In Proceedings of the Tenth Workshop on Statistical Machine Translation, pages

304–308, Lisbon, Portugal, Sept. 2015. Association for Computational Linguistics. doi: 10.18653/

v1/W15-3035. URL https://www.aclweb.org/anthology/W15-3035.

[7] J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte, A. Kulesza, A. Sanchis, and N. Ueff-

ing. Confidence estimation for machine translation. In COLING 2004: Proceedings of the 20th

International Conference on Computational Linguistics, pages 315–321, Geneva, Switzerland, aug

23–aug 27 2004. COLING. URL https://www.aclweb.org/anthology/C04-1046.

[8] S. Boggan and D. M. Pressel. Gpus: An emerging platform for general-purpose computation. Tech-

nical report, ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD COMPUTATIONAL

AND INFORMATION . . . , 2007.

[9] C. Callison-Burch, P. Koehn, C. Monz, M. Post, R. Soricut, and L. Specia. Findings of the 2012

workshop on statistical machine translation. In Proceedings of the Seventh Workshop on Statistical

Machine Translation, pages 10–51, Montréal, Canada, June 2012. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W12-3102.

55

http://www.sciencedirect.com/science/article/pii/S2405844018332067
http://www.sciencedirect.com/science/article/pii/S2405844018332067
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W15-3035
https://www.aclweb.org/anthology/C04-1046
http://www.aclweb.org/anthology/W12-3102

[10] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-

gio. Learning phrase representations using rnn encoder-decoder for statistical machine translation,

2014.

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language

processing (almost) from scratch, 2011.

[12] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott,

L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual representation learning at scale, 2020.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical

Image Database. In CVPR09, 2009.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding, 2019.

[15] G. Doddington. Automatic evaluation of machine translation quality using n-gram co-occurrence

statistics. In Proceedings of the Second International Conference on Human Language Technology

Research, HLT ’02, page 138–145, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers

Inc.

[16] C. Dyer, A. Lopez, J. Ganitkevitch, J. Weese, F. Ture, P. Blunsom, H. Setiawan, V. Eidelman, and

P. Resnik. cdec: A decoder, alignment, and learning framework for finite-state and context-free

translation models. In Proceedings of the ACL 2010 System Demonstrations, pages 7–12, Uppsala,

Sweden, July 2010. Association for Computational Linguistics. URL https://aclanthology.org/

P10-4002.

[17] M. Fomicheva, S. Sun, L. Yankovskaya, F. Blain, F. Guzmán, M. Fishel, N. Aletras, V. Chaudhary,

and L. Specia. Unsupervised quality estimation for neural machine translation, 2020.

[18] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty

in deep learning, 2016.

[19] M. Gamon, A. Aue, and M. Smets. Sentence-level MT evaluation without reference translations:

beyond language modeling. In Proceedings of the 10th EAMT Conference: Practical applications

of machine translation, Budapest, Hungary, May 30–31 2005. European Association for Machine

Translation. URL https://www.aclweb.org/anthology/2005.eamt-1.15.

[20] Y. Graham, T. Baldwin, M. Dowling, M. Eskevich, T. Lynn, and L. Tounsi. Is all that glitters in machine

translation quality estimation really gold? In Proceedings of COLING 2016, the 26th International

Conference on Computational Linguistics: Technical Papers, pages 3124–3134, Osaka, Japan,

Dec. 2016. The COLING 2016 Organizing Committee. URL https://www.aclweb.org/anthology/

C16-1294.

[21] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov. Learning word vectors for 157 lan-

guages, 2018.

56

https://aclanthology.org/P10-4002
https://aclanthology.org/P10-4002
https://www.aclweb.org/anthology/2005.eamt-1.15
https://www.aclweb.org/anthology/C16-1294
https://www.aclweb.org/anthology/C16-1294

[22] F. Grézl, M. Karafiát, S. Kontar, and J. ernocký. Probabilistic and bottle-neck features for lvcsr

of meetings. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing -

ICASSP ’07, 4:IV–757–IV–760, 2007.

[23] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks, 2017.

[24] F. Guzman, P.-J. Chen, M. Ott, J. Pino, G. Lample, P. Koehn, V. Chaudhary, and M. Ranzato. The flo-

res evaluation datasets for low-resource machine translation: Nepali–english and sinhala–english.

pages 6100–6113, 01 2019. doi: 10.18653/v1/D19-1632.

[25] C. Hardmeier, J. Nivre, and J. Tiedemann. Tree kernels for machine translation quality estima-

tion. In Proceedings of the Seventh Workshop on Statistical Machine Translation, pages 109–

113, Montréal, Canada, June 2012. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/W12-3112.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition, 2015.

[27] S. Hochreiter and Y. Bengio. Gradient flow in recurrent nets: the difficulty of learning long-term

dependencies. 2001.

[28] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,

Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/

neco.1997.9.8.1735.

[29] C. Hu, H. Liu, K. Feng, C. Xu, N. Xu, Z. Zhou, S. Yan, Y. Luo, C. Wang, X. Meng, T. Xiao, and

J. Zhu. The NiuTrans system for the WMT20 quality estimation shared task. In Proceedings of

the Fifth Conference on Machine Translation, pages 1018–1023, Online, Nov. 2020. Association for

Computational Linguistics. URL https://www.aclweb.org/anthology/2020.wmt-1.117.

[30] N. Kalchbrenner and P. Blunsom. Recurrent continuous translation models. In Proceedings of

the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1700–1709,

Seattle, Washington, USA, Oct. 2013. Association for Computational Linguistics. URL https://

www.aclweb.org/anthology/D13-1176.

[31] F. Kepler, J. Trénous, M. Treviso, M. Vera, A. Góis, M. A. Farajian, A. V. Lopes, and A. F. T. Martins.

Unbabel’s participation in the wmt19 translation quality estimation shared task, 2019.

[32] F. Kepler, J. Trénous, M. Treviso, M. Vera, and A. F. T. Martins. OpenKiwi: An open source frame-

work for quality estimation. In Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics–System Demonstrations, pages 117–122, Florence, Italy, July 2019. Associ-

ation for Computational Linguistics. URL https://www.aclweb.org/anthology/P19-3020.

[33] H. Kim, H. Jung, H.-S. Kwon, J.-H. Lee, and S.-H. Na. Predictor-estimator. ACM Transactions on

Asian and Low-Resource Language Information Processing (TALLIP), 17:1 – 22, 2017.

[34] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

57

https://www.aclweb.org/anthology/W12-3112
https://www.aclweb.org/anthology/W12-3112
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.aclweb.org/anthology/2020.wmt-1.117
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/P19-3020

[35] J. Kreutzer, S. Schamoni, and S. Riezler. QUality estimation from ScraTCH (QUETCH): Deep learn-

ing for word-level translation quality estimation. In Proceedings of the Tenth Workshop on Statistical

Machine Translation, pages 316–322, Lisbon, Portugal, Sept. 2015. Association for Computational

Linguistics. doi: 10.18653/v1/W15-3037. URL https://www.aclweb.org/anthology/W15-3037.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[37] G. Lample and A. Conneau. Cross-lingual language model pretraining, 2019.

[38] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for self-

supervised learning of language representations, 2020.

[39] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.

Roberta: A robustly optimized bert pretraining approach, 2019.

[40] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

[41] A. F. T. Martins, R. Astudillo, C. Hokamp, and F. Kepler. Unbabel’s participation in the WMT16

word-level translation quality estimation shared task. In Proceedings of the First Conference on

Machine Translation: Volume 2, Shared Task Papers, pages 806–811, Berlin, Germany, Aug.

2016. Association for Computational Linguistics. doi: 10.18653/v1/W16-2387. URL https:

//www.aclweb.org/anthology/W16-2387.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector

space, 2013.

[43] J. Moura, M. Vera, D. van Stigt, F. Kepler, and A. F. T. Martins. IST-unbabel participation in

the WMT20 quality estimation shared task. In Proceedings of the Fifth Conference on Machine

Translation, pages 1029–1036, Online, Nov. 2020. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/2020.wmt-1.119.

[44] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Pro-

ceedings of the 27th International Conference on International Conference on Machine Learning,

ICML’10, page 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

[45] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML,

2010.

[46] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine

translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguis-

tics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational

Linguistics. doi: 10.3115/1073083.1073135. URL https://www.aclweb.org/anthology/P02-1040.

[47] R. N. Patel and S. M. Translation quality estimation using recurrent neural network. In Proceedings

of the First Conference on Machine Translation: Volume 2, Shared Task Papers, pages 819–824,

58

https://www.aclweb.org/anthology/W15-3037
https://www.aclweb.org/anthology/W16-2387
https://www.aclweb.org/anthology/W16-2387
https://www.aclweb.org/anthology/2020.wmt-1.119
https://www.aclweb.org/anthology/P02-1040

Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/W16-

2389. URL https://www.aclweb.org/anthology/W16-2389.

[48] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word representation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, Doha, Qatar, Oct. 2014. Association for Computational Linguistics.

doi: 10.3115/v1/D14-1162. URL https://www.aclweb.org/anthology/D14-1162.

[49] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep

contextualized word representations, 2018.

[50] C. B. Quirk. Training a sentence-level machine translation confidence measure. In Proceedings of

the Fourth International Conference on Language Resources and Evaluation (LREC’04), Lisbon,

Portugal, May 2004. European Language Resources Association (ELRA). URL http://www.lrec-

conf.org/proceedings/lrec2004/pdf/426.pdf.

[51] R. Raina, A. Madhavan, and A. Y. Ng. Large-scale deep unsupervised learning using graphics

processors. In Proceedings of the 26th annual international conference on machine learning, pages

873–880, 2009.

[52] R. Rei, C. Stewart, A. C. Farinha, and A. Lavie. COMET: A neural framework for MT evaluation.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 2685–2702, Online, Nov. 2020. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/2020.emnlp-main.213.

[53] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the

brain. Psychological review, 65(6):386, 1958.

[54] D. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propa-

gation. 1986.

[55] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Internal Representations by Error

Propagation, page 318–362. MIT Press, Cambridge, MA, USA, 1986. ISBN 026268053X.

[56] C. Scarton and L. Specia. Exploring consensus in machine translation for quality estimation. In

Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 342–347, Baltimore,

Maryland, USA, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3343.

URL https://www.aclweb.org/anthology/W14-3343.

[57] M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. IEEE Trans. Signal Process.,

45:2673–2681, 1997.

[58] M. Snover, B. J. Dorr, R. Schwartz, and L. Micciulla. A study of translation edit rate with targeted

human annotation. 2006.

59

https://www.aclweb.org/anthology/W16-2389
https://www.aclweb.org/anthology/D14-1162
http://www.lrec-conf.org/proceedings/lrec2004/pdf/426.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/426.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.213
https://www.aclweb.org/anthology/W14-3343

[59] R. Soricut, N. Bach, and Z. Wang. The SDL language weaver systems in the WMT12 quality

estimation shared task. In Proceedings of the Seventh Workshop on Statistical Machine Translation,

pages 145–151, Montréal, Canada, June 2012. Association for Computational Linguistics. URL

https://www.aclweb.org/anthology/W12-3118.

[60] B. K. Spears, J. Brase, P.-T. Bremer, B. Chen, J. Field, J. Gaffney, M. Kruse, S. Langer, K. Lewis,

R. Nora, and et al. Deep learning: A guide for practitioners in the physical sciences. Physics

of Plasmas, 25(8):080901, Aug 2018. ISSN 1089-7674. doi: 10.1063/1.5020791. URL http:

//dx.doi.org/10.1063/1.5020791.

[61] L. Specia, N. Cancedda, M. Dymetman, M. Turchi, and N. Cristianini. Estimating the sentence-level

quality of machine translation systems. In EAMT, 2009.

[62] L. Specia, D. Raj, and M. Turchi. Machine translation evaluation versus quality estimation. Machine

translation, 24(1):39–50, 2010.

[63] L. Specia, K. Shah, J. G. de Souza, and T. Cohn. QuEst - a translation quality estimation frame-

work. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics:

System Demonstrations, pages 79–84, Sofia, Bulgaria, Aug. 2013. Association for Computational

Linguistics. URL https://www.aclweb.org/anthology/P13-4014.

[64] L. Specia, F. Blain, M. Fomicheva, E. Fonseca, V. Chaudhary, F. GuzmÃ¡n, and A. F. T. Martins.

Findings of the wmt 2020 shared task on quality estimation. In Proceedings of the Fifth Conference

on Machine Translation, pages 743–764, Online, November 2020. Association for Computational

Linguistics. URL https://www.aclweb.org/anthology/2020.wmt-1.79.

[65] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):

1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

[66] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks, 2014.

[67] W. L. Taylor. “cloze procedure”: A new tool for measuring readability. Journalism Quarterly,

30(4):415–433, 1953. doi: 10.1177/107769905303000401. URL https://doi.org/10.1177/

107769905303000401.

[68] W. L. Taylor. “cloze procedure”: A new tool for measuring readability. Journalism quarterly, 30(4):

415–433, 1953.

[69] B. Thompson and M. Post. Automatic machine translation evaluation in many languages via zero-

shot paraphrasing, 2020.

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-

sukhin. Attention is all you need. In Advances in neural information processing systems, pages

5998–6008, 2017.

60

https://www.aclweb.org/anthology/W12-3118
http://dx.doi.org/10.1063/1.5020791
http://dx.doi.org/10.1063/1.5020791
https://www.aclweb.org/anthology/P13-4014
https://www.aclweb.org/anthology/2020.wmt-1.79
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1177/107769905303000401
https://doi.org/10.1177/107769905303000401

[71] S. Wang, Z. Tu, S. Shi, and Y. Liu. On the inference calibration of neural machine translation, 2020.

[72] P. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,

78(10):1550–1560, 1990. doi: 10.1109/5.58337.

[73] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text generation

with bert, 2020.

61

62

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation and Related Work
	Contributions
	Document outline

	Concepts and Related Work
	Neural Networks
	Feedforward NN's
	Recurrent Neural Networks

	Neural Machine Translation
	Encoder-Decoder Architecture
	Transformers
	Pre-trained Contextualized Embeddings

	Quality Estimation
	Sentence and Word-Level Task
	Predictor-Estimator Architecture

	Glass-Box Quality Estimation
	Glass-Box QE Features
	Feature Description
	Implementation of Feature Extraction

	QE Model Implementation
	XLM-Roberta
	Base Kiwi System
	Integrating Glass-Box Features

	Experiments and Results
	Dataset and Model Resources
	Evaluation Metrics
	Experimental Results
	Glass-Box Features
	Glass-Box QE

	Conclusions
	Summary of Contributions
	Future Work
	Explore NMT Corpus Size Influence
	Feature Granularity and Integration
	End-to-end Training

	Bibliography

