TECNICO
LISBOA

SoC-FPGA Deep Neural Network for Object Detection

Pedro Duarte Cotrim Oliveira Direita

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. Horacio Claudio De Campos Neto

Examination Committee

Chairperson: Prof. Teresa Maria Sa Ferreira Vazao Vasques
Supervisor: Prof. Horacio Claudio De Campos Neto
Member of the Committee: Prof. Paulo Ferreira Godinho Flores

September 2021

Declaration

| declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

| would like to thank Prof. Horacio Neto for his around the clock availability to support the development
of this work with his knowledgeful insights, and for his patience and encouragement.

| would also like to thank my family for their support in life, for giving everything that | need, for
believing in my capabilities and helping me achieve even my most ambitious goals.

Finally, I would like to thank my friends for sharing this journey with me, and the encouragement that

they gave me.

vi

Resumo

O objetivo deste trabalho é desenvolver um sistema embebido de detecado de objetos usando redes
neuronais profundas (DNNs), numa plataforma SoC-FPGA. O sistema desenvolvido deve ser o mais
eficiente possivel, alcancando um bom equilibrio entre a exatidao na detecao de objetos e os tempos
de inferéncia.

As redes neuronais profundas desencadearam novos desenvolvimentos na detegdo de objetos,
alcancando melhores exatiddes do que nunca, mas com altos custos computacionais. No entanto,
os sistemas de detecao de objetos sao amplamente aplicados em sistemas embebidos, onde os recur-
sos disponiveis sao limitados. Lidar com DNNs em sistemas embebidos é um desafio e avangos nesta
area sao necessarios.

Foi projetado um sistema hardware/software para implementar a RetinaNet, uma DNN de detecao
de objetos topo de gama, num dispositivo Xilinx Zyng-7020. Para alcangar tempos de inferéncia mais
baixos, foi desenvolvido e integrado no sistema um processador especifico para executar as camadas
convolucionais da rede.

A RetinaNet foi treinada usando quantization aware training, uma técnica que gerou pesos de 4 bits e
ativagoes de 8 bits com uma queda de exatidao de apenas 9 % comparando com a utilizagao de virgula
flutuante de 32 bits. Esta quantizagao reduz em cerca de 78 % a meméria usada por cada camada
convolucional. O acelerador de convolucoes em hardware desenvolvido processa a convolugao 359
vezes mais rapido que um processador ARM embebido. Quando o acelerador € integrado no sistema
hardware/software final, a parte implementada da RetinaNet é processada cinco vezes mais rapido que

a implementagao da DNN usando apenas software.

Palavras-chave: Detecao de Objectos, Redes Neuronais Convolucionais, Quantizagao, Co-

Projecto Hardware/Software, Acelerador em Hardware, High-Level Synthesis.

vii

viii

Abstract

The objective of this work is to develop an object detection deep neural network (DNN) targeting SoC-
FPGA based embedded systems. The developed system should be as efficient as possible achieving a
good balance between object detection accuracy and inference time.

Deep neural networks unleash new developments in object detection, achieving greater accuracies
than ever, but with high computational costs. Although object detection systems may be largely applied
in embedded systems, dealing with the computer intensive DNNs in systems with limited resources is
challenging and advancements in this area are highly required.

A hardware/software system was designed to implement RetinaNet, a top of the range object de-
tection DNN, in a Xilinx Zyng-7020 device, a low-cost Soc-FPGA. To accelerate the DNN inference, a
dedicated convolution hardware component was developed and integrated in the system.

RetinaNet was trained using quantization aware training, a technique that allowed to generate 4 bit-
width weights and 8 bit-width activations with an accuracy decrease of only 9 % in comparison with Reti-
naNet using floating-point 32 bits. This quantization reduced in about 78 % the memory used by each
convolution layer. The developed convolution hardware accelerator computes a convolution 359 times
faster than the embedded ARM processor. When the accelerator is integrated into the final hardware/-
software system, the implemented part of RetinaNet is processed five times faster than the software

only implementation of the DNN.

Keywords: Object Detection, Convolution Neural Networks, Quantization, Hardware/Software

Co-Design, Hardware Accelerator, High-Level Synthesis.

Contents

Acknowledgments L e e v
Resumo Vi
Abstract iX
Listof Tables XV
Listof Figures e Xvii
Listof ACronyms e XiX
1 Introduction 1
1.1 Motivation L 1
1.2 Outline. o 2
2 Deep Neural Networks 3
2.1 Artificial Neuron 3
2.2 Neural Network e 4
2.2.1 Fully-connected Layer 5

2.3 Convolutional Neural Network 5
2.3.1 Convolution Layer 6
2.3.2 PoolingLayer 7
2.3.3 Upsampling Layer e 8

2.4 Datasets for DNN trainingandtesting 8
2.5 Image classification DNNModels 8
251 LeNet . . . o 9
252 AlexNet e 9
253 VGG e 9
254 ResNet 10
2.5.5 Performance comparison 11

2.6 ObjectdetectionDNN Models e 12
26.1 R-CNNFamily e 12
2.6.2 YOLO-YouOnlyLookOnce 13
2.6.3 RetinaNet 13
2.6.4 Performance comparison 15

Xi

2.7

Conclusion e e e

DNN implementations on FPGAs

3.1
3.2
3.3

Parallelism Opportunitiesin DNNs
DNN accelerator e

Data Quantization e e

3.3.1 Performance estimationmodels

3.3.2 Existing work experimental evaluation

RetinaNet embedded software implementation

4.1

4.2

4.3

4.4

Quantization aware training framework Lo

411 Brevitas e e

4.1.2 Quantizationresults

Baseline implementation of RetinaNetinC

4.2.1 Convolution layer implementation
4.2.2 Overallimplementation of RetinaNet

4.2.3 Time profiling results for baseline RetinaNet

Embedded implementation of RetinaNetinC
4.3.1 Time profiling results for embedded software RetinaNet

Conclusions e e

Convolution accelerator hardware architecture

5.1

5.2

5.3
5.4
5.5
5.6
5.7

Architecture Overview e
5.1.1 Datastorageformat
5.1.2 Operations Scheduling.
Processing Elements
5.2.1 Multiply and accumulate operators Lo
5.22 Sumitree
5.2.3 QuantizerandReLU
Activation memory
Weight memory
Convolution IP e
Convolution acceleratorresults L

Conclusion e e e e e

RetinaNet hardware/software implementation

6.1

6.2
6.3

Hardware/software system L
6.1.1 Hardware architecture
6.1.2 Embedded software
Experimental results

Conclusion e e e

Xii

17
17
18
19
20
21

23
23
24
25
28
29
32
33
36
38
38

39
39
41
42
43
43
46
47
48
51
51
54
56

7 Conclusion

71 FutureWork.

7.1.1 Expand convolution layer accelerationtomorelayers

7.1.2 Optimize hardware accelerator
Bibliography
A RetinaNet specifications

B RetinaNet detailed time profiling

Xiii

65
66
66
67

69

A1

B.5

Xiv

List of Tables

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2

A
A2
A3
A4

B.1
B.2

Comparison of popular DNN’s with the Top-5 error rate obtained with ImageNet dataset. .
Comparison of popular Object Detection models with mAP obtained using the COCO

dataset. e e

Expected cost per operation for each precisiontype.
Classification accuracy for different implementations of AlexNet using different quantiza-

tion strategies.

Comparison of trade-offs between different quantization models.
Time profiling of RetinaNet DNN.
Memory map of the DDR embedded systemmemory.

Time profiling of RetinaNet software implementation on embedded device.

Time profiling across the different loops of convolution accelerator.

Resource usage of convolution accelerator.,

Resource usage of RetinaNet hardware/software implementation.
Time profiling of RetinaNet hardware/software implementation and comparison with soft-

ware only implementation. L

RetinaNet layer by layer specificationpart1..,
RetinaNet layer by layer specificationpart2..
RetinaNet layer by layer specificationpart3..

RetinaNet layer by layer specificationpart4.

RetinaNet detailed time profilingpart1.
RetinaNet detailed time profilingpart2.

XV

20

54
56

XVi

List of Figures

2.1 Artificial Neuron representation 4
2.2 Transfer function of activation functions 4
2.3 Neural Network with two hidden layers 5
2.4 Local receptive field of an hiddenneuron. L. 6
2.5 Receptive fields of the neurons of a convolutionlayer 6

2.6 Convolution layer with three filters that inputs an image of 28x28 input neurons and out-

puts three feature maps of 24x24 neurons oo 7
2.7 Pooling layer in action, condensing 4 featurestoonly 1. 7
2.8 Representation of LeNet-5 architecture. oL, 9
2.9 Representation of AlexNet architecture. 10
2.10 Representation of VGG architecture. 10
2.11 Training and testing error in a 20 layer and 56 layer CNN. Showing higher errors in the

deeper network due to the vanishing gradient problem., 11
2.12 Representation of ResNet-18 architecture. 11
2.13 R-CNN algorithm architecture, consisting of several modules serially connected 13
2.14 YOLO algorithm architecture, consisting of one single DNN. 13
2.15 RetinaNet algorithm architecture, consisting of a feature pyramid network and fully con-

nected sub-networks for classifying and produce bounding box localization 14
2.16 Convolution weights distribution by different parts of RetinaNet. 15
3.1 Algorithm for computing convolutional layers, composed by nested loops. 18
3.2 Overview of an accelerator general architecture. 19
3.3 Trade-offs for different quantization techniques using DarkNet as DNN model. 21
4.1 Representation of a DNN architecture prepared for quantization aware training. 24

4.2 Algorithm that introduces the quantization error in training, making it a quantization aware

training. e 24
4.3 Convolution and ReLU layer declaration in PyTorch. 25
4.4 Convolution and ReLU layer declaration using Brevitas library. 26
4.5 Accuracy of different quantization models along increasingly trained networks. 27
4.6 RetinaNetusage workflow. 28

4.7 Quantized convolution layer function definitionin C. 30

4.8 Quantized convolution layer implementationinC. 31
4.9 4 bits reading function implementationinC. 31
4.10 Static allocation of memory for the C implementation of RetinaNet. 32

4.11 Function defining the memory arrangement of weights, bias and activations in the memory

AITAYS. . . o e e e e e e e e e e 33
4.12 Main function of quantized RetinaNet implementationinC.. 35
4.13 Function defining the memory mapping in the embedded system implementation. 37
5.1 General overview of the accelerator hardware architecture. 40
5.2 HLS code that implements the interface of the hardware architecture. 41
5.3 Timelineof PE’s operations. 42
5.4 PE hardware architecture. 43
5.5 Timeline of MAC’s operations. i e 44
5.6 HLS code that implements the MACsinthe PEs. 45
5.7 HLS code that implements the sumtreeinthe PEs. 46
5.8 HLS code that implements the PE's quantizer.. 47
5.9 Matrices representing in 2D the 3D input activations, showing with colors the composition

of the activation memory when different output pixels are being calculated 49
5.10 Activation memory hardware architecture. L. 50
5.11 HLS code that declares the activationmemory. 50
5.12 HLS code that declares a load of a new set of values to the activation memory. 50
5.13 Weight memory hardware architecture.., 52
5.14 HLS code that declares the weight memory. 52
5.15 General structure of the HLS code of convolution accelerator. 53
6.1 Hardware architecture of the RetinaNet hw/sw implementation. 59
6.2 Simplified hardware architecture of the RetinaNet hw/sw implementation. 59
6.3 Functions that issues the execution of the convolution hardware accelerator. 61

6.4 Functions that implements a convolution stage using the convolution hardware accelerator. 62
6.5 Critical path of RetinaNet hardware/software implementation shown in the floor plan of

the targeted device. L 63

XViii

List of Acronyms

ARM Advanced RISC Machine

ATM Automated Teller Machine

AXl Advanced eXtendible Interface
BRAM Block Random Access Memory
CNN Convolution Neural Network
COCO Common Objects in Context
CPU Central Processing Unit

DDR Double Data Rate

DMA Direct Memory Access

DNN Deep Neural Network

DSP Digital Signal Processor

FF Flip-Flops

FIFO First In First Out

FP False Positive

FPGA Field-Programmable Gate Array
FPN Feature Pyramid Network
GPU Graphics Processing Unit
HLS High-Level Synthesis

HW Hardware

loU Intersection over Union

IP Intelectual Property

JPEG Joint Photographic Experts Group

XiX

LRN Local Response Normalization

LSVRC Large Scale Visual Recognition Challenge
LUT Look-Up Table

MAC Multiply And Accumulate

mAP Mean Average Precision

PC Personal Computer

PE Processing Element

PL Programmable Logic

PS Processing System

RAM Random Access Memory

R-CNN Region-based Convolutional Neural Network
ReLU Rectified Linear Unit

ResNet Residual Network

RGB Red Green Blue

SoC System-on-a-Chip

SW Software

SVM Support Vector Machines

TP True Positive

VGG Visual Geometry Group

VOC Visual Object Classes

YOLO You Only Look Once

XX

Chapter 1

Introduction

The goal of this work is to develop an object detection deep neural network embedded system using a
SoC-FPGA platform. The developed system should be as efficient as possible having a good balance
between object detection accuracy and inference time.

A review of the existing object detection DNN is made, and their performances analyzed. The se-
lected object detection DNN is RetinaNet due to its high accuracy and high inference times that show
potential for hardware acceleration. RetinaNet is trained using quantization aware training, to reduce the
model size with a minimal loss of accuracy. The results of the quantized models with different weights
and activations bit-widths are analyzed, and a quantization with 4 bit-width weights and 8 bit-width is
selected.

In this work implementations of RetinaNet in C are made form scratch. From the time profiling
results of those implementations, the parts of RetinaNet that most need to be hardware accelerated are
identified. To achieve this acceleration a dedicated hardware component is designed, and integrated in
a hardware/software system. The hardware/software co-designed system results are compared with a
software-only implementation. The final results are very promising, introducing a proof of concept for
the expansion of the convolution layer acceleration to more layers.

Section 1.1 describes why the goal of this work is important, and section 1.2 presents the content in

each chapter of this document.

1.1 Motivation

The evolution in deep neural networks (DNN) and it's application in image processing, unleash new de-
velopments in computer vision, namely in the object detection field, where greater accuracy is achieved
[1]. There is a broad range of applications where object detection is applied and can be applied in the
future, such as autonomous driving [2], video surveillance [3][4], Smart Cities [5], industrial robots and
quality control [6], medical image [7] and people counting [8]. The combination of deep neural networks
with object detection will further enhance those applications and open new application possibilities. This

technological developments ultimately will improve society and human life.

In spite of the advantages brought by deep neural networks, they are very computer intensive [1]
and applying them in embedded systems environments is still a challenge. In embedded systems both
power and cost are important factors for a feasible solution, which forces the use of devices with limited
computer resources. To run a deep neural network in a system with limited resources and strict real-
time restrictions a customized hardware architecture is of highly importance. The customized hardware
architecture implemented in a Field-programmable gate array (FPGA) can act as an accelerator of the

deep neural network layers, and therefore achieve the inference time needed for the applications.

1.2 Outline

This document is divided in the following chapters:

» Chapter 2 introduces deep neural networks concepts, and the working principles of the main layers
that compose them. Existing image classification DNNs and object detection DNNs are reviewed
and compared, and an object detection DNN is chosen to be implemented in the developed sys-

tem, as described in chapter 4.

» Chapter 3 explores how DNNs can be implemented on FPGAs, describes the parallelism oppor-
tunities in DNNs and reviews previous works implementing DNNs on FPGAs. Data quantization

techniques are introduced, and existing studies made on the quantization of DNNs are reviewed.

Chapter 4 describes the quantization training framework of the selected object detection DNN,
RetinaNet, and presents the performance results of different quantizations. A quantization is cho-
sen to be used in the implementations of RetinaNet developed in this work. An implementation
of RetinaNet in C is described, showing the workflow used for its development and the obtained
results. The most compute-intensive part of the RetinaNet DNN is identified to be accelerated
on hardware, based in the analysis of these results. The performance of this embedded soft-
ware implementation of RetinaNet is fully analyzed, and its results are used as a baseline for the

subsequent analysis of the hw/sw system.

Chapter 5 describes the architecture of the convolution accelerator hardware component that pro-
cesses the convolution layers of RetinaNet DNN. A top-down approach is used, and every sub-
component is described in detail. The performance and implementation results of the accelerator

are fully analyzed.

Chapter 6 describes the integration of the convolution hardware accelerator in the embedded sys-
tem. The complete hardware/software architecture is detailed, and the achieved results are ana-

lyzed and compared with the baseline software-only embedded implementation.

» Chapter 7 presents the work conclusions and suggestions for future work.

Chapter 2

Deep Neural Networks

Traditionally computational problems are solved by defining explicitly an algorithm that can produce the
intended output for a certain input. Neural networks open a new approach to the way computational
problems are solved. Inspired by biology and the way human brain works, in neural networks we don’t
explicitly define the algorithm, instead we feed the neural network with sets of inputs and their cor-
responding outputs, and it learns the algorithm by itself, this process is called training. A well trained
neural network can then produce an adequate output for any given input that do not belong to the training
set.

This chapter introduces neural networks, starting by defining the basic unit, the artificial neuron in
section 2.1, and then showing how this basic unit is used as a component to produce a neural network in
section 2.2. Section 2.3, introduces the type of neural networks that will be used in this work. In the end
of the chapter is reviewed the popular deep neural network models used for image classification (2.5)
and object detection (2.6). In-spite of this thesis being focused on object detection, it is important to
review the image classification DNN models, since they are sometimes used as the backbone of some

Object detection models.

2.1 Artificial Neuron

Artificial neurons are the basic unit of neural networks. A neuron describes a mathematical function with
several inputs but only one output. The most basic type of artificial neuron is the perceptron (figure 2.1),
that takes as inputs j binary outputs and produces as output a single binary output [9]. Each of the
binary inputs is multiplied by a different weight that quantifies the importance of the input for the final
outcome. The sum of all the weighted inputs with an additional parameter called bias passes through
the activation function to generate the output value, known as activation value. The simplest activation
function is the step function depicted in figure 2.2 (a). The step function outputs one when its input is
above zero, and zero otherwise. In this way perceptrons can model decision making systems and even
compute simple logical functions, such as logic gates.

To effectively train a neural network, a small change in any weight or bias should also cause a

Xy~ Wy s
. —> ¢ I activation
. Wj P
//
XJ 7
b

Figure 2.1: Artificial Neuron representation

small corresponding change in the output, however perceptrons are not good at these, because a small
change in any weight or bias can completely flip the output of the neuron. To solve this issue other
artificial neuron types take as input any value between 0 and 1 and use non binary activation function,
instead of having binary inputs and outputs.

For instance one of the possible activation function is the sigmoid function defined in equation 2.1.
The sigmoid function smooths out the output of the artificial neuron, making it possible to always have
a small change in the output as a result of a small change in a bias or weight. Comparing the transfer
function of both the sigmoid function and the step function depicted in figure 2.2, it can be seen how
much smoother is the sigmoid function. The activation value of the sigmoid neuron, this is a artificial

neuron that uses as activation function the sigmoid function is mathematically defined in equation 2.2.

o(z) = . (2.1)

1

e Ti—b) = ——
activation U(ijxj) 14 e 25 wiwi—b

J

(2.2)

Another example of an activation function is the rectified linear unit (ReLU) showed in figure 2.2 (c).

(a) Step function (b) Sigmoid function (c) ReLu function

Figure 2.2: Transfer function of activation functions, adapted from [9]

2.2 Neural Network

Artificial neurons can already make some basic logic functions, however to produce complex logic sys-

tems that can solve big computational problems we need to join several artificial neurons together, to

form a neural network. A neural network, as the one depicted in figure 2.3, consists in layers of artificial
neurons whose outputs are connected to the inputs of the artificial neurons of the next layer. The left-
most layer of the network is called the input layer, the inputs of the neurons of this layer are used as the
inputs of the system. The rightmost layer is called the output layer, and the outputs of the neurons in
this layer are used as the outputs of the system. In the middle, the hidden layers have their outputs and

inputs connected to adjacent layers.

hidden layers

output layer

input layer

Figure 2.3: Neural network with two hidden layers [9]

2.2.1 Fully-connected Layer

The most basic type of neural network layer is a fully connected. In a fully-connected layer, all inputs are
connected to every output. This means that all the neurons that compose this layer have a connection

to all the inputs of this layer, as shown by the neural network model in figure 2.3.

2.3 Convolutional Neural Network

A convolutional neural network (CNN) is the most used type of neural network for image processing,
since it takes into account the spatial structure of the image and allows deeper neural networks for the
same amount of memory and computational resources than neural networks composed only by fully-
connected layers.

In a CNN each hidden neuron is only connected to some of the outputs of the previous layer, instead
of being connected to all of them, which in turn reduces the number of operations that have to be dealt
in a single neuron. For instance when we are dealing with images, an artificial neuron of the first hidden
layer, is only connected to some localized region of the input image, as we can see in figure 2.4, this
is what takes into account the spatial structure of the image. The spatial extent of this connectivity is
a parameter called the receptive field of the neuron. In this way from now on the array of inputs and
outputs of a given layer can be seen as a matrix in order to represent that spatial structure, this matrix
are called input feature map and output feature map respectively.

input neurons

o000 hidden neuron
T T

Figure 2.4: Local receptive field of an hidden neuron [9].

Furthermore, CNN also share the weights and bias between different neurons of the same layer,
which also reduces the memory consumption of the CNN.

The following subsections 2.3.1, 2.3.2, 2.3.3 detail the main functional layers of a CNN.

2.3.1 Convolution Layer

The convolution layer is the main layer of a CNN. This layer is composed by several filters, each filter
represents a set of neurons that share the same weights and bias. If we choose to study a specific filter
we see a matrix of neurons where each one of those neurons use a different local receptive field that is
similar to the neighbor neuron receptive field but shifted, this can be seen in figure 2.5. In this way, each
neuron of a filter uses the same weights and bias, in spite of having different inputs of equal size, this
contributes to reduce both the memory usage and the number of operations without losing the spatial

structure of the image.

input neurons input neurons

88883:“—-“_*___ first hidden layer 88% first hidden layer
0008 o 0000 =R 0
o e I I e T alats g

(a) Receptive field of the first neuron (b) Receptive field of the second neuron

Figure 2.5: Receptive fields of the neurons of a convolution layer [9]

The step of the shift of the receptive field when changing between neighbor neurons, it is called stride,
and can assume different values depending on the architecture of the CNN. The outputs of the neurons
of afilter is called the feature map, that is usually smaller than the input image because the displacement
of the receptive field through the input image will be limited to its borders, and so the number of times

you can shift the receptive field that translates directly to the number of neurons. However a convolution

layer has a set of filters, that produce a set of feature maps, that can make the total number of outputs
produced higher than the inputs, as for example can be seen in figure 2.6.

Each filter uses different weights and bias for their neurons. Should also be taken into account
that the input of a convolution layer, can also be an output of a previous convolution layer with several
filter, and as a result outputs several feature maps (these can be also called channels). In this situation
the receptive field will be tri-dimensional, where the dimension in the channel axis will be equal to the
number of channels, traversing all the channels. Following the receptive field dimension, the weighs will

have to be tri-dimensional too.

28 x 28 input neurons first hidden layer: 3 x 24 x 24 neurons

Figure 2.6: Convolution layer with three filters that inputs an image of 28x28 input neurons and outputs
three feature maps of 24x24 neurons [9]

Considering a convolution layer whose receptive fields are of size KxK, and with an input (g) with N
channels where w is the tensor of weights and b the tensor of bias, the output of the neuron (f) in the

position i row, j column of the filter | is modeled by equation 2.3.

K K N
FG50 =b0)+> 3 gla+iy+j 2wl zy,z2) (2.3)

r=1y=12=1

2.3.2 Pooling Layer

The pooling layer is used usually after the convolution layer to reduce the amount of information stored
in the output feature map and consequently reducing the computational load of the next layers. Pooling
downsamples the results of a layer by aggregating neighboring results in a single result, as seen in figure
2.7.

hidden neurons (output from feature map)

max=-pooling units

oo
oo

0

Figure 2.7: Pooling layer in action, condensing 4 features to only 1 [9]

In practice one of the ways that this compression can be achieved might be by choosing the biggest

of those regional values to represent that region, this is called max-pooling.

2.3.3 Upsampling Layer

An upsampling layer do the opposite operation of the pooling layer, getting a bigger output feature map

than the input feature map. There are different implementations of upsampling layers:

» Nearest neighbors — mirrors the value of an input pixel into several output pixels neighboring each

other;

+ Bi-Linear Interpolation — determine the value of an output pixel by interpolating the value of neigh-

boring input pixels.

This layer is usually used in CNNs with multiple data paths that are joined together. For example
when summing two feature maps of different dimensions, the smaller feature map is upsampled to have

the same dimension of the other.

2.4 Datasets for DNN training and testing

To test new DNN models and their performance, it was introduced competitions such as the Pascal VOC
challenge (yearly between 2005 and 2012) [10] and the ImageNet Large Scale Visual Recognition Chal-
lenge (LSVRC) (yearly between 2010 and 2017) [11]. Challenges are composed of two components: a
public dataset with training and validation data; and an annual competition with a workshop. The first
part is used to train the developed DNN with the training dataset and test its performance against the
validation dataset, helping out in the development of the algorithms. The second part provides a way to
track the progress and discuss the lessons learned from that year entries.

This contests are divided in several categories and they both present categories destined to image
classification and object detection. In each one of the next two sections there is a subsection (2.5.5
and 2.6.4) intended to compare the performance of the introduced models. This comparisons are made
possible using as equal base point the challenges datasets.

More recently a new more demanding dataset was presented, this is the Common Objects in Context
(COCO) dataset [12].

2.5 Image classification DNN Models

Image classification is a process where is identified the object depicted in the image, in accordance to
a set of possible classes [13]. The implementation of image classifiers with DNN is done using as the
input layer the matrix of pixels that compose the image, and as output a set of values that show the

confidence of that image belonging to each one of the classes.

2.5.1 LeNet

The first convolutional neural networks for image classification was the LeNet model, that was introduced
in 1989 [13]. This was a very shallow network, the latter version of this neural network, LeNet-5 was
composed of a total of 6 layers (2 convolutional, 2 average pooling and 2 fully-connected) [11]. LeNet
uses as activation the sigmoid function. This network was designed to classify grayscale images of
handwritten digits with a resolution of 32 by 32. This was the first CNN that led to a commercial success,
since it was deployed in the ATM machines for recognizing digits in check deposits. Figure 2.8 shows
the architecture and some specifications of this neural network.
C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT
39432 6@28x28

S2: f. maps C5: layer . QUTPUT
6@14x14 120 F% fayer 10

Full coanection ‘ Gaussian connections
Subsampling Convolutions ~ Subsampling Full connection

Convolutions

Figure 2.8: Representation of LeNet-5 architecture [11].

2.5.2 AlexNet

AlexNet was the winner of 2012 image classification contest of the ImageNet LSVRC. It has a total of 11
layers (5 convolutional, 3 Max pooling and 3 fully-connected) [14]. It receives as input a 227x227 image
with 3 channels one for each RGB color. AlexNet uses a RelLU as activation function decreasing the
complexity of the activation function, compared to the sigmoid or tanh function. This DNN also introduces
the use of Local Response Normalization (LRN), performed after the ReLU in the first two convolutional
layers. A LRN normalizes the output of a neuron in accordance to the neighbor neurons activation value.
This makes sure to attenuate local uniformly large activations and enhance the differences between
neighbor neurons, increasing the sensitivity to high frequency features. This network architecture is
depicted in figure 2.9 along with the specifications of each layer.

Several techniques were used in this network training to increase it's accuracy, such as feeding
the network with crops of 256x256 images and duplicating the number of images by mirroring them
horizontally, increasing the training set by reusing the same image but with different crops and mirroring
settings. To avoid overfitting a technique called dropout was used. This is dropping out arbitrarily neurons

from the network temporarily, so that every input image goes throught a different architecture.

253 VGG

The VGG DNN participated in the ImageNet LSVRC contest of 2014, winning in some of the categories.

This network is composed by 24 layers (16 convolutional, 5 Max Polling and 3 Fully-connected). This

Input data Convl Canv2 Conv3 Conv4 Conv5 FC6 FC7 FC8

13x 13 x 384 13x 13 x 384

13x 13 X 256

27x 27 % 256

55x 55 X 96

L L | || 1000
227x 227 % 3 4096 4096

Figure 2.9: Representation of AlexNet architecture [15].

network architecture is very uniform. In figure 2.10 it is shown this network model.

=

conv 1_1
conv 1_2
pool 1
conv 2 1
conv 2 2
pool 2
conv 3 2
conv 3_3
pool 3
conv4 2
conv4 3
pool 4

probabilities »

conv 3_1
conv4 1
conv 5 1
conv 5 2
conv5 3

pool 5

fc 6
fc7
fc 8

Figure 2.10: Representation of VGG architecture.

2.5.4 ResNet

ResNet introduces even more layers than the previous networks, reaching a total of 152 layers in its
bigger version [16]. This deep neural network was the winner of the 2015 ImageNet challenge in the

classification task, exceeding for the first time human-level accuracy.

The deeper the network, the harder it is to train it. Deeper networks suffer from vanishing gradient
during training, degrading the accuracy of the network as seen in figure 2.11 [13]. To understand the
vanishing gradient problem, we have to take into account that activation functions usually squishes a
large input space into a tiny output, having a small derivative. The vanishing gradient problems is caused

by the impact of the successive accumulation of several activation functions through back propagation,
making it difficult to adjust the weights of the first layers.

ResNet accomplishes a effective very deep neural network making use of shortcut connections.
The shortcut connections are used to skip some layers, adding up the input of a set of layers directly
with those layers output. The ResNet is organized in blocks of layers that are bypassed by shortcuts
as showed in figure 2.12. The shortcut connections diminish the impact of small derivative activation
functions through the backpropagation, effectively solving the vanishing gradient problem.

10

20-layer

S6-layer

training error (%)
test error (%)

20-layer

5 6 0 1 2 5 6

’ itelt3 (le4)4 iter.}(lezl)4
Figure 2.11: Training and testing error in a 20 layer and 56 layer CNN. Showing higher errors in the
deeper network due to the vanishing gradient problem [16].

| e e Y aay e s o e e (e s (e = S I
l
1
ol (] Q I e]
= % 0 0 = © o °) | = — —
3| |2 S [3] [3] ||| 12118 [8] [lel [&] (|&] |&] [(=] ([= [=] [T
- I~ » . » = 12 1] NS T R @ o) = gl 12 Jo| | &
2 —» S L Sty S § = s & = e - s A e WETEY T E " &5 T B
& 5] 5} <) 5] 5] 5 = o g g > 5 15} S E
= 51 51 S S S = S S S = & S 51 = 51 1) Z =)
= o= <
ol 12| (2 |2 |2 18] (2] |2 (2 18] (2] (2| |2 (8] |2 (2 |2 2
& & & @ @ on = % & o & o & o o @ “
7) 7 &
o o

Figure 2.12: Representation of ResNet-18 architecture [17].

2.5.5 Performance comparison

In the category of image classification of image processing challenges usually it is used the Top-5 or
Top-1 error metric. The Top-5 is the fraction of test images whose label was among the 5 most probable
labels for that predication. Top-1 evaluates if the predicted class was in fact the truth class of the input

image, being a similar but more demanding accuracy metric than Top-5.

Characteristics LeNet5 AlexNet VGG 16 ResNet18 ResNet50
Input Size 28x28 227x227 224x224 224x224 224x224
No. of Convolutional layers 2 5 13 20 53

No. of Fully-Connected layers 2 3 3 1 1

No. of Channels of Conv. layers 1, 20 3-256 3-512 3-512 3-2048
No. of Filters of a Conv. layers 20, 50 96-384 64-512 64-512 64-2048
Weights 60k 61M 138M 11.1M 25.5M
MACs 341k 724M 15.5G 1.8G 3.9G
Top-5 error - 19.8 8.8 10.9 7.0

Table 2.1: Comparison of popular DNN'’s with the Top-5 error rate obtained with ImageNet dataset.

Table 2.1 shows a comparison between the different CNN introduced earlier. Showing the Top-5
error rate for each one of the models apart from the LeNet, obtained using the ImageNet dataset.

Table 2.1 shows that in general deeper networks achieve higher accuracies. From LeNet 5 to AlexNet
the number of weights and the number of multiply and accumulate (MAC) operations have increased
about a thousand times and two thousand times respectively, in spite of only having doubled the number

of layers. The disproportionate increase of computational resources is due to the increase resolution of

11

input image and the increased number of filters per convolutional layer. This table also shows that from
VGG 16 to ResNet 50 the number of weights and MACs has fallen despite ResNet 50 having a better
accuracy and being a deeper network then VGG 16, this is because the first layers of VGG have a high

number of filters.

2.6 Object detection DNN Models

Object detection is used to locate the object position and size, and predict its class [18]. The output of the
system is composed of a set of variables that specify the dimensions and location of the box that frames
the object, such as x position, y position, weight and height. In addition, for each one of the detected
boxes there is an array of confidence values stating the confidence of the framed image belonging to
each one of the possible classes. There are several ways of implementing an object detection system,
some of them make use of hybrid system, this is system with both convolutional neural networks and

traditional image processing algorithms.

2.6.1 R-CNN Family

One way to architect a object detection system, is to divide it in several stages. Region-based Convolu-
tional Network (R-CNN) consists of three modules [19]. The first module generate category independent
region proposals of different sizes. The second module is a deep convolutional neural network that ex-
tracts from a region of an image a feature map. The third module is composed by a set of support
vector machines (SVM) [20] that classify the image using the feature map. All of these modules are
serially connected, as shown in figure 2.13. Each one of the proposed regions by the first module are
independently fed to the second module to produce a different feature map for each one of the regions.
In this way for each test image the second module will have to produce as many output feature maps as
the number of proposed regions, making this model computational intensive. R-CNN is a hybrid solution

between CNN and traditional algorithms, being the second module the only module with a CNN.

R-CNN was introduced in 2014 and since then there were multiple variations of this algorithm, one of
them was Fast R-CNN [21]. Fast R-CNN improves both the accuracy and the computational resources
used by the model. This model uses the entire input image to extract the features and then uses the
region proposals to extract from the entire image feature map a subset of features corresponding to that

region. By sharing the feature map the computational operations can be greatly reduced.

Another variation of R-CNN and the most advanced one is the Faster R-CNN [22]. Faster R-CNN
is similar to the Fast R-CNN being the main difference, the way that region proposals are computed.
Faster R-CNN uses a separate CNN to compute the region proposals, instead of the time consuming

selective search algorithm used in predecessors models.

12

warped region
- 3

____________________ | A
tvmomtor? no.

1. Input 2. Extract region 3. Compute 4. Classify
1mage proposals (~2k) CNN features regions

Figure 2.13: R-CNN algorithm architecture, consisting of several modules serially connected [19]

2.6.2 YOLO - You Only Look Once

You Only Look Once (YOLO) approaches object detection in a different way, using a single CNN to both
locate and classify objects in an image [23]. This unified approach is only composed by a single stage
as seen on figure 2.14.

To understand the output of this model, take into account that it divides the input image in several
regions of the same size. Each region can only output a limited predefined number of objects, lets say B
objects. However an object can spread over several regions, being outputted only by the region where
its center is located. Associated with each object there are outputted 5 predictions to characterize the
bonding box of the object (x position, y position, weight, height and confidence) and N predictions with
the probability of that object belonging to one of the N existent classes. In this way each region outputs
B« (N + 5) predictions.

448

12 —\
o —
56|
3 3[
448 3 [28 3ﬁ M
3 43 71 7 7
n2 50 A 3 ‘ \] >< HX
| | 14 ; A
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
7x7x64-52 3x3x192 1x1x128 1x1x256 7 g 1x1x512 7,5 3x3x1024
Maxpool Layer Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-52 2x2-s-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-5-2
Maxpool Layer ~ Maxpool Layer
2x2-52 2x2-52

Figure 2.14: YOLO algorithm architecture, consisting of one single DNN [23].

2.6.3 RetinaNet

RetinaNet, just like YOLO uses a single DNN to both classify and locate objects. Most of the layers of
this model are convolution layers and no fully connected layers are used [24]. This DNN is grouped in

smaller sub-networks:

» ResNet backbone — This is where the input image is received. The ResNet used here differs

13

from the one described earlier in subsection 2.5.4, since the fully connected layer in the end is not
implemented. This DNN is composed by 5 stages that output smaller and smaller feature maps as

the stage number increases.

Feature Pyramid Network (FPN) [25] — This DNN enhance the capability to detected small objects
[25]. In the FPN, the output feature map size is being increased along the network as seen in
figure 2.15. In each stage of the FPN a new feature map from the backbone is added to the results
from the previous stage and upsampled as shown in figure 2.15. This technique counteracts
the vanishing of small objects from the successive downsampling of the ResNet by successively
upsampling the backbone last stage with the help of lateral connection to middle layers of the

backbone.

Classification — There is a network of this type attached to each one of the stage outputs of the
FPN as shown in figure 2.15. In this way the classification sub-networks receives input feature
maps of different dimensions, each one being prone to detect objects of different sizes. These
subnetworks are composed by 5 convolution layers that classify the objects. The output of each
one of the subnetworks are concatenated to achieve a final result with objects of different sizes.

The weighs and bias are shared among all the classification sub-networks.

Regression — These sub-networks are very similar to the ones used for classification, there are
several instances of the sub-network connected to different stages of the FPN and the weights
and bias are shared among all of them. The regression sub-network is responsible for getting the

bonding boxes parameters of every object. The result of each subnetwork is concatenated.

777777777777777777777777777777777

70 I
class+box L ’ : :
subnets , , class p |
L7 I subnet |
! WxH WxH WxH | |
class+box | %256 | x4 X256 «KA I
subnets } }
\ I I
\ I I
class+box | l 8 / / / l
subnets \ : “ :
Y ! WxH - !
: box %256 X4—> :
1 subnet / 1
| | |
(a) ResNet (b) feature pyramid net () class subnet (top) (d) box subnet (bottom)

Figure 2.15: RetinaNet algorithm architecture, consisting of a feature pyramid network and fully con-
nected sub-networks for classifying and produce bounding box localization [24].

The RetinaNet output format is similar to the one used in YOLO presented in subsection 2.6.2. The

classification sub-networks output an array of activations with probability of an object belonging to each

one of the classes, and the regression sub-networks output an array of activations that characterize the

bonding box around each object.

The convolution weight distribution across the different sub-network of RetinaNet is shown in figure

2.16. A more detailed view of the layers that compose RetinaNet is showed in appendix A.

14

Convolution weights distribution by different parts
of RetinaNet

Classification
19%

Regression

11% ResNet

52%

FPN
18%

Figure 2.16: Convolution weights distribution by different parts of RetinaNet.

2.6.4 Performance comparison

In object detection the evaluation of the effectiveness of the models has to take into account the capacity
to correctly classify objects as well as the ability to tell their localization. In this way there is a metric
called Intersection over union (loU) that quantifies how good the predicted bounding box (B,) location
corresponds to the true bounding box (B;). loU works by comparing the area of the intersection with
the area of the union of the bounding boxes that were predicted and the bounding boxes that should
have been predicted as show in equation 2.4. This metric is used as a threshold, so that any prediction
above a certain value of loU is considered a True Positive (TP), this is a correct prediction, and in the
contrary any prediction with a value below that threshold is considered a False Positive (FP), this is a
bad prediction.
IoU = m. (2.4)
The most used metric for the evaluation of object detection models is Mean Average Precision (mAP).
This metric takes into account the confidence of the classification, and uses a loU threshold to distinguish
between a TP and a FP. Table 2.2 can be seen the mAP metric for different models using COCO as

dataset.

Along with the mAP metric in table 2.2 it is showed the measured inference time for each one of the

models, apart from the R-CNN family models, when executing these models in a Nvidia M40 GPU.

By the performance results in table 2.2 it can be concluded that as the accuracy increases the
inference time that it takes for the model to make its predictions also increases. YOLO is a fast model
and ideal for real time applications with strict temporal restrictions, but its biggest implementation has an

mAP of 4.8% lower than the biggest implementation of RetinaNet showed in this table.

15

Models No of Convolutional layers Input image width mAP (%) Inference time (s)

Fast R-CNN 16 - 19.3 -
Faster R-CNN 32 - 21.5 -
YOLO v2 19 224 21.6 25
53 320 28.2 22
YOLO v3 53 416 31.0 29
53 608 33.0 51
50 500 325 73
RetinaNet 101 500 345 90
101 800 37.8 198

Table 2.2: Comparison of popular Object Detection models with mAP obtained using the COCO dataset
[24][22].

2.7 Conclusion

In this chapter different image classification neural networks and object detection neural networks were
compared with each other.

The chosen object detection network to be implemented in chapter 4 is RetinaNet-18 (RetinaNet
with a ResNet-18 backbone), due to the high accuracy and high inference times that show potential for
hardware acceleration as seen in table 2.2. To facilitate an embedded implementation the RetinaNet

version chosen uses the smaller available backbone for this DNN, ResNet-18.

16

Chapter 3

DNN implementations on FPGAs

The computation of a DNN is highly intensive. To achieve high performance computation with low power
consumption can be used specific hardware accelerators for DNN processing. To implement this ar-
chitecture a FPGA can be used. The FPGA is an integrated circuit with a programmable hardware
architecture, that can exploit the parallelism opportunities in the computation of DNNs.

The first section of this chapter, section 3.1, identifies the parallelism opportunities of DNNs, and sec-
tion 3.2 presents possible hardware architectures that have been proposed to exploit those opportunities.
At last, section 3.3, identifies a way to improve computation speed using different data quantizations and

presents existing work results using quantization techniques.

3.1 Parallelism Opportunities in DNNs

Deep Neural Networks present several opportunities to explore parallelism and pipelining, to maximize
the throughput of the available hardware. A convolution layer can be seen as a set of nested loops that
can be computed with the algorithm in figure 3.1 which is based in equation 2.3. A technique called
spacial unrolling can be used, which is the hardware equivalent of loop unrolling in software, where
a certain loop is eliminated or shortened by making those operations in parallel in different hardware
rather than sequentially [26]. These loops and the existing data dependencies, promote different forms

of parallelism [27]:

* Inter-layer parallelism.

The sequence of layers of a DNN can be pipelined starting the computation of a given layer before

finishing the previous layer.

* Intra-layer parallelism.

Inside a convolutional layer there are almost no data dependencies, therefore there are several

sources of parallelism:
— Inter-Feature map parallelism (Unrolling of the output channel loop).

17

The generation of a output feature map is independent from the generation of the other output
feature maps that are being produced in the same layer. As such, all the filters can be

processed in parallel, at the same time.
— Intra-Feature map parallelism.
Inside a given feature map there are nested two more sources of parallelism:
= Inter-Activation parallelism (Unrolling of feature map height and width loops).
Each activation of a given feature map is calculated independently of each other and can
be computed simultaneously.
= Intra-Activation parallelism (Unrolling of filter height and width loops).

An activation is calculated as set of multiplications summed together. Each one of those

multiplications can be done independently and computed simultaneously.

for L =0: K do (Output channel)
forc=0:C do (Input channel)
for y=0:Y do (fmap height)
for =0: X do (fimap width)
for f, = — & ?1 £ YJ; do (Filter height)
for f, = —2X—1 . ZX"1 do (Filter width)

LO[H [z][y] +=

Iellz + felly + fol x WE][c][fz][fy]

Figure 3.1: Algorithm for computing convolutional layers, composed by nested loops, adapted from [26].

3.2 DNN accelerator

Most existing work follow the DNN accelerator general architecture depicted in figure 3.2. The basic
component of the accelerator is the processing element (PE), which performs the computation for the
most important layers, such as the convolutional and fully-connected layers [13]. The accelerator must
have several PEs to make it possible to compute operations in parallel. The composition of a PE varies
with the implemented architecture and one or more multiply and accumulate (MAC) units may be avail-
able per PE.

Generally a large enough external memory is required to store all the weights and partial results of a
complete DNN. As such, the data should be transferred to the FPGA in order to be processed. The big
latencies in acessing the external memory are a big drawback when randomly accessing the memory.
In this way a memory inside the FPGA is created so that chunks of data can be transfered from external
memory and take advantage of pipelined memory access, that can achieve reasonable bandwidths. The
on FPGA memory is usually very limited and therefore, a carefull choice of the data to be buffered is
important. The data that can be stored in the local FPGA memory are weights, bias, input activations,

partial sums, output activations and any misture of the previous data.

18

£
2
:’,’ CPU External
=] Memory
c
2
3 Config| I Data & Inst. Bus |
E \Bus)
DMA
FIFO
g | ! i
k] || Input Output
o Buffer Buffer
g _ I]
& £ i
o -
g ‘E’ Computing Complex
HE AR
PE PE PE

Figure 3.2: Overview of a DNN accelerator system general architecture [28].

In some cases not even the totality of a single type of data fit in the internal memory, in those data
tiling are usually used. Data tiling is a technique that divides a set of data in smaller sets, following a
specific strategy, so that each set can be transfered individually to limited capacity memories.

In figure 3.2 is also shown a direct memory access (DMA) that enables the FPGA to access the
external memory independently of the CPU. This is usually used to enable better bandwiths, and offload
the CPU of memory transferences.

The controller showed in figure 3.2 schedules the operations to be made in every clock cycle by
adressing the internal memories in a specific way. In any case the CPU have some degree of control
usually issuing which tiles of data are being transfered into the internal memory.

Existing works take different approaches to the specific dataflow used, scheduling the order of oper-

ation in different ways [13] [29].

3.3 Data Quantization

Data quantization changes the data type used, reducing the number of bits and using fixed point in-
stead of floating point. This technique was introduced to reduce the complexity of the implementation.
A reduced number of bits uses less storage capacity and reduces the size of the operators. The repre-
sentation of data with a reduced number of bits can increase the throughput of the accelerator but may
degrade the accuracy of the model, thus being important to study the best trade-off.

Quantization aware training is a technique used to minimize accuracies drops. This technique takes
into account in the training process the quantization errors produced by quantizing weights and activa-
tions, so that the produced weights are already tweaked to minimize the quantization error [30].

Existing works study the trade-off between different quantizations and accuracy of the network, com-
pared to the model implemented using 32 bit floating point. Subsection 3.3.1 introduces theoretical es-

timation models used as framework to compare different quantizations. Subsection 3.3.2 shows some

19

Datatype LUTSs;0p DSPsjp, Cayg Xx107¢ Crg

Binary 5.58 0 12.02 1
INT2 13.52 0 29.12 2.42
INT4 30.06 0 64.76 5.39
INT8 86.38 0 186.02 15.48
INT16 28.66 1 181.16 15.07
FP32 - - 766.6 63.79

Total resources for Xilinx KU115 663360 5520 - -

Table 3.1: Expected cost per operation for each precision type [31].

experimental results obtained in previous works.

3.3.1 Performance estimation models

Two theoretical models were proposed by [31], to formulate a framework for the trade-off study between
different data quantizations.

The first model relates hardware cost with parameter precision type. The model depicted in equa-
tion 3.1, calculates the average cost (C,.4) that takes to complete an operation, where LUT s;0tq; @and
DSPsotq are the total number of LUTs and DSPs on the target device respectively, LUT, 44 and
DSP, a4 are the percentage of LUTs and DSPs that can be used for arithmetic operations, LUT's
and DSPs,,, are the needed LUTs and DSPs to perform an operation for a given quantization. [31]
defines an operation as a XNOR logic and popcount structure when referring to binary quantizations
and a MAC when referring to other quantization types. The average cost can be interpreted as the frac-
tion of the target device resources required to perform one operation in a given quantization. Table 3.1
shows the expected cost per operation for each precision type using as a target device the Xilinx Kintex
UltraScale 115, considering the given constants: LUT,sqge = 0.7, DSPysage = 1, LUT 810101 = 663, 360
and DSPsyoa1 = 5,520. The C,..; showed in table 3.1 is used to compare the cost of binary quantization
with other datatypes, for e.g. a quantization using as datatype INT4, where C,..; = 5.39, uses 5.39 more

resources than binary datatype.

LUTs),, DSPs),,
LUTusage * LUTstotal ’ DSPusage * DSPStotal

(3.1)

Covg = maz(

The second model presented by [31], relates the throughput with the hardware cost, that is estimated
in the previous model. This relationship is formulated theoretically by equation 3.2, where Freq is the
clock frequency, #OP is the number of operations needed to conclude a complete processing of the
DNN for a single input frame, C,,, is the average cost determined on the previous model and A is
to count for extra resource overhead used for control logic. This model considers that an operation as
defined earlier takes a single clock cycle to conclude. The C,,,, is a ratio between the required resources
for one operation and the total budget of resources, taking this in mind this model uses C.,., to apply a
folding effect to the number of operations, this makes the model take into account the capability of the
target device to parallelize operations, according to the available resource. The throughput is measured

in frames per second.

20

Freq

Throughput ~ ——- 9
TOUIRPUE = 0P & Cug * A

3.3.2 Existing work experimental evaluation

Using the models defined in section 3.3.1, [31] estimated the throughput in frames per second, the hard-
ware cost as computational resources and block RAM (BRAM) usage. This evaluation was made using
DarkNet as the DNN model, trained with the ImageNet dataset. Darknet is the model used by YOLO
as backbone for image classification. The number of filters in each convolutional layer was multiplied
by a scaling factor in order to expand or shrink the model obtaining implementations with different ac-
curacies, throughputs and computational resources to evaluate the accuracy/computation trade-off at
different DNN sizes. The DNN was implemented for this tests using all the combinations of different

scalling factors and quantizations, obtaining figure 3.3.

& Binary-Top5 INT2-Top5 INT4-Top5
< Binary-Top5 0 INT2-Top5 INT4-Top5
1,06 INT8-Tops % INT16-Top5 O FP32-Tops
: < . INT8-Top5 2 INT16-Top5S FP32-Top5
Computational Resources 1.08 = ot =
0.90 o Throughput (Frames Per Second)
0.90 '
0.80 O
0.80
= 0.70 L)
S £ 070
S =4
0.60 <
£ 5 0.0 o
S o0 Q 5
- X =
= 0.50 y
o 7 m)
=]
w 040 . = 0.40
-y ¢ b $
o} 2
ﬁ 0.30 X Q = 0.30 31 64.9%
020 = 67.6%
' o 0.20
X © 82.7%% 80.3%
0, 0
0.10 0.10 82.7% 83.1%
0.00 0.00
7.08402 7.08403 7.08404 7.08405 3.0E+02 3.0E+03 3.0E+04 3.0E+0
(a) Computational Resources (b) Throughput (FPS)
< Binary-Top5 INT2-Top5 INT4-Top5
106 INTE-Tops % INT16-TopS O FP32-Top5
BRAM Usage (Bits)
0.90
0.80
2
= 0.70
=
5 060 <
Il
= Q
- 0.50 X
<
: 0.40
é‘ 0.30 N x O
So
0.20
X O
0.10
0.00
7.0E+05 7.0E+06 7.0E+07 7.0E+

(c) BRAM Usage (bits)

Figure 3.3: Trade-offs for different quantization techniques using DarkNet as DNN model [31].

The results in figure 3.3, indicate that both binary and INT2 data types cannot achieve comparable

accuracy to the other data types. 32 bit floating point (FP32) does not show better accuracy than INT8

21

Weights bitwidth
First CONV | Mid CONV | Mid FC [Last FC

Activation bitwidth Accuracy (Top-1)

FP32 FP32 FP32 FP32 FP32 55.9%
8 8 8 8 8 54.6%
8 8 2 2 8 53.3%
8 8 2 1 8 52.6%
8 8 1 1 8 51.1%
4 8 2 1 8 49.3%
2 8 2 1 8 46.1%

Table 3.2: Classification accuracy for different implementations of AlexNet using different quantization
strategies [32].

and INT16, having a highest top-5 accuracy of 82.7% comparing to the INT8 and INT16 highest accu-
racy of 82.7% and 83.1% respectively. In addition FP32 uses more computational resources, consuming
more BRAM, has a lower throughput and does not have any advantage over the INT8 and INT16 data
types. Both INT8 and INT16 have very similar patterns of computational resource usage and through-
put, however INT8 spends slight less BRAM. INT4 may also be a good choice if the application does
not require the very best accuracy, having a highest top-5 accuracy of 80.3%, with higher throughput
and lower usage of BRAM and computational resources than the INT8 and INT16 data types. This re-
sults shows the big opportunity that quantization brings by reducing resources spent and improving the
throughput without damaging the accuracy of the model.

In the work of [31] the quantization strategy was symmetrically used for activations and weights,
using in each implementation the same quantization for all data. Other studies have exploited different
quantizations for activations and weights and also different quantizations along the depth of the DNN
model. Table 3.2 shows the results of one study [32], of different quantization strategies using as DNN
model AlexNet.

The results from table 3.2 show that FP32 only attain 1.3% more accuracy comparing to the quantiza-
tion using only 8 bitwidth activations and weights, which might not make up for the higher computational
complexity of its implementation.

The loss of accuracy between the quantization strategy 8-8218 and the quantization strategy 8-8118
is of 1.5%, being x-xxxx respectively the weights bitwidth of: activations, first convolutional layer, middle
convolutional layers, middle fully-connected layers and last fully-connected layer. Comparing that loss
of accuracy with the loss of accuracy of 3.3% when the activation bithwidth is reduced rather than
decreasing the middle convolutional layers bitwidth, is noticeable the big impact that the reduction in
the bitwidth of the activation values have in the accuracy comparing to the reduction of bitwidth of the

weights.

22

Chapter 4

RetinaNet embedded software

implementation

The first step in this work is to train an object detection DNN. RetinaNet-18, was the chosen deep neural
network for this work. In section 4.1 the training framework used is explained, showing the training
results for different quantization in subsection 4.1.2. A quantization model is chosen in subsection
4.1.2. To implement the RetinaNet in an embedded environment, a program in C is developed and
initially implemented in a GNU/Linux platform. The workflow used for the program development, a brief
description of the code and results of the baseline C implementation are shown in section 4.2. The

developed C program is then adapted to the embedded environment and implemented in section 4.3.

4.1 Quantization aware training framework

A quantization aware training is used to quantize data in this work in order to reduce as much as possible
the accuracy loss in the quantization process.

The forward pass of the training can still be implemented using 32 bit floating point operations, how-
ever before each mathematical operation, the activations, weights and bias are quantized in the chosen
bit width as seen in figure 4.1. In this way the quantization error is introduced and propagated along
the network being included in the output of the DNN. This forces the backward propagation algorithm to
keep the quantization error as low as possible by optimizing the weights taking that into account. Figure
4.1 also shows that the quantization is done to the output in order to take the quantization of the last
operation into account.

To quantize data the input data is divided by a scale factor and rounded to the nearest integer. The
rounded value saturate if it is higher than the maximum value possible to represent with that quantiza-
tion type (MAXIMUM_VALUE) or if it is lower than the minimum value possible to represent with that
quantization type (MINIMUM _VALUE). This value is then multiplied by the same scale factor used in the
beginning. The quantization algorithm is shown in figure 4.2. The round function and the saturation on

the algorithm showed in figure 4.2 are responsible for creating the quantization error.

23

©CoNOOOa~WN =

| | | | |

| Weight Bi+as | Weight Bi+as | | Weight Bias |

| | | | |

l‘ Quant ‘ ‘ Quant ‘l‘ Quant ‘ ‘ Quant ‘l l‘ Quant ‘ ‘ Quant ‘l

| | | | |
o o l o rery 1 =
=] = = = 2
a-]’ g | g |], g | 8
= B 2 B | 3

Figure 4.1: Representation of a DNN architecture prepared for quantization aware training.

output_int = round(input_float/scale);

if (output_int >MAXIMUM_VALUE) {
output_int=MAXIMUM_VALUE;

telse if (ouput_int<MINIMUM_VALUE) {
output_int=MINIMUM_VALUE;

}

output_float = output_int « scale;

Figure 4.2: Algorithm that introduces the quantization error in training, making it a quantization aware
training.

The scale factor relates to the number of fractional bits in a fixed point representation in the following
way: scale = 2~ TactionalBits — The number of fractional bits used in a fixed point representation are
chosen in way to make the right balance between the resolution and the dynamic range for the magnitude
of values that would be represented. The scale factor is the same for all the weights of a given layer,
but can be different from layer to layer, the same happens to bias and activations values. A single
layer can have three different values of scale factor, one for the weights, one for the bias and one for
the activations. The quantization aware framework used in this work is able to choose scale factors

automatically during training.

4.1.1 Brevitas

This work uses Brevitas python library to make the quantization aware training [33]. This library extends
the PyTorch library giving quantization capabilities to neural network layers. Brevitas implements quanti-
zation aware training using the technique mentioned earlier, all operations are made using floating point
32 bit, but the data is quantized in order to add the quantization error.

The implementation of RetinaNet in python using PyTorch developed by Yann Henon [34] was used
as baseline for this work. Yann Henon implementation was not prepared for quantization so in this work
the implementation was adapted to use Brevitas libraries, so that it can be used for quantization aware
training.

In PyTorch each neural network layer is an object, to declare a convolution layer the parameters like

number of input channels, number of output channels, kernel size and padding are passed as arguments

24

O wWN =

to the object constructor as shown in figure 4.3.

self.convl = nn.Conv2d(input_channels=256,
output_channels=256,
kernel_size =3,
padding=1)

self.actl = nn.ReLU()
Figure 4.3: Convolution and ReLU layer definition in PyTorch.

To use Brevitas, the declaration of the neural network layers is made using the constructor provided
by the Brevitas library that extends the original layers class with a new class compatible with quanti-
zation aware training. The new convolution layer constructor includes additional parameters related to

quantization as shown in figure 4.4:

» weight_quant_type - Used to specify if the weights should be quantized and if so what type of

quantization should be used. These are the possible options:

QuantType.FP - No quantization is done to weights;

QuantType.BINARY - Weights are quantized as binary weights, having only one bit to repre-

sent each weight;

QuantType. TERNARY - Weights are quantized as ternary weights, each weight being repre-
sented by three different symbols (+1,0,-1);

QuantType.INT - Weights are represented using the bit width specified in the argument
weight_bit_width.

 weight_bit_width - Specifies the bit width of the number that represents the weights;

» weight restrict_scaling_type - The scale factor in Brevitas is automatically chosen during training.
This argument enables the restriction of quantization scale factor to be a power of two, enforcing it

to respect fixed point representation.

The activations are quantized in the ReLU layer, after the convolution. In this way the quantization
error produced by the convolution layer can be accounted, and the output activations are ready to be fed
to the next layer. This is achieved passing to the constructor of the ReLU layer, arguments similar to the
ones used to define the weights quantization strategy in the convolution layer, as shown in figure 4.4.

This work did not quantize bias and batch normalization weights during training, since at the time
of this work Brevitas was still in alpha stage and this feature was not fully supported. All the bias
were quantized after training before being used in the hardware implementation, so that all values are

represented as fixed point numbers.

4.1.2 AQuantization results

Different quantizations were evaluated by changing the bit width of weights in different parts of the DNN

and comparing its impact on the overall accuracy of the network. The terminology used to refer to each

25

1
2
3
4
5
6
7
8

9
10
11
12
13

self.convl = gnn.QuantConv2d(input_channels=256,
output_channels=256,
kernel_size =3,
padding=1,
weight_quant_type=QuantType.INT,
weight_bit_width =4,
weight_restrict_scaling_type=

RestrictValueType .POWER.OF TWO)

self.actl = gnn.QuantReLU(max_val=6,
quant_type=QuantType.INT,
bit_width=8,
restrict_scaling_type=RestrictValueType.
POWER.OF_TWO)

Figure 4.4: Convolution and ReLU layer declaration using Brevitas library.

- o Size of Normalized Normalized size
Quantization model mAP (%) weights (Mb) accuracy (%) of weights (%)
RetinaNet_FP 25.7 685 100.0 100.0
RetinaNet_8.8_8 25.8 171 100.4 25.0
RetinaNet 8.4 8 25.7 156 100.0 22.8
RetinaNet_8_8_4 25.6 145 99.6 21.2
RetinaNet 8.4 4 24.9 130 96.9 19.0
RetinaNet 4 8_8 23.7 126 92.2 18.5
RetinaNet 4 4 8 234 111 91.1 16.3
RetinaNet 4 8 4 23.6 101 91.8 14.7
RetinaNet 4 4 4 23.4 86 91.1 12.5

Table 4.1: Comparison of trade-offs between different quantization models.

one of the quantized models is: RetinaNet_b7_b2_b3 where:
» b1 is the bit width of weights used in the ResNet backbone of RetinaNet;
» b2 is the bit width of weights used in the FPN part of RetinaNet;
» b3 is the bit width of weights used in the Regression and Classification sub-networks of Retinanet.

All activations in all layers are quantized using 8 bits.

The last layers of each stage of the regression and classification sub-networks were found very
sensitive to quantization and could not be successfully quantized. These are the only convolution layers
not quantized in this work.

Figure 4.5 compares 8 different quantized models in respect to their accuracy over an increasing
training period. The result of RetinaNet without any quantization is referenced as RetinaNet_FP.

The results in figure 4.5 and table 4.1 show that the RetinaNet that uses 8 bits in all weights (Reti-
naNet_8_8_8) is able to achieve the same mAP as the non-quantized RetinaNet FP, which demonstrates
the success of quantization aware training and indicates that there is no need to try a higher bit width
quantization than 8 bits.

From the graph can be seen two distinctive groups in the evolution of accuracy over training time.
The quantizations that use 8 bits for the ResNet backbone weights (RetinaNet_8_8_8, RetinaNet_8_4_8,

26

Accuracy of diferent quantization stategies

0,3

0,25

RetinaNet_FP

RetinaNet_8_8_8
0,2

RetinaNet_4_8_8
—#—RetinaNet_8 4 8

—o-—RetinaNet_8_8_4

Accuracy (mAP)

0,15 f
T —@—RetinaNet_8_4 4

—4—RetinaNet_4_4 8

—#—RetinaNet_4 8 4
0,1

—&—RetinaNet_4_4_4

0,05
1 2 3 4 5 6 7 8 9 10

Training Epochs

Figure 4.5: Accuracy of different quantization models along increasingly trained networks.

RetinaNet_8_8_4 and RetinaNet_8_4_4) produce a group that achieve higher accuracy than the quanti-
zations that use only 4 bits for the same weights (RetinaNet_4_8_8, RetinaNet_4_4_8, RetinaNet 4 8 4
and RetinaNet_4_4_4). However, the accuracy differences between the two groups decreases along the
training epochs. In training epoch 10 the difference in normalized accuracy between quantizations that
use 8 bits and 4 bits for:

* ResNet backbone is an average of 7.7 %;
* FPN is an average of 1.2 %;
» Regression and Classification sub-networks is an average of 1.1 %;

Table 4.1 shows a more significant reduction in memory usage than in accuracy when reducing the
bit width of weights. The quantization with the biggest reductions in accuracy correspond to the ones
that use less memory space. For example the quantization of ResNet backbone with 4 bits weights has
the biggest drop in accuracy but at the same time introduces the biggest reduction in the size of weights,
since it is accounted with 52 % of the total convolution weights in RetinaNet-18 as seen on figure 2.16.
The weights size is reduced by half when using 4 bits weights across the whole network instead of 8 bits
weights.

The chosen quantization for the following work was RetinaNet 4 4 4. The 8.9 % drop in accuracy of
this quantization in comparison with the original RetinaNet without quantization does not compromise
the practical results, producing as output similar bounded boxes and classifications. The accuracy of
23.4 % of this quantization model exceeds the accuracy of YOLO v2 floating-point implementation that
has a similar size backbone as shown in table 2.2. The reduction in weight size enables less resource
utilization and the possibility to choose a low cost target device.

27

4.2 Baseline implementation of RetinaNet in C

At first, a version without quantization was implemented. After making sure the implementation in C
had the same results of the python implementation, a version of the C implementation of DNN using
the ResNet 4.4 4 quantization was developed. The developed program retinanet.out was made for

inferences only, so the bias and weights must be loaded from an already trained RetinaNet model.

Annotations

: Images
train. .
Py (jreg)
model_final.pt

v
| print_weights.py | | print_image.py |

weights.bin Legend:
weights_float.bin image.bin C Program

weights_scale.bin |
; Python Script

| retinanet.out |

+ . Images
output.bin (ipeg)

v
| view_image.py }4—'
\

Figure 4.6: RetinaNet usage workflow.

Figure 4.6 shows the workflow used to make an inference using the C program. The training script
produces a file called model_final.pt that stores all the trained model parameters including the weights
and bias values. The model_final.pt is parsed by the python script print.weights.py, whose purpose is to

produce three binary files:

» weights.bin that stores all the quantized weights in 4 bit fixed point format and all quantized bias in

8 bit fixed point format;

» weights_float.bin that stores all the weights and bias that are not quantized, such as the ones used

in the last convolution layers of each stage of the classification and regression sub-networks;

» weights_scale.bin that stores the scale of each set of quantized weights and bias, so that is known

the fixed point format used in each set.

Since the bias are not quantized using quantization aware training they are quantized during the conver-
sion to fixed point in print_weights.py script.
The image to be subjected to inference has to be decoded from the jpeg format and normalized first,

this is made using the python script print.image.py. The output product of this script is image.bin, this

28

is a binary file containing, each image pixel value as three floating point numbers one for each primary
color.

The binary files are then used as input of the C program. The RetinaNet C program outputs a binary
file (output.bin) with the results from the regression and classification sub-networks, that are the final part
of RetinaNet, concatenated with each other. In this way the binary files are used as interface between
the C program and the python scripts. The view_image.py script interprets the output.bin to produce a
visual proof of the object detection by overlaying the bonding boxes with labels stating the correspondent

classification over the original jpeg image.

4.2.1 Convolution layer implementation

In this implementation of convolution layers the operations use 32 bits floating point values and when
needed the values are quantized after the operations, as explained in section 4.1. Three different func-

tions implementing convolution layers were made:

 conv_quant() — This implementation uses 8 bits quantized values for activations, weighs and bias.

The output is quantized before returning;

+ conv_float()— This implementation does not use quantized values: all activations, weighs and bias

are represented using floating point;

» conv() — This implementation is a hybrid, the weights are 8 bits quantized values, but all the

activations and bias are represented using floating point and the output value is not quantized.

The conv_quant() implementation is the one that is normally used throughout the quantized RetinaNet
implementations in C. However in specific situations different implementation are used, for instance the
conv_float() is used for the layers that were not quantized and the conv() is used when the convolution
layer is followed by a batch normalization layer and a ReLU layer. In the latter case, the hybrid implemen-
tation is adopted to reduce the number of type conversions to be made, since the batch normalization
layers are not quantized. The batch normalization is followed by a ReLU layer that quantizes the result.

Figure 4.7 shows the quantized convolution layer definition, the following arguments are used:

* C, A, B, bias — Are pointers to the memory regions containing the output activations, input activa-

tions, weighs and bias respectively;
* C_x, C_y — Are the x and y dimensions of the output matrix respectively;
* Ax, ALy, Bx, By — Are the x and y dimensions of the input activations and weights respectively;
* N.in, N_out — Are the number of input and output channels;
+ stride, padding — Are the stride and padding values;

+ output_scale, input_scale, weight_scale, bias_scale - Are the scale factors used in the quantization

of output activations, input activations, weights and bias respectively.

29

-
SQOWooNOCTOThA~,WN =

—_ e e e e e
coONOO O~ WN =

void conv_quant(int8_t« C,

int8_t+ A,
int8_t+ B,
int8_t+ bias,
int- C.x,
int C.y,
int Ax,

int ALy,

int B.x,

int By,

int N.in,
int N_out,
int stride ,
int padding,

float output_scale,
float input_scale,
float weight_scale,
float bias_scale){

Figure 4.7: Quantized convolution layer function definition in C.

Figure 4.8 shows the conv_quant() implementation. A set of nested loops are used to implement
the convolution as in the algorithm shown in figure 3.1. The 3 outer loops in lines 1, 2 and 3 iterate
over the output activation matrix, while the 3 inner loops in lines 6, 7 and 8 iterate over the weight filter.
The variable ¢ indexes the position of the output matrix, being incremented each time a new pixel is
calculated, in line 4, this is every time the iteration variables of the 3 outer loops change values. The
variable val is used as accumulator for the pixel calculation, and its value is reset, in line 5, this is each

time a new pixel is indexed.

The if statement between line 10 and 14 selects if the input activation value being iterated corre-
sponds to a padding value, or is an activation from the input activation matrix. The input activation
matrix is multiplied by its scale factor before being multiplied with the weight and added to the accumu-
lator as shown in line 13. The weight is also multiplied by its scale factor before being multiplied in line
17.

Since weight values are stored in pairs in int8 variables, they need to be indexed using the function
nibble() shown in figure 4.9. This function selects between the 4 most or least significant bits of the 8 bit
value in the input argument value. To access the most significant bits the value is shifted right 4 bits, on
the other hand to access the least significant bits the value is shifted left 4 bits and shifted again to the

original position in order to cut the 4 most significant bits and deal with the signal bit correctly.

After the 3 inner loops between line 6 to 20 of figure 4.8 finish executing the bias value is added to the
accumulator in line 22. The bias value is quantized in a fixed point format, so it is multiplied by its scaling
factor to be converted in the floating point representation. The output pixel value is now ready to be
quantized between lines 23 and 29. The quantization is made dividing the pixel value by its scale factor,
and then saturating its output to the dynamic range of an 8 bit variable. Finally, the value is rounded and

stored in the output activation matrix in line 31.

30

©CoNOOO~,WN =

for(int n=0; n<N_out; n++){
for(int x=0; x+B_x<=A_x+2xpadding; x+=stride){
for(int y=0; y+B_y<=A_y+2«padding; y+=stride){

C++;

val=0;

for(int z=0; z<N.in; z++){

for(int i=0; i<B.x; i++){
for(int j=0; j<B.y; j++){

if (x+i<padding || x+i>=A_x+padding || y+j<padding
|| y+j>=A_y+padding){
a=0;
telse{
a=((float)A[z~Ax+~A_y+(x+i—-padding) +A_y+y+j—
padding]) »input_scale;
}

indice = n«xN_in«+B_x+«B_y+z«B_y«B_x+i*B_y+j;
val += a = ((float)nibble(B[indice/2],indice%2)) «
weight_scale;

}
}
if (bias!=NULL)

val += ((float)bias[n])+~bias_scale;
out=val/output_scale;

if (out>127){
out=127;

telse if (out<-127){
out=-127;

}

C[c] = (int8_t)(round(out));

Figure 4.8: Quantized convolution layer implementation in C.

int8_t nibble(int8_t value, int hi){

if (hi){

value = value>>4;
telse{

value = value <<4;

value = value>>4;
}

return value;

Figure 4.9: 4 bits reading function implementation in C.

31

O wWN =

4.2.2 Overall implementation of RetinaNet

The RetinaNet was first implemented to run on a PC, in a GNU/Linux environment. Functions were
created for convolution, batch normalization, ReLU, maxpool, sigmoid, upsample and matrix sum layers.
Big chunks of static allocated memory are used for weight, activations and bias as shown in figure 4.10.
This big chunks of data emulate the self-managed memory space available in an embedded device.

Each array of memory has its propose:
« memory_weights — Stores the 4 bits weights and 8 bits bias of all convolutional layers;

* memory_weights_float — Stores the weights from the convolutional layer that were not quantized

and all the weights from batch normalization layers;
« memory_image — Stores the input activations of RetinaNet in floating point format;
* memory_data — Stores activations produced in between layers in floating point format;
* memory_scale — Stores the scales factors of all sets of quantized values in RetinaNet;

* memory_data_int — Stores activations produced in between layers in 8 bits quantized values.

static int8_t memory_weights [WEIGHTS_TOTAL];

static float memory_weights_float [WEIGHTS_.FLOAT_TOTAL];
static float memory_.image[IMAGE_TOTAL];

static float memory_data[90000000];

static float memory_scale [SCALE_TOTAL];

static int8_t memory_data_int[20000000];

Figure 4.10: Static allocation of memory for the C implementation of RetinaNet.

Pointers to memory arrays are created to show where the weights, bias and activations for a specific
layer are located. The function define_memory_regions() in figure 4.11 assign memory addresses for
each set of weights, bias and activations. Those addresses are calculated based on the memory used
by values stored for the previous layers, as shown by the incremental offset in lines 10, 13, 18 and 21.
Each weight only accounts for half byte since they are 4 bits values stored in pairs in 8 bits data type.
The weights from different layers are stored contiguous because they are read all at once from the input
file.

Figure 4.12 shows the main function of RetinaNet implementation in C. The program starts by read-
ing the files containing the weights, bias, scale factors and the input activation matrix. Then the de-
fine_memory_regions() function is executed in line 5 in order to create pointers for each matrix of weights,
bias and activations. Those pointers are used as arguments of the functions that implement each layer
as shown between line 9 and 12. The DNN layers are executed sequentially, and their output are stored
in memory regions that are used as input in the next layer, as shown by the data pointer that is used as
output in the convolution layer in line 9 and then used as input in the batch normalization layer in line 10.

The regression() and classification() functions between line 17 to 24 and line 28 to 35 respectively,

are used to implement a stage of the regression and classification sub-networks. The output of each

32

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

void define_memory_regions () {

int offset = 0;
int offset_float = 0;

// «x»+ResNet—18+#x

// Stage0

//Convl Weight 64+3+7+7=9408

convil_weight = memory_weights+offset;

offset+=4704;

//Batchnorm Weight+Bias+Mean+Var 4+64=256
batchnorm_weight = memory_weights_float+offset_float;
offset_float +=256;

// Stagel

// Stagel1 Block1 Convi Weight 64+64+3+3=36864
[1_b1_convi_weight = memory_weights+offset;
offset+=18432;

// Stagel1 Block1 Batchnormi1 Weight+Bias+Mean+Var 4+64=256
[1_b1_bn1_weight = memory_weights_float+offset_float;
offset_float+=256;

/e
}

Figure 4.11: Function defining the memory arrangement of weights, bias and activations in the memory
arrays.

stage is arranged as 2 dimensional matrix. out_x and out_y in line 17 are the dimension x and y of the
output matrix. The output of each stage is concatenated with the output of the previous stage using the
pointers out and out2 as shown in line 18 where the output activations of that stage are placed in the
memory region contiguous to the last activation value of the last stage. In line 19 the x dimension of the
output activation matrix of the last stage is summed to the out_x variable in order to offset the pointer,
that assigns the memory region where the activations of the next stage are stored.

In the end of the program between line 39 and 42 the activations from the regression and convolution
sub-networks are written to the output.bin file. Since the input image of the RetinaNet has a variable
dimension, the output dimension is also variable, that is why the first value written to file, in line 39, is

the x dimension of the output activation matrices.

4.2.3 Time profiling results for baseline RetinaNet

The C implementation of RetinaNet was run on a PC using an Intel 17-5700HQ CPU, in order to make
a time profiling of the DNN, surveying which part has the most impact in the execution time of the DNN.
The time profiling results, in table 4.2, show that regression and classification sub-networks account for
27.3% and 48.9% of the DNN execution time respectively. The stage 2 of regression (Regression S2)
is responsible for 77.2% of the execution time of the regression sub-network and similarly, the stage 2
of classification (Classification S2) is responsible for 75.6% of the execution time of the classification

subnetwork.

33

Intel 17-5700HQ
Stage Execution time | Partial execution time
S ‘ % %

ResNet SO 10.4 - 6.0
ResNet S1 44 1 - 25.4
ResNet S2 39.3 - 22.7
ResNet S3 40.4 - 23.3
ResNet S4 39.5 - 22.7
Total ResNet 173.7 16.6 100.0
FPN S5 1.4 - 1.9
FPN S6 0.2 - 0.2
FPN S4 3.5 - 4.7
FPN S3 13.6 - 18.1
FPN S2 56.4 - 75.1
Total FPN 75.1 7.2 100.0
Regression S2 219.9 - 77.2
Regression S3 50.0 - 17.5
Regression S4 11.6 - 4.1
Regression S5 2.8 - 1.0
Regression S6 0.7 - 0.2
Total Regression 285.0 27.3 100.0
Classification S2 386.3 - 75.6
Classification S3 97.0 - 19.0
Classification S4 21.6 - 4.2
Classification S5 5.1 - 1.0
Classification S6 1.3 - 0.3
Total Classification 511.3 48.9 100.0
Total 1045.0 100.0 -

Table 4.2: Time profiling of RetinaNet DNN.

34

wn =

©O©oo~NO ON

10

11
12
13
14
15
16
17
18

19
20

21
22

23
24

25
26
27
28
29

30
31

32
33

34
35

36
37
38
39
40
41
42
43)

int main(int argc, char «~argv){

//Read weighs.bin, weights_float.bin, weights_scale.bin and image. bin
files

define_memory_regions () ;

// »xxResNet—18x+x+

// Stage 0

conv(data ,memory_image, convi_weight ,NULL,&data_x ,&data_y ,image_y,
image_z,7,7,3,64,2,3,memory_scale[0]) ;

batchnorm (data, data,batchnorm_weight ,&data_x ,&data_y ,data_x ,data.y
,64,0.00001);

relu(data,data,&data_x,&data_y ,data_x ,data_y ,64,0.03125);

maxpool(res ,data,&res_x ,&res_y ,data_x ,data.y ,3,3,64,2,1);

/.

// ==+ Regression =xx

regression(out,res,&out_x ,&out_y ,res_x ,res_y ,0.03125,0.25);

regression(out+(out_x=out_y) ,res2,&aux_x,&aux_y ,res2_x ,res2.y
,0.03125,0.25) ;

out_x+=aux_x;

regression(out+(out_x»out_y) ,res3,&aux_x,&aux.y ,res3_x ,res3.y
,0.03125,0.125);

out_x+=aux_x;

regression(out+(out_x=out_y) ,res4 ,&aux_x,&aux_y,res4_x ,res4._y
,0.03125,0.125);

out_x+=aux_x;

regression(out+(out_x=out_y) ,res5,&aux_x,&aux_y ,res5_x ,res5_y
,0.03125,0.125);

out_x+=aux_x;

// =x+=Classification =+

classification (out2,res,&out2_x,&out2_y ,res_x ,res_y ,0.001953125,0.25);

classification (out2+(out2_x+out2_y) ,res2,&aux_x,&aux.y,res2_x ,res2.y
,0.001953125,0.25) ;

out2_x+=aux_x;

classification (out2+(out2_x=+out2_y) ,res3,&aux_x,&aux_y,res3._x ,res3._y
,0.001953125,0.125);

out2_x+=aux_x;

classification (out2+(out2_x=+out2_y) ,res4 ,&aux_x,&aux.y,res4_x ,res4d._y
,0.001953125,0.125);

out2_x+=aux_x;

classification (out2+(out2_x=out2_y) ,res5,&aux_x,&aux_y,res5_x ,resb_y
,0.001953125,0.125) ;

out2_x+=aux_x;

//write output.bin file

fwrite (&out_ x 4, 1, fout);

fwrite (out, 4, out_x=out_y, fout);
fwrite (out2, 4, out2_x=out2_y, fout);
fclose (fout);

Figure 4.12: Main function of quantized RetinaNet implementation in C.

35

Region name Size (bytes) Base address End address

mem_weights 2,361,344 0x00100000 0x003407FF
mem_weights_float 6,970,320 0x00340800 0x009E63CF
mem_scale 64 0x009E63D0 0x009E640F
mem_data 80,000,000 0x01000000 0x05C4B3FF
mem_data_int 20,000,000 0x05C4B400 0x06F5EOFF
mem_input 200,000,000 0x07000000 Ox12EBC1FF
mem_output 80,000,000 0x13000000 0x17C4B3FF
Total 389,331,728

Table 4.3: Memory map of the DDR embedded system memory.

Stage 2 of classification and regression have as input an activation matrix with 80 x80x256 in dimen-
sion, this is four times more activations than stage 3. While the stage number increases, the number
of activations decrease four times in comparison with the previous stage as seen in appendix A. Since
the execution time of a given stage is approximately proportional with the number of input activations it
is understandable that Regression S2 and Classification S2 stages, are the ones that takes more time
to execute. It can also be seen in table 4.2 that has the stage number of classification and regression
increases, the execution time it takes is approximately decreases four times.

In RetinaNet-18 DNN 76.2 % of the execution time is due to the regression and classification sub-
networks, this is the primary reason why this is the chosen part to be implemented in hardware. In
addition, the repetitive pattern of this part of RetinaNet would also help to reduce the flexibility that the

hardware architecture has to accomplish.

4.3 Embedded implementation of RetinaNet in C

The regression and convolution sub-networks are the components to be accelerated in the hardware,
and are deployed to the embedded system. For development, only these parts are executed in the
embedded platform in order to reduce the overall execution times. In this way the input of the embedded
implementation is the output from the FPN.

The main difference between the implementation in the GNU/Linux environment, and the embedded
environment, is that the memory is managed by the developer. Table 4.3 shows the memory regions
size and their base addresses. The regions are the same as the ones explained in section 4.2.2, a part

from two new regions:

» mem_input — Stores the input values of the RetinaNet part that is implemented in the embedded

device;
* mem_output — Stores the output of RetinaNet.

The memory was carefully arranged so that no memory regions are overlaid as seen on table 4.3.
Figure 4.13 shows the changes made to define_memory_regions() function so the memory mapping
in table 4.3 is implemented. Between lines 12 and 16 the pointers to the memory regions are initialized

with their base addresses.

36

In the embedded environment the memory is initialized with the weights, bias and input activations,
so that all the values are already available when the embedded system starts running. In this way no file
reading is required. The values between line 22 and 31 are initialized with the dimensions of the input
feature maps. Between line 33 and 37 pointers are initialized to the input activation. The pointer to the
region where the output of the RetinaNet is stored is initialized with the base address of that region plus

one, so that enough space is left for an integer containing the size of the output.

1 #define MEMWEIGHTS 0x100000

2 #define MEMWEIGHTS_FLOAT 0x340800
3 #define MEM_SCALE 0x9E63D0

4 #define MEM.DATA 0x1000000

5 #define MEM_DATA.INT 0x5C4B400

6

7 #define MEM_INPUT 0x7000000

8 #define MEM.OUTPUT 0x13000000

9

10 void define_memory_regions () {

11

12 memory_weights = (int8_t«) MEMWEIGHTS;
13 memory_weights_float = (float+) MEM WEIGHTS_FLOAT;
14 memory_scale = (float») MEM.SCALE;
15 memory_data = (float+) MEMDATA;
16 memory_data_int = (int8_t+) MEM_DATALINT;
17

18 int » aux_pointer;

19

20 aux_pointer=(int«)MEM_INPUT;

21

22 res_x=aux._pointer[0];

23 res_y=aux_pointer[1];

24 res2_x=aux_pointer[2];

25 res2_y=aux_pointer[3];

26 res3_x=aux_pointer[4];

27 res3_y=aux_pointer[5];

28 res4_x=aux_pointer[6];

29 res4_y=aux_pointer[7];

30 resbS_x=aux_pointer[8];

31 resS_y=aux_pointer[9];

32

33 res=(float ») MEM_INPUT+10;

34 res2=&res[256+«res_x=res_y];

35 res3=&res2[256+res2_x=*res2_y];
36 res4=&res3[256+res3_x=*res3_y];
37 resb=&res4[256+res4 _xx+res4d_y];
38

39 out=(float »)MEM.OUTPUT+1;

40

41 /...

42 }

Figure 4.13: Function defining the memory mapping in the embedded system implementation.

37

Xilinx Zyng-7020 SW only (ARM Cortex A9)
Stage Execution time | Partial execution time
S ‘ % %

Regression S2 764 - 31.7
Regression S3 157 - 6.5
Regression S4 39 - 1.6
Regression S5 9 - 0.4
Regression S6 2 - 0.1
Total Regression 971 40.3 100.0
Classification S2 1,118 - 46.4
Classification S3 244 - 10.1
Classification S4 58 - 2.4
Classification S5 14 - 0.6
Classification S6 3 - 0.1
Total Classification 1,436 59.7 100.0
Total 2,407 100.0 -

Table 4.4: Time profiling of RetinaNet software implementation on embedded device.

4.3.1 Time profiling results for embedded software RetinaNet

Table 4.4 shows the time profiling results of the software implementation of RetinaNet in the embed-
ded device Xilinx Zyng-7020. In total the embedded systems takes about 40 minutes to execute the
regression and convolution sub-networks of RetinaNet. In comparison, the implementation made in the
GNU/Linux environment takes 13.3 minutes to execute the same part of the DNN as shown in table 4.2.
The regression sub-network is responsible for about 40 % of the total execution time, the remaining 60 %
of the time being spent with the classification sub-network. Appendix B presents a detailed time profiling
of RetinaNet implementation, which shows that a single convolution layer with 80 x80x256 dimensions

takes about 186 s to execute.

4.4 Conclusions

In this chapter a study of the trade-offs of different quantization was made, and it was chosen to quantize
all weights using 4 bits values. This quantization was selected since the accuracy result is better than
the result of the object detections DNN with similar size, and there is not a visual perceptible difference
from the results of quantizations with bigger bit-widths. Using 4 bits values for the weights reduces in
half the memory usage comparing to quantizations with 8 bits, allowing for the use of lower cost devices
for the implementation of the DNN.

The results from the baseline implementation of RetinaNet showed that the majority of the execution
time was spent in the regression and classification sub-networks, and that the convolution hardware
accelerator should be targeted to accelerate the convolution layers belonging to those parts of Reti-
naNet. The execution time targeted to beat is the 186 s that a single 80x80x256 takes to execute in the

embedded software implementation of RetinaNet.

38

Chapter 5

Convolution accelerator hardware

architecture

To accelerate RetinaNet a convolution hardware accelerator is developed, since the convolution layers
are responsible for most of the execution time of an object detection inference.

In section 5.1 the architecture is presented in a top-down approach. Some cross-cutting issues over
the overall architecture are approached in subsection 5.1.1 and 5.1.2 such as the way data is formatted
and the scheduling of operations. In section 5.2, 5.3 and 5.4 a more in depth description is made of the
several components of the convolution accelerator. Section 5.5 shows how the components described in
the previous section integrate into a final IP solution. The results achieved by the convolution accelerator

are presented in section 5.6.

5.1 Architecture Overview

The hardware accelerator was designed specifically to accelerate convolution layers, since these layers
take most of the execution time. The hardware accelerator was developed using Xilinx Vivado 2019.2
High Level Synthesis (HLS). This hardware architecture was targeted to be implemented in a FPGA
Xilinx Artix-7, this is the programmable logic available in the chosen device for this work, Xilinx Zyng-
7020.

The designed hardware architecture was made to be flexible about the x and y dimensions of the
input and output feature maps and is also compatible with values quantized with different scale factors.
On the other hand it works with a fixed padding of 1, a fixed stride of 1, a fixed kernel size of 3x3 and
a fixed output and input channel dimension of 256. These characteristics give enough flexibility for the
accelerator to compute all the quantized convolution layers in the classification and regressions sub-
networks without overcomplicating the architecture, since all the layers in those sub-networks share the
same padding, stride, kernel size and channel dimensions, being different only in the x and y input and
output dimensions and using different values with different scale factors.

The connection between the FPGA and the DDR external memory has a high latency compared

39

to on-chip FPGA memory. Each activation, weight and bias is accessed more than once in a single
convolution, in order to reduce the number of times that each of these data need to be individually
transferred between the FPGA and the DDR memory, and therefore internal FPGA memory resources
were used to cache each one of these types of data. In this way the data is transferred from the external
memory in big contiguous chunks of data, making use of data pipeline, reducing the impact of the latency
of accessing the external DDR memory. The designed architecture achieved total reuse of data, which
means that each weight, bias and activation is transferred only once from the external memory.

Figure 5.1 presents an overall overview of the developed hardware architecture. The main data input
of the hardware architecture is an AXI-Stream port, that is connected to activation, weight and bias
memories. These three memories are used to feed the processing elements (PE) with the data to be
computed. The output of each PE is multiplex, which makes it possible to use only one AXI-Stream

output port for all the PE’s.

Input
64
Weight Bias
Memory Memory
32)'32)'32)' 32 3232 8y 8y 8y 8 8y 8
VUV Uy
v W1 Wz W] W4 W15W16 81 Bz 83 B4 BIS 816
Activation 64 .
Memory | |we |ws |we |ws. W.B. |W.B,

Output

Figure 5.1: General overview of the accelerator hardware architecture.

The interface specification is shown in figure 5.2, the in and out ports of the conv3d IP are AXI-
Stream 1/O channels (as defined by the first two HLS INTERFACE pragmas). The other conv3d in-
puts are implemented using a single AXI-Lite interface, BUS_A as defined by the corresponding HLS
INTERFACE pragmas. AXI-Lite inputs are used for IP configuration, specifying characteristics of the

convolution layer to be executed:
+ a_x - Specifies the x dimension of the input activations;

* a_y - Specifies the y dimension of the input activations;

40

—h
QOWONOOOTA, WN =

—_ e e e e e
NOoO Ok~ WD =

* output_scale - Specifies the number of fractional bits wanted in the quantization of the output

activations;
* input_scale - Specifies the number of fractional bits used in the quantization of the input activations;
» weight_scale - Specifies the number of fractional bits used in the quantization of the weights;

* bias_scale - Specifies the number of fractional bits used in the quantization of the bias.

void conv3d(hls::stream< ap.int<64> > &in,
hls ::stream< ap.axis > &out,
int a_x,
int a.y,
int output_scale,
int input_scale,
int weight_scale,
int bias_scale){
#pragma HLS INTERFACE axis port=in
#pragma HLS INTERFACE axis port=out
#pragma HLS INTERFACE s_axilite port=a_x bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=a.y bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=output_scale bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=input_scale bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=weight_scale bundle=BUS_A
#pragma HLS INTERFACE s_axilite port=bias_scale bundle=BUS_A
Figure 5.2: HLS code that implements the interface of the hardware architecture.
5.1.1 Data storage format

The order in which the activations values are stored in both external and FPGA memories, follow ZXY
coordinate order. This means that the values are stored first by their channel number (z dimension) and
only then through their column number (x dimension) and row number (y dimension). In this way values
with the same x and y coordinates but with sucessive z coordinates are consecutive to each other.

Memory resources inside the FPGA are limited, not all the activations values of a given layer can
fit simultaneously, so it is better to store only the values that are going to be used right away. Since
the values have to be transferred in parts, XYZ storage format avoids accessing the external memory
randomly, by sequencing the values more closely to the order they are going to be used. This is true
because to compute a single output pixel, all span over the z dimension is needed, however that does
not apply with the x and y dimensions.

The weight values follow NZXY coordinate order in the internal FPGA memories, N being the channel
number of a filter. The memory is iterated first by the channel number because of the way the weight
memory is arranged as explained in section 5.4. The z coordinate is iterated before x and y coordinates
in order to follow the format used in activations, since the weights are going to be multiplied by the

activations and both values are going to be iterated simultaneously.

41

The weight values are stored in the DDR memory following ZXYN coordinate order and adapted to
the NZXY coordinate order of the local memory, during the transfer process by the designed hardware
architecture. All the weights of a given convolution layer are fully copied to the local weight memory.
This change in storage format is efficient because the transfer is still made in big chunks, each chunk is

processed upon receiving and stored at the right memory address.

5.1.2 Operations Scheduling

Each processing element is scheduled to compute a different output feature map in a given time, this
means that every PE is doing a different output activation in the z dimension at the same time. However,
all PEs are processing pixels with the same x and y dimensions in a given time as seen in figure 5.3.
With this parallelization strategy the same activation values may be broadcast to every PE as seen in
figure 5.1, since the same set of input activations are used for output pixels with the same x and y
coordinates. The broadcast of activations reduces the bandwidth requirements of the activation memory
and the complexity of the architecture.

The weight and bias used by each PE in a given time are different, creating the need for the weight
and bias memories to have as many output ports has the number of PE’s. The developed architecture
uses 16 PEs that is why there are 16 ports for the bias and weight memories.

An output feature map pixel is processed entirely in a single PE, so that partial results don’t need to
be transferred between PEs. In addition, all the operations of a pixel are made contiguous in time, so
that no partial results need to be stored outside the PEs temporarily. In this way a PE is responsible for
determining the value of a pixel, and only changes to the next pixel when the final output value of that

pixel is determined.

L I B] L B B "R RN tlme)
Load activation 2,1.X | ZEr0s | 0,2,X | 1,2,
PE1 0,00 | 0,0,16 0,0,224]0,0,240 1,00 1,0,240 0,1,0
PE 2 0,01 | 0,017 0,0,225|0,0,241 1,0,1 1,0,241 01,1
PE3 0,02 | 0,018 0,0,2260,0,242 1,0,2 1,0,242 01,2
PE4 0,0.3 | 0,0,19 0,0,227|0,0,243 1,0.3 1,0,243 0,13
PES 0,0,4 | 0,0,20 0,0,228|0,0,244 1,0,4 1,0,244 0,14
PE6 0,0,5 | 0,021 0,0,229|0,0,245 1,0,5 1,0,245 0,15
PE7 0,06 | 0,0,22 0,0,230]0,0,246 1,0,6 1,0,246 0,16
PE8 0,0,7 | 0,023 0,0,231|0,0,247 1,0,7 1,0,247 0,1,7
PE 0,08 | 0,024 |" " " [0,0232[0,0,228 108 |" " "|10248 0,18
PE 10 0,09 | 0,025 0,0,233]0,0,249 1,0,9 1,0,249 0,19
PE 11 0,0,10 | 0,0,26 0,0,2340,0,250 1,0,10 1,0,250 0,1,10
PE12 0,0,11 | 0,027 0,0,235|0,0,251 1,011 1,0,251 0,1,11
PE 13 0,0,12 | 0,0,28 0,0,236/0,0,252 1,0,12 1,0,252 0,1,12
PE 14 0,0,13 | 0,029 0,0,237|0,0,253 1,0,13 1,0,253 0,1,13
PE15 0,0,14 | 0,0,30 0,0,238|0,0,254 1,0,14 1,0,254 0,1,14
PE 16 0,0,15 | 0,0,31 0,0,229]0,0,255 1,0,15 1,0,255 0,1,15

Figure 5.3: Timeline of PE’s operations, showing the coordinates of output pixel being determined at
given time in a given PE, using the x,y,z notation. The coordinates of the input activations being loaded
from the external DDR memory are also shown in yellow, following x,y,z notation where X means that all
values in that dimension are being loaded.

Each PE is doing the output pixel with coordinates C'(n) = (x, = Tn—1,Yn = Yn—1,2n = Zn—1 + 1)

being n the ID number of the PE, thus C(n—1) = (z,,—1,yn—1, 2n—1) being the coordinates of the previous

42

PE. The PE’s output are selected sequentially to be sent to the DDR memory, sending the values in ZXY
format. It is ideal to send the values in this order, in this way they can be stored sequentially, and they

will sustain the format wanted to be used as input in the next convolution layer.

5.2 Processing Elements

The processing elements (PE) are composed of 8 multiply and accumulate operators (MAC) that make
the multiplications between activations and weights, as described in more detail in subsection 5.2.1.
Those 8 MACs are then connected to a sum tree to obtain the final result for the output pixel calculated
by the PE, as described in more detail in subsection 5.2.2. The PE output is quantized to a bit width of
8, as described in more detail in subsection 5.2.3. All the components and connections that compose
the PE are shown in figure 5.4.

Weight =33

64

o \ \ | | | | |
Activation 8\1 4{ 8\1 4{ 8\1 4{ 8\1 4{ 8" 4{ 8" 4{ 8\1 4{ 8\1 4V

21/{/ 21/{/ 21* 21*
Y Y Y Y
+ +

22/}/ 22/}/
Bias +

8* 23/{/
Y

Y
+
24*—) Relu 784>Output

Figure 5.4: PE hardware architecture.

5.2.1 Multiply and accumulate operators

Each output pixel of a convolution is a sum of multiplications of weights with activations as shown in

equation 2.3. In this way, multiply and accumulate operator (MAC) is ideal for this application. The MAC

43

is composed by a multiplier, an adder and a register. The adder adds the result from the multiplier with
the result of the register, this arrangement makes the set adder and register work as an accumulator.
The processing element is composed by 8 multiply and accumulate operators, working in a divide
and conquer strategy. Each MAC, inside a PE, is responsible for processing different input activation
values. The input activation xyz coordinate that each MAC is responsible at any given time is shown
in figure 5.5. At the same time, different MAC are processing input activations with the same x and y

coordinates, but with different z coordinates.

e s tlme)‘

Load activation 2% 7

PE 1 0,0,0] 0,0,0] 0,0,0 100

mac 1] 0,00 | 0,08 0,0,248] 1,0,0 2,2,248 0,00 | 0,08

macz] 0,01 | 009 0,0,249] 1,01 2,2,249 0,01 | 0,09

mac 3] 0,02 | 0,0,10 0,0,250| 1,0,2 2,2,250 0,0,2 | 0,0,10

mac 4] 0,03 | 0,011 0,0,251] 1,03 2,2,251 0,03 | 0,011

macs] 0,04 [0012|" ® " [0,0,252] 1,04 |* ® " [2,2,252 004 0012 """

mace] 0,05 | 0,013 0,0,253] 1,05 2,2,253 0,05 | 0,013

mac 7] 0,06 | 0,0,14 0,0,254] 1,06 2,2,254 0,06 | 0,0,14

macg] 0,07 [0015] 0,0,255| 1,0,7 [22.255 0,07 | 0,0,15

PE 2 0,0,1 0,0,1 0,0,1 101

mac 1] 0,00 | 0,08 0,0,248] 1,00 2,2,248 0,00 [0,08

mac2] 0,01 | 0,09 0,0,249] 1,0, 2,2,249 0,01 | 0,09

mac 3] 0,0.2 | 0,0,10 0,0,250| 1,0,2 2,2,250 0,02 | 0,0,10

mac4] 003 [0011], , 4 [00251] 103, . ,[22251 003 [oo11]|

macs] 0,04 | 0,012 0,0,252] 1,04 2,2,252 0,04 | 0,012

mac 6] 0,05 | 0,0,13 0,0,253| 1,05 2,2,253 0,05 | 0,0,13

mac 7] 0,0,6 | 0,0,14 0,0,254] 1,06 2,2,254 0,06 | 0,0,14

mac 8] 0,07 | 0,0,15 0,0,255| 1,0,7 2,2,255 0,07 | 0,0,15

Figure 5.5: Timeline of MAC’s operations, showing the coordinates of the input pixel processed in each
MAC/PE set at any given time in blue, using x,y,z notation. The output pixel being determined at given
time in a given PE, is showed in green using the x,y,z notation. The coordinates of the input activations
being loaded from the external DDR memory are also shown in yellow, following x,y,z notation where X
means that all values in that dimension are being loaded.

The activation and weight memories are arranged in a ZXY format and since every MAC is processing
contiguous values in the z dimension, it is possible to receive a chunk of data from the activation memory
containing 8 activations and a chunk of data from the weight memory containing 8 weights. Figure 5.4
shows the input activation bus with a bit width of 64 bits, because it contains 8 activations, these 8
activations are then separated for the different MACs. Similarly, the input weight bus has a bit width of
32 bits, because it contains 8 weights that are also separated for each one of the MACs.

The HLS code used to implement the MACs can be seen in figure 5.6: between line 10 and 17 are
implemented the bus splitter for the weight values explained above, and between line 19 and 26 are
implemented the bus splitter for the activation values. The c.range(a,b) method gets the value contained
between a and b bits in the bus ¢. The values of the weights and activations are then multiplied and
summed to the accumulator between lines 28 and 35.

The code in figure 5.6 implements all the PEs using a loop followed by a pragma of HLS unroll. The

loop instantiates each one of the PEs, assigning a different value of o for each PE. The variable o is

44

1
2

—h
CQOWoONOOOLP~W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

for(int 0=0; o<PE; o++){
#pragma HLS unroll
if (0==0)
a = activation[| +WEIGHT_X+N_IN8+m+«N_IN8+n];

ap.int<32> w = weight[| sWEIGHT X+m][n«N_OUT+(k+0)];
ap.int<4> aux_w/[8];
ap.int<8> aux.a[8];

aux_w[0]=w.range(
aux_w[1]=w.range(
aux_w[2]=w.range(11,8);
aux_w[3]=w.range (15, 12)
aux_w[4]=w.range(19,16);
aux_w[5]=w.range(23,20);

()

()

3,0);
7,4);
11
1

aux_w[6]=w.range(27,24);
aux_w[7]=w.range(31,28);

aux_a[0]=a.range(7,0);

aux,a[1]=a.range(15 8);
aux_a[2]=a.range(23,16);
aux_a[3]=a.range(31,24);
aux_a[4]=a.range(39,32);
aux.a[5]=a.range(47,40);
aux_a[6]=a.range(55,48);
aux_a[7]=a.range(63,56);

accum[0+8] += aux_w[0]~aux_a[0];

accum[o+8+1] += aux_w[1]+~aux_.a[1];
accum[o0+8+2] += aux_w[2]+«aux_.a[2];
accum[0*8+3] += aux_w[3]+aux_a[3];
accum[o0*8+4] += aux_w[4]+~aux_a[4];
accum[0+8+5] += aux_w[5]~aux_a[5];
accum[0*8+6] += aux_w[6]~aux_a[6];
accum[o+8+7] += auxw|[7]+~aux.a[7];

}

Figure 5.6: HLS code that implements the MACs in the PEs.

then used along the code to find the right input values for that specific PE and also to use the right
accumulator registers, so that each PE use a different set of MACs. The pragma HLS unroll allows
the loops iterations to occur in parallel, making each one of the iterations to use similar but different

hardware resources.

Lines 3 and 4 of the code in figure 5.6 show the activation input a, that is only updated in the first PE
iteration, because the same value is used for all the PEs as seen in figure 5.4 and described in section
5.1.2. Both the activation input in line 4 and the weight input in line 6 are accessed through indexes
calculated using iteration variables that come from external loops of the PE. These iteration variables
schedule the whole system operations spanning across the input feature map and filters. When the HLS
code is synthesized, the schedule of all operations will be implemented as a control unit, in this way the
iteration variables will not be directly mapped to hardware but instead help to defining the control signals

and memory addresses used along an execution cycle of the convolution accelerator.

45

—
QOWOONOOOTA WN =

N = =
QOWooNOOPR,WN—=

21
22
23

The size of the multiplier, adder and register of the MAC is calculated in order to make all the opera-
tions without overflows or any loss of resolution. In this way taking into account that the activation values
have a bit width of 8, and that the weight values have a bit width of 4, the multiplier must have a bit width
of 8 + 4 = 12. In the worst case scenario, the MAC would make 288 consecutive operations without
resetting the accumulator, because there are 256 x 3« 3 = 2304 values in a filter with a kernel size of 3x3
and 256 channels and all those values will be processed in the same PE that in turn has 8 MAC, giving
a total of 2304/8 = 288 operations per MAC. The maximum signed value that the multiplier can output is
—128 x —8 = 1024. If all the 288 multiplications have a result of 1024 then the value that ends up being
accumulated is 1024 * 288 = 294912. To store this value 19 bits plus a sign bit are needed, this is why
both adder and register of the MACs have a bit width of 20 bits.

5.2.2 Sum tree

After all the multiplications between weights and activations are concluded for a given output pixel, all
the MAC results are added in a sum tree, as shown in 5.4. The sum tree result is then added with the
bias used in that output feature map, this adder result is then used as input in a quantizer.

The implementation of the sum tree is shown in figure 5.7. The first two lines implement, using a
loop and a pragma, all the PE’s sum trees in the same way that it is done for the MACs. From line 3 to
6 the adders of the sum tree are declared, taking into account the required bit width, so that there is no
overflow. Lines 9 to 12 implement the first stage of adders of the sum tree, lines 14 and 15 implement

the second stage of adders, and line 17 implements the last stage.

for(int 0=0; o<PE; o++){

#pragma HLS unroll
ap.int<21> sum1[4]={0,0,0,0};
ap._int<22> sum2[2]={0,0};
ap-int<23> sum3=0;
ap.int<24> sum4=0;
ap.int<23> bias_aux;

sum1[0] = accum[0=+8] + accum[o=*8+1];

sumi[1] = accum[0*8+2] + accum[0+«8+3];
sumi1[2] = accum[o0*8+4] + accum[0*8+5];
sum1[3] = accum[0*8+6] + accum[0*8+7];

sum2[0] = sum1[0] + sumi[1];
sum2[1] = sum1[2] + sum1[3];

sum3 = sum2[0] + sum2[1];

bias_aux
bias_aux

))) s

sum4 = sum3 + bias_aux;

bias[k+0];
(ap.int <23>)(bias_aux >>(bias_scale —(weight_scale+input_scale

}

Figure 5.7: HLS code that implements the sum tree in the PEs.

46

—
QOWONOOOTAWN =

—_
WN =

The bias is accessed in line 19 according to the output feature map being produced in that specific
PE, that is why the bias indexing depends on the PE iteration variable o. In conjunction with the variable
o, an output channel iteration variable k is also used to index the bias array, this variable is external
to the sum tree. To sum the bias with the result value of the sum tree, the decimal point of the bias is
aligned with the sum tree result. The alignment is made using a barrel-shifter, the number of shifted bits
and the shifting direction is determined by finding the difference between the number of fractional bits
of the bias values and the number of fractional bits of the sum tree result, that in turn is the sum of the
fractional bits of the weights and activations fed to this convolution layer. The aligned bias defined by the

code in line 20 is then added to the sum tree result in line 22.

5.2.3 AQuantizer and RelLU

The quantizer quantizes the lossless result of all the operations made inside the PE to an 8 bit width
value. This is done so that the output value occupies less memory and, in accordance with the quanti-

zation strategy selected, so that it can be used as input of the next convolution layer.

Figure 3.3 shows the HLS code used to implement the quantizer. Line 1 calculates how many
bits the quantizer input value have to be shifted in order to comply with the number of fractional bits
wanted for that output. This is determined by subtracting the number of fractional bits of the input
(input_scale+weight_scale) with the number of factional bits desired for the output (output_scale). In line
11 the variable sum4, that is holding the input of the quantizer, is shifted the amount of bits calculated
in line 1. In line 12 the quantized result is sent to the output using only the 8 least significant bits of the
shifted input. The if statement in lines 6 to 13 is responsible for saturating the output value by comparing
in line 8 the input value of the quantizer with the maximum possible output value. The maximum output

value is calculated in lines 4 and aligned with the input value.

int lower_bit = input_scale+weight_scale-output_scale;
ap_.int<24> min=-1, max=1;

max = (max << (lower_bit+7))-1;

if (sum4<0){
result.data = 0;
telse if (sum4>max){
result.data = Ox7F;
telse{
sumd4=sum4>>lower_bit;
result.data = sum4.range(7,0);

Figure 5.8: HLS code that implements the PE’s quantizer.

The RelLU operation is performed by zeroing the output value of the PE if the input value is lower

than zero. This is done by the same if statement used for the quantization saturation, in lines 6 and 7.

47

5.3 Activation memory

The number of input activations of the largest convolution layer to be processed in the hardware accel-
erator is 80 x 80 x 256 = 1638400. Each activation value has a bit width of 8, in this way the biggest input
activation matrix occupies 13.1 Mb. The target device Xilinx Zyng-7020 has a total of 4.9 Mb of block
RAM, this is not enough to store the whole input activation matrix. The adopted strategy was to store in
local memory only enough activations so that each activation is only transferred once from the external
memory. It was decided to store all the activations across the z axis together because to determine a
single output pixel all the activations across that axis are needed. In that way in figure 5.9 are shown
two-dimensional matrices of input activations, a single position on those matrices represent all the ac-
tivations across the Z axis with that specific x and y coordinates. The matrices positions are colored

in:

* red to show which activations are stored in the local memory and ready to be read to determine

the output pixel being produced at that given time;
* blue to show which activations are stored in local memory waiting to be used again;
+ white to show which activations are not stored in local memory.

Figure 5.9 (a) shows the content of the activation memory when the output pixels with coordinates
x = 3 and y = 2 and across all z axis ((z,y, z) = (0,0, X)) are being determined. After that pixel was
determined the input activations with coordinates (x,y, z) = (3,2, X) are loaded to the local activation
memory. The input activations (z,y,z) = (0,0, X) previously loaded are then erased from the local
memory because they are not going to be used again, since the kernel is moving along the x and
then y axis, as show in figure 5.9 (b). Figure 5.9 (b) also shows that input activations with coordinates
(z,y,2) =(0,1,X) and (z,y, z) = (0,2, X) are still in local memory waiting to be used later, for example
when the output pixels (z,y, z) = (0,1, X) are being determined.

The local storage strategy used for the input activations makes it possible to reuse the input activa-
tions completely using the minimum space possible. The activation values were stored in the different
types of memory shown in figure 5.10. The input activations are stored in shift-registers accordingly to
their coordinates if they are part of the calculations of the output pixel being determined at that moment.
In case the activation values are in local memory waiting to be used later they are stored in FIFOs. The
way the FIFOs and shift-registers are connected with each other, as shown in figure 5.10, is related to
the way that activations flow from being actively used in a calculation of an output pixel and are out on
hold to be used later. A multiplexer is used to select which one of the shift registers would output its
value to be used in the PEs, as shown in figure 5.10.

The shift registers were implemented using Flip-Flops (FF), as for the FIFOs they were implemented
using BRAMs. The activations were divided in different types of memories because the implementation
of FIFOs in BRAMs does not allow for random access of the activations, which is necessary to feed the
PEs. On the other hand, using only FF for all the activations would generate a high usage of FF, that

would make the system as an all not able to fit in the Zyng-7020.

48

00 0|
(c) (4,0,X) output pixels being calculated. (d) (0,1,X) output pixels being calculated.

Figure 5.9: Matrices representing in 2D the 3D input activations (each position representing all the

elements in the z axis), showing with colors the composition of the activation memory, when different

output pixels are being calculated. In red are the activations stored in local memory and being used

to calculate the output pixel. In blue are the activations stored in local memory and waiting to be used
again. The zeros along the borders represent the padding of the matrices

To implement the FIFOs in HLS a library was included as shown in line 1 of the code in figure 5.11.
The two FIFOs were declared as different objects in line 4 and 5. The shift-registers were declared as
an array in line 2, and it was used a HLS_PARTITION pragma with the option complete, to guarantee
random accessibility to their values.

Every time a new output pixel needs to be calculated new activations must be loaded to the activation
memory as discussed above and showed in figure 5.9. The input activations enter the hardware archi-
tecture using a 64 bit data stream, this is sets of 8 activation values, however each time we load a new
set of activations we need activations in a specific x and y coordinates but spanning the whole z dimen-
sion which means that 256 activations must be loaded. A loop is needed to fetch N_IN8 = 256/8 = 32
times the input stream as shown in line 1 of figure 5.12. The if statement between line 4 and 8 selects if
the new activations values are padding or are fetched from the stream, being in line 7 where the stream
is actually fetched. The function shift_activation(ap_int<64>in) in line 10 shows a function specifically
made for this work, that receives as argument the new value to load into the activation memory, and

shifts the activations values already in memory following the flow specified in figure 5.10. The HLS

49

NOoO O~ owWND =

oW oNOOCOP~WN =

—_

A0 A1D A20 | e
SR SR SR [~ FIFO -
1 I /
AO\1 A’11 /(21
64
1 sR [srR || srR [~ FIFO§
1\ I] [7
A0\2\ IAI12 //Azz
64
— SR |~ SR sr <~ Input
\W /L

64

Output

Figure 5.10: Activation memory hardware architecture. Arrows in black show the loading path of activa-
tions. Arrows in red show the reading path of activations

#include ”"hls_stream.h”
ap_int<64> activation [A.MATRIX];

hls ::stream< ap_int<64> > line1l;
hls ::stream< ap.int<64> > line2;

#pragma HLS ARRAY_PARTITION variable=activation complete dim=1

Figure 5.11: HLS code that declares the activation memory.

PIPELINE pragma showed in line 2 of figure 5.12, is used to make the HLS synthesizer make this loop

iteration with a throughput of 1, by creating all the pipeline stages necessary.

When the output pixel being calculated change lines as shown between figure 5.9 (c) and 5.9 (d),
three new x/y position must be loaded, which means that the code showed in figure 5.12 must be

repeated three times.

for(int index1=0; index1<N_IN8; index1++){
#pragma HLS PIPELINE
ap_-int<64> aux;
if (j+WEIGHT X>=a_x || i+WEIGHT.Y>a_y){
aux = 0;
telse{
aux = in.read();
}
shift_activation (aux);
}

Figure 5.12: HLS code that declares a load of a new set of values to the activation memory.

50

5.4 Weight memory

All the weights from a single convolution layer fit in the local memory of the FPGA, provided that the
weight memory is implemented using BRAMs. Since weights are stored in 32 bits words and each
convolution layer uses 3 x 3 % 256 * 256 * 4 = 2.359 Mb of space, a memory space with a depth of
2359296/32 = 73728 positions is needed. This makes the address space for the weight memory not a
power of two, which makes the HLS synthesis tool to generate a memory with an unnecessary excessive
number of BRAMs (128 instead of 72).

To solve this issue the weight memory array in HLS code is divided in 9 smaller memories with an
address space that is a power of two. Each one of those smaller memories correspond to a different
kernel position.

The weight memory is organized with 8 dual-port BRAMSs, to provide 16 independent ports and
therefore allow simultaneous read accesses to each of the 16 PEs. These 8 banks of memory are
represented, in figure 5.13, where each bank of memories is composed by the 9 memories referred
above.

Figure 5.14, line 1, shows the weight memory being specified as a bi-dimensional array, such that
the first dimension is fully partitioned in 9 independent memories corresponding to the 9 kernel elements
using HLS ARRAY_PARTITION pragma with complete option, shown in line 3.

Data in the weight memory must be arranged in way that weight values accessed simultaneously
are displaced evenly between memories, to take advantage of all the ports provided. Each PE is doing
a different output channel at the same time, in this way the values being accessed concurrently are
contiguous in N dimension, being N the filter number. By storing the weight in NZXY format and using
the HLS ARRAY_PARTITION pragma with cyclic option and factor=8 option, shown in line 2, contiguous
weight values are stored in different memories, only repeating the same memory after 8 values, which
also means that all the values with the same N coordinate are in the same memory and every memory

will only contain two different filters.

5.5 Convolution IP

The general structure of the HLS code, shown in figure 5.15, is composed by nested loops that iterate
over the output feature maps positions, the input activation and the weight filters, similar to the structure
used in a general algorithm for convolution layers like the one shown in figure 3.1.

The first step of the developed algorithm is loading all the weights and bias from the external memory
to the on FPGA memory, and load the first activations until it fills the activation memory. After loading
the local memories, the scheduling of operations is done by the nested loops.

The 3 outer loops control which pixels of the output feature map are being made. These loops are
represented in lines 5, 4 and 3 and they iterate over the z, x, y axis of the output activations respectively.
The loop in line 5 is incremented in each iteration by the number of PE’s, because in each iteration a

number of pixels equal to the number of PE are processed at the same time, since each PE is respon-

51

—_

Bank 1

Bank 2

Bank 8

Figure 5.13: Weight memory hardware architecture. Arrows in different colors correspond to different
ports of the dual port memories.

ap-int<32> weight [KERNEL_SIZE][WEIGHT_SIZE];
#pragma HLS ARRAY_PARTITION variable=weight cyclic factor=8 dim=2
#pragma HLS ARRAY_PARTITION variable=weight complete dim=1

Figure 5.14: HLS code that declares the weight memory.

52

—h
QOWONOOOOTA,WN =

WMNDMNDMNPDNDMNDNDMNDNDMNON = = =
QOWONOCOPAPAWN—=LOOONOOOTR,WN =

sible for a different pixel in the z axis. Every time the 3 outer loops change the pixels that are being
processed, the accumulators of the MACs are reset.

The 3 inner loops, in line 11, 10 and 9 iterate over the weight filter in the z, x and y axis respectively.
Inside the three inner loops are PE’s multiply and accumulate code that is shown in figure 5.6. A HLS
PIPELINE pragma is used to specify a throughput of one for the MACs.

Once all MAC operations are completed for a given set of output pixels, the results are summed

using a tree of adders. This summation is executed once per output pixel as shown in line 20.

//Load weights, bias and activations

for(int i=-1; i+(WEIGHT.Y-1)<=a_.y; i++){
for(int j=-1; j+(WEIGHTX-1)<=a_x; j++){
for(int k=0; k<N.OUT; k+=PE){

// Reset accumulator

for(int [=0; I<WEIGHT.Y; |++){
for(int m=0; m<WEIGHT X; m++){
for(int n=0; n<N_IN8; n++)

{
#pragma HLS PIPELINE

//PEs multiply and accumulate
}
}
}
//PEs sum trees
}
//Load activation from external memory
}
//Load activation from external memory x2
¥

Figure 5.15: General structure of the HLS code of convolution accelerator.

A new set of input activations is loaded each time the x or y coordinates of the output pixel to be
determined change. If the x coordinate is incremented, it means the movement is along the same line of
the input activation matrix, like the one represented between figure 5.9 (a) and (b). The code that makes
this activation load is placed in line 24 of HLS code structure shown in figure 5.15. On the other hand
if the y coordinate is incremented, it means there is a change in the line of the input activation matrix
like the one represented between figure 5.9 (c) and (d). This load activation activity requires three times
more the number of activation values than the ones when the movement is across the same line. In this
way an additional load activation code is placed in line 28. These two load activations are shown on the

timelines in figure 5.3 and figure 5.5.

53

. . lteration latency e Loop latency

Loop name Number of iterations (clock cycles) Imt||atlin Iatlency (clock cycles)

Min [Max | Min [Max | \COKOYCleS) T ax
Weight load 36864 36864 2 2 0 73728 73728
Bias load 32 32 1 1 0 32 32
Initial activation load 544 5344 1 1 4 548 5348
Output pixel Y 5 80 3454 468950 0 17270 37516000
Output pixel X 5 80 677 5861 0 3385 468880
Output pixel Z 16 16 40 364 0 640 5824
Filter Y & X 9 9 2 38 0 18 342
Filter Z 32 32 1 1 2 34 34
Activation load 32 32 1 1 1 33 33
Activation load 64 64 1 1 1 65 65
Total 91578 37595108

Table 5.1: Time profiling across the different loops of convolution accelerator.

5.6 Convolution accelerator results

The timing results of the convolution accelerator are presented in table 5.1. The timing profiling shows
the number of clock cycles scheduled by HLS for each loop. The first column shows the number of
iterations of each loop. For some loops such as the Initial activation load, Output pixel Y and Output
pixel X the number of iterations depends on the size of the input activation matrix. The iteration latency
column shows the maximum and minimum number of clock cycles each iteration takes. For some loops
that are pipelined there is an extra latency value to be accounted that is the amount of clock cycles taken
to fill the pipeline, which is shown in the initialization latency column. The total latency of each loop can
be calculated by multiplying the number of iterations with the iteration latency and adding the initiation
latency overhead. This gives a range of values since the number of iterations and iteration latencies can
both be variable.

There are 2.359 Mb of weights to be loaded through a stream channel of 64 bits. In each iteration
of the weight load loop 64 bits of weights are stored in local memory, in this way it takes 36864 loops to
store all the weights as shown in table 5.1.

For a single convolution layer there are 256 bias values of 8 bits which gives a total of 2048 Mb to
load. In each iteration 64 bits of bias are loaded, giving a total of 32 iterations to load all the bias.

The number of activations to be initially loaded (V) depend on the line size of the input activation
matrix (inputx). As N = ((inputx + 2) 2 + 3) x 256, the number of iterations of the initial activation load
loop is variable. In each iteration 64 bits of activations are loaded and since each activation has a bit
width of 8, it takes I = ((inputx + 2) * 2 4 3) * 32 iterations to load all the initial activations. In this way,
when the input activation matrix has a dimension of 80x80x256, the biggest used in the accelerated
part of Retinanet, then 5344 iterations are necessary to load the initial activations as shown in table 5.1.
If the smallest activation matrix is considered, having a dimension of 5x5x256, then only 544 iterations
are needed. The initial activation load loop was pipelined to achieve a throughput of one reading of the
input stream per clock cycle.

The output pixel Y, output pixel X and output pixel Z loops represent the iteration over the output

activation matrix. The number of iterations of output pixel Y and output pixel X loops depends only on

54

the dimension of the input activation matrix that is equal to the dimension of the output activation matrix.
The number of iterations of output pixel Z is 16 because there are a total of 256 filters and there are 16
PEs each one doing a different filter at the same time. Since each iteration computes 16 pixels across

the z axis, it takes 16 iterations to do all the 256 filters.

Filter Y & X loop, represents two loops, one for each dimension, that are combined by the HLS syn-
thesizer in one loop because there is no code between the declaration of those two loops. To optimize
the architecture each time it is detected that the operation being made during that iteration is with a
padding value, the loop jumps to the next operation. This avoids doing operations with padding values
since, these values are zeros and their multiplication with a weight would not contribute to the accumu-
lator value. This is why there is a difference between the maximum and minimum iteration latency of this
loop as shown in table 5.1. The number of iterations of filter Y & X loop is the number of values is a 3x3

kernel.

The filter Z loop, which iterates over the Z axis of the filter, was pipelined in order to achieve an itera-
tion latency of one, which means a multiply and accumulate operation per clock cycle. This optimization
has a big impact because the latency of this loop is successively multiplied by the number of iterations
of the outer loops. Filter Z loop has 32 iterations because each PE has 8 MACs processing 8 weights
across the z axis in each iteration. Since there are 256 weights across the z axis it takes 32 iterations to

complete all the operations across that axis.

As described in section 5.5, when a new output pixel in the x axis is iterated, 256 values of activations
have to be loaded. These values are loaded in loop activation load, and they take 32 iterations to be

loaded, since 64 bits of activations are loaded in each iteration.

When a new output pixel is iterated in y axis it needs more two sets of activations, which means 512

activations. The 512 activations are loaded in 64 iterations of the activation load loop.

The convolution accelerator was targeted to achieve a clock cycle of 10 ns and it achieved 9.7 ns
before implementing (not accounting for route delays). By multiplying the maximum total latency of the
convolution accelerator in clock cycles shown in table 5.1 by the target clock cycle we have an estimate
for the time it takes to process a convolution layer with an input activation matrix with 80x80x256
dimension, giving 376 ms. This value gives a speedup of 495 comparing to 186 s that it takes to

compute the convolution layer in software only as shown in section 4.3.1.

The FPGA resources used by the convolution accelerator are shown in table 5.2, the used percent-

age is taking into account the available resources in the selected targeted device the Zyng-7020.

The 128 DSP are totally used by the PE’s MACs, since each PE has 8 MACs and there are 16 PEs.
The BRAM usage of 89 is shared between the bias, weight and activation memories. The weigh memory
uses 72 BRAMs, each FIFO of the activation memory uses 7.5 BRAMS giving a total of 15 BRAM for
the activation memory and the bias memory uses 2 BRAMs. There are 18432 flip-flops used by the

activation memory for the shift registers.

55

Resource Units used Used percentage

LUT 44940 84.5%
FF 42695 40.1%
LUTRAM 0 0.0%
BRAM 89 40.1%
DSP 128 63.6%

Table 5.2: Resource usage of convolution accelerator.

5.7 Conclusion

In this chapter a convolution hardware accelerator with 16 PEs was designed. Each PE is composed by
8 MACs, enabling the accelerator to make 128 MAC operations simultaneously. To reduce as much as
possible the idle time of this MACs, on-chip FPGA memory was created to store the data being fed to the
MACs. The local memories created achieved total reuse of data, reducing the number of transactions
with the DDR memory thus reducing the time it takes to access data. This chapter introduced several
techniques used in HLS to optimize memory usage and displace data in convenient ways, to achieve
high bandwidths.

The developed convolution accelerator used a 10 ns clock cycle, and is able to execute a convolution
layer with an input activation matrix with 80x80x256 in 376 ms. The resulted execution time achieves
a speedup of 495 comparing to the execution of a convolution in an ARM processor. The hardware

accelerator occupies 84.5 % of the total number of LUTs available in the target device.

56

Chapter 6

RetinaNet hardware/software

implementation

In this chapter the convolution hardware accelerator is integrated into the embedded system using the
hardware architecture described in section 6.1.1. Changes to the embedded software are made to
accommodate the newly added convolution hardware accelerator component, these changes are de-
scribed in section 6.1.2. The experimental results of the HW/SW RetinaNet implementation are showed

in section 6.2.

6.1 Hardware/software system

The parts of RetinaNet selected for the final implementation were the regression and classification sub-
networks. The hardware/software architecture run some layers in the embedded ARM processor and
others in the convolution hardware accelerator. All the convolution layers in the implemented part of
RetinaNet, apart from the ones that were not quantized, are processed in the convolution hardware ac-
celerator, which accounts for 40 layers of the total of 50 layers. The sigmoid layers, the input quantization
layers and the data conversions and arrangements functions are processed in the ARM processor.

The maximum input activation matrix that the convolution hardware accelerator can compute is
80x80x256 dimension, this restricts the input image of the complete RetinaNet DNN to a maximum

image of 640x640. This was the chosen size for the images used to test the system.

6.1.1 Hardware architecture

The hardware architecture is composed by two parts: the programmable logic (PL), this is all the com-
ponents that are implemented using the FPGA resources; and the processing system (PS), this is the
ARM processor and some related peripherals. The block diagram of the developed architecture is shown
in figures 6.1 and figure 6.2, the latter is less detailed, only showing the data interfaces, and does not

include the processor system reset.

57

The PS (processing_system7_0) is configured with a CPU clock frequency of 667 MHz, and DDR
memory has a clock frequency of 533 MHz. The PS also generates a clock frequency for the PL,
this clock frequency was configured at 71 MHz. The PS uses an AXI-Lite interface to connect to an
AXl interconnect IP (ps7_0_axi_periph), this IP splits the AXI-Lite interface to the convolution hardware
accelerator (conv3d_0) and the DMA IP (axi_.dma_0), enabling one single interface to communicate with
to different hardware components. The PS sends through the AXI-Lite interface to the convolution
accelerator, control data, specifying several characteristics of the convolution layer being executed in
the accelerator, as explained in section 5.1. The PS also uses the same AXI-Lite interface to control
the DMA, controlling the content that is being transferred to and from the convolution accelerator at any
given time.

The DMA responsibility is to manage the memory transferences between the DDR and the con-
volution accelerator. The DMA is connected to the convolution accelerator through two AXI-Stream
interfaces, one that sends input activations, weights and bias to the accelerator and the other that re-
ceives the output activations from the accelerator. An AXI interconnect IP (axi_mem_intercon) is used to
connect the DMA IP to the PS through an AXI HP port so that it can access the DDR memory.

The processor system reset component is showed in figure 6.1 and is used to generate system
resets, being added automatically to the design by the development tools.

The ARM processor controls the convolution accelerator, by sending control data to the accelerator

through the AXI-Lite connection and also by issuing memory transactions to the DMA.

58

‘uonejuawadwil MS/MY 1I9NEBUISY 8y} JO ainjosliydle atempley payldwis g9 ainbi4

weyshg Buissaosold [DNAZ 55820y Aloway 12841 XY (uopanpoid-add) Auoa

108UUDIBIU] XY

108UL02IBILL XY

i+ 0doTIXY W - =+ ST SIXY W - _ AATU [+ Ixv Low X .
- - OZ>N OdH IXY S + lm - o WINZS SIXY § + = =+ o \ I o - H—m v 00s +
ol @axid {I|+ orazxa - L0 IGH TS t o mSE XV 108 | immii| -+ WINESIXY W ATYTs vsng pes + S+ v 00w Py
= = o STH w. 0PN - : =
Haa {[[+ =aa S5 X008 | im—] sz Iy W " —n [+]
E—n a pEAUDD yduad xe g zsd
0 JweyshAs Buissaaoid UGDJBIU| WL |Xe 0 Bwp [xe
‘uoneluswa|dwi Ms/my 1oNBUNSY 8y JO 8Inloaliydle aiempieH :}°9 ainbi4
1953y waishs J0ss30ld
[o-plussare emyduad peyoof wIp
[o-olwasaie s uuaaEL 1507545 Bngap qu
[ooliesar jeseyduad wjasa xne
[rolesziT1anigs"sng urEsa e
Jsarqu AP uks Jsamals
waysks Buissazolg JDNAZ
WooL 0 /sd 1)
N cmnwmx 14 SRR
[T A - H1DW 0dD XY N 133003 | Xy
) +wovn g ONAZ R (wopnpoig-a1c) 10>
orasxid I H M“_Mux: UL 04 DdHIXY S + \rsrde] NISTUY LOW
i i 7
wag <= — ‘ i3SI DOM
0~ JwasdsTBuissasoid =4 e NIISIHY 005
= LTy MNL1353HY

AV LOW
A1IY DO
W1 005

1330331 | XY

0 pgAuDy

N13SIHY LOS .
NL3STdY 00W
N13SIHY 005

NLISTHY

ssa20y Aiowap 300 XV

duad we g zsd

oAU Wz

um Py —_

A2

[+]

1 . AoV L0 oAU SZWW o
L ey e oy e s
T oeroon B e B nvoon uyno jesai fawd Wiz AEEIE
e sz e
E—E v rinoTjssewd s o

A2 LIz e

AW
e 00 +|
v Los + [

[IE=EYESTRTTET 0 ewp e

+ sErnTsed W
ST XY W
WIS XY

WWZS SIS
AMTXYS +|

59

6.1.2 Embedded software

To issue the execution of a layer in the convolution hardware accelerator, the function in figure 6.3
was made. This function receives as arguments all data that is needed to execute the convolution
layer and sends it either through the AXI-Lite connection to the convolution hardware accelerator, or
issues transactions to the DMA IP, so that the weights, bias and activations at the given addresses are
transferred to the accelerator.

To send control data to the accelerator, a set of values are written to specific AXI-Lite interface
registers, as shown in lines 6 to 12. The input_control points to a register, that signals the state of the
AXI-Lite interface. To transfer all the control values to the accelerator the memory region pointed by
input_control is set to 1 after all the control values are written to their registers.

In line 14 an order is issued to the DMA to transfer the weights, pointed by pointer B, from the DDR
to the convolution accelerator. The size of the weights is also part of the issued command, so that the
DDR knows when to stop the transaction. In line 15 a function is used to signal when the transaction
was completed, blocking the code execution until the end of the transaction. Lines 17 and 18 shows the
transference of the bias from the DDR to the convolution accelerator. In line 20 the DMA is set up to
send the output activations sent by the convolution accelerator to the memory region pointed by C. This
is done before transferring the input activation to the convolution accelerator, to prevent blocking the
accelerator, that would be waiting for the DMA to accept its output. In line 22 and 23 the input activations
are transferred to the accelerator. In line 25 the function conv_hw() is prevented from returning until all
the output activations of that convolution layer are sent to the DDR.

Figure 6.4 shows the implementation of a classification stage using the conv_hw() function to execute
the convolution layers in the accelerator.

In line 3 the input activations are quantized and then changed to the ZXY data storage format in line 5.
Before using the hardware accelerator, since it accesses directly the DDR memory, the cache contents
are flushed into the DDR memory. This prevents the hardware accelerator from accessing outdated
values. Between lines 8 and 11 four convolution layers are issued to be executed in the accelerator.
In line 13 the cache is invalidated to prevent the ARM processor from using outdated values, since the
DDR memory has been updated directly by the convolution hardware accelerator. The activation values
produced by the hardware accelerator are converted again to the XYZ data storage format in line 14
and converted in floating point numbers line 16. The last convolution layer of the stage is executed in
the ARM processor in line 18. All the activations are then passed through a sigmoid function in line 20
that is also executed in the ARM processor. Finally, the output activations are arranged in a ZXY format
again in line 22 to be concatenated with the activations from the other stages and stored in the right
format to be processed by the python script view_image.py, that was described in section 4.2.

The regression stages are implemented similarly to the classification stages, being the most sig-
nificant difference the absence of the sigmoid layer. All the regression and classifications stages are
issued in a code similar to the one used for the baseline implementation in figure 4.12. The de-
fine_memory_regions() function defined in figure 4.11 is used in this implementation to establish the

memory location of each weight, bias and activation.

60

1

void conv_hw(int8_t+« C, int8_t+« A, int8_t+« B, int8_t+ bias, int+« C.x, int»
Cly, int Ax, int Ay, int B.x, int B_.y, int N.in, int N_out, int
output_scale, int input.scale, int weight_.scale, int bias_scale){

2

3 +C_x = AX;

4 «Cy = Ay;

5

6 ~input_a_x = A._X;

7 ~input_.a_y = A.y;

8 ~input_output_scale = output_scale;

9 =input_input_scale = input_scale;

10 ~input_weight_scale = weight_scale;

11 ~input_bias_scale = bias_scale;

12 =input_control = 1;

13

14 DMA _ddr2stream ((UINTPTR)B, (int) ((B.x+«B_y«N_in«N_out)/2));
15 DMA _wait_ddr2stream () ;

16

17 DMA _ddr2stream ((UINTPTR) bias, (int)(N_out));

18 DMA _wait_ddr2stream () ;

19

20 DMA _stream2ddr ((UINTPTR)C, (int)(A_X+«A_Y«N_out));
21

22 DMA _ddr2stream ((UINTPTR)A, (int)(Ax+A_y=N_in));
23 DMA _wait_ddr2stream () ;

24

25 DMA _wait_stream2ddr () ;

26 }

Figure 6.3: Functions that issues the execution of the convolution hardware accelerator.

6.2 Experimental results

Table 6.1 shows the resource usage of the RetinaNet hardware/software implementation. Most of the
resources are used by the convolution accelerator. All the DSPs used are in this component, and 89 of
the 92 BRAMs used are in the accelerator. The DMA is the second component to use more resources,
however it only accounts for 2.9 % of LUT usage and 2.1 % of Flip-flop usage. The DMA also uses 3
BRAM for buffering proposes. The other components have a negligible resource usage.

The high LUT usage of the system makes it harder to optimize the signal paths ending up with long

paths between registers. This issue make it difficult to achieve high clock frequencies. A clock period of

Component _ LUT _ FF _ BRAM . DSP

Units Used Units Used Units Used Units Used

used | percentage | used | percentage | used | percentage | used | percentage
Convolution Accelerator 44,940 84.5% 42,695 40.1 % 89 401 % 128 63.6 %
DMA 1,565 29% 2,231 21 % 3 21% 0 0.0%
axi_mem_intercon 541 1.0 % 648 0.6 % 0 0.0 % 0 0.0 %
ps7_0_axi_periph 503 0.9% 657 0.6 % 0 0.0% 0 0.0 %
Processor System Reset 16 0.0 % 33 0.0 % 0 0.0 % 0 0.0 %
Total 47,565 89.4% 46,264 43.4 % 92 422% 128 63.6 %

Table 6.1: Resource usage of RetinaNet hardware/software implementation.

61

1 void classification(float+« C, float+« A, int~ Cx, int« Cly, int Ax, int
Ay, float input_scale, int input_scale_int){

g quant(int_data2 ,A,Ax+A_y=256,input_scale);

g xyz_to_zxy(int_data, int_data2, &int_data_x, &int_data.y, Ax, A.y,

6 Xil,gggz:heFlushRange((INTPTR) int_data, (u32)(int_.data_x=+int_data_y+256+«
sizeof (int8_t)));

273 conv_hw(int_data2 ,int_data , classification_conv1_weight,

classification_convi_bias ,&int_data2_x ,&int_data2_y ,int_data_x,
int_data.y ,3,3,256,256,4,input_scale_int ,6,8);

9 conv_hw(int_data ,int_data2 ,classification_.conv2_weight,
classification_conv2_bias ,&int_data_x ,&int_data_y ,int_data2_x,
int_data2_.y ,3,3,256,256,4,4,6,8);

10 conv_hw(int_data2 ,int_data ,classification_conv3_weight,
classification_conv3_bias ,&int_data2_x ,&int_data2_y ,int_data_x,
int_data.y ,3,3,256,256,4,4,6,8);

11 conv_hw(int_data ,int_data2 ,classification_conv4_weight ,
classification_conv4_bias ,&int_data_x ,&int_data_y ,int_data2_x,
int_data2_.y ,3,3,256,256,4,4,6,8);

12

13 Xil_ICachelnvalidateRange ((INTPTR) int_.data , (u32)(int.data_x=+int_data.y
«256+sizeof (int8_t)));

14 zxy_to_xyz(int_data2 , int_data, &int_.data2_x, &int_data2_y, int_data_x,

int_data_.y , 256);

15

16 dequant(data,int_.data2 ,256«int_data2_x+int_.data2_y ,0.0625);

17

18 conv_float(data2,data, classification_conv5_weight ,
classification_convb5_bias ,&data2_x,&data2_y,int_data2_x ,int_data2._y
,3,3,256,720,1,1);

19

20 sigmoid(data2,data2,&data2_x,&data2_y ,data2_x,data2_y,720,0.00195313);
21

22 arrange_tensor(C,data2,C.x,C_y,data2_x ,data2_y,720,80);

23 }

Figure 6.4: Functions that implements a convolution stage using the convolution hardware accelerator.

10 ns was attempted, however the big route delays made it unsuccessful.

The achieved clock period was 14 ns, having a worst setup slack of 0.038 ns. To achieve this
results, several synthesis and implementation Vivado strategies were tried. The set of Vivado strategies
that enabled the best results were the synthesis strategy Flow_PerfOptimized_high together with the
implementation strategy Performance_ExplorePostRoutePhysOpt.

The critical path is in the data path of the convolution accelerator between a flip-flop and a DSP
register. The route delay accounts for 89 % of the total delay of this path. Figure 6.5 shows the critical
path in the floor plan of the targeted device. As shown, the path is very long, crossing almost through
the entire length of the FPGA.

Table 6.2 shows the time profiling of the hardware/software implementation together with the software

only implementation. A more detailed layer-by-layer comparison between both implementations can be

62

Figure 6.5: Critical path of RetinaNet hardware/software implementation (in white) shown in the floor
plan of the targeted device.

seen in appendix B.

As seen on appendix B the layers with an input activation matrix of 80x80x256 dimension, these
are the biggest convolution layers implemented in hardware, take about 519 ms to execute. Comparing
the execution of a single layer between both software only and hardware/software implementation a
speedup of 359 is achieved. When looking to the overall speedup of a single convolution or regression
stage the speedups achieved are much lower, since one of the layers in each stage in not executed
in the convolution accelerator. In the HW/SW implementation the time taken by the convolution that is
processed in software accounts for 87 % of time taken by the regression stage where it belongs. This
number is even higher for the convolution stages where the software processed convolution accounts
for 98 % of the total time of the stage.

The speedup achieved in overall by the regressions stages is 35, much higher than the 2.9 speedup
achieved by the classification stages. This is due to the fact that the software processed convolution
layer in the classification stages is bigger than the software processed convolution layer in the regression
stages.

The total speedup achieved by the HW/SW implementation is 4.6. There is a great potential to

achieve higher speedups by accelerating more layers.

6.3 Conclusion

In this chapter the HW/SW implementation was developed and detailed, both the hardware architecture
and the embedded software were shown. A new function was made to issue transfer orders to the
DMA and to load control data into the convolution accelerator. Special care was taken to ensure caches
were cleaned or flushed to maintain the memory integrity between the ARM processor and the hardware
accelerator.

The resource usage and timing results of the HW/SW implementation were also shown in this chap-

ter. The high usage of LUTs made it impossible to achieve lower clock periods than 14 ns, since the

63

Xilinx Zyng-7020 SW only (ARM Cortex A9)

Xilinx Zyng-7020 HW/SW (ARM Cortex A9)

Stage Execution time | Partial execution time Execution time Partial execution time Speedup
S ‘ % % S ‘ % %

Regression S2 764 - 31.7 212 - 76.3 36.0
Regression S3 157 - 6.5 5.1 - 18.4 30.7
Regression S4 39 - 1.6 1.1 - 4.1 34.6
Regression S5 9 - 0.4 0.3 - 1.0 32.9
Regression S6 2 - 0.1 0.1 - 0.2 35.8
Total Regression 971 40.3 100.0 27.8 5.3 100.0 35.0
Classification S2 1,118 - 46.4 376.1 - 76.3 3.0
Classification S3 243 - 10.1 90.9 - 18.4 2.7
Classification S4 58 - 24 20.2 - 4.1 2.9
Classification S5 14 - 0.6 5.0 - 1.0 2.8
Classification S6 3 - 0.1 1.0 - 0.2 3.0
Total Classification 1,436 59.7 100.0 493.2 94.7 100.0 2.9
Total 2,407 100.0 - 521.0 100.0 - 4.6

Table 6.2: Time profiling of RetinaNet hardware/software implementation and comparison with software
only implementation.

route delays were high.

The speedup between the HW/SW implementation and the software only implementation were ob-
tained. The HW/SW implementation achieves a speedup of 359 in a single layer, however some layers

were not processed using the hardware convolution accelerator which made the overall speedup to be

4.6.

64

Chapter 7

Conclusion

The chosen object detection DNN to be accelerated in this work was RetinaNet-18. This network is
composed by a total of 174 layers of which 78 are convolution layers. This DNN is known for high-end
accuracy results, however due to its large size it has above average inference latencies. The objective
of this work was to reduce the inference latencies in a resource limited embedded environment, with a
minimal loss of accuracy of the network.

Weights and activations from 68 of the 78 convolution layers in RetinaNet were quantized, using
quantization aware training. A study with different quantizations was made to determine the more ade-
quate trade-off between accuracy and memory usage. The chosen quantization of 4 bits weights and 8
bits activations and bias achieved better results than competitive DNNs with similar sizes, and occupies
8 times less memory for the storage of the weights than the non quantized RetinaNet.

The entire RetinaNet was implemented in C, two versions were created, one using floating point
data and the other using the quantization chosen in the quantization study. It was determined that 76.2
% of the inference time of the DNN was derived from the two last parts of RetinaNet, the regression
and convolution sub-networks. These two parts of the object detection DNN account together for 50
convolution layers that were implemented in a Xilinx Zyng-7020 embedded system. The timing results
from this implementation were registered to be used as baseline for the comparison with the accelerated
system. The results showed that convolution layers were the main responsible for the inference latency
time in DNNs. 40 (of the 50) convolution layers were quantized and therefore suitable to be accelerated
in hardware.

A convolution hardware accelerator was created, with 16 PEs, each one capable of doing 8 MAC
operations in parallel, which can to achieve 128 MAC operations per clock cycle. Three specially de-
signed memory arrangements were made to accommodate the activations, weights and bias in internal
FPGA memory, reducing the latency issues of accessing an external memory randomly. In spite of the
limited size of internal FPGA memory, the total reuse of data was possible, due to a carefully optimized
scheduling of operations and the designed internal memory arrangements.

The convolution hardware accelerator was integrated in a co-designed hardware software implemen-

tation. This system achieved a speedup of 4.6 compared to the baseline implementation. This results

65

also showed a speedup of 359 comparing a hardware processed layer with a software processed layer.
The final results are very promising, introducing a proof of concept for the expansion of the convolution

layer acceleration to more layers.

7.1 Future Work

Two different strategies can be adopted to improve the work. The first one is adapting the system
to enable more convolution layers to be processed by the convolution layer accelerator, as shown in
section 7.1.1. The other strategy is optimizing the hardware architecture to use less resources, reducing

route delays and enabling higher clock frequencies, as showed in section 7.1.2.

7.1.1 Expand convolution layer acceleration to more layers

The big difference between the speedup achieved by a single convolution layer and the entire system
speedup, shows big room for improvements by just processing more convolution layers in the convolu-
tion hardware accelerator. There are two reasons why more layer are not yet being processed by the

accelerator:

» There are layers that could not be quantized without affecting the capacity for the system to detect

objects.
» Some layers have different properties from the ones that the convolution accelerator supports.

To solve the problem of having convolution layers that are not quantized, an in depth study should
be taken to understand the reasons behind it. The quantization of bias, that was not tried in this work,
could make it possible to quantize these layers. In addition, trying different quantization, like 16 bit-width
activations and weights in a quantization aware framework could be the key to enable the quantization
of these convolution layers. In terms of memory capacity theoretically the used convolution accelerator
architecture can be scaled to accommodate 16 bit-width activations, in the worst case it would be nec-
essary to reduce to half the number of PEs. The reduction in the number of PEs would have a negative
impact on the inference latency of a single convolution layer, however the time saved by accelerating all
layers would compensate for that loss.

Measures can be taken to make the convolution accelerator compatible with a bigger diversity of con-
volution layers properties. These are the current fixed characteristics that do not support all convolution

layers in RetinaNet:

+ Fixed kernel size of 3x3, not supported by the first convolution layer that has a 7x7 kernel, down-

sample convolution layers and some FPN convolutions layers that use 1x1 kernel;
« Fixed stride and padding, not supported by several layers across the network;

+ 256 input and output number of channels, not supported by several layers across the network;

66

* Maximum x and y dimension of 80x80 for the input activation matrices, not supported by some
convolution layers in the stage 2 of ResNet and all convolution layers in the stage 0 and 1 of
ResNet;

To make the accelerator compatible with 7x7 kernel size, more memory resources must be used
to store more weights and activations. However, to make it flexible to accept smaller kernels is much
easier, as changes have only to be made to the schedule of operations, so that the size of the kernel
loop iterations are dependent on the kernel size.

The stride and padding flexibility can be dealt in the same way of the kernel size, and the only
changes to be made are in the scheduling of operations.

If the number of input and output channels are less than 256, changes have to be made to the
scheduler and some shortcuts in the shift registers of the activation memory have to be added. If the
number of input or output channels are bigger than 256, the best solution might be dividing the input
matrices in smaller dimensions and process the same layer several times in the convolution accelerator
as if it were different layers. The results of the smaller matrices have to be concatenated or summed
together at the end depending on the case.

To add larger input and output activations in the x and y dimensions compatibly, the same strategy of
divide and conquer of the solution for larger input and ouput channels can be used. The input matrices
are divided in smaller ones, that are processed individually and then concatenated using the ARM

processor.

7.1.2 Optimize hardware accelerator

One way to optimize the hardware accelerator and reduce the resource usage, is sharing one sum tree
with all PEs. The sum tree can be pipelined and have a throughput of 1 activation per clock cycle. This
change is not going to have a significant impact in performance because the output stream is only able
to transmit 1 activation per clock cycle. In addition, the PEs already have to wait for the new activations
to be loaded into the internal FPGA memory, so there is no advantage in having a fast output data flow.

The nested loops used for the convolution algorithm in the HLS code are not ideal to be mapped
to hardware. The HLS code only allows to pipeline the inner loop. Nested loops make it difficult for
the developer to have fine control over the architectural details. A single loop approach where a single

iteration variable control a set of if statements is a better approach to control the schedule of operations.

67

68

Bibliography

[1] J. Walsh, N. O’ Mahony, S. Campbell, A. Carvalho, L. Krpalkova, G. Velasco-Hernandez, S. Hara-
panahalli, and D. Riordan. Deep learning vs. traditional computer vision. 04 2019. ISBN 978-981-
13-6209-5. doi: 10.1007/978-3-030-17795-9_10.

[2] M. Aryal. Object detection, classification, and tracking for autonomous vehicle. Master’s thesis,
Grand Valley State University, 12 2018.

[38] A. Raghunandan, M. Mohana, R. Pakala, and R. V. Object detection algorithms for video surveil-
lance applications. 04 2018. doi: 10.1109/ICCSP.2018.8524461.

[4] S. Kamate and N. Yilmazer. Application of object detection and tracking techniques for unmanned
aerial vehicles. Procedia Computer Science, 61:436 — 441, 2015. ISSN 1877-0509. doi: https:
//doi.org/10.1016/j.procs.2015.09.183. URL http://www.sciencedirect.com/science/article/
pii/S1877050915030136. Complex Adaptive Systems San Jose, CA November 2-4, 2015.

[5] L. Hu and Q. Ni. lot-driven automated object detection algorithm for urban surveillance systems in
smart cities. IEEE Internet of Things Journal, 5(2):747—754, April 2018. doi: 10.1109/JI0T.2017.
2705560.

[6] S. Benhimane, H. Najafi, M. Grundmann, Y. Genc, N. Navab, and E. Malis. Real-time object detec-
tion and tracking for industrial applications. In VISAPP, 2008.

[7] Z.Li, M. Dong, S. Wen, X. Hu, P. Zhou, and Z. Zeng. Clu-cnns: Object detection for medical images.
Neurocomputing, 350:53 — 59, 2019. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2019.
04.028. URL http://www.sciencedirect.com/science/article/pii/S0925231219305521.

[8] X. Zhao, E. Delleandrea, and L. Chen. A people counting system based on face detection and
tracking in a video. In 2009 Sixth IEEE International Conference on Advanced Video and Signal
Based Surveillance, pages 67—72, Sep. 2009. doi: 10.1109/AVSS.2009.45.

[9] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[10] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes challenge: A retrospective. International Journal of Computer Vision,
111(1):98-136, Jan. 2015.

69

http://www.sciencedirect.com/science/article/pii/S1877050915030136
http://www.sciencedirect.com/science/article/pii/S1877050915030136
http://www.sciencedirect.com/science/article/pii/S0925231219305521

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278—-2324, Nov 1998. ISSN 1558-2256. doi:
10.1109/5.726791.

[12] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L.

Zitnick, and P. Dollar. Microsoft coco: Common objects in context, 2015.

[13] V. Sze, Y. Chen, T. Yang, and J. S. Emer. Efficient processing of deep neural networks: A tutorial
and survey. Proceedings of the IEEE, 105(12):2295-2329, Dec 2017. ISSN 1558-2256. doi:
10.1109/JPROC.2017.2761740.

[14] A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In F Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1097-1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[15] X. Han, Y. Zhong, C. Liqin, and L. Zhang. Pre-trained alexnet architecture with pyramid pooling and
supervision for high spatial resolution remote sensing image scene classification. Remote Sensing,
9:848, 08 2017. doi: 10.3390/rs9080848.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

[17] FE Ramzan, M. U. G. Khan, A. Rehmat, S. Igbal, T. Saba, A. Rehman, and Z. Mehmood. A deep
learning approach for automated diagnosis and multi-class classification of alzheimer’s disease
stages using resting-state fmri and residual neural networks. Journal of Medical Systems, 44:37,
12 2019. doi: 10.1007/s10916-019-1475-2.

[18] Z.-Q. Zhao, P. Zheng, S. tao Xu, and X. Wu. Object detection with deep learning: A review, 2018.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detec-

tion and semantic segmentation, 2013.

[20] T. Evgeniou and M. Pontil. Support vector machines: Theory and applications. volume 2049, pages
249-257, 01 2001. doi: 10.1007/3-540-44673-7_12.

[21] R. Girshick. Fast r-cnn, 2015.

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region

proposal networks, 2015.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object
detection, 2015.

[24] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal loss for dense object detection, 2017.

70

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1512.03385

[25] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks for
object detection, 2016.

[26] X. Yang, M. Gao, J. Pu, A. Nayak, Q. Liu, S. E. Bell, J. O. Setter, K. Cao, H. Ha, C. Kozyrakis, and

M. Horowitz. Dnn dataflow choice is overrated, 2018.

[27] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry. Accelerating cnn inference on fpgas: A survey,
2018.

[28] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song, et al. Going
deeper with embedded fpga platform for convolutional neural network. In Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, page 26—-35. ACM,
2016.

[29] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-efficient reconfigurable accelerator
for deep convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1):127-138, Jan
2017. ISSN 1558-173X. doi: 10.1109/JSSC.2016.2616357.

[30] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko. Quanti-

zation and training of neural networks for efficient integer-arithmetic-only inference, 2017.

[81] J. Su. Artificial Neural Networks Acceleration on Field-Programmable Gate Arrays Considering
Model Redundancy. PhD thesis, Imperial College London, 2018.

[32] J. Wang, Q. Lou, X. Zhang, C. Zhu, Y. Lin, and D. Chen. Design flow of accelerating hybrid extremely
low bit-width neural network in embedded fpga, 2018.

[33] A. Pappalardo. Xilinx/brevitas. URL https://doi.org/10.5281/zenodo.3333552.

[34] Y. Henon. pytorch-retinanet. URL https://github.com/yhenon/pytorch-retinanet. Visited on
28-05-2021.

71

https://doi.org/10.5281/zenodo.3333552
https://github.com/yhenon/pytorch-retinanet

72

Appendix A

RetinaNet specifications

Layer Input Weight Bias

Name | Type | X [Y [Z [Total Nout [Nin [X[Y [Total | Total

Resnet SO Conv Conv 640 640 3 1228800 64 3 7 7 9408 0
Resnet SO Batchnorm BN 320 320 64 6553600 1 1 4 64 256 0
Resnet SO RelLu ReLu 320 320 64 6553600 0 0 0 0 0 0
Resnet SO Maxpool Mpool 320 320 64 6553600 0 0 O 0 0 0
Resnet S1 B1 Conv1 Conv 160 160 64 1638400 64 64 3 3 36864 0
Resnet S1 B1 Batchnorm1 BN 160 160 64 1638400 1 1 4 64 256 0
Resnet S1 B1 ReLuf1 ReLu 160 160 64 1638400 0 0 0 0 0 0
Resnet S1 B1 Conv2 Conv 160 160 64 1638400 64 64 3 3 36864 0
Resnet S1 B1 Batchnorm2 Bn 160 160 64 1638400 1 1 4 64 256 0
Resnet S1 B1 Sum3D Sum 160 160 64 1638400 0 0 O 0 0 0
Resnet S1 B1 ReLu2 ReLu 160 160 64 1638400 0 0 O 0 0 0
Resnet S1 B2 Conv1 Conv 160 160 64 1638400 64 64 3 3 36864 0
Resnet S1 B2 Batchnorm1 BN 160 160 64 1638400 1 1 4 64 256 0
Resnet S1 B2 RelL.u1 ReLu 160 160 64 1638400 0 0 O 0 0 0
Resnet S1 B2 Conv2 Conv 160 160 64 1638400 64 64 3 3 36864 0
Resnet S1 B2 Batchnorm2 BN 160 160 64 1638400 1 1 4 64 256 0
Resnet S1 B2 Sum3D Sum 160 160 64 1638400 0 0 O 0 0 0
Resnet S1 B2 ReLu2 ReLu 160 160 64 1638400 0 0 O 0 0 0
Resnet S2 B1 Conv1 Conv 160 160 64 1638400 128 64 3 3 73728 0
Resnet S2 B1 Batchnorm1 BN 80 80 128 819 200 1 1 4 128 512 0
Resnet S2 B1 ReLuf1 ReLu 80 80 128 819 200 0 0 0 0 0 0
Resnet S2 B1 Conv2 Conv 80 80 128 819200 128 128 3 3 147 456 0
Resnet S2 B1 Batchnorm2 BN 80 80 128 819 200 1 1 4 128 512 0
Resnet S2 B1 Conv D Conv 160 160 64 1638400 128 64 1 1 8 192 0
Resnet S2 B1 Batchnorm D BN 80 80 128 819 200 1 1 4 128 512 0
Resnet S2 B1 Sum3D Sum 80 80 128 819 200 0 0 O 0 0 0
Resnet S2 B1 RelLu2 RelLu 80 80 128 819 200 0 0 O 0 0 0
Resnet S2 B2 Conv1 Conv 80 80 128 819200 128 128 3 3 147 456 0
Resnet S2 B2 Batchnorm1 BN 80 80 128 819 200 1 1 4 128 512 0
Resnet S2 B2 RelLu1 RelLu 80 80 128 819 200 0 0 O 0 0 0
Resnet S2 B2 Conv2 Conv 80 80 128 819200 128 128 3 3 147 456 0
Resnet S2 B2 Batchnorm2 BN 80 80 128 819 200 1 1 4 128 512 0
Resnet S2 B2 Sum3D Sum 80 80 128 819 200 0 0 O 0 0 0
Resnet S2 B2 RelLu2 RelLu 80 80 128 819 200 0 0 O 0 0 0

Table A.1: RetinaNet layer by layer specification part 1.

AA

Layer Input Weight Bias

Name | Type [X [Y [Z | Total Nout [Nin [X | Y | Total Total

Resnet S3 B1 Conv1 Conv 80 80 128 819200 256 128 3 3 294 912 0
Resnet S3 B1 Batchnorm1 BN 40 40 256 409 600 1 1 4 256 1024 0
Resnet S3 B1 RelLuft ReLu 40 40 256 409 600 0 0 O 0 0 0
Resnet S3 B1 Conv2 Conv 40 40 256 409600 256 256 3 3 589 824 0
Resnet S3 B1 Batchnorm2 BN 40 40 256 409 600 1 1 4 256 1024 0
Resnet S3 B1 Conv D Conv 80 80 128 819200 256 128 1 1 32 768 0
Resnet S3 B1 Batchnorm D BN 40 40 256 409 600 1 1 4 256 1024 0
Resnet S3 B1 Sum3D Sum 40 40 256 409 600 0 0 O 0 0 0
Resnet S3 B1 RelLu2 ReLu 40 40 256 409 600 0 0 O 0 0 0
Resnet S3 B2 Conv1 Conv 40 40 256 409600 256 256 3 3 589 824 0
Resnet S3 B2 Batchnorm1 BN 40 40 256 409 600 1 1 4 256 1024 0
Resnet S3 B2 Reluft ReLu 40 40 256 409 600 0 0 O 0 0 0
Resnet S3 B2 Conv2 Conv 40 40 256 409600 256 256 3 3 589 824 0
Resnet S3 B2 Batchnorm2 BN 40 40 256 409 600 1 1 4 256 1024 0
Resnet S3 B2 Sum3D Sum 40 40 256 409 600 0 0 O 0 0 0
Resnet S3 B2 RelLu2 ReLu 40 40 256 409 600 0 0 O 0 0 0
Resnet S4 B1 Conv1 Conv 40 40 256 409600 512 256 3 3 1179648 0
Resnet S4 B1 Batchnorm1 BN 20 20 512 204 800 1 1 4 512 2048 0
Resnet S4 B1 Reluft ReLu 20 20 512 204 800 0 0 O 0 0 0
Resnet S4 B1 Conv2 Conv 20 20 512 204800 512 512 3 3 2359296 0
Resnet S4 B1 Batchnorm2 BN 20 20 512 204 800 1 1 4 512 2048 0
Resnet S4 B1 Conv D Conv 40 40 256 409600 512 256 1 1 131 072 0
Resnet S4 B1 Batchnorm D BN 20 20 512 204 800 1 1 4 512 2048 0
Resnet S4 B1 Sum3D Sum 20 20 512 204 800 0 0 O 0 0 0
Resnet S4 B1 RelLu2 ReLu 20 20 512 204 800 0 0 O 0 0 0
Resnet S4 B2 Conv1 Conv 20 20 512 204800 512 512 3 3 2359296 0
Resnet S4 B2 Batchnorm1 BN 20 20 512 204 800 1 1 4 512 2048 0
Resnet S4 B2 Relut ReLu 20 20 512 204 800 0 0 O 0 0 0
Resnet S4 B2 Conv2 Conv 20 20 512 204800 512 512 3 3 2359296 0
Resnet S4 B2 Batchnorm2 BN 20 20 512 204 800 1 1 4 512 2048 0
Resnet S4 B2 Sum3D Sum 20 20 512 204 800 0 0 O 0 0 0
Resnet S4 B2 RelLu2 ReLu 20 20 512 204 800 0 0 O 0 0 0
FPN S5 P5 Conv Conv 20 20 512 204800 256 512 3 3 1179648 256
FPN S6 P6 RelLu ReLu 10 10 256 25 600 0 0 O 0 0 0
FPN S6 P6 Conv Conv 10 10 256 25600 256 256 3 3 589824 256
FPN S4 M4 Conv Conv 20 20 512 204800 256 512 1 1 131072 256
FPN S4 Upsample Ups 20 20 256 102 400 0 0 O 0 0 0
FPN S4 P4 Conv Conv 20 20 256 102400 256 256 3 3 589824 256
FPN S3 M3 Conv Conv 40 40 256 409600 256 256 1 1 65536 256
FPN S3 Sum3D Sum 40 40 256 409 600 0 0 O 0 0 0
FPN S3 Upsample Ups 40 40 256 409 600 0 0 O 0 0 0
FPN S3 P3 Conv Conv 40 40 256 409600 256 256 3 3 589824 256
FPN S2 M2 Conv Conv 80 80 128 819200 256 128 1 1 32768 256
FPN S2 Sum3D Sum 80 80 256 1638400 0 0 O 0 0 0
FPN S2 P2 Conv Conv 80 80 256 1638400 256 256 3 3 589824 256

Table A.2: RetinaNet layer by layer specification part 2.

A2

Layer Input ei Bias

Name | Type | X [Y] Z Total Nout | Nin | X Total | Total
Regression2 Convl Conv 80 80 256 1638400 256 256 3 589824 256
Regression 2 ReLu1 ReLu 80 80 256 1638400 0 0 O 0 0
Regression2 Conv2 Conv 80 80 256 1638400 256 256 3 589824 256
Regression 2 ReLu2 ReLu 80 80 256 1638400 0 0 O 0 0
Regression2 Conv3 Conv 80 80 256 1638400 256 256 3 589824 256
Regression 2 ReLu3 ReLu 80 80 256 1638400 0 0 0 0 0
Regression2 Conv4 Conv 80 80 256 1638400 256 256 3 589824 256
Regression 2 ReLu4 ReLu 80 80 256 1638400 0 0 0 0 0
Regression2 Conv5 Conv 80 80 256 1638400 36 256 3 82 944 36
Regression 3 Convl Conv 40 40 256 409600 256 256 3 589824 256
Regression 3 ReLu1l Relu 40 40 256 409 600 0 0 0 0 0
Regression 3 Conv2 Conv 40 40 256 409600 256 256 3 589824 256
Regression 3 ReLu2 RelLu 40 40 256 409 600 0 0 O 0 0
Regression 3 Conv3 Conv 40 40 256 409600 256 256 3 589824 256
Regression 3 ReLu3 RelLu 40 40 256 409 600 0 0 0 0 0
Regression 3 Convd Conv 40 40 256 409600 256 256 3 589824 256
Regression 3 ReLu4 RelLu 40 40 256 409 600 0 0 0 0 0
Regression 3 Conv5 Conv 40 40 256 409 600 36 256 3 82 944 36
Regression 4 Convl Conv 20 20 256 102400 256 256 3 589824 256
Regression 4 ReLul ReLu 20 20 256 102 400 0 0 0 0 0
Regression 4 Conv2 Conv 20 20 256 102400 256 256 3 589824 256
Regression 4 ReLu2 ReLu 20 20 256 102 400 0 0 0 0 0
Regression 4 Conv3 Conv 20 20 256 102400 256 256 3 589 824 256
Regression 4 ReLu3 ReLu 20 20 256 102 400 0 0 O 0 0
Regression 4 Convd Conv 20 20 256 102400 256 256 3 589824 256
Regression 4 ReLu4 RelLu 20 20 256 102 400 0 0 0 0 0
Regression 4 Conv5 Conv 20 20 256 102 400 36 256 3 82 944 36
Regression 5 Convi Conv 10 10 256 25600 256 256 3 589824 256
Regression 5 ReLui ReLu 10 10 256 25 600 0 0 0 0 0
Regression 5 Conv2 Conv 10 10 256 25600 256 256 3 589 824 256
Regression 5 ReLu2 ReLu 10 10 256 25600 0 0 O 0 0
Regression 5 Conv3 Conv 10 10 256 25600 256 256 3 589 824 256
Regression 5 ReLu3 RelLu 10 10 256 25600 0 0 O 0 0
Regression 5 Convd Conv 10 10 256 25600 256 256 3 589824 256
Regression 5 ReLu4 ReLu 10 10 256 25600 0 0 0 0 0
Regression 5 Conv5 Conv 10 10 256 25600 36 256 3 82 944 36
Regression 6 Convli Conv 5 5 256 6400 256 256 3 589824 256
Regression6 ReLul ReLu 5 5 256 6 400 0 0 0 0 0
Regression 6 Conv2 Conv 5 5 256 6400 256 256 3 589824 256
Regression6 ReLu2 ReLu 5 5 256 6 400 0 0 0 0 0
Regression6 Conv3 Conv 5 5 256 6400 256 256 3 589824 256
Regression6 ReLu3 ReLu 5 5 256 6 400 0 0 O 0 0
Regression 6 Conv4 Conv 5 5 256 6400 256 256 3 589 824 256
Regression 6 ReLu4 ReLu 5 5 256 6 400 0 0 0 0 0
Regression6 Conv5 Conv 5 5 256 6 400 36 256 3 82 944 36

A3

Table A.3: RetinaNet layer by layer specification part 3.

Layer Input Weight Bias

Name | Type [X[Y[Z | Total Nout [Nin [X [Y| Total Total
Classification 2 Conv1 Conv 80 80 256 1638400 256 256 3 3 589824 256
Classification 2 ReLut ReLu 80 80 256 1638400 0 0O 0 O 0 0
Classification 2 Conv2 Conv 80 80 256 1638400 256 256 3 3 589824 256
Classification 2 ReLu2 ReLu 80 80 256 1638400 0 0 0 O 0 0
Classification 2 Conv3 Conv 80 80 256 1638400 256 256 3 3 589824 256
Classification 2 ReLu3 ReLu 80 80 256 1638400 0 0 0 O 0 0
Classification 2 Conv4 Conv 80 80 256 1638400 256 256 3 3 589824 256
Classification 2 ReLu4 ReLu 80 80 256 1638400 0 0O 0 O 0 0
Classification 2 Conv5 Conv 80 80 256 1638400 720 256 3 3 1658880 720
Classification 2 Sigmoid ~ Sig 80 80 720 4608000 0 0 0 O 0 0
Classification 3 Conv1 Conv 40 40 256 409600 256 256 3 3 589824 256
Classification 3 RelLut ReLu 40 40 256 409 600 0 0 0 O 0 0
Classification 3 Conv2 Conv 40 40 256 409600 256 256 3 3 589 824 256
Classification 3 ReLu2 ReLu 40 40 256 409 600 0 0 0 O 0 0
Classification 3 Conv3 Conv 40 40 256 409600 256 256 3 3 589824 256
Classification 3 ReLu3 ReLu 40 40 256 409 600 0 0O 0 O 0 0
Classification 3 Conv4 Conv 40 40 256 409600 256 256 3 3 589824 256
Classification 3 ReLu4 ReLu 40 40 256 409 600 0 0 0 O 0 0
Classification 3 Conv5 Conv 40 40 256 409600 720 256 3 3 1658880 720
Classification 3 Sigmoid Sig 40 40 720 1152000 0 0O 0 O 0 0
Classification 4 Conv1 Conv 20 20 256 102400 256 256 3 3 589824 256
Classification 4 RelLuf ReLu 20 20 256 102 400 0 0 0 O 0 0
Classification 4 Conv2 Conv 20 20 256 102400 256 256 3 3 589824 256
Classification 4 RelLu2 ReLu 20 20 256 102 400 0 0 0 O 0 0
Classification 4 Conv3 Conv 20 20 256 102400 256 256 3 3 589824 256
Classification 4 ReLu3 ReLu 20 20 256 102 400 0 0 0 O 0 0
Classification 4 Conv4 Conv 20 20 256 102400 256 256 3 3 589824 256
Classification 4 ReLu4 ReLu 20 20 256 102 400 0 0O 0 O 0 0
Classification 4 Conv5 Conv 20 20 256 102400 720 256 3 3 1658880 720
Classification 4 Sigmoid Sig 20 20 720 288 000 0 0 0 O 0 0
Classification 5 Conv1 Conv 10 10 256 25600 256 256 3 3 589824 256
Classification 5 RelLuf ReLu 10 10 256 25 600 0 0 0 O 0 0
Classification 5 Conv2 Conv 10 10 256 25600 256 256 3 3 589824 256
Classification 5 ReLu2 ReLu 10 10 256 25 600 0 0 0 O 0 0
Classification 5 Conv3 Conv 10 10 256 25600 256 256 3 3 589824 256
Classification 5 ReLu3 ReLu 10 10 256 25 600 0 0 0 O 0 0
Classification 5 Conv4 Conv 10 10 256 25600 256 256 3 3 589824 256
Classification 5 ReLu4 ReLu 10 10 256 25 600 0 0O 0 O 0 0
Classification 5 Conv5 Conv 10 10 256 25600 720 256 3 3 1658880 720
Classification 5 Sigmoid Sig 10 10 720 72 000 0 0 0 O 0 0
Classification 6 Conv1 Conv. 5 5 256 6400 256 256 3 3 589824 256
Classification 6 ReLut RelLu 5 5 256 6 400 0 0O 0 O 0 0
Classification 6 Conv2 Conv 5 5 256 6400 256 256 3 3 589824 256
Classification 6 ReLu2 ReLu 5 5 256 6 400 0 0 0 O 0 0
Classification 6 Conv3 Conv. 5 5 256 6400 256 256 3 3 589 824 256
Classification 6 ReLu3 RelLu 5 5 256 6 400 0 0O 0 O 0 0
Classification 6 Conv4 Conv 5 5 256 6400 256 256 3 3 589824 256
Classification 6 ReLu4 RelLu 5 5 256 6 400 0 0O 0 O 0 0
Classification 6 Conv5 Conv 5 5 256 6400 720 256 3 3 1658880 720
Classification 6 Sigmoid Sig 5 5 720 18 000 0 0 0 O 0 0

Table A.4: RetinaNet layer by layer specification part 4.

A4

Appendix B

RetinaNet detailed time profiling

Xilinx Zyng-7020 SW only (ARM Cortex A9)

Xilinx Zyng-7020 HW/SW (ARM Cortex A9)

Stage Execution time | Partial execution time Execution time | Partial execution time Speedup
S ‘ % % S ‘ % %

Extra 0.055 - 0.0 0.199 - 0.9 0.28
Regression S2 Conv1l 186.270 - 244 0518 - 2.4 359.59
Regression S2 Conv2 186.264 - 244 0519 - 2.5 358.89
Regression S2 Conv3 186.002 - 244 0.519 - 2.5 358.39
Regression S2 Conv4 186.274 - 244 0518 - 2.4 359.60
Regression S2 Conv5 18.761 - 25 18.897 - 89.3 0.99
Total Regression S2 763.626 31.7 100.0 21.170 4.1 100.0 36.07
Extra 0.023 - 0.0 0.033 - 0.6 0.70
Regression S3 Conv1 38.066 - 242 0.128 - 2.5 297.39
Regression S3 Conv2 38.123 - 243 0.129 - 25 295.53
Regression S3 Conv3d 38.125 - 243 0.128 - 2.5 297.85
Regression S3 Conv4 38.124 - 243 0.129 - 2.5 295.53
Regression S3 Conv5 4.541 - 29 4567 - 89.3 0.99
Total Regression S3 157.002 6.5 100.0 5.114 1.0 100.0 30.70
Extra 0.005 - 0.0 0.007 - 0.6 0.71
Regression S4 Conv1 9.518 - 244 0.032 - 2.8 297.44
Regression S4 Conv2 9.518 - 24.4 0.032 - 2.8 297.44
Regression S4 Conv3 9.519 - 244 0.032 - 2.8 297.47
Regression S4 Conv4 9.519 - 24.4 0.032 - 2.8 297.47
Regression S4 Conv5 0.977 - 25 0.995 - 88.1 0.98
Total Regression S4 39.056 1.6 100.0 1.130 0.2 100.0 34.56
Extra 0.001 - 0.0 0.001 - 0.4 1.00
Regression S5 Conv1 2.259 - 24.3 0.009 - 3.2 251.00
Regression S5 Conv2 2.259 - 24.3 0.008 - 2.8 282.38
Regression S5 Conv3 2.259 - 24.3 0.008 - 2.8 282.38
Regression S5 Conv4 2.259 - 24.3 0.009 - 3.2 251.00
Regression S5 Conv5 0.243 - 26 0.247 - 87.6 0.98
Total Regression S5 9.280 04 100.0 0.282 0.1 100.0 32.91

Table B.1: RetinaNet detailed time profiling part 1.

B.5

Xilinx Zyng-7020 SW only (ARM Cortex A9)

Xilinx Zyng-7020 HW/SW (ARM Cortex A9)

Stage Execution time Partial execution time | Execution time | Partial execution time Speedup
S | % % s | % %

Extra 0.000 - 0.0 0.001 - 1.6 0.00
Regression S6 Conv1 0.543 - 24.4 0.002 - 3.2 271.50
Regression S6 Conv2 0.542 - 244 0.003 - 4.8 180.67
Regression S6 Conv3 0.542 - 24.4 0.003 - 4.8 180.67
Regression S6 Conv4 0.544 - 24.5 0.002 - 3.2 272.00
Regression S6 Conv5 0.050 - 23 0.051 - 82.3 0.98
Total Regression S6 2.221 0.1 100.0 0.062 0.0 100.0 35.82
Extra 0.056 - 0.0 0.198 - 0.1 0.28
Classification S2 Conv1 186.046 - 16.6 0.519 - 0.1 358.47
Classification S2 Conv2 186.022 - 16.6 0.519 - 0.1 358.42
Classification S2 Conv3 185.999 - 16.6 0.518 - 0.1 359.07
Classification S2 Conv4 185.999 - 16.6 0.519 - 0.1 358.38
Classification S2 Convs 373.609 - 33.4 373.834 - 99.4 1.00
Total Classification S2 1,117.731 46.4 100.0 376.107 72.2 100.0 2.97
Extra 1.117 - 0.5 1.127 - 1.2 0.99
Classification S3 Conv1 38.066 - 15.6 0.128 - 0.1 297.39
Classification S3 Conv2 38.122 - 15.7 0.129 - 0.1 295.52
Classification S3 Conv3 38.124 - 15.7 0.128 - 0.1 297.84
Classification S3 Conv4 38.125 - 15.7 0.129 - 0.1 295.54
Classification S3 Conv5 89.985 - 36.9 89.297 - 98.2 1.01
Total Classification S3 243.539 10.1 100.0 90.938 17.5 100.0 2.68
Extra 0.272 - 0.5 0.273 - 1.4 1.00
Classification S4 Conv1 9.518 - 16.4 0.032 - 0.2 297.44
Classification S4 Conv2 9.519 - 16.4 0.032 - 0.2 297.47
Classification S4 Conv3 9.518 - 16.4 0.032 - 0.2 297.44
Classification S4 Conv4 9.519 - 16.4 0.032 - 0.2 297.47
Classification S4 Convb 19.528 - 33.7 19.780 - 98.0 0.99
Total Classification S4 57.874 2.4 100.0 20.181 3.9 100.0 2.87
Extra 0.065 - 0.5 0.066 - 1.3 0.98
Classification S5 Conv1 2.259 - 16.2 0.008 - 0.2 282.38
Classification S5 Conv2 2.259 - 16.2 0.008 - 0.2 282.38
Classification S5 Conv3 2.259 - 16.2 0.009 - 0.2 251.00
Classification S5 Conv4 2.259 - 16.2 0.008 - 0.2 282.38
Classification S5 Conv5 4.876 - 349 4.901 - 98.0 0.99
Total Classification S5 13.977 0.6 100.0 5.000 1.0 100.0 2.80
Extra 0.016 - 0.5 0.017 - 1.6 0.94
Classification S6 Conv1 0.544 - 171 0.002 - 0.2 272.00
Classification S6 Conv2 0.543 - 17.0 0.003 - 0.3 181.00
Classification S6 Conv3 0.544 - 171 0.003 - 0.3 181.33
Classification S6 Conv4 0.542 - 17.0 0.002 - 0.2 271.00
Classification S6 Conv5 0.997 - 31.3 1.027 - 97.4 0.97
Total Classification S6 3.186 0.1 100.0 1.054 0.2 100.0 3.02
Total 2,407.492 100.0 - 521.038 - 100.0 4.62

Table B.2: RetinaNet detailed time profiling part 2.

B.6

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Deep Neural Networks
	2.1 Artificial Neuron
	2.2 Neural Network
	2.2.1 Fully-connected Layer

	2.3 Convolutional Neural Network
	2.3.1 Convolution Layer
	2.3.2 Pooling Layer
	2.3.3 Upsampling Layer

	2.4 Datasets for DNN training and testing
	2.5 Image classification DNN Models
	2.5.1 LeNet
	2.5.2 AlexNet
	2.5.3 VGG
	2.5.4 ResNet
	2.5.5 Performance comparison

	2.6 Object detection DNN Models
	2.6.1 R-CNN Family
	2.6.2 YOLO - You Only Look Once
	2.6.3 RetinaNet
	2.6.4 Performance comparison

	2.7 Conclusion

	3 DNN implementations on FPGAs
	3.1 Parallelism Opportunities in DNNs
	3.2 DNN accelerator
	3.3 Data Quantization
	3.3.1 Performance estimation models
	3.3.2 Existing work experimental evaluation

	4 RetinaNet embedded software implementation
	4.1 Quantization aware training framework
	4.1.1 Brevitas
	4.1.2 Quantization results

	4.2 Baseline implementation of RetinaNet in C
	4.2.1 Convolution layer implementation
	4.2.2 Overall implementation of RetinaNet
	4.2.3 Time profiling results for baseline RetinaNet

	4.3 Embedded implementation of RetinaNet in C
	4.3.1 Time profiling results for embedded software RetinaNet

	4.4 Conclusions

	5 Convolution accelerator hardware architecture
	5.1 Architecture Overview
	5.1.1 Data storage format
	5.1.2 Operations Scheduling

	5.2 Processing Elements
	5.2.1 Multiply and accumulate operators
	5.2.2 Sum tree
	5.2.3 Quantizer and ReLU

	5.3 Activation memory
	5.4 Weight memory
	5.5 Convolution IP
	5.6 Convolution accelerator results
	5.7 Conclusion

	6 RetinaNet hardware/software implementation
	6.1 Hardware/software system
	6.1.1 Hardware architecture
	6.1.2 Embedded software

	6.2 Experimental results
	6.3 Conclusion

	7 Conclusion
	7.1 Future Work
	7.1.1 Expand convolution layer acceleration to more layers
	7.1.2 Optimize hardware accelerator

	Bibliography
	A RetinaNet specifications
	B RetinaNet detailed time profiling

