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Abstract—The objective of this work is to develop an object
detection deep neural network (DNN) targeting SoC-FPGA
based embedded systems. The developed system should be as
efficient as possible achieving a good balance between object
detection accuracy and inference time.

Deep neural networks unleash new developments in object
detection, achieving greater accuracies than ever, but with
high computational costs. Although object detection systems
may be largely applied in embedded systems, dealing with the
computer intensive DNNs in systems with limited resources is
challenging and advancements in this area are highly required.

A hardware/software system was designed to implement
RetinaNet, a top of the range object detection DNN, in a Xilinx
Zynq-7020 device, a low-cost Soc-FPGA. To accelerate the DNN
inference, a dedicated convolution hardware component was
developed and integrated in the system.

RetinaNet was trained using quantization aware training,
a technique that allowed to generate 4 bit-width weights and
8 bit-width activations with an accuracy decrease of only 9
% in comparison with RetinaNet using floating-point 32 bits.
This quantization reduced in about 78 % the memory used by
each convolution layer. The developed convolution hardware
accelerator computes a convolution 359 times faster than the
embedded ARM processor. When the accelerator is integrated
into the final hardware/software system, the implemented part
of RetinaNet is processed five times faster than the software
only implementation of the DNN.

1. Introduction

The evolution in deep neural networks (DNN) and it’s
application in image processing, unleash new developments
in computer vision, including in the object detection field,
where greater accuracy is achieved [1]. There is a broad
range of applications where object detection is applied and
can be applied in the future.

In spite of the advantages brought by deep neural net-
works they are very computer intensive [1] and applying
them in embedded systems environments is still a challenge.
In embedded systems both power and cost are important
factors for a feasible solution, which forces the use of de-
vices with limited computer resources. Usually in embedded
systems applications, real-time restrictions must be satisfied.
To run a deep neural network in a system with limited

resources and strict time restrictions a customized hard-
ware architecture is of highly importance. The customized
hardware architecture implemented in a Field-programmable
gate array (FPGA) can act as an accelerator of the deep
neural network layers, and therefore achieve the inferences
time needed for the applications.

2. Deep Neural Networks

Traditionally computational problems are solved by
defining explicitly an algorithm that can produce the in-
tended output for a certain input. Neural networks open
a new approach to the way computational problems are
solved. In neural networks we don’t explicitly define the
algorithm, instead we feed the neural network with sets of
inputs and their corresponding outputs, and it learns the
algorithm by itself, this process is called training. A well
trained neural network can then produce an adequate output
for any given input that do not belong to the training set.

2.1. Convolutional Neural Network

A convolutional neural network (CNN) is the most used
type of neural network for image processing, since it takes
into account the spatial structure of the image and allows
deeper neural networks for the same amount of memory
and computational resources than neural networks composed
only by fully-connected layers.

The convolution layer is the main layer of a CNN.
Considering a convolution layer with a kernel size of KxK,
and with an input (g) with N channels where w is the tensor
of weights and b the tensor of bias, the output of the neuron
(f) in the position i row, j column of the filter 1 is modeled
by equation 1.
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2.2. Image classification DNN Models

Image classification is a process where is identified the
object depicted in the image, in accordance to a set of



possible classes [2]. The implementation of image classifiers
with DNN is done using as the input layer the matrix of
pixels that compose the image, and as output a set of values
that show the confidence of that image belonging to each
one of the classes.

The first convolutional neural networks for image clas-
sification was the LeNet model, that was introduced in 1989
[2]. This was a very shallow network, the latter version
of this neural network, LeNet-5 was composed of a to-
tal of 6 layers (2 convolutional, 2 average pooling and 2
fully-connected) [3]. This network was designed to classify
grayscale images of handwritten digits with a resolution of
32 by 32. This was the first CNN that led to a commercial
success, since it was deployed in the ATM machines for rec-
ognizing digits in check deposits. LeNet uses as activation
the sigmoid function.

AlexNet was the winner of 2012 image classification
contest of the ImageNet LSVRC. It has a total of 11 layers
(5 convolutional, 3 Max pooling and 3 fully-connected) [4].
It receives as input a 227x227 image with 3 channels one for
each RGB color. AlexNet uses a ReLU as activation func-
tion decreasing the complexity of the activation function,
compared to the sigmoid or tanh function.

The VGG DNN participated in the ImageNet LSVRC
contest of 2014, winning in some of the categories. This
network is composed by 24 layers (16 convolutional, 5 Max
Polling and 3 Fully-connected). This network architecture is
very uniform.

ResNet introduces even more layers than the previous
networks, reaching a total of 152 layers in its bigger version
[5]. This deep neural network was the winner of the 2015
ImageNet challenge in the classification task, exceeding for
the first time human-level accuracy.

The deeper the network, the harder it is to train it. Deeper
networks suffer from vanishing gradient during training,
degrading the accuracy of the network [2]. The vanishing
gradient problems is caused by the impact of the successive
accumulation of several activation functions through back
propagation, making it difficult to adjust the weights of the
first layers.

ResNet solves the vanishing gradient problem by making
use of shortcut connections. The shortcut connections are
used to skip some layers, adding up the input of a set
of layers directly with those layers output. The ResNet is
organized in blocks of layers that are bypassed by shortcuts
as showed in figure 1.

2.2.1. Performance comparison. Table 1 shows a compar-
ison between the different CNN introduced earlier. Showing
the Top-5 error rate for each one of the models apart from
the LeNet, obtained using the ImageNet dataset.

Table 1 shows that in general deeper networks achieve
higher accuracies. From LeNet 5 to AlexNet the number
of weights and the number of multiply and accumulate
(MAC) operations have increased about a thousand times
and two thousand times respectively, in spite of only having
doubled the number of layers. The disproportionate increase
of computational resources is due to the increase resolution

of input image and the increased number of filters per
convolutional layer. This table also shows that from VGG
16 to ResNet 50 the number of weights and MACs has
fallen despite ResNet 50 having a better accuracy and being
a deeper network then VGG 16, this is because the first
layers of VGG have a high number of filters.

2.3. Object detection DNN Models

Object detection is used to locate the object position and
size, and predict its class [7]. The output of the system is
composed of a set of variables that specify the dimensions
and location of the box that frames the object, and a set of
values that show the confidence of each object belonging to
each one of the classes.

One way to architect a object detection system, is to
divide it in several stages. Region-based Convolutional Net-
work (R-CNN) consists of three modules [8]. The first
module generate category independent region proposals of
different sizes. The second module is a deep convolutional
neural network that extracts from a region of an image a
feature map. The third module is composed by a set of
support vector machines (SVM) [9] that classify the image
using the feature map. Each one of the proposed regions
by the first module are independently fed to the second
module to produce a different feature map for each one
of the regions. R-CNN is a hybrid solution between CNN
and traditional algorithms, being the second module the only
module with a CNN.

Fast R-CNN improves both the accuracy and the com-
putational resources used by the model. This model uses
the entire input image to extract the features and then uses
the region proposals to extract from the entire image feature
map a subset of features corresponding to that region. By
sharing the feature map the computational operations can be
greatly reduced.

Faster R-CNN is similar to the Fast R-CNN being the
main difference, the way that region proposals are computed.
Faster R-CNN uses a separate CNN to compute the region
proposals, instead of the time consuming selective search
algorithm used in predecessors models.

You Only Look Once (YOLO) approaches object detec-
tion in a different way, using a single CNN to both locate
and classify objects in an image [10].

RetinaNet, just like YOLO uses a single DNN to both
classify and locate objects. Most of the layers of this model
are convolution layers and no fully connected layers are used
[11]. This DNN is grouped in smaller sub-networks:

« ResNet backbone — This is where the input image
is received. This DNN is composed by 5 stages that
output smaller and smaller feature maps as the stage
number increases.

o Feature Pyramid Network (FPN) [12] — This DNN
enhance the capability to detected small objects [12].

o Classification — There is a network of this type
attached to each one of the stage outputs of the FPN
as shown in figure 2. In this way the classification
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Figure 1. Representation of ResNet-18 architecture [6].
Characteristics LeNet 5 AlexNet VGG 16 ResNet 18  ResNet 50
Input Size 28x28 227x227  224x224  224x224 224x224
No. of Convolutional layers 2 5 13 20 53
No. of Fully-Connected layers 2 3 3 1 1
No. of Channels of Conv. layers 1, 20 3-256 3-512 3-512 3-2048
No. of Filters of a Conv. layers 20, 50 96-384 64-512 64-512 64-2048
Weights 60k 61M 138M 11.1M 25.5M
MACs 341k 724M 15.5G 1.8G 3.9G
Top-5 error - 19.8 8.8 10.9 7.0

TABLE 1. COMPARISON OF POPULAR DNN’S WITH THE TOP-5 ERROR RATE OBTAINED WITH IMAGENET DATASET.

sub-networks receives input feature maps of different
dimensions, each one being prone to detect objects
of different sizes. These subnetworks are composed
by 5 convolution layers that classify the objects.
The output of each one of the subnetworks are
concatenated to achieve a final result with objects
of different sizes. The weighs and bias are shared
among all the classification sub-networks.

o Regression — These sub-networks are very sim-
ilar to the ones used for classification, there are
several instances of the sub-network connected to
different stages of the FPN and the weights and
bias are shared among all of them. The regression
sub-network is responsible for getting the bonding
boxes parameters of every object. The result of each
subnetwork is concatenated.

2.3.1. Performance comparison. Along with the mAP met-
ric in table 2 it is showed the measured inference time
for each one of the models, apart from the R-CNN family
models, when executing these models in a Nvidia M40 GPU.

By the performance results in table 2 it can be concluded
that as the accuracy increases the inference time that it takes
for the model to make its predictions also increases. YOLO
is a fast model and ideal for real time applications with
strict temporal restrictions, but its biggest implementation
has an mAP of 4.8% lower than the biggest implementation
of RetinaNet showed in this table.

The chosen object detection network to be implemented
is RetinaNet-18 (RetinaNet with a ResNet-18 backbone),
due to the high accuracy and high inference times that
show potential for hardware acceleration as seen in table
2. To facilitate an embedded implementation the RetinaNet

version chosen uses the smaller available backbone for this
DNN, ResNet-18.

3. DNN implementations on FPGAs

Deep Neural Networks present several opportunities to
explore parallelism and pipelining, to maximize the through-
put of the available hardware. A convolution layer can be
seen as a set of nested loops that can be computed with
the algorithm in figure 3 which is based in equation 1.
A technique called spacial unrolling can be used, which
is the hardware equivalent of loop unrolling in software,
where a certain loop is eliminated or shortened by making
those operations in parallel in different hardware rather than
sequentially [14].

The basic component of a DNN hardware accelerator
is the processing element (PE), which performs the com-
putation for the most important layers, such as the con-
volutional and fully-connected layers [2]. The accelerator
must have several PEs to make it possible to compute
operations in parallel. The composition of a PE varies with
the implemented architecture and one or more multiply and
accumulate (MAC) units may be available per PE.

3.1. Data Quantization

Data quantization changes the data type used, reducing
the number of bits and using fixed point instead of floating
point. This technique was introduced to reduce the complex-
ity of the implementation. A reduced number of bits uses
less storage capacity and reduces the size of the operators.
The representation of data with a reduced number of bits can
increase the throughput of the accelerator but may degrade
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Figure 2. RetinaNet algorithm architecture, consisting of a feature pyramid network and fully connected sub-networks for classifying and produce bounding

box localization [11].

Models No of Convolutional layers  Input image width mAP (%) Inference time (s)
Fast R-CNN 16 - 19.3 -
Faster R-CNN 32 - 21.5 -
YOLO v2 19 224 21.6 25

53 320 28.2 22
YOLO v3 53 416 31.0 29

53 608 33.0 51

50 500 325 73
RetinaNet 101 500 34.5 90

101 800 37.8 198

TABLE 2. COMPARISON OF POPULAR OBJECT DETECTION MODELS WITH MAP OBTAINED USING THE COCO DATASET [11] [13].

for k =0: K do

for c=0:C do
for y =0:Y do
forz =0: X do

(Output channel)
(Input channel)
(fmap height)
(fimap width)

for f, = —% : % do (Filter height)
for f, = —“X=1. ZX=1 qo (Filter width)
LO[k'] [][y] +=
I[d[z + fally + fu] x WIK][e][f2][fu]

Figure 3. Algorithm for computing convolutional layers, composed by
nested loops, adapted from [14].

the accuracy of the model, thus being important to study the
best trade-off.

Existing works study the trade-off between different
quantizations and accuracy of the network, compared to the
model implemented using 32 bit floating point. Figure 4
shows an existing work that evaluated the impact of quanti-
zation in a DarkNet DNN (the backbone of YOLO), trained
with the ImageNet dataset [15]. The number of filters in each
convolutional layer of DarkNet was multiplied by a scaling
factor in order to expand or shrink the model, obtaining
implementations with different accuracies and throughputs
to evaluate the accuracy/throughput trade-off at different
DNN sizes.

The results in figure 4, indicate that both binary and
INT?2 data types cannot achieve comparable accuracy to the
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Figure 4. Trade-offs for different quantization techniques using DarkNet as
DNN model [15].

other data types. 32 bit floating point (FP32) does not show
better accuracy than INT8 and INT16. In addition FP32 has
a lower throughput, not having any advantage over the INT8
and INT16 data types. This results shows the big opportunity
that quantization brings by reducing resources spent and
improving the throughput without damaging the accuracy
of the model.



In the work of [15] the quantization strategy was sym-
metrically used for activations and weights, using in each
implementation the same quantization for all data. Other
studies have exploited different quantizations for activations
and weights and also different quantizations along the depth
of the DNN model.

Quantization aware training is a technique used to min-
imize these accuracies drops. This technique takes into
account in the training process the quantization errors pro-
duced by quantizing weights and activations, so that the
produced weights are already tweaked to minimize the
quantization error [16].

4. RetinaNet embedded software implementa-
tion

The first step in this work is to train an object detection
DNN. RetinaNet-18, was the chosen deep neural network
for this work.

4.1. Quantization aware training

A quantization aware training is used to quantize data in
this work in order to reduce as much as possible the accuracy
loss in the quantization process. This work uses Brevitas
python library to make the quantization aware training [17].
Different quantizations were evaluated by changing the bit
width of weights in different parts of the DNN and com-
paring its impact on the overall accuracy of the network.
The terminology used to refer to each one of the quantized
models is: RetinaNet_bl_b2 b3 where:

e bl is the bit width of weights used in the ResNet
backbone of RetinaNet;

e b2 is the bit width of weights used in the FPN part
of RetinaNet;

e b3 is the bit width of weights used in the Regression
and Classification sub-networks of Retinanet.

All activations in all layers are quantized using 8 bits.

The last layers of each stage of the regression and
classification sub-networks were found very sensitive to
quantization and could not be successfully quantized. These
are the only convolution layers not quantized in this work.

The results in table 3 show that the RetinaNet that uses
8 bits in all weights (RetinaNet_8_8_8) is able to achieve
the same mAP as the non-quantized RetinaNet FP, which
demonstrates the success of quantization aware training and
indicates that there is no need to try a higher bit width
quantization than 8§ bits.

Table 3 shows a more significant reduction in memory
usage than in accuracy when reducing the bit width of
weights. The quantization with the biggest reductions in
accuracy correspond to the ones that use less memory space.
For example the quantization of ResNet backbone with 4
bits weights has the biggest drop in accuracy but at the same
time introduces the biggest reduction in the size of weights,
since it is accounted with 52 % of the total convolution
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Figure 5. RetinaNet usage workflow.

weights in RetinaNet-18. The weights size is reduced by
half when using 4 bits weights across the whole network
instead of 8 bits weights.

The chosen quantization for the following work was
RetinaNet_4_4_4. The 8.9 % drop in accuracy of this quan-
tization in comparison with the original RetinaNet without
quantization does not compromise the practical results, pro-
ducing as output similar bounded boxes and classifications.
The accuracy of 23.4 % of this quantization model exceeds
the accuracy of YOLO v2 floating-point implementation
that has a similar size backbone as shown in table 2. The
reduction in weight size enables less resource utilization and
the possibility to choose a low cost target device.

4.2. Baseline implementation of RetinaNet in C

At first, a version without quantization was imple-
mented. After making sure the implementation in C had the
same results of the python implementation, a version of the
C implementation of DNN using the ResNet_4_4_4 quanti-
zation was developed. The developed program retinanet.out
was made for inferences only, so the bias and weights must
be loaded from an already trained RetinaNet model.

Figure 5 shows the workflow used to make an in-
ference using the C program. The training script pro-
duces a file called model_final.pt that stores all the trained
model parameters including the weights and bias val-
ues. The model_final.pt is parsed by the python script
print_weights.py, whose propose is to produce three binary
files storing the weights and bias. The image to be sub-
jected to inference has to be decoded from the jpeg format
and normalized first, this is made using the python script
print_image.py.



Size of

Normalized Normalized size

Quantization model - mAP (%) weights (Mb)  accuracy (%) of weights (%)
RetinaNet_FP 25.7 685 100.0 100.0
RetinaNet_8_8_8 25.8 171 100.4 25.0
RetinaNet_8_4_8 25.7 156 100.0 22.8
RetinaNet_8_8_4 25.6 145 99.6 21.2
RetinaNet_8_4_4 249 130 96.9 19.0
RetinaNet_4_8_8 23.7 126 92.2 18.5
RetinaNet_4_4_8 234 111 91.1 16.3
RetinaNet_4_8_4 23.6 101 91.8 14.7
RetinaNet_4_4_4 234 86 91.1 12.5

TABLE 3. COMPARISON OF TRADE-OFFS BETWEEN DIFFERENT QUANTIZATION MODELS.

The binary files are then used as input of the C program.
The RetinaNet C program outputs a binary file (output.bin)
with the results from the regression and classification sub-
networks, that are the final part of RetinaNet, concatenated
with each other. In this way the binary files are used as
interface between the C program and the python scripts. The
view_image.py script interprets the output.bin to produce a
visual proof of the object detection by overlaying the bond-
ing boxes with labels stating the correspondent classification
over the original jpeg image.

Functions were created for convolution, batch normaliza-
tion, ReLU, maxpool, sigmoid, upsample and matrix sum
layers. A set of nested loops are used to implement the
convolution like the algorithm shown in figure 3.

The C implementation of RetinaNet was run on a PC
using an Intel 17-5700HQ CPU, in order to make a time
profiling of the DNN, surveying which part has the most
impact in the execution time of the DNN. The time profiling
results, in table 4, show that regression and classification
sub-networks account for 27.3% and 48.9% of the DNN
execution time respectively.

In RetinaNet-18 DNN 76.2 % of the execution time is
due to the regression and classification sub-networks, this
is the primary reason why this is the chosen part to be
implemented in hardware. In addition, the repetitive pattern
of this part of RetinaNet would also help to reduce the
flexibility that the hardware architecture has to accomplish.

The only part to be deployed to the embedded system is
the one to be accelerated in the hardware architecture, this
is the regression and convolution sub-networks, this is done
to ease up development by reducing the execution times it
takes to run on an embedded target. In this way the input of
the embedded implementation is the output from the FPN.

In total the embedded systems take about 40 minutes
to execute the regression and convolution sub-networks of
RetinaNet. A single convolution layer with 80x80x256
dimensions take about 186 s to execute. The results of
the embedded software implementation of RetinaNet are
used as baseline to compare with the hardware/software
implementation acquired in the end of this work.

5. Convolution accelerator hardware architec-
ture

To accelerate RetinaNet a convolution hardware accel-
erator is developed, since the convolution layers are respon-

Intel 17-5700HQ
Stage Execution time Partial execution time
s [ % %

ResNet SO 104 - 6.0
ResNet S1 44.1 - 25.4
ResNet S2 39.3 - 22.7
ResNet S3 404 - 233
ResNet S4 39.5 - 22.7
Total ResNet 173.7 16.6 100.0
FPN S5 1.4 - 1.9
FPN S6 0.2 - 0.2
FPN S4 35 - 4.7
FPN S3 13.6 - 18.1
FPN S2 56.4 - 75.1
Total FPN 75.1 7.2 100.0
Regression S2 219.9 - 77.2
Regression S3 50.0 - 17.5
Regression S4 11.6 - 4.1
Regression S5 2.8 - 1.0
Regression S6 0.7 - 0.2
Total Regression 285.0 27.3 100.0
Classification S2 386.3 - 75.6
Classification S3 97.0 - 19.0
Classification S4 21.6 - 4.2
Classification S5 5.1 - 1.0
Classification S6 1.3 - 0.3
Total Classification 511.3 48.9 100.0
Total 1045.0  100.0 -

TABLE 4. TIME PROFILING OF RETINANET DNN.

sible for most of the execution time of an object detection
inference. The hardware accelerator was developed using
Xilinx Vivado 2019.2 High Level Synthesis (HLS). This
hardware architecture was targeted to be implemented in
a FPGA Xilinx Artix-7, this is the programmable logic
available in the chosen device for this work, Xilinx Zyng-
7020.

The connection between the FPGA and the DDR ex-
ternal memory has a high latency compared to on-chip
FPGA memory. Each activation, weight and bias is accessed
more than once in a single convolution, in order to reduce
the number of times that each of these data need to be
individually transferred between the FPGA and the DDR
memory, and therefore internal FPGA memory resources
were used to cache each one of these types of data. In
this way the data is transferred from the external memory
in big contiguous chunks of data, making use of data
pipeline, reducing the impact of the latency of accessing the
external DDR memory. The designed architecture achieved
total reuse of data, which means that each weight, bias and
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Figure 6. General overview of the accelerator hardware architecture.

activation is transferred only once from the external memory.

Figure 6 presents an overall overview of the developed
hardware architecture. The main data input of the hardware
architecture is an AXI-Stream port, that is connected to
activation, weight and bias memories. These three memories
are used to feed the processing elements (PE) with the data
to be computed. The output of each PE is multiplex, which
makes it possible to use only one AXI-Stream output port
for all the PE’s.

The order in which the activations values are stored in
both external and FPGA memories, follow ZXY coordinate
order. This means that the values are stored first by their
channel number (z dimension) and only then through their
column number (x dimension) and row number (y dimen-
sion). In this way values with the same x and y coordinates
but with sucessive z coordinates are consecutive to each
other.

Memory resources inside the FPGA are limited, not all
the activations values of a given layer can fit simultaneously,
so it is better to store only the values that are going to be
used right away. Since the values have to be transferred
in parts, XYZ storage format avoids accessing the external
memory randomly, by sequencing the values more closely to
the order they are going to be used. This is true because to
compute a single output pixel, all span over the z dimension
is needed, however that does not apply with the x and y
dimensions.

Each processing element is scheduled to compute a
different output feature map in a given time, this means
that every PE is doing a different output activation in the z
dimension at the same time. However, all PEs are processing
pixels with the same x and y dimensions in a given time.
With this parallelization strategy the same activation values
may be broadcast to every PE as seen in figure 6, since
the same set of input activations are used for output pixels
with the same x and y coordinates. The broadcast of activa-
tions reduces the bandwidth requirements of the activation

Weight -2
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Figure 7. PE hardware architecture.

memory and the complexity of the architecture.

The weight and bias used by each PE in a given time are
different, creating the need for the weight and bias memories
to have as many output ports has the number of PE’s. The
developed architecture uses 16 PEs that is why there are 16
ports for the bias and weight memories.

An output feature map pixel is processed entirely in a
single PE, so that partial results don’t need to be transferred
between PEs. In addition, all the operations of a pixel are
made contiguous in time, so that no partial results need to
be stored outside the PEs temporarily. In this way a PE is
responsible for determining the value of a pixel, and only
changes to the next pixel when the final output value of that
pixel is determined.

5.1. Processing Elements

The processing elements (PE) are composed of 8 mul-
tiply and accumulate operators (MAC) that make the mul-
tiplications between activations and weights, as described
in more detail in subsection 5.1.1. Those 8 MACs are then
connected to a sum tree to obtain the final result for the
output pixel calculated by the PE, as described in more
detail in subsection 5.1.2. The PE output is quantized to
a bit width of 8, as described in more detail in subsection
5.1.3. All the components and connections that compose the
PE are shown in figure 7.

5.1.1. Multiply and accumulate operators. Each output
pixel of a convolution is a sum of multiplications of weights
with activations as shown in equation 1. In this way, multiply
and accumulate operator (MAC) is ideal for this application.

The processing element is composed by 8 multiply and
accumulate operators, working in a divide and conquer strat-
egy. Each MAC, inside a PE, is responsible for processing
different input activation values. At the same time, different
MAC are processing input activations with the same x and
y coordinates, but with different z coordinates.



The activation and weight memories are arranged in a
ZXY format and since every MAC is processing contiguous
values in the z dimension, it is possible to receive a chunk
of data from the activation memory containing 8 activations
and a chunk of data from the weight memory containing 8
weights. Figure 7 shows the input activation bus with a bit
width of 64 bits, because it contains 8 activations, these
8 activations are then separated for the different MACs.
Similarly, the input weight bus has a bit width of 32 bits,
because it contains 8 weights that are also separated for each
one of the MACs.

5.1.2. Sum tree. After all the multiplications between
weights and activations are concluded for a given output
pixel, all the MAC results are added in a sum tree, as shown
in 7. The sum tree result is then added with the bias used
in that output feature map, this adder result is then used as
input in a quantizer.

5.1.3. Quantizer and ReLU. The quantizer quantizes the
lossless result of all the operations made inside the PE
to an 8 bit width value. This is done so that the output
value occupies less memory and, in accordance with the
quantization strategy selected, so that it can be used as
input of the next convolution layer. The ReLU operation
is performed by zeroing the output value of the PE if the
input value is lower than zero.

5.2. Activation memory

The adopted strategy was to store in local memory only
enough activations so that each activation is only transferred
once from the external memory. It was decided to store
all the activations across the z axis together because to
determine a single output pixel all the activations across
that axis are needed.

The activation values were stored in the different types of
memory shown in figure 8. The input activations are stored
in shift-registers accordingly to their coordinates if they are
part of the calculations of the output pixel being determined
at that moment. In case the activation values are in local
memory waiting to be used later they are stored in FIFOs.
The way the FIFOs and shift-registers are connected with
each other, as shown in figure 8, is related to the way that
activations flow from being actively used in a calculation
of an output pixel and are out on hold to be used later. A
multiplexer is used to select which one of the shift registers
would output its value to be used in the PEs, as shown in
figure 8.

The shift registers were implemented using Flip-Flops
(FF), as for the FIFOs they were implemented using
BRAMSs. The activations were divided in different types of
memories because the implementation of FIFOs in BRAMs
does not allow for random access of the activations, which
is necessary to feed the PEs. On the other hand, using only
FF for all the activations would generate a high usage of
FF, that would make the system as an all not able to fit in
the Zynq-7020.
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Figure 8. Activation memory hardware architecture. Arrows in black show
the loading path of activations. Arrows in red show the reading path of
activations

5.3. Weight memory

All the weights from a single convolution layer fit in
the local memory of the FPGA, provided that the weight
memory is implemented using BRAMs. Since weights are
stored in 32 bits words and each convolution layer uses
3% 3 %256 %256 x4 = 2.359 Mb of space, a memory space
with a depth of 2359296/32 = 73728 positions is needed.
This makes the address space for the weight memory not
a power of two, which makes the HLS synthesis tool to
generate a memory with an unnecessary excessive number
of BRAMs (128 instead of 72).

To solve this issue the weight memory array in HLS
code is divided in 9 smaller memories with an address space
that is a power of two. Each one of those smaller memories
correspond to a different kernel position.

The weight memory is organized with 8 dual-port
BRAMSs, to provide 16 independent ports and therefore
allow simultaneous read accesses to each of the 16 PEs.
These 8 banks of memory are represented, in figure 9, where
each bank of memories is composed by the 9 memories
referred above.

6. RetinaNet hardware/software implementa-
tion

The hardware/software architecture run some layers in
the embedded ARM processor and others in the convolution
hardware accelerator described in section 5. All the convo-
lution layers in the implemented part of RetinaNet, apart
from the ones that were not quantized, are processed in
the convolution hardware accelerator, which accounts for
40 layers of the total of 50 layers. The sigmoid layers,
the input quantization layers and the data conversions and
arrangements functions are processed in the ARM processor.

The hardware architecture is composed by two parts: the
programmable logic (PL), this is all the components that are
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Figure 9. Weight memory hardware architecture. Arrows in different colors
correspond to different ports of the dual port memories.

implemented using the FPGA resources; and the processing
system (PS), this is the ARM processor and some related
peripherals.

The PS uses an AXI-Lite interface to connect to an
AXI interconnect IP, this IP splits the AXI-Lite interface
to the convolution hardware accelerator and the DMA IP,
enabling one single interface to communicate with to differ-
ent hardware components. The PS sends through the AXI-
Lite interface to the convolution accelerator, control data,
specifying several characteristics of the convolution layer
being executed in the accelerator. The PS also uses the
same AXI-Lite interface to control the DMA, controlling the
content that is being transferred to and from the convolution
accelerator at any given time.

The ARM processor controls the convolution accelera-
tor, by sending control data to the accelerator through the
AXI-Lite connection and also by issuing memory transac-
tions to the DMA.

6.1. Experimental results

Table 5 show the resource usage of the RetinaNet hard-
ware/software implementation. Most of the resources are

used by the convolution accelerator. All the DSPs used are
in this component, and 89 of the 92 BRAMs used are in the
accelerator.

The high LUT usage of the system makes it harder to
optimize the signal paths ending up with long paths between
registers. This issue make it difficult to achieve high clock
frequencies. A clock period of 10 ns was attempted, however
the big route delays made it unsuccessful.

The achieved clock period was 14 ns, having a worst
setup slack of 0.038 ns. The critical path is in the data path
of the convolution accelerator between a flip-flop and a DSP
register. The route delay accounts for 89 % of the total delay
of this path.

Table 6 show the time profiling of the hardware/software
implementation together with the software only implemen-
tation.

The layers with an input activation matrix of
80x80x256 dimension take about 0.519 s to execute. Com-
paring the execution of a single layer between both software
only and hardware/software implementation a speedup of
359 is achieved. The total speedup achieved by the HW/SW
implementation is 4.6, since one of the layers in each
stage in not executed in the convolution accelerator. In the
HW/SW implementation the time taken by the convolution
that is processed in software accounts for 87 % of time taken
by the regression stage where it belongs. This number is
even higher for convolution stages, the software processed
convolution accounts for 98 % of the total time of the stage.
There is a great potential to achieve higher speedups by
accelerating more layers.

7. Conclusion

The chosen object detection DNN to be accelerated in
this work was RetinaNet-18. This network is composed by
a total of 174 layers of which 78 are convolution layers.
This DNN is known for high-end accuracy results, however
due to this network extensive size it has above average
inference latencies. The objective of this work was reducing
the inference latencies without damaging a lot the accuracy
of the network in an embedded environment.

A study with different quantizations was made to de-
termine the right trade-off between accuracy and memory
usage. The chosen quantization of 4 bits weights and 8 bits
activations and bias not only achieved better results than
competitive DNNs with similar sizes, but also occupies 8
times less memory for the storage of the weights.

A convolution hardware accelerator was created, with
16 PEs, each one capable of doing 8 MAC operations
in parallel, which make it possible to achieve 128 MAC
operations per clock cycle.

The convolution hardware accelerator was integrated
in a co-designed hardware software implementation. This
system achieved a speedup of 4.6 compared to the baseline
implementation. This results also showed that there is a
speedup of 359 comparing a hardware processed layer with
a software processed layer.



Component . LUT ] FF ‘ BRAM ] DSP
Units Used Units Used Units Used Units Used
used percentage used percentage | used | percentage | used | percentage
Convolution Accelerator 44,940 84.5 % 42,695 40.1 % 89 40.1 % 128 63.6 %
DMA 1,565 29 % 2,231 2.1 % 3 2.1 % 0 0.0 %
axi_mem_intercon 541 1.0 % 648 0.6 % 0 0.0 % 0 0.0 %
ps7_0_axi_periph 503 0.9 % 657 0.6 % 0 0.0 % 0 0.0 %
Processor System Reset 16 0.0 % 33 0.0 % 0 0.0 % 0 0.0 %
Total 47,565 894 % 46,264 43.4 % 92 42.2 % 128 63.6 %
TABLE 5. RESOURCE USAGE OF RETINANET HARDWARE/SOFTWARE IMPLEMENTATION.
Xilinx Zyng-7020 SW only (ARM Cortex A9) | Xilinx Zyng-7020 HW/SW (ARM Cortex A9)
Stage Execution time | Partial execution time Execution time Partial execution time Speedup
s [ % % s | % %
Regression S2 764 - 31.7 21.2 - 76.3 36.0
Regression S3 157 - 6.5 5.1 - 18.4 30.7
Regression S4 39 - 1.6 1.1 - 4.1 34.6
Regression S5 9 - 0.4 0.3 - 1.0 329
Regression S6 2 - 0.1 0.1 - 0.2 35.8
Total Regression 971 40.3 100.0 27.8 5.3 100.0 35.0
Classification S2 1,118 - 464  376.1 - 76.3 3.0
Classification S3 243 - 10.1 90.9 - 18.4 2.7
Classification S4 58 - 24 20.2 - 4.1 29
Classification S5 14 - 0.6 5.0 - 1.0 2.8
Classification S6 3 - 0.1 1.0 - 0.2 3.0
Total Classification 1,436 59.7 100.0  493.2 94.7 100.0 2.9
Total 2,407  100.0 - 521.0  100.0 - 4.6

TABLE 6. TIME PROFILING OF RETINANET HARDWARE/SOFTWARE IMPLEMENTATION AND COMPARISON WITH SOFTWARE ONLY IMPLEMENTATION.

7.1. Future Work

Two different strategies can be adopted to improve the
work. The first one is adapting the system to enable more
convolution layers to be processed by the convolution layer
accelerator. The other strategy is optimizing the hardware
architecture to use less resources, reducing route delays and
enabling higher clock frequencies.
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