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Fake news and misinformation are an increasing problem at local and global scale. This work
focuses on the analysis of opinion dynamics and interventions strategies able of reducing the spread of
fake news. To this end, we develop a novel simulator of spreading processes where social interactions
are described as a network of connected nodes. We resort to different classes of scale-free networks
to assess two types of interventions and rumour spreading dynamics: 1) vaccination-like method
to inform nodes, making them resistant to fake information; 2) competition between true and
fake rumours. We show that in low clustering structures, the spread of both true and fake news
is facilitated. In networks portraying hierarchical topologies, the flow of information is largely
dominated by top nodes, which suggests the use of targeted intervention policies. Moreover, if social
networks are shaped by sparsely connected communities, the low inter-community connections lead
to a slower spread but still reaches similar final values as in low clustering structures. Finally,
community structure leads to high levels of polarisation, as a result of the emergence of ”belief
bubbles”. A similar effect may also be observed in hierarchical topologies with high clustering
coefficient.

I. INTRODUCTION

Fake news or misinformation are pieces of false infor-
mation that are (often maliciously) created or spread
without fact-checking. They can also be seen as rumours
that threaten public opinion in current matters by cre-
ating unnecessary discord [1, 2], potentially undermining
the credibility of news markets [3].

One aspect that characterises fake news is how they
spread in the network. People tend to share fake news
more often, reaching farther, faster, deeper and more
broadly in the network [4]. Similar findings also seem to
suggest that humans tend to share fake news more than
bots. Fake news also tend to have a lower heterogeneity
than accurate news, due to having less dominant broad-
casters [5]. Typically, misinformation has fewer initial
sharers and grows over time, based on branch spreading
processes, eventually reaching many individuals. Cur-
rent literature mostly assumes the spread of misinforma-
tion as an analogue process to a virus outbreak. Con-
trary to trustworthy news, which tends to stay mainly in
the vicinity of the main broadcasters, fake news curls its
way around the network and its individuals much more
deeply.

In this context, we may wonder how we can fight the
growing threat of fake news in social media? Hartley and
Vu [6] propose insights into intervention policies fighting
fake news through an equilibrium model. They conclude
that an intervention policy that shifts a digital citizen’s
behaviour to one of a ”high effort” mindset can make
the critical evaluation of fake news easier. Another in-
tervention policy is to reduce the utility one gets from
engaging with fake news. The former empowers the indi-
vidual’s awareness and detection of fake news, while the
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latter tries to minimise the dissemination of fake informa-
tion on social networks and social media (also discussed
by Lazer et al. [2]).

Here we aim to take advantage of the multidisciplinary
nature of Network Science, with a focus on the spread
of rumours in structured populations. To this end, we
develop a novel modelling platform of spreading processes
where social interactions are described as a network of
connected nodes. We resort to different classes of scale-
free networks to assess two types of interventions and
rumour spreading dynamics and assess their impact on
the spread of truthful and false rumours.

Our focus here will be on intervention types where we
try to raise individual awareness and resistance to fake
news. This can be done via training, promotion of fact-
checking, etc. Let us consider that misinformation starts
from a single individual. Then, several approaches can
be considered to describe how to prepare the population
against it. Here we consider two.

First, we shall consider external (top-down) interven-
tions on the population to increase individuals’ awareness
on false information, creating resistance to it. For sim-
plicity, and as an analogy to classical vaccination, aware
individuals do not share their awareness to others around
them. Secondly, we evaluate self organised intervention
mechanisms, where we consider the direct competition
between fake and truthful rumours. The fake news and
the awareness of it each start in their own individual.
These then spread as viruses to their neighbours and so
on, competing in an arms-race. The spread of the aware-
ness can be seen as a viral vaccination.

Both of these approaches can help us see how three
different scale-free networks change how misinformation
and awareness spread. For simplicity and as an analogy
to epidemiology, the individual who is aware of the truth
will be referred to as vaccinated, and awareness or aware-
ness spreading referred to as vaccination (a process which
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does not occur in the realm of disease outbreaks). Their
structures, low clustering, highly clustered hierarchical,
and community, give three different points of view for
information spreading and how each network property
affect it. Does having a hierarchical society make it more
susceptible to attacks of misinformation, mainly targeted
attacks? Can we combat it through more robust and
faster targeted information procedures? Do communities
prevent misinformation from spreading, or do they facil-
itate it? What is the polarisation of opinions emerging
from these structures?

To answer these questions, we extend a rumour spread-
ing model to study various situations regarding how mis-
information and awareness start and spread.

II. PROPOSED APPROACH

A. Rumour Model

The model used is one with two additions to the
Nekovee et al. extension of the Maki-Thompson model
[7]. One is to account for vaccinated/educated individu-
als with a new state V. The other is a stifling interaction
between vaccinated individuals and spreaders. In the re-
sulting model, we get four states: ignorants (S), spreaders
(I), stiflers (R) and vaccinated (V). S represent the neu-
tral individual who doesn’t know either the truthful or
false rumour. States I and V are both ”spreader” states,
and try to convert S’s to their side. They cannot con-
vert members of the other side. R are individuals who
believe or know of the fake rumour but do not spread it
because they have been stifled. The vaccinated/spreader
stifling interaction means V’s will actively try to convince
others around them to stop spreading false information.
If they’re convinced, they become stiflers. Without this
stifling, V and S do not interact with each other.

We call this model SIRV, seen in Figure 1. The transi-
tions between states and their parameters are as follows:

β: S→I. When an I individual interacts with an S,
the ignorant can become ”infected” with probability β.

θ: S→V. When a V individual interacts with an S, the
ignorant can become vaccinated with probability θ. The
vaccinated state works like a virus. The idea is that this
vaccination is the truth opposite to the misinformation
spread by I individuals.

γ: I→R. When an I individual interacts with another
I or an R, the spreader can be stifled with probability γ.

δ: I→R. An I individual can forget the misinformation
with probability δ, becoming an R.

ζ: I→R. When an I individual interacts with a V, it
can become an R with probability ζ.

For ζ = 0 we can study vaccination spreading with-
out vaccination stifling. With ζ = θ = 0, we can study
classical vaccination. On Table I we present the various
model parameters for reference.

Parameter Symbol Range

Number of nodes N N
Infection rate β [0,1]

Stifling rate γ [0,1]

Forgetting rate δ [0,1]

Vaccination rate θ [0,1]

Vaccination stifling rate ζ [0,1]

TABLE I. Model parameters and their value ranges.

FIG. 1. Diagram of the SIRV extension model of the Nekovee
et al model [7]. The parameters are as follows: infection rate
β, stifling rate γ, forgetting rate δ, vaccination rate θ, and
vaccination stifling rate ζ. The four states represent: igno-
rants (S), spreaders (I), stiflers (R) and vaccinated (V).

B. Networks

Three scale-free network types where chosen for
study, each with different properties and topologies.
Barabási–Albert (BA) [8] serves as a baseline and
gives us networks with very low clustering coefficient.
Dorogovtsev–Mendes–Samukhin (DMS) [9] on the other
hand gives us a highly clustered hierarchical topology.
Lancichinetti-Fortunato-Radicchi (LFR) [10] provides a
multi community structure with a low clustering coeffi-
cient.

1. Barabási–Albert (BA)

BA are scale-free networks with very low clustering
(see Table II). Since there are little to no triangles in the
network, nodes will not be connected to the neighbours of
their neighbours. This will lead to nodes being connected
to other nodes outside of their immediate vicinity, which
results in a lower Average Path length (APL). This is ex-
pected to facilitate both the spread of the misinformation
and vaccination.

2. Dorogovtsev–Mendes–Samukhin (DMS)

DMS on other hand provides us with a highly clus-
tered scale-free network. Its network algorithm starts
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Metrics BA DMS LFR

Degree Distribution 3.05 2.92 2.69

Exponent

Average Degree 3.99 3.99 4.33

Clustering Coefficient low (0.03) high (0.74) low (0.14)

Average Path Length 4.08 4.91 6.80

TABLE II. Metrics for the various networks used. BA and
DMS used 1,000 randomly generated networks, while LFR
used the 100 generated networks that are used throughout
this paper. Degree distribution does not take into account
the low and high cutoff points, which would bring the results
closer to the expected value of 3.

with 3 fully connected nodes (a triangle), then randomly
selects an edge and adds a node connected to the nodes
of this edge (adds another triangle). It repeats these last
2 steps until we reach the number of desired nodes. This
creates a highly clustered network which has an hierar-
chical structure. This topology has interesting properties
for information propagation since it resembles a tree like
structure. Given the starting triangle (the core nodes),
every node that branches off an edge of this triangle will
never share a direct edge or non-direct path (not passing
through the core) between them. This forces a funnel
of information to pass through at least one of the core
nodes. If we block any core node, information can still
flow freely because of the core triangle. If we block two
core nodes, then all of the branches for that core edge
will become disconnected between themselves and also
to the rest of the network. If we block the three core
nodes, every branch becomes disconnected. This makes
the propagation of information inefficient. Regardless of
where it starts, it will always be limited to that network
branch.

3. Lancichinetti-Fortunato-Radicchi (LFR)

LFR, similarly to DMS, gives us a different topology
from BA and allows us to study how communities can
influence the spread of information, yet keeping a power
law degree distribution.

The LFR algorithm does not necessarily create scale
free networks, but if we supply the degree distribution
exponent parameter with value 3, it will have the same
expected degree distribution for BA and DMS. From this,
the other parameters can be picked more freely accord-
ing to what we want [11]. We chose values that produced
networks with communities sufficiently large but not too
connected to each other. This allows us to study what
effects this community isolation produces, like the polar-
isation found in ”echo chambers” (social groups that re-
peat the opinion they believe and ignore information that
would challenge it). Values chosen besides the defaults of

the networkx algorithm were: community size distribu-
tion exponent with 2; fraction of inter-community edges
at 0.07 (intra-community edges (1 − mu)deg(u)); aver-
age degree with 5; and minimum community size at 50
nodes. With these values, the algorithm has a propensity
to generate networks that are not connected (communi-
ties or nodes not connected to the rest of the network).
In order to combat this we generated a large number of
networks and verified that they were indeed connected.
We did this until we had 100 networks saved (which can
be found here [12]) which were reused throughout the
rest of this paper to obtain the results.

The APL (see Table II) on the other hand increases by
almost 3 steps, compared to BA. In our LFR we don’t
have a core like DMS or an abundance of paths between
nodes. Instead, we have multiple dense communities,
connected by few paths, making the distance to travel
between two nodes, on average, that much higher, and
the nodes become much more disconnected to others in
other communities.

With regards to hubs, the chance of a hub being the
connection between communities is higher since having a
higher degree means a higher chance to be the one with
the inter-community edges, given that we use a very low
value for this fraction.

C. Software

For obtaining results via simulations, an open source
software for simulation of propagation models on net-
works with a focus on modularity was done. The software
repository can be found here [13]. One important aspect
of the simulations is that they were done via batching.
Instead of simulating one event per time step, we sim-
ulate every event possible in that time step, so long as
they don’t interfere with a previous event’s result. If an
event causes a node to change from state A to B, then
we won’t simulate another event that might’ve changed
it from A to C. All possible events are randomly shuffled
to avoid biased behaviour.

III. RESULTS: EXTERNAL INTERVENTIONS

If we were to fight misinformation on a population that
does not share truthful information and can only learn it,
how could we approach this? By learning truthful infor-
mation an individual would be considered vaccinated. In
the classical sense of a vaccination protocol, individuals
learn truthful information via a top-down approach. How
can the structure influence the outcomes and our options
to fight misinformation with a top down approach?

For the following results we used networks with 1,000
nodes, and for SIRV, we used stifling rate γ and forgetting
rate δ of 0.1, and vaccination rate θ of 0 to simulate clas-
sical vaccination. The other parameters, infection rate β
and vaccination stifling rate ζ, varied from 0 to 0.9, with
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a step of 0.1. For γ and δ, the value was not changed
because they’re not the focus of this study.

Misinformation always starts in a single node, which
is chosen randomly, unless otherwise specified. For each
combination of parameter values, 1,000 simulations were
executed for statistical purposes, and the results were
obtained as a mean over these simulations. For both
BA and DMS, we generated 100 random networks at the
start of every simulation batch (which usually contains
enough simulations to produce a figure) and use those
for that batch specifically. As said in Section II B 3, LFR
uses the same 100 networks for all results, except when
for comparison of results by network size was done.

The size of 1,000 nodes was chosen by doing a compar-
ison between it and 10,000. This comparison, done for all
networks and tested for various vaccination fractions, did
not produce statistically significant differences, which led
to choice of 1,000 nodes for simulation ease.

A. Vaccination Fraction

For fighting misinformation in a classical vaccination
scenario, we have to employ strategies on what nodes to
vaccinate and how many. We’ll be focusing on Random,
Acquaintance and Hub strategies. Random works as a
baseline for comparison. By varying the infection rate
β, we obtained results for Total Misinformed (TM), the
number of stiflers (R) at the end of a simulation, regard-
ing all 3 strategies and all 3 networks as seen in Figure 2.
The data points have intervals of 0.1 for both axis, which
means intervals with large changes may not be indicative
of the actual tendencies, as seen in the Hub data. This
will be addressed further on.

We can see that, as β increases, the gains from in-
creasing vaccination become minimal past a certain cut-
off point. This point depends on the network type and
the strategy employed. Above 0.50 β it appears that
increasing the vaccination fraction yields minimal gains,
independent of the network or strategy.

Random Strategy. As expected, this strategy works
rather poorly on the various networks, since it doesn’t
try to take advantage of the underlying structure like
Acquaintance or Hub. Nevertheless it behaves better in
DMS and LFR than in BA. In DMS, despite the cutoff
value being similar to LFR, the overall TM has a slower
increase as the vaccination fraction decreases, which as
discussed below, seems to be due to its hierarchical struc-
ture.

Acquaintance Strategy. With this strategy, since
it has a higher chance of vaccinating hubs, the cutoff
points drop considerably for all network types. While the
chance of vaccinating hubs is relatively the same across
all of them, since they have similar degree distributions,
DMS has a significant drop when compared to the others.
This difference can again be attributed to the network’s
topology.

Hub Strategy. For this strategy, where vaccination

blocks the main highway nodes for information, we get
another considerable drop. All networks now generally
require less than 10% of the population to be vaccinated
to effectively curb the misinformation spread. Since it
falls between the interval of data points, it becomes im-
possible to see the actual data tendency, but we can redo
the results for this interval at smaller steps. What we
see is a difference in orders of magnitude between DMS
and BA\LFR. By looking at the middle cutoff point of
the contour results (around where TM passes the 50%
threshold at high β’s), we see a cutoff point of 0.2 to
0.3% (2 to 3 nodes, respectively) for DMS, while LFR
has one of 5% and BA has one of 8%.

B. Structure

How does the structure influence these results? With
DMS, we know the extreme importance of the core nodes
in propagating information, so any strategy that can vac-
cinate hubs with a higher chance can take advantage
of this. The core nodes will most likely be the largest
hubs, and it explains the striking difference in results
between Random and Acquaintance\Hub strategies. As
said in Section II B 2, by vaccinating 2 or 3 core nodes,
we can cutoff a great number of branches from the rest
of the network, or even every other branch, respectively.
By doing this, the misinformation is contained inside
those branches and is effectively stopped from spread-
ing through the network. As discussed above in Hub
Strategy, the middle cutoff point of 0.2% to 0.3%, 2 to 3
nodes respectively, match what we expect to cutoff the
network considerably, since these are likely to be in the
core. Random still behaves better compared to BA/LFR
because random nodes are likely to be near the core, thus
blocking branches/sub-branches.

In BA on the other hand, given the higher abundance
of paths between nodes in the network, randomly vac-
cinating nodes is not very effective, since even if we do
manage to block a hub node, the misinformation can still
spread around that blockade. Thus, the vaccination frac-
tion has to be higher to compensate for this in order to
block more paths. Strategies that are likelier to vaccinate
hubs will block information highways, leading to higher
drops in TM.

With LFR we discussed before that hubs have a
higher chance to be the connections between commu-
nities. Given its community topology, with few paths
connecting communities, the higher the chance of vacci-
nating a hub the lower the TM, like with BA and DMS.
Due to having less paths than BA, in general we will need
to vaccinate less nodes, even with Random, since a high
enough fraction will tend to block the inter-community
paths that exist. When we vaccinate hubs, the proba-
bility of paths being blocked is higher while the middle
cutoff point is still around 50 nodes. This means we vac-
cinate both hubs inside the community and ones with
inter-community edges. The inside hubs are only good
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FIG. 2. Contour graph depicting how different strategies of vaccination (rows: Random, Acquaintance, and Hub) affect different
networks (columns: BA, DMS, and LFR) considering vaccination fraction and infection rate β. The colours shown represent
values for Total Misinformed, which is the percentage of stiflers at the end of a simulation. 1,000 repeats for each point of data
were done. Vaccination fraction and β vary from 0 to 0.9 with a step of 0.1 giving us 100 data points.

for curbing the propagation inside their community once
misinformation reaches it. Thus, we requires more hubs
to be vaccinated.

C. Clustering Coefficient

It’s difficult to separate clustering from structure. As
clustering increases so does the number of nodes with
similar states that interact with each other. The increase
in clustering comes with a higher polarisation, which we
will discuss in Section IV. In this case, since vaccination
does not spread, misinformation tends to takeover more
clustered areas, forming a polarised zone. This will, in
turn, increase the stifling that happens, because spread-
ers will stifle each other, while also forgetting and start-
ing to stifle those around them. More clustered zones or
communities, which are dominated by the spreaders, will
then begin to die out from the inside, due to stifling, with
a ”virus” like behaviour. This should theoretically force
misinformation to disappear sooner.

D. Concluding Remarks

From these results, we can see why the structure is
very important. Hierarchical structures have an inherent
strong resistance against misinformation spread, while
networks with low clustering show a very weak one. The
difference between these ”extremes” is the degree of or-
der that they have. We assume the correlation is that:
the more order that there is in the structure of a network,
the more resistant it becomes to the spread of misinfor-
mation, and the easier it becomes to vaccinate against
it.

IV. RESULTS: SELF-ORGANIZED
INTERVENTIONS

What if, instead, individuals in the population tried to
spread the truthful information in order to try to reduce
the effect of misinformation? How does the structure
affect this competition between two spreading informa-
tions? This is what we seek to study in this section with
spreading vaccination.

For this section, for the results obtained, we kept the
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same size of networks and values for stifling rate γ and
forgetting rate δ in SIRV, as in Section III. Both misinfor-
mation and vaccination start in a single node, since we’re
simulating the bottom up approach of vaccination. The
networks used also remain the same, with BA and DMS
having 100 networks generated randomly per simulation
batch and using the same 100 LFR networks. A size
comparison of results between 1,000 and 10,000 nodes
was also done and found no statistically significant dif-
ferences.

A. Timescales

In order to vary the speed of vaccination against misin-
formation, we can implement timescales through the use
of random number generation within an interval. The
interval we use is [0, 1 + w], with w being the timescale.
If the number is in [0, 1] then we do a batch of misinfor-
mation events (transitions). If, instead, it’s in ]1, 1 + w]
then we do a batch of vaccination events. If w has value
1, each information spreads at the same speed (on aver-
age). With value 0.5, misinformation spreads two times
faster. With 2, the reverse happens. With this, we can
try to understand how individuals, less or more active
on the side of vaccination, can affect how misinformation
spreads.

Considering different timescales for the spread of vacci-
nation through the use of the timescale factor, how does
it affect misinformation spread? By varying timescale for
values 0.5, 1, 2 and 4, and vaccination rate θ and infection
rate β from 0 to 0.9, with a step of 0.1, we obtained the
results which can be seen in Figure 3. Overall, indepen-
dent of the network, by increasing timescale, we increase
the effect that θ has. Thus, for lower values of θ we can
reach the same TM values by increasing timescale. On
lower timescales and lower β, increasing θ has little ef-
fect on TM. As β increases, so does the effect that θ has
on lowering TM. Nonetheless, increasing timescale pro-
vides the largest decreases in TM, regardless of θ or β,
since individuals will ”work” faster to spread the truthful
information.

Similar to what was seen in Section III, DMS has lower
values overall compared to BA and LFR, but as timescale
increases, the increased effect to vaccination is lower. At
timescale 2, the three networks behave similarly (with
the exception of very low θ), but at timescale 4, DMS
behaves worse for higher β. This can be explained by
the structure and will be discussed below. Another clear
result is that BA and LFR behave very similar with re-
gards to TM, but given their different topologies, the way
the misinformation/vaccination spread on the networks
must be fundamentally different. This will also be dis-
cussed in the following section.

1. Structure

Starting with DMS, it gives lower TM values overall
when compared to BA and LFR for low timescales, since
the hierarchical topology makes the spread of information
more difficult when nodes can be blocked (vaccinated).
Given the structure and that both informations start
with 1 node, whichever information reaches and controls
the core first will tend to control the rest of the network,
since it will cutoff the opposite information from spread-
ing outside of its branch or sub-branch. As timescale
increases, what helped DMS to lower the spread of the
misinformation, now hinders the spread of the vaccina-
tion, leading to the higher values (compared to BA and
LFR) on timescale 4, and slightly for timescale 2. Despite
spreading, on average, at 4 times the speed of the mis-
information and most likely reaching the core first, the
vaccination cannot stop the misinformation from spread-
ing on the branch or sub-branches that misinformation
has already blocked, since there are no paths around that
blockage, like in BA and LFR. On higher β, the misinfor-
mation can spread more effectively despite being slower
and gain more ground before vaccination can stop its ad-
vance.

While BA and LFR give similar results, the propaga-
tion of information is fundamentally different, because
of their structures. In BA the information can spread
more freely and faster while in LFR it is forced into the
few inter-community paths in order to spread between
communities. This is what we see if we look at the pro-
gression over time of nodes per state, specifically I and
R, as seen in Figure 4. The peak of spreaders is reached
much sooner in BA and, naturally, a higher value be-
cause of this. The propagation in LFR is much slower,
because the spreading between communities takes longer,
but also because spreading inside of a community as a
random starting node (most likely a node with low de-
gree due to the distribution) takes more time. Even de-
spite this difference in propagation, the TM (number of
stiflers at the end of the simulation) remains similar, al-
beit slightly lower for LFR. Most of this is maintained
even with misinformation starting in a hub, which will
be discussed further down. It is also worth mentioning
that as the number of spreaders grows, so does the num-
ber of successful stifling and forgetting events. As more
stiflers appear, stifling events will keep increasing and
misinformation will die faster.

2. Other Simulations

Other simulations like misinformation or vaccination
starting in the largest hub instead were also done. We
found that BA and LFR still have similar results in
these cases. Whatever information starts in a hub can
quickly spread around the network in BA, but in LFR it
still means starting in a community which means inter-
community bottlenecks. Despite this, it helps in spread-
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FIG. 3. Contour graphs depicting Total Misinformed values for various networks (rows: BA, DMS, and LFR) and various
timescales (columns: 0.5, 1, 2, and 4) given infection rate β and vaccination rate θ, with both misinformation and vaccination
starting in a random node. Both β and θ vary from 0 to 0.9 with step 0.1.

FIG. 4. Progression over time of the number of nodes per
state (spreaders and stiflers) with random vaccination and
misinformation, where both start with a single node. The
solid lines represents BA states and the dotted lines represent
LFR. The data was obtained with infection rate β = 0.5 and
vaccination rate θ = 0.2, averaged over 10,000 repeats.

ing quickly within the starting community, moving the
peak of spreaders slightly earlier. On DMS, it dictates
the supremacy of whichever information started in the

hub, leading to either high resistance in diminishing TM
or domination of vaccination. As expected, hub misin-
formation leads to large increases in Total Misinformed
(TM) overall or large decreases in the case of hub vacci-
nation. The effect of vaccination rate θ and timescales
is significantly reduced in hub misinformation, but they
are much more effective at reducing TM in BA and LFR,
contrary to DMS due to its restrictive structure. In hub
vaccination, with timescales of 4, TM is reduced to neg-
ligible levels (≥ 10%) with at least θ = 0.1, with the
exception of some cases with very high β.

B. Polarisation

While the Total Misinformed can show us how effec-
tive increasing timescale or β is, it does not paint the
full picture of what happens in the networks. One thing
we can look at, to help our insight into how the spread
of both informations characterise the networks, is polar-
isation. By this we mean to measure how polarised (or
segregated) individuals and communities are if they have
a tendency to be neighbours with individuals who share
the same opinion (information in our case). The higher
that tendency is, the more polarised a network is, the
more segregated individuals are. In order to study this,
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FIG. 5. Contour graphs for the polarisation index with various networks (rows: BA, LFR, and DMS) and information origin
(columns: Misinformation and Vaccination start in a random node, Misinformation starts in the largest hub, and Vaccination
starts in the largest hub). Timescale is fixed at 1, while both infection rate β and vaccination rate θ vary from 0 to 0.9 with
step 0.1.

we devised a simple polarisation index P .

P = 1−mean(
cross edges

total edges
,per community) (1)

where cross edges are edges between nodes of different
opinions (considering ignorants, stiflers, and vaccinated).
This index is focused on communities, but since BA and
DMS don’t have communities per se, we consider them
as a single community, where as in LFR we use the des-
ignated communities by the generation algorithm. What
this index tells us is the polarisation average per commu-
nity. The closer the value is to 1, the more homogeneous
are the communities (or community).

With this index applied at the end of each simulation,
we can rerun the simulation batches done for studying
timescales, and obtain polarisation results for each net-
works, timescale, and origin of information. The con-
densed results, focusing on timescale 1, can be seen in
Figure 5. We can see generally that BA has the lowest
index values. Its structure causes the most cross interac-
tions due to being almost clusterless, leading to a more
heterogeneous community. LFR’s structure helps to keep
the three opinions mostly separated within their com-
munities. Since the spread between communities takes
longer, spreaders and vaccinated will more easily spread
inside of a community than outside it. It is also possible

to have entire communities of susceptibles if the paths
becomes stifled or the simulation ends before vaccina-
tion can reach it. For DMS, the hierarchical structure
forces both misinformation and vaccination to meet only
at the edges of the areas that they control, leading to
a lower number of cross edges between them. The sus-
ceptible that remain on the network will depend on the
parameters. Given this, we can see a clear difference in
the shape of change that BA and LFR have compared to
DMS, which like the results for timescales, implies there
is some relation between BA and our subset of LFR.

We can define their shapes roughly as canyons, where
polarisation index starts high (more homogeneous) then
lowers before rising high again. This canyon separation
usually shows us the separation between two zones that
represent a different information dominating the net-
work. Using BA with both random starter nodes as ex-
ample, the left margin of the canyon shows us an area
where vaccinated (and susceptibles) dominate the net-
work due to low β’s. The right margin instead has mis-
information dominating the network due to high β’s and
low θ’s. The canyon then represents the zone where both
informations compete the most, and cause more chaos in
opinion relations. The depth of the canyon depends on
the speed of spreading but also on how consistently each
information spreads, since consistency will leave less gaps
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FIG. 6. Contour graphs for the polarisation index with BA networks and various timescales (columns: 0.5, 1, 2, 4). Both
informations start in a random node. Both infection rate β and vaccination rate θ vary from 0 to 0.9 with step 0.1.

which increase the area of contact between opinions. This
is more important in DMS, and LFR, due to clustering.
The shape of the canyon depends on the structure since
it’s what mainly affects spreading.

Another factor for the shape of the canyon is the
timescale. As we increase it or decrease it, the vacci-
nation margin will gain or lose size, respectively. We
can see how BA with random starter nodes changes as
timescale varies in Figure 6. The left margin, which is
mostly composed of vaccinated and susceptibles grows
as timescale increases, and shrinks the canyon and right
margin due to its added strength. The canyon shrinks
due to less competition, and for the right margin it be-
comes increasingly more difficult for misinformation to
dominate.

C. Concluding Remarks

Timescales give us the opportunity to study how two
informations with similar or different speeds spread and
affect each other.

We showed that BA and LFR (our subset of possible
LFRs) have extremely similar results for Total Misin-
formed (TM), independent of where either information
starts. Despite leading to similar TM at the end of our
simulations, where LFR always has the lower value, LFR
has a different spreading pattern due to its restrictive
structure. This raises the implication that both networks
share some implicit similarity in their structure despite
their differences.

With DMS, we saw that hierarchical networks can gen-
erally resist the spread of misinformation but also the
spread of vaccination, so it’s a double edged sword. How-
ever, when either start at the top of the hierarchy, their
spreading potential is amplified tremendously, regardless
of other variables. In the case of misinformation, even
with very high timescales, its extremely difficult to re-
duce misinformation spread significantly, due to its re-
strictive structure. Otherwise, increasing the timescale

provides great reduction of misinformation, but past a
certain point the structure forces diminishing returns.

When we look at polarisation across all three start-
ing scenarios, the same order of overall polarisation is
maintained. BA is the least polarised (more heterogene-
ity) and LFR is the most. Despite their similarity in
TM on timescale results, LFR networks leads to much
more polarised networks due to the community structure
which helps to maintain the information ”trapped” (in-
formation bubbles) inside the community and keep out
new information. BA’s chaotic structure enforces more
heterogeneity since information can freely propagate and
create a higher area of cross contact. DMS’s hierar-
chical structure also causes information bubbles due to
the easily blocked paths for propagation, but the polar-
isation is lower than LFR, because the structure leads
to a higher area of cross contact. In LFR this area is
minimised because of the clustered communities and low
inter-community edges.

From these differences in polarisation, we can make a
generalised assumption: increase in order (i.e. increase
in average clustering coefficient) does not correlate with
an increase in polarisation. A better metric for a sim-
ple correlation with polarisation might be Average Path
Length. Remembering the metrics from Table II, BA
had on average ∼4 steps between every node, DMS had
∼4.9 and LFR ∼6.8. These match the order we see for
polarisation increase, and also the amount of difference
between them (except with both random starting posi-
tions where DMS and LFR are close, but LFR has more
polarisation overall). As nodes become more distant, on
average, from each other, the longer information will take
to reach the various nodes in the network. By taking
more time, information will spread more in the vicinity
of where it started and less in the faraway nodes of the
network. This will create clusters of the same informa-
tion, leading to more polarisation. More distance also
means more time to spread consistently where it already
is (nearer to the start). In LFR with a high enough infec-
tion rate β or vaccination rate θ, the starting community
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will likely be almost fully infected before the information
even reaches the furthest community.

There is no generalised conclusion on whether increas-
ing θ or β, separately, leads to increase or decrease in
polarisation, since it depends on the network, the value
of the other variable and the timescale.

V. CONCLUSIONS

This research allowed us to understand better how
structure can influence the spread of misinformation
when the truth is introduced to fight it. Regardless
of whether we are dealing with top-down (classical) or
bottom-up (dynamic) vaccination, structure plays the
most important role.

Our results showed that hierarchical networks can neg-
atively impact both sides’ spread by increasing the resis-
tance to change when dealing with bottom-up interven-
tions. On a top-down approach, the structure provides us
with a sturdy effect in lowering misinformation. In this
case, both Acquaintance and Hub strategies provide low
values of misinformation with tiny vaccination fractions.
However, on community and low clustering structures,
we do not see this similarity between strategies. These
structures give rise to similar results, albeit marginally
lower with communities, but with a significant difference
between Acquaintance and Hub. Thus, the Hub strategy
is better if we can get global information on the network.
Otherwise, we require a much more significant fraction
of vaccinated to get similar results. On dynamic vacci-
nation, both of these structures behave similarly, except
for more fringe cases with vaccination stifling. That be-

ing so, community structures that are sparsely connected
slow down the spread of misinformation but ultimately
give us the same results as low clustering networks. This
said, sparsely connected community structures lead to
substantially more polarisation, meaning that individu-
als inside the same community mostly share the same
opinion.

We also saw how these structures behave under tar-
geted attacks (misinformation starting in the largest hub)
and targeted defences (vaccination of the largest hub).
While targeted attacks produce more misinformation in
the networks, we can still reduce it if the structure allows
it. Whereas low clustering and community structures al-
low us to increase the timescale and vaccination efficacy
to reduce misinformation spread, since hierarchical struc-
tures hinder the spread of information, it is increasingly
difficult to combat misinformation as the misinformation
becomes more viral, even with the increase of timescale
and vaccination efficacy. On targeted defences, though,
these structures produce the lowest misinformation due
to the same reasons, as misinformation cannot compete
against the advantageous spread of truthful information.

From this research, several questions emerged that
could be the focus of future works. Firstly, with our
three networks, we can test various types of structures,
but real social networks tend to be a mix of the quali-
ties shared by all these. Therefore, real social networks
could be used with our model to see how our predictions
with synthetic networks compare to real ones. Finally,
given the similar results of BA and LFR, we can study
if this behaviour maintains as we change the generation
parameters for LFR networks.
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