
1

Abstract—Nowadays, the use of artificial intelligence in many

software applications is increasingly common. However, decades

of development were necessary, especially at hardware level for

the use of artificial intelligence to become viable. MobileNets

model developed by Google researchers is used for image

classification and primarily suited for embedded systems because

of the lighter computation compared to its competitors. This model

uses the depthwise separable convolution concept to perform the

convolutions and despite being a very optimized model, the

processing time of this network may still be high when used on low-

cost devices.

This work aimed to develop a hardware/software

multiprocessing architecture in an SoC FPGA platform for image

classification using MobileNets model. The main contributions of

this project are the development of 3 IPs to process the depthwise

separable convolution layers, using an effective parallelization and

allocation of resources to achieve an efficient multi-processing,

and a quantized data model to reduce the memory requirements

and improve the communications.

The system was implemented on a Zynq 7010 device using a

quantized MobileNets model with 26% of the parameters

represented in a 16-bit fixed-point format and 74% of the

parameters using a 12-bit custom floating-point representation.

This quantization process produced a model 60% smaller than the

standard MobileNets with only 0.78% of accuracy loss. The final

solution allows the classification of 1 image in 469 ms which

corresponds to a speed up of 11 times compared to a software-only

solution executing on the embedded ARM processor.

Index Terms—Artificial intelligence, Google, Depthwise Separable

Convolution, MobileNets, FPGA.

I. INTRODUCTION

mage recognition is an easy task for humans but it has proved

to be a complex problem for machines to perform due to the

computational effort involved. The evolution of high-capacity

computers and new artificial intelligence (AI) techniques has

generated an interest in object classification algorithms.

Computer image classification uses a form of AI denominated

machine learning, which uses a variety of algorithms that

iteratively learn with the available data. This iterative learning

is also called training, and is done to create a model to make

predictions or decisions without being programmed for that.

Specific models can be trained to be used on a wide range of

applications such as object detection, medical diagnostic, voice

processing, biometry, and many others.

The trained model receives an input (an image for instance)

and gives an output (what the image represents), which sounds

simple, but in reality, is a very complex process. To perform

this classification, these models use the concept of network [1].

A complex system can be broken into simpler elements to be

easier to solve, or vice versa, simple elements can be combined

to build a complex system, and networks can be used to

accomplish this. These networks are composed of a set of nodes

and connections between them, used to transfer information.

This way, nodes receive inputs and process them to obtain an

output, which can be transferred to other nodes.

Nodes can be seen as artificial neurons by the networks, and

in this case, the network is defined as an artificial neural

network (ANN) [1]. An artificial neuron is inspired by the

natural neuron functionality, which receives signals through

synapses. When one of these received signals is strong enough,

the neuron is activated and also emits a signal, that might be

propagated to other neurons and even activate some of them.

 The class of ANN covers several architectures, and one very

popular kind of ANN used in image recognition is the

convolutional neural network (CNN) [2]. CNNs are designed

having in mind that the inputs will be images, which allows

making the network more adapted to image tasks while

reducing the parameters required. Despite this, CNN models

have intensive computing and not all are efficient to be used in

mobile or embedded devices. Some CNN models have been

created to deal with this constraint, which is smaller and lighter

than common CNNs, and have a decent accuracy in image

classification. One of these models is MobileNets [3] which

proposes to reduce the computational effort and resource

requirements of standard CNNs, by reducing the number of

parameters, allowing the model to be used in mobile and

embedded vision applications.

Even with a smaller and lighter model, the implementation

on mobile or embedded devices may not be easy. Moreover,

some implementations need to process an image in hundreds or

tens of milliseconds, which may require very expensive

devices. Thus, an efficient and optimized architecture can help

to accelerate the model with fewer resources, which represents

less power consumption or even cheaper devices.

This work proposes two approaches to accelerate the

MobileNets model in a low-cost device. Firstly, a quantization

analysis of the model is conducted to evaluate the behaviour

when the weights and activations are quantized using different

representations. Quantizing the model allows reducing the

memory requirements and improve communications. The

second approach is to implement a hardware/software

architecture capable to execute the inference process of the

quantized MobleNets model, using an effective parallelization

and allocation of resources. The final system should be able to

classify the image in less than 1 second, and possible

Tiago De Smet

tiago.smet@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2021

SoC-FPGA MobileNets for Embedded Vision Applications

I

2

optimizations of the MobileNets model, should not incur a loss

in accuracy larger than 1% over the original model.

II. BACKGROUND

This section presents the basic structure of CNNs, and

describes the MobileNets architecture in detail.

A. Convolutional Neural Networks

CNNs are primarily suited for image-focused tasks like

recognition or classification of images. These networks connect

only a small region (receptive field) of the input to the neuron

and are organized into three dimensions: the height and width

that compose the spatial dimensionality of the input, and the

depth, which represents the third dimension of an output map.

CNN architectures have three types of layers: convolutional

layers, pooling layers and fully connected (FC) layers. There

are several types of CNNs models, and their use can be applied

to different purposes and hardware platforms. One example is

the MobileNets [3] model designed for image classification and

used mostly on mobile and embedded devices.

B. MobileNets

MobileNets [3] is based on depthwise separable

convolutions which factorize a standard convolution (figure 1)

into a depthwise convolution and a pointwise convolution.

Figure 1: Standard convolution.

The depthwise convolution applies a single 𝑘 × 𝑘 kernel to each

input channel (figure 2). Considering 𝐾 as the height/length size

of the kernel, 𝑁 as the height/length size of the output feature

maps (OFMs) and 𝐼 as the number of input feature maps

(IFMs), the total number of multiplication and accumulation

(MAC) operations of a depthwise layer is given by:

The following pointwise convolution applies a 1 × 1 × 𝐼 filter

to linearly combine the output of the depthwise convolution

(figure 3). Again, considering 𝐾 as the height/length size of the

kernel, 𝑁 as the height/length size of the OFMs, 𝐼 as the number

of IFMs, and P as the number of filters, the total number of

MAC operations of a pointwise convolution is given by:

Figure 2: Depthwise convolution

Figure 3: Pointwise convolution

The complete model of MobileNets is composed of 30 layers

(table 1). To avoid losing too much information at the

beginning, the first layer is a standard convolution, which

receives the input image. Then, the next 26 layers are depthwise

and pointwise convolutions, arranged in an interleaved way,

which perform the feature maps. The last 3 layers are a pooling

layer, to select the average value of the previous feature map;

an FC layer that classifies the input image according to the

available labels; and a SoftMax function to convert the values

received from the FC layer to probabilities. All the layers are

followed by Batch Normalization (Batch Norm) [4] and

Rectified Linear Unit (ReLU) [5], except for the last 3 layers.

Thus, from here, the set of one layer followed by Batch Norm

and ReLU will be referred to a stage.

Batch Norm is given by algorithm 1, which normalizes the

input layer by adjusting and scaling the activations. The values

of variables 𝜇𝛽 , 𝜎2
𝛽, 𝛾 and 𝛽 are parameters from the

MobileNets model, and for 𝜖, the value used in this work is

0.001, the same as in Tensorflow [6]. Algorithm 1 can be

rearranged and written as

Considering 𝑁 as the height/length size of the OFM and 𝑃 as

the number of OFMs, the total Batch Norm operations can be

calculated by:

 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 𝑀𝐴𝐶 𝑜𝑝. = 𝐾 ∙ 𝐾 ∙ 𝑁 ∙ 𝑁 ∙ 𝐼 (1)

 𝑃𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 𝑀𝐴𝐶 𝑜𝑝. = 𝐾 ∙ 𝐾 ∙ 𝐼 ∙ 𝑁 ∙ 𝑁 ∙ 𝑃 (2)

𝑦𝑖 ← 𝛾

𝑥𝑖 − 𝜇𝛽

√𝜎2
𝛽 + 𝜖

+ 𝛽 = 𝛾(𝑥𝑖 − 𝜇𝛽)𝑉 + 𝛽
(3)

 𝐵𝑎𝑡𝑐ℎ 𝑁𝑜𝑟𝑚 𝑜𝑝. = 𝑁 × 𝑁 × 𝑃 × 4 (4)

3

Table 1: MobileNets model architecture and the respective number of

operations for each convolutional, pooling, FC and SoftMax layer.

Type/Stride
Filter

 shape
Total
filters

IFM
size

Total
IFMs

Total
operations

3D Conv/2 3 × 3 × 3 32 224 × 224 3 21,676,032

DW / 1 3 × 3 32 112 × 112 32 7,225,344

PW / 1 1 × 1 × 32 64 112 × 112 32 51,380,224

DW / 2 3 × 3 64 112 × 112 64 3,612,672

PW / 1 1 × 1 × 64 128 56 × 56 64 51,380,224

DW / 1 3 × 3 128 56 × 56 128 7,225,344

PW / 1 1 × 1 × 128 128 56 × 56 128 102,760,448

DW / 2 3 × 3 128 56 × 56 128 1,806,336

PW / 1 1 × 1 × 128 256 28 × 28 128 51,380,224

DW / 1 3 × 3 256 28 × 28 256 3,612,672

PW / 1 1 × 1 × 256 256 28 × 28 256 102,760,448

DW / 2 3 × 3 256 28 × 28 256 903,168

PW / 1 1 × 1 × 256 512 14 × 14 256 51,380,224

 5x
DW / 1 3 × 3 512 14 × 14 512 1,806,336

PW / 1 1 × 1 × 512 512 14 × 14 512 102,760,448

DW / 2 3 × 3 512 14 × 14 512 451,584

PW / 1 1 × 1 × 512 1,024 7 × 7 512 51,380,224

DW / 1 3 × 3 1,024 7 × 7 1,024 903,168

PW / 1 1 × 1 × 1,024 1,024 7 × 7 1,024 102,760,448

Avg Pool / 1 7 × 7 1 7 × 7 1,024 51,200

FC / 1 1 x 1 x 1,024 1,000 1 × 1 1,024 2,049,000

SoftMax / 1 Classifier 0 1 × 1 1,000 4,000

Algorithm 1 - Batch Norm transform (adapted from [4]).

Input: Values of 𝑥 over a mini-batch: 𝐵 = {𝑥1 … 𝑚};
 Parameters to be learned: 𝛾, 𝛽
Output: {𝑦𝑖 = 𝐵𝑁𝛾,𝛽(𝑥𝑖)}

 𝜇𝛽 ←
1

𝑚
∑ 𝑥𝑖

𝑚

𝑖=1

 𝜎2
𝛽 ←

1

𝑚
∑(𝑥𝑖 − 𝜇𝛽)2

𝑚

𝑖=1

 𝑥�̂� ←
𝑥𝑖 − 𝜇𝛽

√𝜎2
𝛽 + 𝜖

 𝑦𝑖 ← 𝛾𝑥�̂� + 𝛽 ≡ 𝐵𝑁𝛾,𝛽(𝑥𝑖)

ReLU6 is the activation function that preserves the values

between 0 and 6, assign 0 to all negative values and 6 to all

values bigger than 6. Since the number of operations

(comparisons) of this function depends on the input value, the

total number of operations in the worst case (the process

performs two comparisons) is given by:

III. CNN MODELS ON FPGAS

CNN models can be compressed in order to reduce the use of

memory, communications and operations while minimizing

accuracy loss. From the hardware perspective, specific

architecture modules are designed to reuse data, accelerate

convolution operations, and efficiently use all available

resources. Also, when porting a CNN model to an FPGA

device, the bit widths of operators and weights are often

reduced.

A. CNN model optimization

A common strategy to optimize CNN models is quantization

[7] [8] [9]. Data quantization defines how data values are

represented and how many bits are used. The use of short fixed-

point numbers is sufficient for CNN inference, but not for

training. CNN models can be quantized using one of the two

strategies described in [7]. The first strategy is post-training

quantization, which simply converts the 32 bits floating-point

parameters of the model usually to 16 or 8 bits fixed-point

because these are the minimum values that can keep an

acceptable accuracy of the model. The other is quantized aware

training, where the model is normalized and converted from 32

bits floating-point to 8 bits fixed-point and then retrained. In

this situation, since the network is retrained, the use of 8 bits is

usually sufficient to obtain an accuracy near to the original, or

in some cases, even better.

For the particular case of MobileNets, this model is

commonly quantized using 8-bit fixed-point and then retrained

[8] [9]. Three contributions to improve the latency-vs-accuracy

trade-off of MobileNets on common mobile hardware are

presented in [8], while [9] proposes rearranging the MobileNets

architecture to become more quantization friendly, namely the

depthwise separable convolution layers, which the authors state

are the causes of large quantization loss.

Work [10] combines pruning and quantization during the

training of MobileNets. First, a quantization training process is

conducted, followed by an iterative pruning and retraining

process. In each iteration, the number of filters is reduced

resulting in fewer OFMs (figure 2 and figure 3), and in a smaller

memory requirement. However, in this strategy, the filters are

removed or kept as a whole, according to the summation of its

values, instead of making them sparse. Although only less

important filters are removed, some information is lost, so the

model is retrained to compensate for the accuracy loss. During

the execution of the algorithm, in forward propagation, weights

𝑊 and activations 𝑎 are quantized before actual computations

during inference. Then the real values are converted to a pre-

defined fixed-point representation. In backward propagation,

the updating is applied to the real-valued weights 𝑊 rather than

their quantized alternatives 𝑊𝑄, which keeps a higher precision

during training.

 𝑅𝑒𝐿𝑈6 𝑜𝑝. = 𝑁 × 𝑁 × 𝑃 × 2 (11)

 // mini-batch mean

 // mini-batch variance

// normalize

 // scale and shift

4

B. Hardware design: parallelism

CNN computation can take advantage of different

parallelization methods to accelerate the inference process. The

design of CNN architectures mainly explores three types of

parallelism [11]: Operator-level (fine-grained): in the

convolution of a single input image of size 𝑚 × 𝑚 with a kernel

of size 𝑘 × 𝑘, each output pixel requires 𝑘 × 𝑘 MACs

operations, which can be executed in parallel. Intra-output

(Coarse-grained): the computation of each pixel in a single

OFM can be done in parallel since it is the sum of independent

input-kernel convolutions. Inter-output (Coarse-grained):

multiple OFMs can be computed in parallel by multiple

processing elements (PEs).

C. Hardware design: system architecture

Commonly, FPGA implementations have on-chip memory

and off-chip memory. All information can only be stored on the

FPGA before computation begins if the CNN model is small

enough to fit on the available on-chip memory [10]. Thus, the

most common CNN accelerators read or write information on

the external memory during computation and use on-chip

buffers to save intermediate results [12].

In work [10], all the MobileNets parameters are transferred

from the external memory to on-chip buffers (figure 4).

Figure 4: System Architecture Design for RR-MobileNets (from [10]).

The input images are stored in the FM buffer P and the network

parameters in the DW RAM and the PW RAM. When all the

initial data are stored in these buffers, the computation begins.

Each layer is processed one at a time in the computation engine,

which receives and stores the intermediate feature maps in the

FM buffer P and the FM buffer Q, in an alternative manner for

consecutive layers. The DW Conv module of the computation

engine processes the depthwise convolutions, while the

standard and pointwise convolutions are processed in the Conv

module. BN and ReLU modules are common to these two

convolution modules. The connection of the DW Conv, BN and

ReLU modules forms a set of 32 PEs capable of processing 32

OFMs in parallel (inter-output parallelism). After processing

the depthwise convolution, the BN module takes the outputs

from the DW Conv and applies multiplication and addition for

scaling operations. Then ReLU simply caps negative input

values with zero. Similarly, the connection of the Conv module

with BN and ReLU, also corresponds to a set of 32 PEs working

in parallel. Lastly, the FC module is composed essentially of

parallel multipliers and adder trees to execute de FC layer.

A variant of MobileNets [13] is used in work [12]. In this

architecture, a matrix multiplication engine (MME) conducts

all the CNN operations (figure 5). All the input images and

parameters are stored on the external memory. To avoid

excessive latency, a ping-pong weight buffer is placed between

the MME array and the external memory to maximize

bandwidth. The line buffers are connected to a multiplier array

with 288 multipliers (32 slices with 9 multipliers) configurable

to perform standard, depthwise or pointwise convolutions.

Figure 5: Block diagram of an MME (from [12]).

To perform a standard convolution, the line buffer is configured

to input 3 IFMs, and the multiplier array performs the

multiplication of these IFMs with the respective weights. Only

the results from the 3 slices from the multiplier array connected

to the 3 line buffers will be considered in this situation. After

the multiplication in the multiplier array, the products are

summed in an adder tree, configurable to perform depthwise or

pointwise summing operation. When the depthwise

convolution mode is selected, the adder tree sums up the

products from each slice of the multiplier array in parallel. For

one MME the maximum output channels number is 32.

Pointwise convolution uses the divide and conquer algorithm in

large matrix multiplication to divide the IFM into 𝑀 × 𝑀 × 32

submatrices, which are shifted into line buffers. This allows one

PE to perform a maximum of 𝑀 × 𝑀 × 32 and 32 × 9

multiplications at once. The 32 products are then summed, and

the output channels number is 9. The following steps perform

the normalization, pooling and ReLU. ReLU has three

selectable options: no ReLU, ReLU or ReLU6. Lastly, the

pooling module can select between max and average pooling.

D. Hardware design: tilling and reuse

Due to the limited on-chip memory, some implementations

use tilling and reuse of memory blocks [10]. Tilling divides the

IFM into smaller groups of pixels and sends these groups to the

PE. This allows performing the convolution by parts when there

is not enough memory to store all the IFMs at once. Since some

pixels are needed more than one time and to avoid repeating

data communications, some IFM pixels are stored on the PE to

be reused when needed again.

IV. MOBILENETS EMBEDDED SOFTWARE DESIGN

This section presents a study of the model to evaluate the

number of parameters and operations necessary to each layer

type, and for Batch Norm and ReLU6 functions. Also, the

execution time of each layer type and activation function is

obtained from the developed C program. Lastly, an analysis of

fixed- and floating-point quantization schemes is performed to

determine the most efficient for this project.

5

A. MobileNets memory requirements, number of operations,

and execution time

The MobileNets model was developed using the Keras [14]

deep learning framework with Python and TensorFlow

backend. This standard MobileNets is a 32-bit floating-point

model, with 4,253,864 parameters, that can classify the 1,000

different classes of the ImageNet test dataset with a 70.6% top

1 and 89.9% top 5 accuracies. In this project, the dataset used is

the ImageNet validation dataset, the same used by Keras

developers, who report 70.4% top 1 and 89.5% top 5 accuracies

[15].

Table 2 presents the number of parameters, total operations

and execution time for all the convolutional layers, as well as

for the SoftMax function, of the MobileNets 32-bit floating-

point model. The pointwise convolution represents 92% of the

total operations, which consume about 88% of the execution

time of the inference process. The Batch Norm and ReLU6

functions combined have almost the same number of operations

of the depthwise convolutions, and their execution time

combined is more significant than the convolutional layer,

which makes these functions also candidates for hardware

implementation.

B. Quantization

The model is mostly composed of pointwise parameters,

therefore, the focus of the following quantization strategies was

in reducing the number of bits used by these parameters to the

minimum acceptable, which for this work is a loss of accuracy

smaller than 1%. During inference, the OFMs are also

represented with the minimum of bits because some of these

OFMs will be exchanged between the on-chip and off-chip

memory, which means that the fewer bits are used to represent

the values of these OFMs, the faster the communications will

be, and less on-chip memory will be required to store these

values. Since the 3D convolution, depthwise and Batch Norm

parameters represent only about 2% of all the model

parameters, these will be quantized only to 16 bits. Although

FC parameters are about 24% of the model size, these

parameters are also quantized to 16 bits because this

convolution will be performed on the software application. Two

strategies of post-training quantization were developed and

tested to evaluate the accuracy and behaviour of the model after

quantization: fixed-point quantization of weights and

activations and custom floating-point pointwise weights

quantization.

The first step of this quantization study was to convert the

weights and Batch Norm parameters from 32-bit floating-point

to 16 or 8-bit fixed-point, following the practices in state-of-

the-art post-training quantization work [7]. Dynamic

quantization is used, where the number of integers and

fractional bits of each layer is chosen according to the range of

its weights and activations. To perform the dynamic

quantization, the quantization algorithm first searches the

maximum absolute value of the model parameters, for each

layer, to detect how many bits need to be used in the fractional

part of the number (𝑆𝑒𝑎𝑟𝑐ℎ_max function). All the layer

parameters are quantized with the maximum bits obtained for

the fractional part, which will define the representation used for

that layer. For batch norm layers, and before the quantization of

these parameters, an extra procedure is applied in order to

combine the two multiplications in a single one. Thus, equation

(3) is reduced to:

where 𝑃 is the multiplication of the gamma and variance

parameters of the activation layer before the quantization

process. Applying this procedure also represents a reduction of

25% in the Batch Norm parameters and therefore in the number

of operations of this function. The OFMs of the convolution

layers are quantized with either 8 or 16-bits and the appropriate

fixed-point scales are selected independently for each layer,

following the same approached used for the weights. As the

ReLU6 function bounds the values between 0 and 6, the pixels

of the OFMs can be represented using Q3.5 (or Q3.13)

unsigned. Therefore, after applying the Batch Norm function to

the convolutional layer results, the number is aligned with the

fractional bits used in ReLU6.

The experiments of the previous strategy showed that when

the pointwise weights were quantized with 8 bits, the accuracy

dropped roughly between 8 and 10%. To improve the accuracy

without using 16 bits overall, a custom floating-point

representation is proposed. This representation uses 12 bits

distributed as follows: 8 for the quantized number and 4 for the

exponent as presented in figure 6.

Layer/function

type

Total

 parameters

Total

parameters (%)

Total

operations

Total

operations (%)

Total exec.

time (ms)

Total exec.

time (%)

Standard conv. 864 0.02 21,676,032 1.86 100.6 1.91

Depthwise conv. 44,640 1.05 34,771,968 2.98 228.6 4.35

Pointwise conv. 3,139,584 73.80 1,078,984,704 92.39 4636.5 88.17

Pooling 0 0.00 51,200 0.00 0.4 0.01

Fully Connected 1,025,000 24.10 2,049,000 0.18 9.0 0.17

SoftMax 0 0.00 - - 1.7 0.03

Batch Norm 43,776 1.03 20,170,752 1.73 171.4 3.26

ReLU 0 0.00 10,085,376 0.86 110.7 2.10

Total 4,253,864 100.00 1,167,789,032 100.00 5,258.8 100.00

𝛾(𝑥𝑖 − 𝜇𝛽)𝑉 + 𝛽 = (𝑥𝑖 − 𝜇𝛽)𝛾𝑉 + 𝛽 = (𝑥𝑖 − 𝜇𝛽)𝑃 + 𝛽 (12)

Table 2: Total parameters, operations and execution time by layer and function type of the MobileNets standard model.

6

Figure 6: Distribution of the 12 bits of the proposed floating-point.

The real number can be represented by the proposed floating-

point using:

where 𝑅 is the real value to be quantized and 𝐵𝑖𝑎𝑠 the number

of bits of the fractional part of the base representation obtained

using the 𝑆𝑒𝑎𝑟𝑐ℎ_max function of the quantization algorithm.

Since the Biased Exponent uses 4 bits and takes values between

0 and 15, the Exponent varies between 0 + 𝐵𝑖𝑎𝑠 and 15 +
𝐵𝑖𝑎𝑠. After obtaining the base representation, the algorithm

selects the Exponent that allows each weight to be represented

using the maximum significant bits. Using this floating-point

representation, the memory requirements for the parameters is

reduced in 20% compared to the 16-bit fixed-point (model 2),

and 60% compared to the standard model. In terms of hardware

requirements, there is only the need to insert a right shift

operation after the multiplication, as shown in:

where 𝑄𝑝𝑖 is the 𝑖th quantized pixel, 𝑄𝑤𝑖 is the 𝑖th quantized

weight from the 𝑖th pixel, and 𝐵𝑖𝑎𝑠𝑒𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖 the Based

Exponent from the 𝑖th quantized weight.

Table 3 compares the results obtained with the custom

floating-point quantization with those obtained with the fixed-

point quantization and the standard MobileNets (model 1).

Comparing model 9 with model 2 and model 10 with model 4,

shows that using the custom floating-point with 12 bits to

represent the pointwise parameters practically maintains the

same accuracy than using a 16-bit fixed-point representation,

while requiring 25% fewer bits. As an example, the last

pointwise layer has 1 × 1 × 1024 × 1024 = 1,048,576

parameters, which means that to perform the last layer on-chip,

roughly 2.1 MB must be transferred to the FPGA local memory,

when using a 16-bit fixed point. Using the 12-bit custom

floating-point implementation, this value is reduced to 1.6 MB.

The last models of table 2 are two variants of the custom

floating-point strategy. Model 11 uses 3 bits to represent the

exponent (8Exp3), and model 12 uses 2 bits (8Exp2). This

reduces the data required to perform the last pointwise layer,

which is approximately 1.4MB for model 11 and 1.3MB for

model 12, but slightly reduces the accuracy. Models 10, 11 and

12 are the best for this project because they are the smallest

models that use dynamic OFM quantization and meet the

maximum accuracy loss of 1%. From these three, model 10 is

selected because it has a slightly better accuracy (0.2% better

than model 12). Also, model 11 uses 3 bits for the exponent,

which is somewhat less efficient to group than using multiples

powers of two. The result shows that using a custom 12-bit

floating-point representation for the pointwise weights

parameters achieves a better trade-off between accuracy and

model size than the corresponding 16-bit fixed model. This

allows having a MobileNets model 60% smaller than the

standard with only a very small accuracy reduction of 0.78%.

Figure 7 compares the number of zero values after

quantization for each pointwise layer when 16-bit fixed-point

and the proposed 12-bit floating-point are used. The conclusion

is that the custom floating-point is able to represent more

effectively the very small (near zero) weights, as it reduces by

almost 14% the number of pointwise parameters equal to zero

after quantization.

Figure 7: Total number of parameters equal to zero after quantization when 16-

bit fixed-point and 12-bit custom floating-point are used.

V. HARDWARE DESIGN

In this section, all the custom IPs used in this project are

described individually, detailing their structure, the

functionalities and features used, and explaining the specific

design options taken.

A. MobileNets padding and tiling

Stages 7 to 13 are completely performed on hardware,

however, stages 1 to 6 require a tiling procedure before starting

the stage processing and a map reorganization after the stages

are completed. These functions and also the half and complete

zero-padding are performed on the software application, due to

the cost it would bring to the hardware applying this procedure

on tiled blocks, incurring only a small penalty in the final

execution time of the inference process. After performing the

half or complete zero-padding (depending on the stride applied)

another function performs a tiling process before sending the

IFMs to the PL. After receiving the data processed on the PL,

the software application reorganizes the tiled blocks, which is

the inverse process of the tiling function. The described tiling

process selects a group of 16 × 16 × 32 pixels from the IFMs

when the stride is 1 (or 15 × 15 × 32 pixels when the stride is

2). The last column between two tiles is sent twice to the

hardware and the same happens with the last rows between two

tiles, avoiding the extra complexity of implementing the

padding in hardware which does not compensate for the small

gain in memory and time communication. Also, since the IFMs

are stored on a ping-pong memory, the loss on the

communication is reduced as while the depthwise convolution

is executing, the other memory is loading the new IFMs.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13

16-bit fixed-point 12-bit custom floating-point

 𝑅 = 𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 × 2−(𝐵𝑖𝑎𝑠𝑒𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡 + 𝐵𝑖𝑎𝑠) (13)

𝐶𝑜𝑛𝑣𝑝𝑜𝑖𝑛𝑡𝑤𝑖𝑠𝑒 = ∑[(𝑄𝑝𝑖 × 𝑄𝑤𝑖) ≫ 𝐵𝑖𝑎𝑠𝑒𝑑 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖]

𝐼

1

 (14)

7

B. MobileNets hardware implementation

A simple scheme of the proposed MobileNets hardware

design can be observed in figure 8.

Figure 8:Simple scheme of the proposed MobileNets hardware design.

The first custom IP is the “MobileNets Stream Connector”,

designed to demultiplex the weights, Batch Norm parameters

and IFMs which are stored on BRAMs. These BRAMs are

within the “MobileNets Depthwise” and “MobileNets

Pointwise” IPs (the other custom IPs) and are configured in

simple dual-port mode with different port widths, depending on

the data type. The Stream Connector demultiplex all the data

received from the DDR to the “AXI- Stream Data Width

Converter” (DWC) or directly to the correct IP port. The

pointwise module also receives the depthwise intermediate

results and interacts with the DMA to send the final OFMs

pixels to the DDR.

C. MobileNets Depthwise Stage

Figure 9 presents the block diagram of the depthwise module.

The black lines represent the AXI-Stream bus with data, valid,

last and ready signals. Blue lines represent the buses used to

load the BRAMs with the parameters. The red lines represent

the input signals of the control unit, namely the valid and last

signal, used to load the data and begin the process of a particular

module. Lastly, the yellow lines are the output signals from the

control unit to control the module and the readings from the

BRAM memories. IFM-MEM1 and IFM-MEM2 are formed

each one by 2 BRAMs allowing to store a maximum of

16 × 16 × 32 pixels at once. When the Conv sub-module is

performing the depthwise convolution using a group of pixels

from the IFMs stored in IFM-MEM1, IFM-MEM2 is receiving

another group of pixels of the IFMs, and vice-versa, when the

depthwise convolution is using the pixels stored in IFM-

MEM2, IFM-MEM1 is receiving the next group of pixels. DW-

MEM is formed by 4 BRAMs which allows storing all the

depthwise weights in each stage. A single read of the DW-

MEM outputs 9 weights of 16 bits (9 × 16 = 144). DW-BN-

MEM uses 1.5 BRAMs and stores the depthwise Batch Norm

parameters in each stage. Three Batch Norm parameters of 16

bits each (3 × 16 = 48) bits, can be output with a single read.

The depthwise module execution begins by receiving the

depthwise weights and Batch Norm parameters and stores them

on the DW-MEM and DW-BN-MEM respectively. After that,

the DMA starts sending the IFMs pixels, as needed, in several

streams. When the IFM-MEM1 (or IFM-MEM2) loading

process is complete, the last signal from the stream is asserted

and detected by the control unit from the depthwise convolution

module, which informs the DW image loader that this sub-

module can start the input of the pixels. At the same moment,

IFM-MEM2 (or IFM-MEM1) is receiving another group of

IFMs pixels, that will be ready to use when the depthwise stage

process ends, and so on. The depthwise convolution can be

performed using a shift register (SR). An SR can be efficiently

implemented on an FPGA using LUTs, which is commonly

referred to as an SRL.

Figure 9: Depthwise convolution module.

To save resources, the proposed SRL is reconfigurable,

allowing to perform convolutions of different IFMs sizes or

strides. Since the maximum tiled block from the IFMs is 32 sets

Model
Input

images

3D conv

weights

DW

weights

DW

OFM

PW

weights

PW

OFM

BN

param.

FC

IFM

FC

weights

Top 1

(%)

Top 5

(%)

Size

(MB)

1 32F 32F 32F 32F 32F 32F 32F 32F 32F 70.54 89.58 17.0

2 8 16 16 16 16 16 16 16 16 70.56 89.50 8.5

4 8 16 16 16 16 8 16 8 16 69.77 89.05 8.5

9 8 16 16 16 8Exp4 16 16 16 16 70.50 89.54 6.9

10 8 16 16 16 8Exp4 8 16 8 16 69.76 89.02 6.9

11 8 16 16 16 8Exp3 8 16 8 16 69.72 89.02 6.5

12 8 16 16 16 8Exp2 8 16 8 16 69.56 88.98 6.2

Table 3: MobileNets standard model vs fixed and floating-point quantization accuracies and sizes.

8

of pixels of size 16 × 16, the SRL is composed of a total of 35

registers (16 + 16 + 3). Four multiplexers (mux) control how

the data flows throw the SRL.

The MAC architecture of the Conv sub-module is pipelined,

and executes the MAC of 9 pixels with 9 weights with a latency

of 6 clock cycles. These 9 weights, corresponding to one kernel,

are loaded by the control unit from DW-MEM in a single

reading and stored in 9 registers. The 9 weights are then

multiplied by the 9 pixels (read from IFM-MEM1 or IFM-

MEM2 and stored in 9 registers) at once and accumulated by

the adders in the following 4 clock cycles.

The BN sub-module performs all the arithmetic involved in

the Batch Norm function (eq 12). Before performing the add

operation or sending the pixel out to the ReLU6 sub-module,

the number is aligned, using the shift right operation. Three

registers store the values used for these shifts and they change

every stage. Another register stores the pixel that comes from

the Conv sub-module and other 3 registers store the Batch

Norm parameters read from the DW-BN-MEM. The ReLU6 is

the last sub-module used to perform the depthwise convolution

and tests if the number is smaller than zero; greater than zero

and smaller than six; or greater than six, and selects the output

of the mux according to the evaluation result.

Lastly, the PW image loader is responsible for organizing

the OFM pixels before sending them to the pointwise module.

While the depthwise convolution is performed in height and

width, the pointwise convolution is performed in depth. This

requires grouping the pixels with the same index of the different

depthwise OFMs while storing them on the IP memory. The

control unit from the PW image loader executes this process by

identifying the index from the valid input pixel and what OFM

does it belong to. After that, an address is assigned to this pixel

and the information is immediately sent to the pointwise

convolution module, to store the pixel in the correct position of

the IP memory. The process is repeated until the last pixel of

the OFMs is sent to the pointwise module.

D. MobileNets Pointwise Stage

Figure 10 presents the block diagram of the pointwise

module. As in the depthwise module, the black lines represent

the AXI-Stream bus with data, valid, last and ready signals.

Blue lines represent the buses used to load the BRAMs with the

parameters. The red lines represent the input signals of the

control unit, namely the valid and last signal, used to load the

data and begin the process of a particular module. Lastly, the

yellow lines are the output signals from the control unit to

control the module and the readings from the BRAMs.

The module is designed to implement the accumulation of

32 filters at a time (i.e. before sending a group OFMs pixels to

the DDR) when the layer stride is 1, or the accumulation of 128

filters at a time when the layer stride is 2. IFM-MEM3 and IFM-

MEM4 are formed each one by 8 BRAMs allowing to store a

maximum of 14 × 14 × 32 pixels at once. These two BRAMs

are connected to work as a ping-pong memory and each read of

one of these BRAMs outputs 32 pixels of 16 bits (32 × 16 =
512). When the Conv sub-module is performing the pointwise

convolution using a group of pixels from the IFMs stored in

IFM-MEM3, IFM-MEM4 can receive another group of pixels

of the IFMs, and vice-versa, when the depthwise convolution is

using the pixels stored in IFM-MEM4, IFM-MEM3 is receiving

the next group of pixels. These pixels come from the depthwise

module and do not require any writing control of the control

unit, since the information that comes from the depthwise

module contains the pixel, destination address and the other

control signals. PW-MEM is formed by 7.5 BRAMs allowing

to store a maximum of 32,768 pointwise values in each stage.

This way, a single read of the PW-MEM, outputs 64 values of

8 bits (64 × 8 = 512). This unit can work as a ping-pong

memory depending on the layer. When the number of weights

is fewer than 32,768, all the parameters can be stored in a single

transfer on the 4,096 input addresses. On the other hand, when

the number of weights is higher than 32,768, the parameters are

sent in blocks of 16,384. This allows PW-MEM to receive data

on half the addresses while the pointwise convolution is reading

other data from the other half. The last BRAMs that receive data

from an AXI-Stream interface is PW-BN-MEM, which uses 1.5

BRAMs and stores all the pointwise Batch Norm parameters in

each stage. A single read allows to output 6 Batch Norm

parameters of 16 bits each (6 × 16 = 96) bits. The

M_START_DW signal is used to start the depthwise

convolution when the pointwise convolution finishes. This

happens in each stage after the first pointwise convolution.

Figure 10: Pointwise convolution module.

The MAC architecture from the Conv sub-module is

pipelined and allows the MAC of 32 pixels with 32 values with

a latency of 8 clock cycles. These 32 values, corresponding to

a portion of the filter, is loaded by the control unit from PW-

MEM in a single reading and stored in 32 registers. The 32

9

values are then multiplied by the 32 pixels (read from IFM-

MEM3 or IFM-MEM4 and stored in 32 registers) at once, and

the result stored in the following 32 registers. These results are

then shifted according to the scale factors used to quantize the

respective weight, which were read from the PS-MEM and

stored on 32 registers. After that, the shifted results are

accumulated by the adders in the following 5 clock cycles. The

option of having 2 MACs sub-modules allows performing two

convolutions at the same time. However, the convolutions have

to be processed in the following way: MAC 1 uses the first half

of the filters and MAC 2 the second half. Therefore, ACC-

MEM1 will accumulate the intermediate results from the first

half of the OFMs, and ACC-MEM2 the intermediate results

from the second half. To store these intermediate results, both

ACC-MEM1 and ACC-MEM2 are formed by 3.5 BRAMs and

have an input and output port of 32 bits wide.

The Batch Norm and ReLU6 sub-modules are implemented

as in the depthwise convolution stage. Batch Norm (1) and

ReLU6 (1) process the intermediate values stored in ACC-

MEM1, while the other two sub-modules process the

intermediate values stored in ACC-MEM2. Having two groups

of these modules allows keeping the generation of two results

at a time. The values are then propagated to the Send Results

sub-module.

This Send Results sub-module precedes the transfer of the

OFMs pixels to the DDR. OFM-MEM1, OFM-MEM2, OFM-

MEM3 and OFM-MEM4 are formed, each one, by 1 BRAM.

The function of this unit is to store the OFMs pixels before

sending them to the DDR. The transfer can begin when the

group of 32 or 128 filters (depending on the stride) finishes the

convolution with the IFMs pixels and the pointwise sub-module

starts the convolution with a new group of filters. This way, the

OFMs pixels are sent while the pointwise convolution is

producing new results, hiding the latency behind the

communication. To perform this operation, the memories work

as two ping-pong memories. OFM-MEM1 or OFM-MEM3

stores the data from ReLU6 (1) and OFM-MEM2 or OFM-

MEM4 the data from ReLU6 (2). The reason to have the

memory system implemented this way is that the OFMs pixels

are not sent immediately when the other pointwise starts. When

the system is performing a pointwise convolution, this

execution time is used to exchange data between the PS and the

PL, namely IFMs and pointwise weights. Therefore, the Send

Results sub-module can only start to transfer data when the

other transfers end. However, during this wait, other OFMs

pixels may need to be stored in this sub-module, and to avoid

the corruption of the data, these new pixels are stored in the

other IP memory. Besides organizing the OFMs pixels and

synchronizing the transfers, the Send Results sub-module also

allows sending 8 pixels at a time to the DDR, since the output

data port of the IP memories is 64 bits wide communication.

VI. SOC-FPGA MOBILENETS RESULTS ANALYSIS

This section presents the hardware resources used by the

accelerator and a comparison of the execution times for the

software and hardware/software implementations for each

stage, and the respective speed up.

A. Resources utilization

Table 4 presents the utilization of all the main components

used on the MobileNets accelerator. The implementation was

designed to take full advantage of the available BRAMs and

DSPs because these are crucial to perform the MACs.

Comparing with the depthwise module, the pointwise

implementation uses roughly 5 times more BRAMs and 6 times

more DSPs.

B. Experimental results

The architecture was synthesized using the Vivado 2019.1

and executed using a clock frequency of 115MHz. To maximize

the number of results per clock cycle, the architecture uses a

pipeline implementation and two types of parallelism. Operator

level parallelism is used when performing the MAC in both

depthwise and pointwise PEs, using the 79 DSPs at the same

time to produce 2 OFM results per clock cycle. On the other

hand, intra-output parallelism is used in the Conv sub-module

of the pointwise PE since two different filters are applied

simultaneously to the IFM pixels. With the best optimization

(O3) the hardware/software implementation for the 13

depthwise/pointwise stages is 16 times faster than the software

application, and considering only the last 7 stages (all

implemented in hardware), the speed up is 18 (table 5).

Table 4: Distribution of the resources used in the MobileNets accelerator.

Component LUT (%) FF (%) BRAM (%) DSP (%)

DMA 9.1 6.6 5.0 0

AXI Smart

Connect
12.7 8.7 0.0 0

Width converter 5.6 7.0 0.0 0

Stream Connector 2.4 1.6 0.0 0

Depthwise stage 5.8 3.8 15.8 13.8

Pointwise stage 44.8 16.4 72.5 85.0

Others 2.3 1.4 0.0 0

Total 82.7 45.5 93.3 98.8

Table 5: Time execution results for software and hardware/software using

optimization O3.

Stage (DW +PW) SW (03) (ms) HW + SW (03) (ms) Speed up

1 387 21 19

2 303 32 9

3 549 38 14

4 250 23 11

5 492 33 15

6 232 19 13

7 451 26 17

8 451 26 17

9 451 26 17

10 450 26 17

11 450 26 17

12 223 13 17

13 438 18 24

Total 5,126 328 16

10

VII. CONCLUSION

This work focused on the research and development of a

custom hardware/software architecture to execute the

MobileNets inference process on an SoC FPGA. The main

requirement defined for this project was implementing

efficiently the software/hardware architecture on a low-cost

device making a minimal trade-off between accuracy and

execution time. Although MobileNets is a CNN model for

image classification designed to run on embedded systems, the

standard model may still be too computing intensive to run on

low-cost devices such as the Xilinx Zynq-7010 or 7020. Due to

this, a quantization analysis was conducted to evaluate the

model when different representations are used for the model

parameters, instead of the 32-bit floating-point. This allowed to

reduce the MobileNets model using 16-bit fixed-point to

quantize 26% of the parameters, and 12-bit custom floating-

point to quantize the remaining 74%. The final result obtained

was a MobileNets model about 60% smaller than the standard

with only a very small accuracy reduction of 0.78%, which is

below the 1% of maximum stipulated for the accuracy loss.

The hardware was designed to execute the quantized

MobileNets model resulting from the previous analysis. Two

types of parallelism were used to process the MACs in parallel.

Operator-level parallelism is used when performing the MAC

in both depthwise and pointwise PEs, and intra-output

parallelism is used in the Conv sub-module of the pointwise PE

since two different filters are applied simultaneously to the IFM

pixels. The architecture developed follows a pipeline structure

to produce two valid results per clock cycle. Also, the use of

ping-pong memories hides the latency and allows the exchange

of data between the PS and the PL while the computation of the

depthwise and pointwise is running.

Lastly, the proposed hardware/software was demonstrated

and analysed on the Xilinx Zynq 7010 device. The design of the

architecture was the main challenge of this project because of

the limited number of resources of the device. Almost all of the

BRAMs and DSPs were used, which was another requirement

defined for this project. The proposed hardware/software

achieved a speed up of 16 times for the 13 stages, compared to

the software implementation (with the O3 optimization).

Another requirement for this project was to reduce the

execution time of the inference process below 1 second, which

was also successfully achieved since the final execution time of

the hardware/software implementation (considering all layers

and functions) is 469 ms.

VIII. FUTURE WORK

Despite all the project requirements being achieved, there are

some considerations that can improve this work. The

architecture can be adapted to perform also the Conv3D and FC

layer in hardware since now they represent about 30% of the

execution time. The filter of the Conv3D layer has a size of

3 × 3 × 3 = 27. Therefore, the depthwise IP may be adapted to

perform the Conv3D convolution since the module can perform

3 × 3 = 9 MACs every clock cycle. This means that the

depthwise IP would need 3 clock cycles to produce one MAC

of the Conv3D convolution.On the other hand, the FC layer is

similar to the pointwise convolution. The difference is the size

of the IFMs and the bias sum after the convolution. Therefore,

the pointwise IP may be adapted to perform the FC layer.

Lastly, the custom floating-point can be explored in future

works, namely, quantizing all the MobileNets parameters with

the custom floating-point strategy or extend the concept to other

CNNs. Therefore, as more bits are used in the exponent, higher

accuracies may be achieved.

IX. REFERENCES

[1] C. Gershenson, “Artificial Neural Networks for Beginners,”

arXiv:cs/0308031, September 2003.

[2] K. O’Shea e R. Nash, “An Introduction to Convolutional Neural

Networks”.arXiv:1511.08458.

[3] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto e H. Adam, “Mobilenets: Efficient

convolutional neural networks for mobile vision applications,”

arXiv:1704.04861, 17 April 2017.

[4] S. Ioffe e C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,”

arXiv:1502.03167, February 2015.

[5] A. Fred e M. Agarap, “Deep Learning using Rectified Linear

Units (ReLU),” arXiv:1803.08375, March 2018.

[6] “TensforFlow,” [Online]. Available:

https://www.tensorflow.org/. [Accessed 16 September 2020].

[7] R. Krishnamoorthi, “Quantizing deep convolutional networks

for efficient inference: A whitepaper,” arXiv:1806.08342, 21

June 2018.

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H.

Adam e D. Kalenichenko, “Quantization and Training of Neural

Networks for Efficient Integer-Arithmetic-Only Inference,”

arXiv:1712.05877v1, December 2017.

[9] T. Sheng, C. Feng, S. Zhuo, X. Zhang, L. Shen e M. Aleksic,

“A Quantization-Friendly Separable Convolution for

MobileNets,” arXiv:1803.08607, March 2018.

[10] J. Su, J. Faraone, J. Liu, Y. Zhao, D. B. Thomas, P. H. W. Leong

e P. Y. K. Cheung, “Redundancy-reduced mobilenet

acceleration on reconfigurable logic for imagenet

classification,” in Applied Reconfigurable Computing.

Architectures, Tools, and Applications, April 2018.

[11] S. Chakradhar, M. Sankaradas, V. Jakkula e S. Cadambi, “A

Dynamically Configurable Coprocessor for Convolutional

Neural Networks,” ISCA '10: Proceedings of the 37th annual

international symposium on Computer architecture, p. 247–

257, June 2010.

[12] L. Bai, Y. Zhao e X. Huang, “A CNN Accelerator on FPGA

Using Depthwise Separable Convolution,”

arXiv:1809.01536v2, 6 September 2018.

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov e L.-C. Chen,

“MobileNetV2 Inverted Residuals and Linear Bottlenecks,”

The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) arXiv:1801.04381, pp. 4510-4520, 13

January 2018.

[14] “Keras,” "MobileNets" [Online]. Available:

https://keras.io/api/applications/mobilenet/#mobilenet-

function. [Accessed 18 November 2020].

[15] “Keras applications,” [Online]. Available:

https://keras.io/api/applications/. [Accessed 18 November

2020].

	I. INTRODUCTION
	II. Background
	A. Convolutional Neural Networks
	B. MobileNets

	III. CNN models on FPGAs
	A. CNN model optimization
	B. Hardware design: parallelism
	C. Hardware design: system architecture
	D. Hardware design: tilling and reuse

	IV. MobileNets embedded software design
	A. MobileNets memory requirements, number of operations, and execution time
	B. Quantization

	V. Hardware design
	A. MobileNets padding and tiling
	B. MobileNets hardware implementation
	C. MobileNets Depthwise Stage
	D. MobileNets Pointwise Stage

	VI. SoC-FPGA MobileNets Results Analysis
	A. Resources utilization
	B. Experimental results

	VII. Conclusion
	VIII. Future work
	IX. References

