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Abstract—Nowadays, the use of artificial intelligence in many 

software applications is increasingly common. However, decades 

of development were necessary, especially at hardware level for 

the use of artificial intelligence to become viable. MobileNets 

model developed by Google researchers is used for image 

classification and primarily suited for embedded systems because 

of the lighter computation compared to its competitors. This model 

uses the depthwise separable convolution concept to perform the 

convolutions and despite being a very optimized model, the 

processing time of this network may still be high when used on low-

cost devices.   

This work aimed to develop a hardware/software 

multiprocessing architecture in an SoC FPGA platform for image 

classification using MobileNets model. The main contributions of 

this project are the development of 3 IPs to process the depthwise 

separable convolution layers, using an effective parallelization and 

allocation of resources to achieve an efficient multi-processing, 

and a quantized data model to reduce the memory requirements 

and improve the communications. 

The system was implemented on a Zynq 7010 device using a 

quantized MobileNets model with 26% of the parameters 

represented in a 16-bit fixed-point format and 74% of the 

parameters using a 12-bit custom floating-point representation. 

This quantization process produced a model 60% smaller than the 

standard MobileNets with only 0.78% of accuracy loss. The final 

solution allows the classification of 1 image in 469 ms which 

corresponds to a speed up of 11 times compared to a software-only 

solution executing on the embedded ARM processor. 

Index Terms—Artificial intelligence, Google, Depthwise Separable 

Convolution, MobileNets, FPGA. 

I. INTRODUCTION 

mage recognition is an easy task for humans but it has proved 

to be a complex problem for machines to perform due to the 

computational effort involved. The evolution of high-capacity 

computers and new artificial intelligence (AI) techniques has 

generated an interest in object classification algorithms. 

Computer image classification uses a form of AI denominated 

machine learning, which uses a variety of algorithms that 

iteratively learn with the available data. This iterative learning 

is also called training, and is done to create a model to make 

predictions or decisions without being programmed for that. 

Specific models can be trained to be used on a wide range of 

applications such as object detection, medical diagnostic, voice 

processing, biometry, and many others. 

The trained model receives an input (an image for instance) 

and gives an output (what the image represents), which sounds 

simple, but in reality, is a very complex process. To perform 

this classification, these models use the concept of network [1]. 

 

A complex system can be broken into simpler elements to be 

easier to solve, or vice versa, simple elements can be combined 

to build a complex system, and networks can be used to 

accomplish this. These networks are composed of a set of nodes 

and connections between them, used to transfer information. 

This way, nodes receive inputs and process them to obtain an 

output, which can be transferred to other nodes. 

Nodes can be seen as artificial neurons by the networks, and 

in this case, the network is defined as an artificial neural 

network (ANN) [1]. An artificial neuron is inspired by the 

natural neuron functionality, which receives signals through 

synapses. When one of these received signals is strong enough, 

the neuron is activated and also emits a signal, that might be 

propagated to other neurons and even activate some of them. 

 The class of ANN covers several architectures, and one very 

popular kind of ANN used in image recognition is the 

convolutional neural network (CNN) [2]. CNNs are designed 

having in mind that the inputs will be images, which allows 

making the network more adapted to image tasks while 

reducing the parameters required. Despite this, CNN models 

have intensive computing and not all are efficient to be used in 

mobile or embedded devices. Some CNN models have been 

created to deal with this constraint, which is smaller and lighter 

than common CNNs, and have a decent accuracy in image 

classification. One of these models is MobileNets [3] which 

proposes to reduce the computational effort and resource 

requirements of standard CNNs, by reducing the number of 

parameters, allowing the model to be used in mobile and 

embedded vision applications. 

Even with a smaller and lighter model, the implementation 

on mobile or embedded devices may not be easy. Moreover, 

some implementations need to process an image in hundreds or 

tens of milliseconds, which may require very expensive 

devices. Thus, an efficient and optimized architecture can help 

to accelerate the model with fewer resources, which represents 

less power consumption or even cheaper devices.  

This work proposes two approaches to accelerate the 

MobileNets model in a low-cost device. Firstly, a quantization 

analysis of the model is conducted to evaluate the behaviour 

when the weights and activations are quantized using different 

representations. Quantizing the model allows reducing the 

memory requirements and improve communications. The 

second approach is to implement a hardware/software 

architecture capable to execute the inference process of the 

quantized MobleNets model, using an effective parallelization 

and allocation of resources. The final system should be able to 

classify the image in less than 1 second, and possible 
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optimizations of the MobileNets model, should not incur a loss 

in accuracy larger than 1% over the original model. 

II. BACKGROUND 

This section presents the basic structure of CNNs, and 

describes the MobileNets architecture in detail. 

A. Convolutional Neural Networks 

CNNs are primarily suited for image-focused tasks like 

recognition or classification of images. These networks connect 

only a small region (receptive field) of the input to the neuron 

and are organized into three dimensions: the height and width 

that compose the spatial dimensionality of the input, and the 

depth, which represents the third dimension of an output map. 

CNN architectures have three types of layers: convolutional 

layers, pooling layers and fully connected (FC) layers. There 

are several types of CNNs models, and their use can be applied 

to different purposes and hardware platforms. One example is 

the MobileNets [3] model designed for image classification and 

used mostly on mobile and embedded devices. 

B. MobileNets 

MobileNets [3] is based on depthwise separable 

convolutions which factorize a standard convolution (figure 1) 

into a depthwise convolution and a pointwise convolution.  

 

 

Figure 1: Standard convolution. 

The depthwise convolution applies a single 𝑘 × 𝑘 kernel to each 

input channel (figure 2). Considering 𝐾 as the height/length size 

of the kernel, 𝑁 as the height/length size of the output feature 

maps (OFMs) and 𝐼 as the number of input feature maps 

(IFMs), the total number of multiplication and accumulation 

(MAC) operations of a depthwise layer is given by: 

 

The following pointwise convolution applies a 1 × 1 × 𝐼 filter 

to linearly combine the output of the depthwise convolution 

(figure 3). Again, considering 𝐾 as the height/length size of the 

kernel, 𝑁 as the height/length size of the OFMs, 𝐼 as the number 

of IFMs, and P as the number of filters, the total number of 

MAC operations of a pointwise convolution is given by: 

 

Figure 2: Depthwise convolution 

 

Figure 3: Pointwise convolution 

The complete model of MobileNets is composed of 30 layers 

(table 1). To avoid losing too much information at the 

beginning, the first layer is a standard convolution, which 

receives the input image. Then, the next 26 layers are depthwise 

and pointwise convolutions, arranged in an interleaved way, 

which perform the feature maps. The last 3 layers are a pooling 

layer, to select the average value of the previous feature map; 

an FC layer that classifies the input image according to the 

available labels; and a SoftMax function to convert the values 

received from the FC layer to probabilities. All the layers are 

followed by Batch Normalization (Batch Norm) [4] and 

Rectified Linear Unit (ReLU) [5], except for the last 3 layers. 

Thus, from here, the set of one layer followed by Batch Norm 

and ReLU will be referred to a stage. 

Batch Norm is given by algorithm 1, which normalizes the 

input layer by adjusting and scaling the activations. The values 

of variables 𝜇𝛽 , 𝜎2
𝛽, 𝛾 and 𝛽 are parameters from the 

MobileNets model, and for 𝜖, the value used in this work is 

0.001, the same as in Tensorflow [6]. Algorithm 1 can be 

rearranged and written as 

 

Considering 𝑁 as the height/length size of the OFM and 𝑃 as 

the number of OFMs, the total Batch Norm operations can be 

calculated by: 

 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 𝑀𝐴𝐶 𝑜𝑝. = 𝐾 ∙ 𝐾 ∙ 𝑁 ∙ 𝑁 ∙ 𝐼 (1) 

 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑀𝐴𝐶 𝑜𝑝. = 𝐾 ∙ 𝐾 ∙ 𝐼 ∙ 𝑁 ∙ 𝑁 ∙ 𝑃 (2) 

 
𝑦𝑖 ←  𝛾

𝑥𝑖 − 𝜇𝛽

√𝜎2
𝛽 +  𝜖

+ 𝛽 = 𝛾(𝑥𝑖 − 𝜇𝛽)𝑉 +  𝛽 
(3) 

 𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚 𝑜𝑝. =  𝑁 × 𝑁 × 𝑃 × 4 (4) 
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Table 1: MobileNets model architecture and the respective number of 

operations for each convolutional, pooling, FC and SoftMax layer. 

Type/Stride 
Filter 

 shape 
Total 
filters 

IFM 
size 

Total 
IFMs 

Total 
operations 

3D Conv/2 3 × 3 × 3  32 224 × 224 3 21,676,032 

DW / 1 3 × 3  32 112 × 112 32 7,225,344 

PW / 1 1 × 1 × 32 64 112 × 112 32 51,380,224 

DW / 2 3 × 3  64 112 × 112 64 3,612,672 

PW / 1 1 × 1 × 64  128 56 × 56 64 51,380,224 

DW / 1 3 × 3 128 56 × 56 128 7,225,344 

PW / 1 1 × 1 × 128 128 56 × 56 128 102,760,448 

DW / 2 3 × 3  128 56 × 56 128 1,806,336 

PW / 1 1 × 1 × 128 256 28 × 28 128 51,380,224 

DW / 1 3 × 3 256 28 × 28 256 3,612,672 

PW / 1 1 × 1 × 256 256 28 × 28 256 102,760,448 

DW / 2 3 × 3 256 28 × 28 256 903,168 

PW / 1 1 × 1 × 256 512 14 × 14 256 51,380,224 

  5x 
DW / 1 3 × 3   512 14 × 14 512 1,806,336 

PW / 1 1 × 1 × 512 512 14 × 14 512 102,760,448 

DW / 2 3 × 3 512 14 × 14 512 451,584 

PW / 1 1 × 1 × 512 1,024 7 × 7 512 51,380,224 

DW / 1 3 × 3  1,024 7 × 7 1,024 903,168 

PW / 1 1 × 1 × 1,024 1,024 7 × 7 1,024 102,760,448 

Avg Pool / 1 7 × 7 1 7 × 7 1,024 51,200 

FC / 1 1 x 1 x 1,024 1,000 1 × 1 1,024 2,049,000 

SoftMax / 1 Classifier 0 1 × 1 1,000 4,000 

 

Algorithm 1 - Batch Norm transform (adapted from [4]). 

 
Input: Values of 𝑥 over a mini-batch: 𝐵 = {𝑥1 … 𝑚}; 
            Parameters to be learned: 𝛾, 𝛽 
Output: {𝑦𝑖 = 𝐵𝑁𝛾,𝛽(𝑥𝑖)} 

 

     𝜇𝛽 ←  
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 

 

     𝜎2
𝛽 ←  

1

𝑚
∑(𝑥𝑖 − 𝜇𝛽 )2

𝑚

𝑖=1

 

 

     𝑥�̂� ←  
𝑥𝑖 − 𝜇𝛽

√𝜎2
𝛽 +  𝜖

 

 
     𝑦𝑖 ←  𝛾𝑥�̂� + 𝛽 ≡ 𝐵𝑁𝛾,𝛽(𝑥𝑖)   

 

 

ReLU6 is the activation function that preserves the values 

between 0 and 6, assign 0 to all negative values and 6 to all 

values bigger than 6. Since the number of operations 

(comparisons) of this function depends on the input value, the 

total number of operations in the worst case (the process 

performs two comparisons) is given by: 

III. CNN MODELS ON FPGAS 

CNN models can be compressed in order to reduce the use of 

memory, communications and operations while minimizing 

accuracy loss. From the hardware perspective, specific 

architecture modules are designed to reuse data, accelerate 

convolution operations, and efficiently use all available 

resources. Also, when porting a CNN model to an FPGA 

device, the bit widths of operators and weights are often 

reduced. 

A. CNN model optimization 

A common strategy to optimize CNN models is quantization 

[7] [8] [9]. Data quantization defines how data values are 

represented and how many bits are used. The use of short fixed-

point numbers is sufficient for CNN inference, but not for 

training. CNN models can be quantized using one of the two 

strategies described in [7]. The first strategy is post-training 

quantization, which simply converts the 32 bits floating-point 

parameters of the model usually to 16 or 8 bits fixed-point 

because these are the minimum values that can keep an 

acceptable accuracy of the model. The other is quantized aware 

training, where the model is normalized and converted from 32 

bits floating-point to 8 bits fixed-point and then retrained. In 

this situation, since the network is retrained, the use of 8 bits is 

usually sufficient to obtain an accuracy near to the original, or 

in some cases, even better. 

For the particular case of MobileNets, this model is 

commonly quantized using 8-bit fixed-point and then retrained 

[8] [9]. Three contributions to improve the latency-vs-accuracy 

trade-off of MobileNets on common mobile hardware are 

presented in [8], while [9] proposes rearranging the MobileNets 

architecture to become more quantization friendly, namely the 

depthwise separable convolution layers, which the authors state 

are the causes of large quantization loss.  

Work [10] combines pruning and quantization during the 

training of MobileNets. First, a quantization training process is 

conducted, followed by an iterative pruning and retraining 

process. In each iteration, the number of filters is reduced 

resulting in fewer OFMs (figure 2 and figure 3), and in a smaller 

memory requirement. However, in this strategy, the filters are 

removed or kept as a whole, according to the summation of its 

values, instead of making them sparse. Although only less 

important filters are removed, some information is lost, so the 

model is retrained to compensate for the accuracy loss. During 

the execution of the algorithm, in forward propagation, weights 

𝑊 and activations 𝑎 are quantized before actual computations 

during inference. Then the real values are converted to a pre-

defined fixed-point representation. In backward propagation, 

the updating is applied to the real-valued weights 𝑊 rather than 

their quantized alternatives 𝑊𝑄, which keeps a higher precision 

during training.   

 𝑅𝑒𝐿𝑈6 𝑜𝑝. =  𝑁 × 𝑁 × 𝑃 × 2 (11) 

    // mini-batch mean 

   // mini-batch variance 

// normalize 

  // scale and shift 
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B. Hardware design: parallelism 

CNN computation can take advantage of different 

parallelization methods to accelerate the inference process. The 

design of CNN architectures mainly explores three types of 

parallelism [11]: Operator-level (fine-grained): in the 

convolution of a single input image of size 𝑚 × 𝑚 with a kernel 

of size 𝑘 × 𝑘, each output pixel requires 𝑘 × 𝑘 MACs 

operations, which can be executed in parallel. Intra-output 

(Coarse-grained): the computation of each pixel in a single 

OFM can be done in parallel since it is the sum of independent 

input-kernel convolutions. Inter-output (Coarse-grained): 

multiple OFMs can be computed in parallel by multiple 

processing elements (PEs). 

C. Hardware design: system architecture 

Commonly, FPGA implementations have on-chip memory 

and off-chip memory. All information can only be stored on the 

FPGA before computation begins if the CNN model is small 

enough to fit on the available on-chip memory [10]. Thus, the 

most common CNN accelerators read or write information on 

the external memory during computation and use on-chip 

buffers to save intermediate results [12]. 

In work [10], all the MobileNets parameters are transferred 

from the external memory to on-chip buffers (figure 4).  

 

 

Figure 4: System Architecture Design for RR-MobileNets (from [10]). 

The input images are stored in the FM buffer P and the network 

parameters in the DW RAM and the PW RAM. When all the 

initial data are stored in these buffers, the computation begins.  

Each layer is processed one at a time in the computation engine, 

which receives and stores the intermediate feature maps in the 

FM buffer P and the FM buffer Q, in an alternative manner for 

consecutive layers. The DW Conv module of the computation 

engine processes the depthwise convolutions, while the 

standard and pointwise convolutions are processed in the Conv 

module. BN and ReLU modules are common to these two 

convolution modules. The connection of the DW Conv, BN and 

ReLU modules forms a set of 32 PEs capable of processing 32 

OFMs in parallel (inter-output parallelism). After processing 

the depthwise convolution, the BN module takes the outputs 

from the DW Conv and applies multiplication and addition for 

scaling operations. Then ReLU simply caps negative input 

values with zero. Similarly, the connection of the Conv module 

with BN and ReLU, also corresponds to a set of 32 PEs working 

in parallel. Lastly, the FC module is composed essentially of 

parallel multipliers and adder trees to execute de FC layer. 

A variant of MobileNets [13] is used in work [12]. In this 

architecture, a matrix multiplication engine (MME) conducts 

all the CNN operations (figure 5). All the input images and 

parameters are stored on the external memory. To avoid 

excessive latency, a ping-pong weight buffer is placed between 

the MME array and the external memory to maximize 

bandwidth. The line buffers are connected to a multiplier array 

with 288 multipliers (32 slices with 9 multipliers) configurable 

to perform standard, depthwise or pointwise convolutions. 

 

 

Figure 5: Block diagram of an MME (from [12]). 

To perform a standard convolution, the line buffer is configured 

to input 3 IFMs, and the multiplier array performs the 

multiplication of these IFMs with the respective weights. Only 

the results from the 3 slices from the multiplier array connected 

to the 3 line buffers will be considered in this situation. After 

the multiplication in the multiplier array, the products are 

summed in an adder tree, configurable to perform depthwise or 

pointwise summing operation. When the depthwise 

convolution mode is selected, the adder tree sums up the 

products from each slice of the multiplier array in parallel. For 

one MME the maximum output channels number is 32.  

Pointwise convolution uses the divide and conquer algorithm in 

large matrix multiplication to divide the IFM into 𝑀 × 𝑀 × 32 

submatrices, which are shifted into line buffers. This allows one 

PE to perform a maximum of 𝑀 × 𝑀 × 32 and 32 × 9 

multiplications at once. The 32 products are then summed, and 

the output channels number is 9. The following steps perform 

the normalization, pooling and ReLU. ReLU has three 

selectable options: no ReLU, ReLU or ReLU6. Lastly, the 

pooling module can select between max and average pooling.  

D. Hardware design: tilling and reuse 

Due to the limited on-chip memory, some implementations 

use tilling and reuse of memory blocks [10]. Tilling divides the 

IFM into smaller groups of pixels and sends these groups to the 

PE. This allows performing the convolution by parts when there 

is not enough memory to store all the IFMs at once. Since some 

pixels are needed more than one time and to avoid repeating 

data communications, some IFM pixels are stored on the PE to 

be reused when needed again. 

IV. MOBILENETS EMBEDDED SOFTWARE DESIGN 

This section presents a study of the model to evaluate the 

number of parameters and operations necessary to each layer 

type, and for Batch Norm and ReLU6 functions. Also, the 

execution time of each layer type and activation function is 

obtained from the developed C program. Lastly, an analysis of 

fixed- and floating-point quantization schemes is performed to 

determine the most efficient for this project. 
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A. MobileNets memory requirements, number of operations, 

and execution time 

The MobileNets model was developed using the Keras [14] 

deep learning framework with Python and TensorFlow 

backend. This standard MobileNets is a 32-bit floating-point 

model, with 4,253,864 parameters, that can classify the 1,000 

different classes of the ImageNet test dataset with a 70.6% top 

1 and 89.9% top 5 accuracies. In this project, the dataset used is 

the ImageNet validation dataset, the same used by Keras 

developers, who report 70.4% top 1 and 89.5% top 5 accuracies 

[15]. 

Table 2 presents the number of parameters, total operations 

and execution time for all the convolutional layers, as well as 

for the SoftMax function, of the MobileNets 32-bit floating-

point model. The pointwise convolution represents 92% of the 

total operations, which consume about 88% of the execution 

time of the inference process. The Batch Norm and ReLU6 

functions combined have almost the same number of operations 

of the depthwise convolutions, and their execution time 

combined is more significant than the convolutional layer, 

which makes these functions also candidates for hardware 

implementation. 

B. Quantization 

The model is mostly composed of pointwise parameters, 

therefore, the focus of the following quantization strategies was 

in reducing the number of bits used by these parameters to the 

minimum acceptable, which for this work is a loss of accuracy 

smaller than 1%. During inference, the OFMs are also 

represented with the minimum of bits because some of these 

OFMs will be exchanged between the on-chip and off-chip 

memory, which means that the fewer bits are used to represent 

the values of these OFMs, the faster the communications will 

be, and less on-chip memory will be required to store these 

values. Since the 3D convolution, depthwise and Batch Norm 

parameters represent only about 2% of all the model 

parameters, these will be quantized only to 16 bits. Although 

FC parameters are about 24% of the model size, these 

parameters are also quantized to 16 bits because this 

convolution will be performed on the software application. Two 

strategies of post-training quantization were developed and 

tested to evaluate the accuracy and behaviour of the model after  

quantization: fixed-point quantization of weights and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

activations and custom floating-point pointwise weights 

quantization.  

The first step of this quantization study was to convert the 

weights and Batch Norm parameters from 32-bit floating-point 

to 16 or 8-bit fixed-point, following the practices in state-of-

the-art post-training quantization work [7]. Dynamic 

quantization is used, where the number of integers and 

fractional bits of each layer is chosen according to the range of 

its weights and activations. To perform the dynamic 

quantization, the quantization algorithm first searches the 

maximum absolute value of the model parameters, for each 

layer, to detect how many bits need to be used in the fractional 

part of the number (𝑆𝑒𝑎𝑟𝑐ℎ_max  function). All the layer 

parameters are quantized with the maximum bits obtained for 

the fractional part, which will define the representation used for 

that layer. For batch norm layers, and before the quantization of 

these parameters, an extra procedure is applied in order to 

combine the two multiplications in a single one. Thus, equation 

(3) is reduced to: 

 

where 𝑃 is the multiplication of the gamma and variance 

parameters of the activation layer before the quantization 

process. Applying this procedure also represents a reduction of 

25% in the Batch Norm parameters and therefore in the number 

of operations of this function. The OFMs of the convolution 

layers are quantized with either 8 or 16-bits and the appropriate 

fixed-point scales are selected independently for each layer, 

following the same approached used for the weights. As the 

ReLU6 function bounds the values between 0 and 6, the pixels 

of the OFMs can be represented using Q3.5 (or Q3.13) 

unsigned. Therefore, after applying the Batch Norm function to 

the convolutional layer results, the number is aligned with the 

fractional bits used in ReLU6.  

The experiments of the previous strategy showed that when 

the pointwise weights were quantized with 8 bits, the accuracy 

dropped roughly between 8 and 10%. To improve the accuracy 

without using 16 bits overall, a custom floating-point 

representation is proposed. This representation uses 12 bits 

distributed as follows: 8 for the quantized number and 4 for the 

exponent as presented in figure 6. 

Layer/function 

type 

Total 

 parameters 

Total  

parameters (%) 

Total  

operations 

Total  

operations (%) 

Total exec. 

time (ms) 

Total exec. 

time (%) 

Standard conv. 864 0.02 21,676,032 1.86 100.6 1.91 

Depthwise conv. 44,640 1.05 34,771,968 2.98 228.6 4.35 

Pointwise conv. 3,139,584 73.80 1,078,984,704 92.39 4636.5 88.17 

Pooling 0 0.00 51,200 0.00 0.4 0.01 

Fully Connected 1,025,000 24.10 2,049,000 0.18 9.0 0.17 

SoftMax 0 0.00 - - 1.7 0.03 

Batch Norm 43,776 1.03 20,170,752 1.73 171.4 3.26 

ReLU 0 0.00 10,085,376 0.86 110.7 2.10 

Total 4,253,864 100.00 1,167,789,032 100.00 5,258.8 100.00 

𝛾(𝑥𝑖 − 𝜇𝛽)𝑉 +  𝛽 =  (𝑥𝑖 − 𝜇𝛽)𝛾𝑉 +  𝛽 =  (𝑥𝑖 − 𝜇𝛽)𝑃 +  𝛽 (12) 

Table 2: Total parameters, operations and execution time by layer and function type of the MobileNets standard model. 
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Figure 6: Distribution of the 12 bits of the proposed floating-point. 

The real number can be represented by the proposed floating-

point using: 

 

where 𝑅 is the real value to be quantized and 𝐵𝑖𝑎𝑠 the number 

of bits of the fractional part of the base representation obtained 

using the 𝑆𝑒𝑎𝑟𝑐ℎ_max  function of the quantization algorithm. 

Since the Biased Exponent uses 4 bits and takes values between 

0 and 15, the Exponent varies between 0 + 𝐵𝑖𝑎𝑠 and 15 +
𝐵𝑖𝑎𝑠. After obtaining the base representation, the algorithm 

selects the Exponent that allows each weight to be represented 

using the maximum significant bits. Using this floating-point 

representation, the memory requirements for the parameters is 

reduced in 20% compared to the 16-bit fixed-point (model 2), 

and 60% compared to the standard model. In terms of hardware 

requirements, there is only the need to insert a right shift 

operation after the multiplication, as shown in: 

where 𝑄𝑝𝑖 is the 𝑖th quantized pixel, 𝑄𝑤𝑖  is the 𝑖th quantized 

weight from the 𝑖th pixel, and 𝐵𝑖𝑎𝑠𝑒𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖 the Based 

Exponent from the 𝑖th quantized weight. 

Table 3 compares the results obtained with the custom 

floating-point quantization with those obtained with the fixed-

point quantization and the standard MobileNets (model 1). 

Comparing model 9 with model 2 and model 10 with model 4, 

shows that using the custom floating-point with 12 bits to 

represent the pointwise parameters practically maintains the 

same accuracy than using a 16-bit fixed-point representation, 

while requiring 25% fewer bits. As an example, the last 

pointwise layer has 1 × 1 × 1024 × 1024 = 1,048,576 

parameters, which means that to perform the last layer on-chip, 

roughly 2.1 MB must be transferred to the FPGA local memory, 

when using a 16-bit fixed point. Using the 12-bit custom 

floating-point implementation, this value is reduced to 1.6 MB. 

The last models of table 2 are two variants of the custom 

floating-point strategy. Model 11 uses 3 bits to represent the 

exponent (8Exp3), and model 12 uses 2 bits (8Exp2). This 

reduces the data required to perform the last pointwise layer, 

which is approximately 1.4MB for model 11 and 1.3MB for 

model 12, but slightly reduces the accuracy. Models 10, 11 and 

12 are the best for this project because they are the smallest 

models that use dynamic OFM quantization and meet the 

maximum accuracy loss of 1%. From these three, model 10 is 

selected because it has a slightly better accuracy (0.2% better 

than model 12). Also, model 11 uses 3 bits for the exponent, 

which is somewhat less efficient to group than using multiples 

powers of two. The result shows that using a custom 12-bit 

floating-point representation for the pointwise weights 

parameters achieves a better trade-off between accuracy and 

model size than the corresponding 16-bit fixed model. This 

allows having a MobileNets model 60% smaller than the 

standard with only a very small accuracy reduction of 0.78%.    

Figure 7 compares the number of zero values after 

quantization for each pointwise layer when 16-bit fixed-point 

and the proposed 12-bit floating-point are used. The conclusion  

is that the custom floating-point is able to represent more 

effectively the very small (near zero) weights, as it reduces by 

almost 14% the number of pointwise parameters equal to zero 

after quantization. 

 

 

Figure 7: Total number of parameters equal to zero after quantization when 16-

bit fixed-point and 12-bit custom floating-point are used. 

V. HARDWARE DESIGN 

In this section, all the custom IPs used in this project are 

described individually, detailing their structure, the 

functionalities and features used, and explaining the specific 

design options taken. 

 

A. MobileNets padding and tiling 

Stages 7 to 13 are completely performed on hardware, 

however, stages 1 to 6 require a tiling procedure before starting 

the stage processing and a map reorganization after the stages 

are completed. These functions and also the half and complete 

zero-padding are performed on the software application, due to 

the cost it would bring to the hardware applying this procedure 

on tiled blocks, incurring only a small penalty in the final 

execution time of the inference process. After performing the 

half or complete zero-padding (depending on the stride applied) 

another function performs a tiling process before sending the 

IFMs to the PL. After receiving the data processed on the PL, 

the software application reorganizes the tiled blocks, which is 

the inverse process of the tiling function. The described tiling 

process selects a group of 16 × 16 × 32 pixels from the IFMs 

when the stride is 1 (or 15 × 15 × 32 pixels when the stride is 

2). The last column between two tiles is sent twice to the 

hardware and the same happens with the last rows between two 

tiles, avoiding the extra complexity of implementing the 

padding in hardware which does not compensate for the small 

gain in memory and time communication. Also, since the IFMs 

are stored on a ping-pong memory, the loss on the 

communication is reduced as while the depthwise convolution 

is executing, the other memory is loading the new IFMs. 
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 𝑅 = 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2−(𝐵𝑖𝑎𝑠𝑒𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 𝐵𝑖𝑎𝑠 ) (13) 

𝐶𝑜𝑛𝑣𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 = ∑[(𝑄𝑝𝑖 × 𝑄𝑤𝑖) ≫ 𝐵𝑖𝑎𝑠𝑒𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖]

𝐼

1

 (14) 
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B. MobileNets hardware implementation 

A simple scheme of the proposed MobileNets hardware 

design can be observed in figure 8.  

 

Figure 8:Simple scheme of the proposed MobileNets hardware design. 

The first custom IP is the “MobileNets Stream Connector”, 

designed to demultiplex the weights, Batch Norm parameters 

and IFMs which are stored on BRAMs. These BRAMs are 

within the “MobileNets Depthwise” and “MobileNets 

Pointwise” IPs (the other custom IPs) and are configured in 

simple dual-port mode with different port widths, depending on 

the data type. The Stream Connector demultiplex all the data 

received from the DDR to the “AXI- Stream Data Width 

Converter” (DWC) or directly to the correct IP port. The 

pointwise module also receives the depthwise intermediate 

results and interacts with the DMA to send the final OFMs 

pixels to the DDR. 

C. MobileNets Depthwise Stage  

Figure 9 presents the block diagram of the depthwise module.  

The black lines represent the AXI-Stream bus with data, valid, 

last and ready signals. Blue lines represent the buses used to 

load the BRAMs with the parameters. The red lines represent 

the input signals of the control unit, namely the valid and last 

signal, used to load the data and begin the process of a particular 

module. Lastly, the yellow lines are the output signals from the 

control unit to control the module and the readings from the 

BRAM memories. IFM-MEM1 and IFM-MEM2 are formed 

each one by 2 BRAMs allowing to store a maximum of 

16 × 16 × 32 pixels at once. When the Conv sub-module is 

performing the depthwise convolution using a group of pixels 

from the IFMs stored in IFM-MEM1, IFM-MEM2 is receiving 

another group of pixels of the IFMs, and vice-versa, when the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

depthwise convolution is using the pixels stored in IFM-

MEM2, IFM-MEM1 is receiving the next group of pixels. DW-

MEM is formed by 4 BRAMs which allows storing all the 

depthwise weights in each stage. A single read of the DW-

MEM outputs 9 weights of 16 bits (9 × 16 = 144). DW-BN-

MEM uses 1.5 BRAMs and stores the depthwise Batch Norm 

parameters in each stage. Three Batch Norm parameters of 16 

bits each (3 × 16 = 48) bits, can be output with a single read.  

The depthwise module execution begins by receiving the 

depthwise weights and Batch Norm parameters and stores them 

on the DW-MEM and DW-BN-MEM respectively. After that, 

the DMA starts sending the IFMs pixels, as needed, in several 

streams. When the IFM-MEM1 (or IFM-MEM2) loading 

process is complete, the last signal from the stream is asserted 

and detected by the control unit from the depthwise convolution 

module, which informs the DW image loader that this sub-

module can start the input of the pixels. At the same moment, 

IFM-MEM2 (or IFM-MEM1) is receiving another group of 

IFMs pixels, that will be ready to use when the depthwise stage 

process ends, and so on. The depthwise convolution can be 

performed using a shift register (SR). An SR can be efficiently 

implemented on an FPGA using LUTs, which is commonly 

referred to as an SRL.  

 

 
Figure 9: Depthwise convolution module. 

To save resources, the proposed SRL is reconfigurable, 

allowing to perform convolutions of different IFMs sizes or 

strides. Since the maximum tiled block from the IFMs is 32 sets 

Model 
Input 

images 

3D conv 

weights 

DW 

weights 

DW 

OFM 

PW 

weights 

PW 

OFM 

BN 

param. 

FC 

IFM 

FC 

weights 

Top 1 

(%) 

Top 5 

(%) 

Size 

(MB) 

1 32F 32F 32F 32F 32F 32F 32F 32F 32F 70.54 89.58 17.0 

2 8 16 16 16 16 16 16 16 16 70.56 89.50 8.5 

4 8 16 16 16 16 8 16 8 16 69.77 89.05 8.5 

9 8 16 16 16 8Exp4 16 16 16 16 70.50 89.54 6.9 

10 8 16 16 16 8Exp4 8 16 8 16 69.76 89.02 6.9 

11 8 16 16 16 8Exp3 8 16 8 16 69.72 89.02 6.5 

12 8 16 16 16 8Exp2 8 16 8 16 69.56 88.98 6.2 

Table 3: MobileNets standard model vs fixed and floating-point quantization accuracies and sizes. 



8 

 

of pixels of size 16 × 16, the SRL is composed of a total of 35 

registers (16 + 16 + 3). Four multiplexers (mux) control how 

the data flows throw the SRL.  

The MAC architecture of the Conv sub-module is pipelined, 

and executes the MAC of 9 pixels with 9 weights with a latency 

of 6 clock cycles. These 9 weights, corresponding to one kernel, 

are loaded by the control unit from DW-MEM in a single 

reading and stored in 9 registers. The 9 weights are then 

multiplied by the 9 pixels (read from IFM-MEM1 or IFM-

MEM2 and stored in 9 registers) at once and accumulated by 

the adders in the following 4 clock cycles.  

The BN sub-module performs all the arithmetic involved in 

the Batch Norm function (eq 12). Before performing the add 

operation or sending the pixel out to the ReLU6 sub-module, 

the number is aligned, using the shift right operation. Three 

registers store the values used for these shifts and they change 

every stage. Another register stores the pixel that comes from 

the Conv sub-module and other 3 registers store the Batch 

Norm parameters read from the DW-BN-MEM. The ReLU6 is 

the last sub-module used to perform the depthwise convolution 

and tests if the number is smaller than zero; greater than zero 

and smaller than six; or greater than six, and selects the output 

of the mux according to the evaluation result.  

Lastly, the PW image loader is responsible for organizing 

the OFM pixels before sending them to the pointwise module. 

While the depthwise convolution is performed in height and 

width, the pointwise convolution is performed in depth. This 

requires grouping the pixels with the same index of the different 

depthwise OFMs while storing them on the IP memory. The 

control unit from the PW image loader executes this process by 

identifying the index from the valid input pixel and what OFM 

does it belong to. After that, an address is assigned to this pixel 

and the information is immediately sent to the pointwise 

convolution module, to store the pixel in the correct position of 

the IP memory. The process is repeated until the last pixel of 

the OFMs is sent to the pointwise module.  

D. MobileNets Pointwise Stage  

Figure 10 presents the block diagram of the pointwise 

module. As in the depthwise module, the black lines represent 

the AXI-Stream bus with data, valid, last and ready signals. 

Blue lines represent the buses used to load the BRAMs with the 

parameters. The red lines represent the input signals of the 

control unit, namely the valid and last signal, used to load the 

data and begin the process of a particular module. Lastly, the 

yellow lines are the output signals from the control unit to 

control the module and the readings from the BRAMs. 

The module is designed to implement the accumulation of 

32 filters at a time (i.e. before sending a group OFMs pixels to 

the DDR) when the layer stride is 1, or the accumulation of 128 

filters at a time when the layer stride is 2. IFM-MEM3 and IFM-

MEM4 are formed each one by 8 BRAMs allowing to store a 

maximum of 14 × 14 × 32 pixels at once. These two BRAMs 

are connected to work as a ping-pong memory and each read of 

one of these BRAMs outputs 32 pixels of 16 bits (32 × 16 =
512). When the Conv sub-module is performing the pointwise 

convolution using a group of pixels from the IFMs stored in 

IFM-MEM3, IFM-MEM4 can receive another group of pixels 

of the IFMs, and vice-versa, when the depthwise convolution is 

using the pixels stored in IFM-MEM4, IFM-MEM3 is receiving 

the next group of pixels. These pixels come from the depthwise 

module and do not require any writing control of the control 

unit, since the information that comes from the depthwise 

module contains the pixel, destination address and the other 

control signals. PW-MEM is formed by 7.5 BRAMs allowing 

to store a maximum of 32,768 pointwise values in each stage. 

This way, a single read of the PW-MEM, outputs 64 values of 

8 bits (64 × 8 = 512). This unit can work as a ping-pong 

memory depending on the layer. When the number of weights 

is fewer than 32,768, all the parameters can be stored in a single 

transfer on the 4,096 input addresses. On the other hand, when 

the number of weights is higher than 32,768, the parameters are 

sent in blocks of 16,384. This allows PW-MEM to receive data 

on half the addresses while the pointwise convolution is reading 

other data from the other half. The last BRAMs that receive data 

from an AXI-Stream interface is PW-BN-MEM, which uses 1.5 

BRAMs and stores all the pointwise Batch Norm parameters in 

each stage. A single read allows to output 6 Batch Norm 

parameters of 16 bits each (6 × 16 = 96) bits. The 

M_START_DW signal is used to start the depthwise 

convolution when the pointwise convolution finishes. This 

happens in each stage after the first pointwise convolution. 

 
Figure 10: Pointwise convolution module. 

The MAC architecture from the Conv sub-module is 

pipelined and allows the MAC of 32 pixels with 32 values with 

a latency of 8 clock cycles. These 32 values, corresponding to 

a portion of the filter, is loaded by the control unit from PW-

MEM in a single reading and stored in 32 registers. The 32  
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values are then multiplied by the 32 pixels (read from IFM-

MEM3 or IFM-MEM4 and stored in 32 registers) at once, and 

the result stored in the following 32 registers. These results are 

then shifted according to the scale factors used to quantize the 

respective weight, which were read from the PS-MEM and 

stored on 32 registers. After that, the shifted results are 

accumulated by the adders in the following 5 clock cycles. The 

option of having 2 MACs sub-modules allows performing two 

convolutions at the same time. However, the convolutions have 

to be processed in the following way: MAC 1 uses the first half 

of the filters and MAC 2 the second half. Therefore, ACC-

MEM1 will accumulate the intermediate results from the first 

half of the OFMs, and ACC-MEM2 the intermediate results 

from the second half. To store these intermediate results, both 

ACC-MEM1 and ACC-MEM2 are formed by 3.5 BRAMs and 

have an input and output port of 32 bits wide. 

The Batch Norm and ReLU6 sub-modules are implemented 

as in the depthwise convolution stage. Batch Norm (1) and 

ReLU6 (1) process the intermediate values stored in ACC-

MEM1, while the other two sub-modules process the 

intermediate values stored in ACC-MEM2. Having two groups 

of these modules allows keeping the generation of two results 

at a time. The values are then propagated to the Send Results 

sub-module. 

This Send Results sub-module precedes the transfer of the 

OFMs pixels to the DDR. OFM-MEM1, OFM-MEM2, OFM-

MEM3 and OFM-MEM4 are formed, each one, by 1 BRAM. 

The function of this unit is to store the OFMs pixels before 

sending them to the DDR. The transfer can begin when the 

group of 32 or 128 filters (depending on the stride) finishes the 

convolution with the IFMs pixels and the pointwise sub-module 

starts the convolution with a new group of filters. This way, the 

OFMs pixels are sent while the pointwise convolution is 

producing new results, hiding the latency behind the 

communication. To perform this operation, the memories work 

as two ping-pong memories. OFM-MEM1 or OFM-MEM3 

stores the data from ReLU6 (1) and OFM-MEM2 or OFM-

MEM4 the data from ReLU6 (2). The reason to have the 

memory system implemented this way is that the OFMs pixels 

are not sent immediately when the other pointwise starts. When 

the system is performing a pointwise convolution, this 

execution time is used to exchange data between the PS and the 

PL, namely IFMs and pointwise weights. Therefore, the Send 

Results sub-module can only start to transfer data when the 

other transfers end. However, during this wait, other OFMs 

pixels may need to be stored in this sub-module, and to avoid 

the corruption of the data, these new pixels are stored in the 

other IP memory. Besides organizing the OFMs pixels and 

synchronizing the transfers, the Send Results sub-module also 

allows sending 8 pixels at a time to the DDR, since the output 

data port of the IP memories is 64 bits wide communication.  

VI. SOC-FPGA MOBILENETS RESULTS ANALYSIS 

This section presents the hardware resources used by the 

accelerator and a comparison of the execution times for the 

software and hardware/software implementations for each 

stage, and the respective speed up.     

A. Resources utilization 

Table 4 presents the utilization of all the main components 

used on the MobileNets accelerator. The implementation was 

designed to take full advantage of the available BRAMs and 

DSPs because these are crucial to perform the MACs. 

Comparing with the depthwise module, the pointwise 

implementation uses roughly 5 times more BRAMs and 6 times 

more DSPs. 

B. Experimental results 

The architecture was synthesized using the Vivado 2019.1 

and executed using a clock frequency of 115MHz. To maximize 

the number of results per clock cycle, the architecture uses a 

pipeline implementation and two types of parallelism. Operator 

level parallelism is used when performing the MAC in both 

depthwise and pointwise PEs, using the 79 DSPs at the same 

time to produce 2 OFM results per clock cycle. On the other 

hand, intra-output parallelism is used in the Conv sub-module 

of the pointwise PE since two different filters are applied 

simultaneously to the IFM pixels. With the best optimization 

(O3) the hardware/software implementation for the 13 

depthwise/pointwise stages is 16 times faster than the software 

application, and considering only the last 7 stages (all 

implemented in hardware), the speed up is 18 (table 5). 

Table 4: Distribution of the resources used in the MobileNets accelerator. 

Component LUT (%) FF (%) BRAM (%) DSP (%) 

DMA 9.1 6.6 5.0 0 

AXI Smart 

Connect 
12.7 8.7 0.0 0 

Width converter 5.6 7.0 0.0 0 

Stream Connector 2.4 1.6 0.0 0 

Depthwise stage 5.8 3.8 15.8 13.8 

Pointwise stage 44.8 16.4 72.5 85.0 

Others 2.3 1.4 0.0 0 

Total 82.7 45.5 93.3 98.8 

 
Table 5: Time execution results for software and hardware/software using 

optimization O3. 

Stage (DW +PW) SW (03) (ms) HW + SW (03) (ms) Speed up 

1 387 21 19 

2 303 32 9 

3 549 38 14 

4 250 23 11 

5 492 33 15 

6 232 19 13 

7 451 26 17 

8 451 26 17 

9 451 26 17 

10 450 26 17 

11 450 26 17 

12 223 13 17 

13 438 18 24 

Total 5,126 328 16 
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VII. CONCLUSION 

This work focused on the research and development of a 

custom hardware/software architecture to execute the 

MobileNets inference process on an SoC FPGA. The main 

requirement defined for this project was implementing 

efficiently the software/hardware architecture on a low-cost 

device making a minimal trade-off between accuracy and 

execution time. Although MobileNets is a CNN model for 

image classification designed to run on embedded systems, the 

standard model may still be too computing intensive to run on 

low-cost devices such as the Xilinx Zynq-7010 or 7020. Due to 

this, a quantization analysis was conducted to evaluate the 

model when different representations are used for the model 

parameters, instead of the 32-bit floating-point. This allowed to 

reduce the MobileNets model using 16-bit fixed-point to 

quantize 26% of the parameters, and 12-bit custom floating-

point to quantize the remaining 74%. The final result obtained 

was a MobileNets model about 60% smaller than the standard 

with only a very small accuracy reduction of 0.78%, which is 

below the 1% of maximum stipulated for the accuracy loss. 

The hardware was designed to execute the quantized 

MobileNets model resulting from the previous analysis. Two 

types of parallelism were used to process the MACs in parallel. 

Operator-level parallelism is used when performing the MAC 

in both depthwise and pointwise PEs, and intra-output 

parallelism is used in the Conv sub-module of the pointwise PE 

since two different filters are applied simultaneously to the IFM 

pixels. The architecture developed follows a pipeline structure 

to produce two valid results per clock cycle. Also, the use of 

ping-pong memories hides the latency and allows the exchange 

of data between the PS and the PL while the computation of the 

depthwise and pointwise is running. 

Lastly, the proposed hardware/software was demonstrated 

and analysed on the Xilinx Zynq 7010 device. The design of the 

architecture was the main challenge of this project because of 

the limited number of resources of the device. Almost all of the 

BRAMs and DSPs were used, which was another requirement 

defined for this project. The proposed hardware/software 

achieved a speed up of 16 times for the 13 stages, compared to 

the software implementation (with the O3 optimization). 

Another requirement for this project was to reduce the 

execution time of the inference process below 1 second, which 

was also successfully achieved since the final execution time of 

the hardware/software implementation (considering all layers 

and functions) is 469 ms. 

VIII. FUTURE WORK 

Despite all the project requirements being achieved, there are 

some considerations that can improve this work. The 

architecture can be adapted to perform also the Conv3D and FC 

layer in hardware since now they represent about 30% of the 

execution time. The filter of the Conv3D layer has a size of 

3 × 3 × 3 = 27. Therefore, the depthwise IP may be adapted to 

perform the Conv3D convolution since the module can perform 

3 × 3 = 9 MACs every clock cycle. This means that the 

depthwise IP would need 3 clock cycles to produce one MAC 

of the Conv3D convolution.On the other hand, the FC layer is 

similar to the pointwise convolution. The difference is the size 

of the IFMs and the bias sum after the convolution. Therefore, 

the pointwise IP may be adapted to perform the FC layer. 

Lastly, the custom floating-point can be explored in future 

works, namely, quantizing all the MobileNets parameters with 

the custom floating-point strategy or extend the concept to other 

CNNs. Therefore, as more bits are used in the exponent, higher 

accuracies may be achieved.  

IX. REFERENCES 

 

[1]  C. Gershenson, “Artificial Neural Networks for Beginners,” 

arXiv:cs/0308031, September 2003.  

[2]  K. O’Shea e R. Nash, “An Introduction to Convolutional Neural 

Networks”.arXiv:1511.08458.  

[3]  A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, 

T. Weyand, M. Andreetto e H. Adam, “Mobilenets: Efficient 

convolutional neural networks for mobile vision applications,” 

arXiv:1704.04861, 17 April 2017.  

[4]  S. Ioffe e C. Szegedy, “Batch normalization: Accelerating deep 

network training by reducing internal covariate shift,” 

arXiv:1502.03167, February 2015.  

[5]  A. Fred e M. Agarap, “Deep Learning using Rectified Linear 

Units (ReLU),” arXiv:1803.08375, March 2018.  

[6]  “TensforFlow,” [Online]. Available: 

https://www.tensorflow.org/. [Accessed 16 September 2020]. 

[7]  R. Krishnamoorthi, “Quantizing deep convolutional networks 

for efficient inference: A whitepaper,” arXiv:1806.08342, 21 

June 2018.  

[8]  B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. 

Adam e D. Kalenichenko, “Quantization and Training of Neural 

Networks for Efficient Integer-Arithmetic-Only Inference,” 

arXiv:1712.05877v1, December 2017.  

[9]  T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen e M. Aleksic, 

“A Quantization-Friendly Separable Convolution for 

MobileNets,” arXiv:1803.08607, March 2018.  

[10]  J. Su, J. Faraone, J. Liu, Y. Zhao, D. B. Thomas, P. H. W. Leong 

e P. Y. K. Cheung, “Redundancy-reduced mobilenet 

acceleration on reconfigurable logic for imagenet 

classification,” in Applied Reconfigurable Computing. 

Architectures, Tools, and Applications, April 2018.  

[11]  S. Chakradhar, M. Sankaradas, V. Jakkula e S. Cadambi, “A 

Dynamically Configurable Coprocessor for Convolutional 

Neural Networks,” ISCA '10: Proceedings of the 37th annual 

international symposium on Computer architecture, p. 247–

257, June 2010.  

[12]  L. Bai, Y. Zhao e X. Huang, “A CNN Accelerator on FPGA 

Using Depthwise Separable Convolution,” 

arXiv:1809.01536v2, 6 September 2018.  

[13]  M. Sandler, A. Howard, M. Zhu, A. Zhmoginov e L.-C. Chen, 

“MobileNetV2 Inverted Residuals and Linear Bottlenecks,” 

The IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) arXiv:1801.04381, pp. 4510-4520, 13 

January 2018.  

[14]  “Keras,” "MobileNets" [Online]. Available: 

https://keras.io/api/applications/mobilenet/#mobilenet-

function. [Accessed 18 November 2020]. 

[15]  “Keras applications,” [Online]. Available: 

https://keras.io/api/applications/. [Accessed 18 November 

2020]. 

 


	I. INTRODUCTION
	II. Background
	A. Convolutional Neural Networks
	B. MobileNets

	III. CNN models on FPGAs
	A. CNN model optimization
	B. Hardware design: parallelism
	C. Hardware design: system architecture
	D. Hardware design: tilling and reuse

	IV. MobileNets embedded software design
	A. MobileNets memory requirements, number of operations, and execution time
	B. Quantization

	V. Hardware design
	A. MobileNets padding and tiling
	B. MobileNets hardware implementation
	C. MobileNets Depthwise Stage
	D. MobileNets Pointwise Stage

	VI. SoC-FPGA MobileNets Results Analysis
	A. Resources utilization
	B. Experimental results

	VII. Conclusion
	VIII. Future work
	IX. References

