
ECMA-SL - A Platform for Specifying and Running
the ECMAScript Standard

Luís Miguel Alves Loureiro
luismaloureiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa
Portugal

Abstract
ECMAScript, commonly known as JavaScript, is one of the
most widespread dynamic languages and it is the de facto lan-
guage for client-side web applications. Due to its complexity,
ECMAScript is both a hard language to understand by typi-
cal developers and a difficult target for static analyses. We
present ECMARef, a reference interpreter for ECMAScript
that follows the ECMAScript standard version 5.1 line-by-
line and is thoroughly tested against Test262, the official ES5
conformance test suite. To this end, we introduce ECMA-SL:
a dedicated intermediate language for ECMAScript analy-
sis and specification. We also present ECMA-SL2English, a
tool to generate the HTML English description of the stan-
dard from ECMARef. The resulting document is compared
against the official document using classical text-based com-
parison metrics and HTML-specific metrics, obtaining high
similarity scores using both classes of comparison metrics.
On the whole, we believe that this project is a steppingstone
towards the goal of automating the generation of the textual
description of the standard.

Keywords: ECMAScript, Specification Language, Reference
Interpreters, Dynamic Languages, Test262, OCaml

1 Introduction
ECMAScript, commonly known as JavaScript, is one of the
most widespread dynamic languages: it is the de facto lan-
guage for client-side web applications; it is used for server-
side scripting and it even runs on small embedded devices.
It is used by 97.4% of websites1, and is the most active lan-
guage on GitHub2 and the second most active on Stack-
Overflow3. ECMAScript is specified in the ECMAScript stan-
dard [2], a long highly complex document written in English.
Due to its complexity, ECMAScript is both a hard language
to understand by typical developers and a difficult target
for static analyses. For this reason, most program analy-
ses for ECMAScript aim at limited, ad-hoc fragments of the

1Usage statistics of JavaScript as client-side program-
ming language on websites, July 2021, W3Techs.com -
https://w3techs.com/technologies/details/cp-javascript
2Github most active programming languages based on pull requests -
https://madnight.github.io/githut/
3Stack Overflow Trends over time based on use of their tags -
https://insights.stackoverflow.com/trends

language. Also, it is a constantly evolving language whose
specification has been mostly growing every year.
The ECMAScript English standard is written as if it was

the pseudo-code of an ECMAScript interpreter. The seman-
tics of all commands is described in operational style, de-
tailing each step of the evaluation. Hence, maintaining and
extending the ECMAScript standard is a complex error-prone
task that involves manually editing complex HTML docu-
ments with the textual description of the semantics of the
language. For instance, when adding a new feature to the
standard, one has to guarantee that this feature is compatible
with the internal invariants maintained by the semantics of
the language and, most importantly, that it does not break
the behavior of previous features. Given the current size and
complexity of the standard, such guarantees are extremely
hard to get. Therefore, the ECMAScript committee has es-
tablished a multi-step procedure for new feature proposals,
which involves the creation of test suites and the implementa-
tion of multiple prototypes in ECMAScript engines, parsers,
transpilers, type checkers, among others.
As the ECMAScript standard becomes more complex, it

also becomes more difficult to manage and extend. Hence,
we believe that the ECMAScript specification should be gen-
erated from a reference implementation of the language.
This methodology would bring several benefits to the of-
ficial specification of the language when compared to the
current text-based methodology adopted by the ECMAScript
committee; namely:

1. Writing code is easier thanwritingHTML pseudo-code
following the conventions of the standard.

2. Making sure that a new change to the standard is back-
ward compatible with previous versions is easier to
achieve; for instance, one can run the extended refer-
ence interpreter on the official test suite and check if
the new change causes tests to fail.

3. Generating test cases for newly introduced features
can be done by applying automatic test generation
techniques [9] to the reference interpreter focusing on
the new features.

4. Measuring the coverage of the official test suite can
be done simply by running the reference interpreter
on it.

In this thesis, we demonstrate that it is possible to gen-
erate an HTML version of the ECMAScript standard from a



Luís Miguel Alves Loureiro

reference implementation without significant changes to its
text. To achieve this goal, we have implemented ECMARef5,
a novel reference interpreter for ECMAScript that follows
the English standard line-by-line, together with a tool that
generates a faithful HTML version of the standard from the
code of ECMARef5. Indeed, we believe that most ECMAScript
developers would not be able to identify the official standard
when presented with both versions of the standard (the of-
ficial one and the one generated by our tool). Furthermore,
the automatically generated version is superior to the official
one in that it is more consistent in the use of language, with
the same behaviours always described in the same way in
similar contexts.

At the core of ECMARef5 is ECMA-SL, a dedicated interme-
diate language for ECMAScript analysis and specification.
ECMA-SL is a simple language that supports all of the meta-
constructs used in the standard to describe the semantics
of ECMAScript programs. Hence, using ECMA-SL, we were
able to implement ECMARef5 without departing from the
pseudo-code of the standard. However, some of the pro-
gramming language constructs included in ECMA-SL can be
expressed using more fundamental constructs. Therefore, we
have additionally designed a simpler intermediate language
called Core ECMA-SL that we use as a compilation target
for ECMA-SL.

2 ECMAScript standard
The ECMAScript Standard edition 5.1 [2] is the official doc-
ument that defines the ECMAScript scripting language for
version 5.1, hereafter referred to as ES5. The standard de-
fines the types, values, objects, properties, functions, and
program syntax and semantics that should exist in an ES5
language implementation. Note that the standard allows an
implementation of the language to provide additional types,
values, objects, properties, and functions.

2.1 Language Overview
We define the ES5 language in three main components: syn-
tax and semantics; internal functions; and built-in objects.
The syntax and semantics component groups all the syn-
tactic grammars and semantics of expressions , statements ,
built-in types and also some lexical conventions, for instance,
the definition of what is a white space, how comments are
constructed and all the reserved words and keywords of
the language.
The internal functions component include all functions

that help define the semantics of the language. These are
functions that are not exposed outside the scope of the lan-
guage internals, that is, an ES5 program does not take ad-
vantage of any of these functions.

The final component is the one that contains all the built-in
objects available whenever an ES5 program executes. These

built-in objects include, for instance, the Global object, the
Function object, and the Array object.

3 Related Work
The research literature covers a wide range of program anal-
ysis and instrumentation techniques for ECMAScript, such
as: type systems [13, 21], abstract interpreters [14], points-to
analyses [20], program logics [15, 16], operational seman-
tics [10, 22, 24], intermediate representations/compilers [15],
among others. Here we focus on operational semantics/ref-
erence interpreters for ECMAScript and intermediate lan-
guages and compilers for ECMAScript analyses.
There have been numerous research projects with the

goal of formalising the semantics of ECMAScript including
its built-in libraries. In the following, we review the most
relevant of these projects.

JSCert. Bodin et al. [10] developed JSCert, the first mech-
anised specification of the ECMAScript semantics. The au-
thors formalised a pretty-big-step semantics [11] of ES5 in
the Coq [1] interactive proof assistant. Besides JSCert, the
paper also describes JSRef, an ECMAScript reference inter-
preter defined in Coq and extracted from Coq to OCaml in
order to be executed. The authors proved that JSRef is cor-
rect with respect to the formalised operational semantics
and tested it against a fragment of Test262 [6]. Later, Gard-
ner et al. [17] extended the JSRef reference interpreter with
support for ES5 Arrays. To this end, the authors linked JSRef
to the Google’s V8 [8] Array library implementation. In this
second paper, the authors additionally assessed the previous
and current states of the JSCert and JSRef projects, providing
a thorough analysis of the methodology as a whole and a
detailed breakdown of the passing/failing tests. The JSCert
project is especially relevant to us because it was the first
project to emphasise the importance of having the code of
a reference implementation matching the code of the cor-
responding standard. The authors proposed the concept of
eye-ball closeness. We improve on this concept by removing
the human out of the process, in that we can quantify the
similarity between ECMARef5 and the official standard using
the ECMA-SL2English HTML generator.

JSExplain. Charguéraud et al. presented JSExplain [12],
a reference interpreter for the ES5 language that closely fol-
lows the text of the specification. JSExplain was written in
a custom-made purely functional language with a built-in
monadic operator for automatically threading the implicit
state of the interpreter across pure computations. The au-
thors further implemented a translator from their functional
language to ECMAScript, allowing them to run JSExplain
in the browser. The main goal of JSExplain is to allow pro-
grammers to debug the execution of ECMAScript programs,
having access to both the state of the program and the in-
ternal state of the ECMAScript interpreter. In other words,



ECMA-SL - A Platform for Specifying and Running the ECMAScript Standard

with JSExplain, we can not only code-step the execution
of an ECMAScript program but also the execution of the
ECMAScript interpreter itself. While the goals of JSExplain
are very close to our own, important differences remain:
(1) JSExplain was not tested against Test262, and (2) the au-
thors do not quantify the similarity between their reference
interpreter and the official text of the standard.

4 ECMA-SL
Our main goal with the design of ECMA-SL was to obtain
the simplest possible intermediate language that would al-
low us to implement the ECMAScript standard in a faith-
ful way. To this end, we included in ECMA-SL all the meta-
constructs of the ECMAScript standard in order to imple-
ment an ECMAScript reference interpreter that matches the
pseudo-code of the standard line-by-line. However, some
of these meta-constructs can be expressed using more fun-
damental constructs. For instance, the standard makes use
of a repeat statement and a foreach statement which can
both be modelled using a simple while statement. Hence, we
have designed a simpler intermediate language called Core
ECMA-SL that we use as a compilation target for ECMA-SL. On
the whole, our ECMA-SL engine comes with: (1) an ECMA-SL
parser, (2) a compiler from ECMA-SL to Core ECMA-SL, and (3)
a Core ECMA-SL interpreter. All three modules were written
in the OCaml programming language [5].

4.1 Designing the ECMA-SL Language
ECMA-SL is a simple imperative language that retains the
fundamental dynamic behavior of ECMAScript: (1) dynamic
function calls, (2) dynamic creation and deletion of object
properties, and (3) dynamic code evaluation. An ECMA-SL pro-
gram is simply a set of top-level functions with a designated
entry-point function called main. All ECMA-SL expressions
are standard with the exception of static and dynamic prop-
erty lookup expressions, function calls with a catch clause,
and external function calls, which we explain below:

• Property lookup expressions: In ECMA-SL, there are two
types of property lookup expressions: static and dy-
namic. For static property lookup expressions the name
of the property being inspected is known at static
time (e.g. o.foo). In contrast, for dynamic property
lookup expressions, it must be dynamically computed
(e.g. o[y]).

• Function calls with a catch clause: In ECMA-SL, function
calls may be extended with a catch clause that speci-
fies an error handler h to process the outcome of the
corresponding function in case it throws an error. In
such cases, the whole function call expression evalu-
ates to the return of the error handler h. For instance,
consider the call f(3) catch h. If the body of function
f throws an error, the ECMA-SL engine executes the

handler h giving it as input the error thrown by f, with
the whole expression evaluating to the return of h.

• External function calls: Finally, external function calls
provide a mechanism for seamlessly extending the se-
mantics of the ECMA-SL language without having to
change its syntax. More concretely, external function
calls allow for the execution of functions directly im-
plemented in OCaml. These functions can, in turn, call
arbitrary system commands, executing programs writ-
ten in other languages. As an example, we have used an
external function called parseJS in our implementa-
tion of the ECMAScript standard. This function is used
to dynamically parse ECMAScript programs in text for-
mat.When interpreting the call extern parseJS(str),
the ECMA-SL engine first checks if it contains an exter-
nal function called parseJS. If it does, it then executes
that function on the string argument given as input.

4.2 Compiling ECMA-SL to Core ECMA-SL
As ECMA-SL contains several programming-language con-
structs that can be expressed using more fundamental con-
structs, we created a simpler version of ECMA-SL, called
Core ECMA-SL, together with a compiler from ECMA-SL to
Core ECMA-SL. With this compiler, instead of interpreting
an ECMA-SL program directly, one first compiles it to Core
ECMA-SL and then interprets the obtained program.
Core ECMA-SL differs from ECMA-SL in the following as-

pects:

1. It only allows for side-effect-free expressions that do
not interact with the heap, i.e. Core ECMA-SL expres-
sions can only interact with the variable store;

2. It contains a single loop statement (no repeat, repeat-
until, and foreach statements);

3. It contains a single conditional statement (no switch
and match statements);

4. It does not support global variables;
5. It does not include an error-handling mechanism (no

throw statement and no function call with catch clause).

Since Core ECMA-SL expressions do not have side-effects
and cannot interact with the object heap, the ECMA-SL expres-
sions with these features were "promoted" to equivalent Core
ECMA-SL statements. For instance, while ECMA-SL contains a
property lookup expression of the form ⟨expr⟩ ‘[’ ⟨expr⟩ ‘]’,
Core ECMA-SL contains a single dedicated property lookup
assignment of the form ⟨var⟩ := ⟨expr⟩ ‘[’ ⟨expr⟩ ‘]’.
The ECMA-SL to Core ECMA-SL compiler is structured in

a modular fashion with compilation functions for ECMA-SL
programs (compile_prog), functions (compile_func), state-
ments (compile_stmt), and expressions (compile_expr).
The function compile_prog creates a new Core ECMA-SL
programwith the compiled functions of the original ECMA-SL
program. Analogously, the function compile_func creates a
new Core ECMA-SL function with the compiled statements of



Luís Miguel Alves Loureiro

the original ECMA-SL function. The functions compile_stmt
and compile_expr are more involved as they have to model
the behavior of ECMA-SL statements and expressions using
the simpler statements and expressions of Core ECMA-SL.

5 Implementing ECMAScript in ECMA-SL
In this chapter, we explain the internal representations used
in ECMARef5 to model the different types of artifacts used in
the ECMAScript standard (5.1), followed by the description
of the implementation of ECMAScript built-in objects and
initial heap (5.2). Finally, we demonstrate how ECMARef5 fol-
lows the ECMAScript standard line-by-line (5.3) and provide
an overview of the compilation of ECMAScript programs to
ECMA-SL (5.4).

5.1 ECMARef5 Internal Representations
We start by briefly explaining the internal representations
that we have used to model different types of artifacts used
in the ECMAScript standard. More specifically, we discuss
our internal representations of: (1) ECMAScript objects and
(2) property descriptors.

var o = { foo: 1, bar: 2 };

Object.prototype

foo: 1
bar: 2

Prototype:

o : Object

Value: 1
Writable: true

Enumerable: true
Configurable: true

Data Property Descriptor

JSProperties:

o : Object

Class: "Object"
Prototype: 

Extensible: true

[Object internal
methods] Value: 2

Writable: true
Enumerable: true
Configurable: true

Data Property Descriptor

Object.prototype

JSProperties:

Class: "Object"
Prototype: null
Extensible: true

[Object internal
methods]

foo:
bar:

constructor:
toString:

toLocaleString:
valueOf:

hasOwnProperty:
isPrototypeOf:

propertyIsEnumerable:

Figure 1. ECMAScript (top) and ECMA-SL (bottom) objects
representations.

ECMAScript objects. ECMAScript objects can be thought
of as key-value dictionaries mapping properties to values.
Each ECMAScript object has a set of internal properties, pro-
viding meta-information about the object, and a set of named
properties, which are explicitly controlled by the program-
mer. In ECMA-SL, we represent every ECMAScript object as
two distinct objects: one main object storing the internal
properties of the original ECMAScript object, and one aux-
iliary object storing its named properties. The main object
has a dedicated property, JSProperties, which points to the
auxiliary object. For instance, Figure 1 shows an ECMAScript
object on the left and its representation in ECMA-SL on the

right. One can see that object o is split into two objects: the
one that keeps its internal properties and the one that keeps
its named properties.
Importantly, we have to associate two objects with each

ECMAScript object to avoid clashes between named proper-
ties and internal properties. Suppose that, instead, we used a
single object containing all the named properties and internal
properties of a given ECMAScript object. Furthermore, sup-
pose that one of the named properties of the original object
was, for instance, the property Class. In this situation, how
could we distinguish the internal property Class from the
named property Class? We automatically avoid this type of
clash by keeping the named properties in a separate object.

Property descriptors. ECMAScript objects contain two
types of properties: internal properties and named proper-
ties. The named properties are stored in the auxiliary object
which is accessed through the property JSProperties. The
ECMAScript standard mandates that named properties be
represented by Property Descriptors. Depending on the at-
tributes contained in the record, property descriptors are
classified as data property descriptors or accessor property
descriptors.

In ECMA-SL, we represent property descriptors as objects
which store the attributes defined in the ECMAScript stan-
dard: [[Value]] and [[Writable]] for data property de-
scriptors; [[Get]] and [[Set]] for accessor property de-
scriptors; and, [[Enumerable]] and [[Configurable]] for
both types of property descriptor. We explain our internal
representation of property descriptors by appealing to the ex-
ample given in Figure 1. Here, we represent property descrip-
tors as blue boxes containing their corresponding attributes.
Specifically, we have two property descriptors, respectively
storing the values of the properties foo and bar of object
o. Each descriptor stores the value of the corresponding
ECMAScript named property in its property Value. Addi-
tionally, each descriptor has the three meta-properties that
fully populate the corresponding data property descriptor:
Writable, Enumerable, and Configurable.

5.2 ECMARef5 Built-ins and Initial Heap
The ECMAScript standard defines a comprehensive runtime
library, which provides a large number of utility functions
to operate on objects, functions, primitive types, and regular
expressions. These functions are made available to the pro-
grammer via dedicated built-in objects and they are created
in the heap whenever an ECMAScript program executes.

Built-in objects. Our ECMAScript interpreter fully sup-
ports all the ECMAScript built-in objects except for the Global
Object, which is still not yet fully implemented. However,
not all built-in objects were implemented in the context of
this thesis.



ECMA-SL - A Platform for Specifying and Running the ECMAScript Standard

Initial heap. The standard does not specify how built-
in objects are created in the initial heap; instead, it sim-
ply states that they must be there. In contrast, ECMARef5
creates the built-in objects in the heap by calling the func-
tion initGlobalObject. The creation of the initial heap is
not straightforward because of the mutual dependencies be-
tween built-in objects. In order to cope with these mutual
dependencies, we have to postpone the creation of certain
properties when initialising their corresponding objects. In-
stead of creating the initial heap programmatically, construct-
ing one built-in object at a time and carefully establishing the
dependencies between them, one can instead load the initial
heap to memory from a pre-computed serialised version.

5.3 Line-by-line Closeness
We demonstrate that ECMARef5 follows the ECMAScript stan-
dard line-by-line by example. We consider the internal func-
tion [[GetProperty]] presented in Figure 2.
Implementing the internal functions of the ECMAScript

standard in ECMA-SL is straightforward given that ECMA-SL
contains syntactic constructs corresponding to all the meta-
constructs used in the standard. However, in order to stream-
line the interaction with our internal representation of ES5
objects, we make use of a range of auxiliary functions, such
as getInternalProperty(O, P) for obtaining the internal
property P of O.

It is worth noting the use of dynamic function calls in our
ECMA-SL implementation of the [[GetProperty]] internal
function. The expression {O.GetOwnProperty}(O, P) will
call the function bound to the property GetOwnProperty of
O with parameters O and P.

5.4 Compiling ECMAScript to ECMA-SL
The compilation of an ECMAScript program to ECMA-SL and
its interpretation are organised as an execution pipeline that
comprises the following three steps:

1. compiling the input program to ECMA-SL, storing the
resulting code in a file called out.esl;

2. compiling the file out.esl to Core ECMA-SL obtain-
ing the file core.cesl;

3. interpreting the obtained Core ECMA-SL program us-
ing our ECMA-SL interpreter.

ECMA-SL comeswith two execution pipelines: a non-optimised
one and an optimised one. Themain difference between these
two pipelines pertains to the loading of the ECMAScript ini-
tial heap. While the non-optimised pipeline builds the initial
heap via the execution of the function initGlobalObject,
described in Subsection 5.2, the optimised pipeline loads
it directly to memory from a pre-generated JSON file with
its contents. Below we describe the three main phases of
our execution pipelines and detail the design of the opti-
mised pipeline.

JS2ECMA-SL. Given a file containing an ECMAScript pro-
gram,we first pass it to the JS2ECMA-SL compiler. JS2ECMA-SL
parses the given program using Esprima [3]. The AST of the
given program generated by Esprima is then transformed
into an ECMA-SL program that recreates it in ECMA-SL. For
instance, the ECMAScript program x = 2 is transformed into
the ECMA-SL function buildAST. This function simply cre-
ates the AST of the given program in the ECMA-SL heap. In
order to obtain an ECMA-SL program that actually emulates
the behaviour of the original ECMAScript program, we must
call the ECMAScript interpreter on the result of buildAST.
To this end, we generate the program out.esl, which im-
ports both the ES5 interpreter and the generated buildAST
function calling the interpreter on the result of buildAST.

ECMA-SL2Core. The obtained ECMA-SL program is com-
piled to Core ECMA-SL using the compiler introduced in
Chapter 4 resulting in the file core.cesl. All the imports
included in the file out.esl are resolved as part of the com-
pilation to Core ECMA-SL. Hence, the returned program is
completely self-contained, including all the code of the EC-
MAScript interpreter as well as the code of the buildAST
function of the program to be run.

ECMA-SL Interpreter. The obtained Core ECMA-SL pro-
gram is interpreted using our ECMA-SL Interpreter written
in OCaml. The interpreter has two main execution modes:
silent and verbose. In silent mode, the interpreter outputs the
final ECMA-SL heap generated by executing the program. In
verbose mode, the interpreter additionally logs the sequence
of executed commands for debugging purposes.

Optimised Pipeline. When interpreting an ECMAScript
program, one starts by constructing the initial ECMAScript
heap, which contains all the ECMAScript built-in objects.
The simplest way to set up this initial heap is to actually
execute the ECMA-SL code that constructs its objects. This
involves the execution of thousands of ECMA-SL commands,
often taking a significant amount of time when compared
to the amount of time taken by the execution of the whole
program. However, the initial heap is always the same. This
means that we do not need to recompute it every time we
execute a compiled ECMAScript program. To this end, we
designed an optimised version of the execution pipeline that,
instead, loads a previously generated and JSON serialised
version of the initial heap. This additional step is performed
before start the interpretation of the Core ECMA-SL program.

6 HTML Generator
Using ECMA-SL2English, we demonstrate that is possible to
generate the ECMAScript standard from a reference imple-
mentation without significant changes to its text. Indeed, we
believe that most ECMAScript developers would not be able
to tell the difference between the version of the standard
generated by our tool and the original one. Furthermore,



Luís Miguel Alves Loureiro

Figure 2. The specification of the Object internal function [[GetProperty]] and the corresponding ECMA-SL code.

the automatically generated version is superior to the origi-
nal one in that it is more consistent in the use of language;
the same behaviour is described in the same way in similar
contexts. This is not the case of the actual standard where,
even in analogous contexts, the same behaviour can be de-
scribed in different ways. For instance, consider the following
four different descriptions of a call to the internal method
[[GetOwnProperty]], where we underline the differences
between the four:

1. Let ownDesc be the result of calling the [[GetOwnProperty]]
internal method of O with argument P.

2. Let prop be the result of calling the [[GetOwnProperty]] inter-
nal method of O with property name P.

3. Let desc be the result of calling the [[GetOwnProperty]] internal
method of O with P.

4. Let desc be the result of calling the [[GetOwnProperty]] internal
method of O passing P as the argument.

There is no special context in which any one of these
function calls occur, so there is no need to have different
descriptions for the same behaviour.
Although ECMA-SL is very close to the language of the

pseudo-code of the standard, the design of ECMA-SL2English
was not straightforward. We highlight two main challenges:

• The use of phrases that cannot be inferred from the
code of the interpreter to describe specific behaviours
of ECMAScript; for instance, step 4 of the pseudo-code
of the [[Put]] internal method appears as follows:
"Let desc be the result of calling the [[GetProperty]] in-
ternal method of O with argument P. This may be either
an own or inherited accessor property descriptor or an in-
herited data property descriptor". The second sentence
is merely informative as it describes the expected re-
sult returned from calling [[GetProperty]]; hence,
it cannot be inferred by our reference implementation.

• The use of different syntactic constructions/HTML
structures to describe the same behaviour in different
contexts; for instance, if-else statements have different
HTML representations throughout the standard.

6.1 Code Generation Algorithm
The HTML generation of the ECMAScript standard from a
reference interpreter written in ECMA-SL involves the exe-
cution of several preliminary steps, which guarantee that
all the ECMA-SL code that is to be transformed is correctly
organised and does not contain language constructs that are
unrecognised by the ECMA-SL2English tool.
The main algorithm of ECMA-SL2English, which is com-

posed of the following steps:

1. Filter out all the ECMA-SL code that is not to be trans-
formed into HTML;

2. Normalise the code to be generated so as to facilitate
the code generation process;

3. Sort all the interpreter functions by section/subsection
identifier;

4. Load all the HTML rules created in JSON format;
5. Transform the ECMA-SL code into HTML.

6.2 Directives and Rules
In order to allow for greater flexibility during the HTML
generation process, we extend ECMA-SL with a set of code
generation directives and make our code generation algo-
rithm parametric on a set of implementation-independent
code generation rules to be fed to the tool in JSON format.

6.2.1 Code Annotations. We extended the ECMA-SL syn-
tax with five main code generation directives:

1. Function signature directive: The function signa-
ture directive is used to provide additional metadata
about the function that it annotates. More concretely, it
includes: (1) the corresponding ECMAScript standard
section number; (2) the HTML text with the descrip-
tion of the corresponding algorithm; (3) the HTML
text containing further notes and details about the al-
gorithm; and (4) the title of the section of the standard
where the function is contained.

2. Statement wrapper directive: This directive is used
to add more text to the HTML code generated for
the enclosed statement. The extra text can be either
prepended or appended to the generated HTML code.
We use the syntax gen_wrapper [before:str] { s



ECMA-SL - A Platform for Specifying and Running the ECMAScript Standard

} to prepend the string str to the HTML code gener-
ated for statement s. Analogously, we use the syntax
gen_wrapper [after:str] { s } to append the
string str to the generated HTML code.

3. Then and else directives: The then and else direc-
tives are used to annotate ECMA-SL if-then-else state-
ments. These annotations can be added to either the
then clause or the else clause, extending these clauses
with a code generation directive with the following
format: [keyword]:[HTML]. In addition to the before
and after keywords, already seen for the statement
wrapper, we also have the keyword replace-with,
which is used to replace the default HTML code with
the provided HTML code.

4. For-each directive: With the for-each directive we
follow the same approach as the one we used with
the statement wrapper and the then and else direc-
tives, applying the same ideas to the ECMA-SL for-each
statement. We annotate this statement with a code gen-
eration directive with the format [keyword]:[HTML],
where the possible keywords are before and after.

5. Match pattern directive The match pattern direc-
tive is used to annotate pattern clauses of the ECMA-SL
match statements. The pattern clauses are mainly used
to implement semantic productions of expressions and
statements. Analogously to the function signature di-
rective, the match pattern directive includes metadata
for: (1) the corresponding ECMAScript standard sec-
tion number; (2) the description of the semantic pro-
duction; (3) the HTML text with further notes; and (4)
the title of the section of the standard.

6.2.2 JSON Rules. While most ECMA-SL functions and op-
erators used in ECMARef5 can be turned into HTML in a
straightforward way, some ECMA-SL functions and operators
have specific textual descriptions and patterns associated
with them. As we did not want to hard-code specific textual
descriptions in our implementation of the HTML code gen-
erator, we decided to make the code generator parametric on
a set of implementation-independent code generation rules to
be fed to the tool in JSON format. The support for code gen-
eration rules makes ECMA-SL2English a highly flexible tool
as it allows for the addition of new rules without modifying
its code base.

ECMA-SL2English includes three types of code genera-
tion rules: function call rules, operator rules, and property
lookup rules. These rules are specified in JSON format and
loaded into the code generator before the starting of the code
generation process. Code generation rules can be seen as
string templates whose placeholders are going to be filled
with strings computed at code generation time. For instance,
the rule for AbstractEqualityComparison can be seen as
the following string template:

the result of performing abstract

equality comparison {0} == {1}

where {0} and {1} are placeholders to be replaced with the
text generated for the first and the second arguments given
to the function call, respectively.

7 Evaluation
In this chapter, we evaluate the main outcomes of this thesis:
ECMARef5, our ECMAScript interpreter written in ECMA-SL,
and ECMA-SL2English, ourHTML generator tool withwhich
we obtain an HTML version of the ECMAScript standard di-
rectly from the code of ECMARef5.

7.1 ECMARef5 Evaluation
ECMARef5was tested against Test262 [6], the official ECMAScript
test suite. Test262 is comprised of thousands of test files,
often including multiple test cases per test file.

test262.js

core.cesl

ECMA-SL2Core

JS2ECMA-SL

ECMA-SL
Interpreter

 for each 

Previously compiled once and for all

heap.json

test262_ast.cesl

ES5_Interpreter.esl ES5_Interpreter.cesl

Compiled once per running of the test suite

harness.json

Figure 3. Test262 test fully optimised execution pipeline.

7.1.1 Testing pipeline. In order to streamline the test-
ing process, we have developed an optimised version of the
testing pipeline. Figure 3 illustrates the optimised testing
pipeline, which is based on the following four main optimi-
sations:

1. Test262 tests are compiled directly to Core ECMA-SL
once and for all. More specifically, we have compiled
all Test262 tests directly to Core ECMA-SL and stored
their compilation for later use. We do not need to re-
compile tests because their code never changes.

2. ECMARef5 is compiled to Core ECMA-SL only one time
per running of the Test262 test suite. In contrast to
the code of the test files, which always stays the same,
ECMARef5 is an evolving project whose code base is
frequently changed. Hence, every time we want to run
the test suite, we must recompile ECMARef5 to Core
ECMA-SL. However, as the same interpreter runs for
all tests, we only need to do it once per running of
the test suite. Given a test file, the final Core ECMA-SL
program to be executed is obtained by concatenating
its compilation to Core ECMA-SL with the compiled
code of ECMARef5.

3. The initial heap is loaded directly to memory from a
pre-generated JSON serialisation. This initial heap con-
tains all the built-in objects and their corresponding



Luís Miguel Alves Loureiro

function objects. However, much like the code of the
test files, the initial heap is always the same. Hence, we
do not need to re-compute it every time a test is run.
Instead, we generate a JSON file with the serialisation
of the ECMAScript initial heap in ECMA-SL once and
for all and we load this file directly to memory at the
start of the interpretation of an ECMAScript program.

4. The harness AST is loaded directly to memory from a
pre-generated JSON serialisation. Much like the initial
heap, the code of the harness never changes and is
shared by all Test262 tests.

7.1.2 Testing results. Table 1 presents the breakdown of
the testing results per section of the ECMAScript standard.
The results show that ECMARef5 passes 12,026 tests out of
12,068 applicable tests. In total, only 42 tests are currently
failing; of these, only 22 tests pertain to sections that were
implemented in the context of this thesis. From these 22 fail-
ing tests, the two that pertain to Section 7 have two distinct
reasons for failing: one fails because we still have issues re-
garding the parsing of unicode escape sequences, and the
other one is impossible to solve, since the AST created by Es-
prima returns an error message that is handled by ECMARef5
as a ReferenceError and the test is annotated as throwing a
SyntaxError. The tests that are failing in Section 15.7 indi-
cate that ECMARef5 has implementation issues in some of
the Number.prototype functions. Additionally, the imple-
mentation of one of these functions is causing one test to
fail in Section 11. At the time of writing, we were not able
to identify the reasons for the failing tests in Section 10 and
Section 15.3.

Table 1 also presents the total execution time per section.
For each section we show the times obtained using both the
optimised and the non-optimised execution testing pipelines,
clearly demonstrating that the implemented optimisations
were instrumental to streamline the testing process. They
allowed us to achieve an overall 295% performance boost
and an average 309% performance boost. These times were
obtained using a machine with an Intel Core i7-3610QM
2.3GHz, DDR3 RAM 12GB, and a 256GB solid-state hard-
drive running Manjaro Linux.

7.2 ECMA-SL2English Evaluation
In this section we evaluate the closeness of the generated
ECMAScript standard to the official HTML version of the
standard. To this end, we make use of both classical text-
based comparison metrics [18] as well as HTML-specific
metrics based on the concept of tree similarity [26].

7.2.1 Text-basedmetrics. Text-based metrics are used to
measure the similarity or dissimilarity between two given
character strings.More concretely, given two character strings,
text-based comparison algorithms compute a number that
represents the (dis)similarity between the two given strings.
Text-based metrics can be broadly divided into two main

Section #Tests Time
Total Passed Failed Opt. Non-Opt.

7 545 543 2 02m36s 08m10s
8 184 184 0 00m55s 03m00s
9 115 115 0 00m30s 01m50s
10 414 413 1 02m08s 06m49s
11 1635 1634 1 09m20s 27m56s
12 648 648 0 03m16s 10m12s
13 228 228 0 01m12s 03m42s
14 24 24 0 00m06s 00m23s
15.1 195 195 0 01m48s 04m05s
15.2 2885 2885 0 14m35s 47m44s
15.3 411 410 1 02m22s 07m02s
15.4 2268 2268 0 15m12s 41m21s
15.5 861 856 5 04m24s 14m14s
15.6 34 34 0 00m09s 00m32s
15.7 191 174 17 00m53s 03m04s
15.8 171 171 0 01m14s 03m10s
15.9 539 533 6 02m44s 08m55s
15.10 520 513 7 05m56s 11m52s
15.11 84 84 0 00m26s 01m23s
15.12 116 114 2 00m40s 02m00s
Sub-Total 7764 7742 22 41m30s 2h09m02s
Total 12068 12026 42 1h10m26s 3h27m44s

Table 1. Test262 testing results per section of the
ECMAScript standard. Sub-total shows the results that ap-
ply in the context of this thesis.

groups: character-based metrics, which take into account
the order in which individual words (also referred to as to-
kens) appear within the two given character strings, and
token-based metrics, which ignore that order. Here, we focus
on character-based text-comparison metrics as the order in
which words appear in the standard is relevant to us.

Most character-based text-comparison metrics are based
on variations of the popular Edit distance algorithm [23].

7.2.2 HTML-specificmetrics. HTML-specificmetrics are
calculated using two different measures: structural similar-
ity and style similarity. The structural similarity applies a
sequence comparison algorithm to the lists of HTML tags
existing in both HTML documents. This algorithm is adapted
from the Gestalt Pattern Matching [25] and the idea is to find
the longest contiguous matching subsequence. The style
similarity calculates the jaccard similarity coefficient [19]
between the CSS classes existing in both HTML documents.

7.3 Scope and Granularity
The HTML generator was only applied to parts of ECMARef5
developed in the context of this thesis. Furthermore, we
excluded Sections 15.6, 15.7, 15.8, and 15.11. The reason for
not applying the ECMA-SL2English to the entire ECMARef5
implementation is that in order to obtain good results one
must annotate the implementation with code generation
directives and provide the appropriate code generation rules.
This is a time-consuming task that we could not carry out in
the time-frame of this thesis and therefore leave for future



ECMA-SL - A Platform for Specifying and Running the ECMAScript Standard

Section L JW S95 NW G SW
8 88.2 91.1 91.2 91.6 94.4 84.1
9 74.3 87.9 88.0 76.9 88.8 66.0
10 82.3 90.2 90.2 85.7 92.5 92.5
11 86.1 90.9 90.9 88.1 94.6 84.2
12 82.2 90.0 90.0 85.1 92.8 78.1
13 81.6 89.4 89.5 84.4 92.9 76.2
14 64.0 86.8 86.9 69.2 85.7 65.5
15.1 81.9 89.7 89.7 84.1 93.2 75.9
15.2 86.7 90.8 90.8 89.1 94.5 82.6
15.3 81.0 89.8 90.0 84.8 74.9 91.9
Average 80.8 89.7 89.7 83.9 90.4 79.7

Table 2. Results of the application of some Edit Distance
algorithms to sections of the ECMAScript standard gener-
ated by the ECMA-SL2English tool. The acronyms L, JW, S95,
NW, G, and SW respectively mean Levenshtein, Jaro-Winkler,
Strcmp95, Needleman-Wunsch, Gotoh, and Smith-Waterman

work. Here we focus on the core sections and built-in objects
of the standard.

7.4 Evaluation Pipeline
It is not practical to apply the selected text-comparison algo-
rithms to entire sections of the standard since most of these
algorithms have quadratic asymptotic complexity and there-
fore would exhibit prohibitive execution times. Hence, to
obtain the evaluation results for each section of the standard,
we first have to pre-process the two HTML documents, the
generated one and the official one. More concretely, we split
both documents into two sets of files, with each file contain-
ing a single algorithm/function of the standard, and apply
all text-comparison algorithms at the standard-algorithm
granularity level; then, we combine the obtained results us-
ing a weighted arithmetic average. The complete evaluation
pipeline is divided into the following three components:

1. The Splitter component gets both HTML documents
and splits them into multiple HTML files, with each
file containing a single algorithm of the standard;

2. The Calculator component applies all the HTML sim-
ilarity and Edit distance algorithms to each pair of
HTML files created by the Splitter component. The
Calculator returns a list with all the computed results
together with the number of lines and characters of
the given standard algorithm;

3. The Aggregator component calculates the final re-
sults for each section of the standard by computing
the arithmetic average of the results generated in the
previous step.

7.5 Text-based Metrics
In order to compute the similarity between the official and
the generated versions of the standard, we make use of the
textdistance open-source project [7]. This project comes

Section Scores #Lines
Style Structural Joint Official Generated

8 94.9 90.2 92.5 3731 3737
9 75.6 88.4 82.0 1022 1137
10 96.6 44.0 70.3 3961 4123
11 92.6 80.7 86.6 8999 8862
12 97.4 70.6 84.0 4714 4392
13 96.6 90.3 93.2 1404 1353
14 100 82.1 91.1 298 253
15.1 91.6 90.5 91.1 307 330
15.2 97.6 93.3 95.4 2232 2270
15.3 100 86.6 93.3 1627 1746
Average 94.3 81.7 88 - -
Total - - - 28295 28203

Table 3. Results of the application of HTML similarity
to sections of the ECMAScript standard generated by the
ECMA-SL2English tool.

with nine different variations of the edit distance algorithm,
of which we use the following six: (1) Levenshtein, (2) Jaro-
Winkler, (3) Needleman-Wunsch, (4) Smith-Waterman, (5) Go-
toh, and (6) strcmp95.

Results. We present the overall results for the six selected
metrics in Table 2. For each section of the standard, we high-
light in bold the highest value and underline the lowest one.
Excluding the scores obtained using the Smith-Waterman
algorithm and with the exception of Sections 9 and 14, the
obtained results are consistently high for all metrics (always
above 80%). It is important to note that Sections 9 and 14
represent a small fragment of the total amount of generated
text (≈5%).

7.6 HTML-specific Metrics
We have used the HTMLSimilarity open-source project [4] to
compute the structural similarity and the style similarity be-
tween the official and the generated versions of the standard.
Results are presented in Table 3. The measured structural
and style similarities are generally high except for the cases
of Sections 10 and 12. These two sections have their respec-
tive structural similarities highly affected by lower values
computed for some of their enclosed subsections. The com-
mon characteristic of these enclosed subsections (10.5, 10.6,
and 12.11) is that they are substantially larger than a typical
subsection of the standard. We observed that differences in
structure tend to have a non-linear impact on the computed
structural similarity score. Hence, the larger a subsection
is, the less likely it is to have a good similarity score. We
could have fixed this issue by splitting these subsections
into smaller fragments, computing the similarity score for
each fragment, and combining the obtained scores using a
weighted average. We chose not to do this to keep our eval-
uation methodology consistent across all the subsections of
the standard.



Luís Miguel Alves Loureiro

8 Conclusions
In this thesis, we have demonstrated that it is possible to
generate the ECMAScript standard from a reference imple-
mentation without significant changes to its text. The inte-
gration of such a tool into the ECMAScript standardisation
pipeline would bring several benefits; in particular, it would
simplify both the specification process and the testing of
new features.

We developed this project as part of a wider project whose
goal is to build a tool-suite for ECMAScript analysis and
specification based on ECMA-SL. We contributed to the over-
arching ECMA-SL project in three different ways. First, we de-
signed the ECMA-SL and Core ECMA-SL languages and devel-
oped the compiler from ECMA-SL to Core ECMA-SL. Second,
we developed ECMARef5, a new ES5 reference interpreter that
follows the standard line-by-line; importantly, ECMARef5 is,
to the best of our knowledge, themost complete academic ref-
erence implementation of the fifth version of the ECMAScript
standard. Third, we designed ECMA-SL2English, our HTML
code generator that creates an HTML version of the stan-
dard from the code of ECMARef5. With ECMA-SL2English
we were able to measure the closeness between ECMARef5
and the official ES5 standard using out-of-the-box text-based
comparison metrics.

The two main outcomes of this thesis, ECMA-SL2English
and ECMARef5, were thoroughly evaluated. ECMARef5 was
tested against Test262 [6] passing 12,026 tests out of 12,068
applicable tests. Importantly, ECMARef5 is the most com-
plete reference implementation of the ES5 standard, with
JS-2-JSIL [15], the second most complete, only passing
8,797 tests. We evaluated ECMA-SL2English by comparing
the generated standard against the official one using both
text-based and HTML-based comparison metrics. We have
obtained consistently high scores for both metrics (always
above 80% similarity score).

References
[1] [n.d.]. Coq - Interactive formal proof management system. https:

//coq.inria.fr/ Accessed on 2021-09-23.
[2] [n.d.]. ECMAScript® Language Specification, 5.1 Edition / June 2011.

http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf Ac-
cessed on 2021-09-23.

[3] [n.d.]. Esprima - a high performance, standard-compliant ECMAScript
parser written in ECMAScript. https://esprima.org/ Accessed on 2021-
09-23.

[4] [n.d.]. HTMLSimilarity - Compare html similarity using structural and
style metrics. https://github.com/matiskay/html-similarity Accessed
on 2021-07-27.

[5] [n.d.]. OCaml - General-purpose, multi-paradigm programming lan-
guage. https://ocaml.org/ Accessed on 2021-09-23.

[6] [n.d.]. Test262 - Official ECMAScript Conformance Test Suite. https:
//github.com/tc39/test262/ Accessed on 2021-09-23.

[7] [n.d.]. TextDistance - python library for comparing distance between
two or more sequences by many algorithms. https://github.com/life4/
textdistance Accessed on 2021-07-13.

[8] [n.d.]. V8 - Google’s open source high-performance JavaScript and
WebAssembly engine, written in C++. https://v8.dev/ Accessed on
2021-09-23.

[9] Saswat Anand, E. Burke, T. Chen, John A. Clark, Myra B. Cohen, W.
Grieskamp, M. J. Harrold, A. Bertolino, Juan Li, and H. Zhu. 2013. An
Orchestrated Survey on Automated Software Test Case Generation I.

[10] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner,
Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith.
2014. A Trusted Mechanised JavaScript Specification. Conference
Record of the Annual ACM Symposium on Principles of Programming
Languages 49, 87–100. https://doi.org/10.1145/2578855.2535876

[11] Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Programming
Languages and Systems, Matthias Felleisen and Philippa Gardner (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 41–60. https://doi.org/
10.1007/978-3-642-37036-6_3

[12] Arthur Charguéraud, Alan Schmitt, and Thomas Wood. 2018. JS-
Explain: A Double Debugger for JavaScript. WWW ’18: Compan-
ion Proceedings of the The Web Conference 2018, 691–699. https:
//doi.org/10.1145/3184558.3185969

[13] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch,
and Gabriel Levi. 2017. Fast and precise type checking for JavaScript.
Proceedings of the ACM on Programming Languages 1, OOPSLA (08
2017), 48:1–48:30. https://doi.org/10.1145/3133872

[14] Kyle Dewey, Vineeth Kashyap, and Ben Hardekopf. 2015. A parallel
abstract interpreter for JavaScript. IEEE Computer Society, 34–45.
https://doi.org/10.1109/CGO.2015.7054185

[15] Jose Fragoso Santos, Petar Maksimović, Daiva Naudziuniene, Thomas
Wood, and Philippa Gardner. 2017. JaVerT: JavaScript verification
toolchain. Proceedings of the ACM on Programming Languages 2 (12
2017), 1–33. https://doi.org/10.1145/3158138

[16] Philippa Gardner, Sergio Maffeis, and Gareth Smith. 2012. Towards a
Program Logic for JavaScript. Sigplan Notices - SIGPLAN 47, 31–44.
https://doi.org/10.1145/2103621.2103663

[17] Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood.
2015. A Trusted Mechanised Specification of JavaScript: One Year On,
Vol. 9206. 3–10. https://doi.org/10.1007/978-3-319-21690-4_1

[18] Aly H. Gomaa, Wael ; A. Fahmy. 2013. A Survey of Text Similarity
Approaches. International Journal of Computer Applications 68. Issue
13. https://doi.org/10.5120/11638-7118

[19] P. Jaccard. 1901. Distribution de la flore alpine dans le bassin des
Dranses et dans quelques régions voisines. Bulletin de la Société Vau-
doise des Sciences Naturelles (1901), 241–272.

[20] Dongseok Jang and Kwang-Moo Choe. 2009. Points-to analysis for
JavaScript. Proceedings of the ACM Symposium on Applied Computing,
1930–1937. https://doi.org/10.1145/1529282.1529711

[21] Simon Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis
for JavaScript.

[22] Sergio Maffeis, John Mitchell, and Ankur Taly. 2008. An Operational
Semantics for JavaScript. 307–325. https://doi.org/10.1007/978-3-540-
89330-1_22

[23] Gonzalo Navarro. 2001. A Guided Tour to Approximate String
Matching. ACM Comput. Surv. 33, 1 (March 2001), 31–88. https:
//doi.org/10.1145/375360.375365

[24] Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: A
Complete Formal Semantics of JavaScript. ACM SIGPLAN Notices 50
(06 2015), 346–356. https://doi.org/10.1145/2813885.2737991

[25] John W. Ratcliff and David E. Metzener. 1988. Pattern Matching: The
Gestalt Approach. Dr. Dobb’s Journal (July 1988), 46.

[26] Hangjun Xu. 2014. An Algorithm for Comparing Similarity Between
Two Trees. Master’s thesis. Duke University.

https://coq.inria.fr/
https://coq.inria.fr/
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
https://esprima.org/
https://github.com/matiskay/html-similarity
https://ocaml.org/
https://github.com/tc39/test262/
https://github.com/tc39/test262/
https://github.com/life4/textdistance
https://github.com/life4/textdistance
https://v8.dev/
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1145/3184558.3185969
https://doi.org/10.1145/3184558.3185969
https://doi.org/10.1145/3133872
https://doi.org/10.1109/CGO.2015.7054185
https://doi.org/10.1145/3158138
https://doi.org/10.1145/2103621.2103663
https://doi.org/10.1007/978-3-319-21690-4_1
https://doi.org/10.5120/11638-7118
https://doi.org/10.1145/1529282.1529711
https://doi.org/10.1007/978-3-540-89330-1_22
https://doi.org/10.1007/978-3-540-89330-1_22
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/375360.375365
https://doi.org/10.1145/2813885.2737991

	Abstract
	1 Introduction
	2 ECMAScript standard
	2.1 Language Overview

	3 Related Work
	4 ECMA-SL
	4.1 Designing the ECMA-SL Language
	4.2 Compiling ECMA-SL to Core ECMA-SL

	5 Implementing ECMAScript in ECMA-SL
	5.1 ECMARef5 Internal Representations
	5.2 ECMARef5 Built-ins and Initial Heap
	5.3 Line-by-line Closeness
	5.4 Compiling ECMAScript to ECMA-SL

	6 HTML Generator
	6.1 Code Generation Algorithm
	6.2 Directives and Rules

	7 Evaluation
	7.1 ECMARef5 Evaluation
	7.2 ECMA-SL2English Evaluation
	7.3 Scope and Granularity
	7.4 Evaluation Pipeline
	7.5 Text-based Metrics
	7.6 HTML-specific Metrics

	8 Conclusions
	References

