
A Deep Neural Network for Object Detection and Tracking with 3D
LiDAR

Leonardo Cabral Ferreira Cardoso
Instituto Superior Técnico, Lisboa

leonardocardoso@tecnico.ulisboa.pt

Abstract— Autonomous vehicles scan their environment with
a range of sensors (e.g. camera, LiDAR) to take the safest
action on the road. Therefore, locating and predicting the
motion of other road agents has motivated plenty of research
on the computer vision tasks of object detection and object
tracking. This thesis takes an existing deep learning pipeline
for 3D object detection [1] and modifies it to make location
and tracking predictions from 3D semantic point clouds only.
These point clouds are obtained in a pre-processing step which
exploits the fusion of dense 2D semantic segmentation results
with 3D point clouds that naturally offer depth information. The
tracking method from [2] is embedded within the network to
predict objects’ displacements between two consecutive frames,
thus, predicting their velocity. An extra input channel for a
heatmap containing the objects’ location in the previous frame
was also tested. Several ablation studies were conducted to test
the model’s performance using different types of heatmaps, and
not using heatmaps in any way. Results showed that a heatmap
absent model yielded overall better results. Our deep learning
approach allows end-to-end learning for detection and tracking,
and runs 38% faster (18 FPS) than the baseline model (13 FPS).

I. INTRODUCTION

In recent years, autonomous driving has gathered increas-
ing attention from the industry. Modern vehicles already per-
form some automated tasks such as adaptive cruise control
and assisted parking. Besides improving comfort, vehicle
automation can also improve safety on the road. A good
perception of the fast-changing surroundings is required to
take the safest actions within the road environment. Conse-
quently, today’s vehicles pushing the envelope of automated
driving are equipped with a wide range of sensors, such as
cameras and 3D LiDAR sensors, to scan their surroundings.

My thesis focuses on developing a deep learning 3D object
detection and tracking pipeline for the road environment.
In a pre-processing step, the method exploits the fusion of
semantic information from RGB images with LiDAR point
clouds that naturally provide object location to achieve a
3D semantic point cloud. The goal is to make detection and
tracking predictions based on this 3D input only.

The contributions of this thesis are three-fold:
• Modify Complex-YOLO pipeline to accept 3D semantic

input;
• Embed tracking prediction on the Complex-YOLO ar-

chitecture;
• Conduct an ablation study for the proposed 3D Object

Detection and Tracking module.

II. RELATED WORK

CenterTrack, in [2], is a point-based framework for joint
object detection and tracking. The input consists of two
consecutive frames as well as a heatmap of objects in the
previous frame. The output consists of 2D bounding boxes
and respective offsets between frames that allow trajectory
inference. Despite presenting an end-to-end deep learning
model, CenterTrack does not take advantage of the point
cloud data format, it works exclusively on 2D images.

Simon et al., in [3], proposed a 3D object detection
and tracking framework for point clouds. The framework,
named Complexer-YOLO, takes LiDAR point clouds and
RGB images as input. It projects 2D semantic segmentation
results onto a voxelized point cloud, which is fed into the
3D object detection pipeline, Complex-YOLO [1]. Although
object detection is achieved via a deep neural network, the
tracking method is based on a classic method.

Our method is based on the Complexer-YOLO idea.
However, we do not perform point cloud voxelization since
it is computationally expensive. Instead, we project the point
cloud to the ground plane and feed it to CNN. Moreover, we
propose a deep learning network, based on a combination
between Complex-YOLO and CenterTrack, to achieve end-
to-end joint detection and tracking, based on 3D semantic
point clouds, in a faster way.

III. METHODS

In this section, the methods on which this thesis is based
are presented. Therefore, a full understanding of these meth-
ods is essential. Based on Complexer-YOLO [3], our pipeline
feeds a 3D semantic point cloud to the Complex-YOLO
[1] model, which is a 3D object detector. Since Complex-
YOLO expands on YOLOv2 [4], the latter is detailed first
in Sec. III-A and the former is presented in Sec. III-C. No
official code was released for Complex-YOLO. However,
several implementations can be found online. Some are true
to the original paper, thus, using YOLOv2 as the base for
Complex-YOLO, while others, more recent versions, are
based on YOLOv3 and YOLOv4, which are newer versions
of the YOLO model. The chosen and later adapted source
code1 was an implementation of Complex-YOLO based on
YOLOv4 [5] since it was the most recent version of YOLO at

1https://github.com/maudzung/
Complex-YOLOv4-Pytorch
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the time. The third and fourth versions of YOLO are consec-
utive improvements over YOLOv2. However, most aspects
of the object detector remain the same. Key differences from
YOLOv2 to YOLOv3 and YOLOv4 are detailed in Sec. III-D
and Sec. III-E, respectively.

A. YOLOv2

YOLOv2 [4] is a real-time 2D object detector whose
input is a single RGB image, I ∈ RH×W×3. The network
architecture comprises convolutional and pooling operations
only. The final layer is a 1 × 1 convolutional layer with N
filters. In the middle of the feature extraction, the input image
I is downsampled throughout the network by a factor of
32, producing an output feature map F̂ ∈ RH

32×
W
32×N . This

feature map depicts a grid where each cell is responsible
for predicting B = 5 bounding boxes. For each bounding
box, the network predicts its coordinates and dimensions,
tx, ty, tw, th, an objectness/confidence score to, and C class
probabilities, one for each class of the dataset. Therefore, the
number of channels in the output feature map is given by

N = B × (5 + C). (1)

The output feature map F̂ consists of a division of the
input image I onto a grid, whose cells represent regions
that propose bounding box candidates. Therefore, YOLOv2
works like a single-shot RPN (Region Proposal Network).

Each box predicts its coordinates, (tx, ty), in the output
feature map as well as its dimensions, (tw, th), based on the
anchor box’s dimensions. Besides the spatial information,
each box predicts its objectness score, to, given by

to = Pr(Object)× IoU ground truth
prediction , (2)

which reflects how confident the model is that the box
contains an object and how accurate the predicted box is.
If no objects exist in a cell, the objectness score should
be zero, otherwise, it should equal the IoU (Intersection
over Union) between the ground truth and the predicted
bounding box. Lastly, a class probability is predicted as a
conditional probability of a detected object belonging to a
class given that there is an object inside the predicted box,
i.e., P (Classc|Object), with c ∈ C.

B. YOLOv2 Loss Function

Each cell in the output feature map predicts B = 5
bounding boxes. Thus, the network predicts many irrelevant
boxes that either (1) do not contain any object or (2) contain
an object, but other boxes capture the object better, i.e.,
have higher IoU with the ground truth box. Therefore, the
authors introduce the concept of a bounding box responsible
for predicting an object. Should the center of an object fall
into a grid cell of the output feature map, that grid cell is
designated the responsible cell for detecting that object. This
leads to B = 5 boxes within that responsible cell. At training
time, only one box is chosen to be responsible for predicting
an object. It is the one with the highest IoU between itself

and the ground truth. YOLOv2’s loss function is given by
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)2
+

S2∑
i=0

B∑
j=0

1
obj
i

∑
c∈Classes

pij (c) log (p̂ij (c))

(3)

where 1obj
i depicts a binary variable which equals to one if an

object appears in cell i and 1obj
ij denotes that the jth bounding

box is responsible for that object prediction. Moreover, 1noobj
ij

equals to one if (i) there is no object inside cell i or (ii) there
is an object, but the jth box of cell i is not responsible for that
object. Otherwise, it equals zero. Therefore, the loss function
only penalizes coordinate error for responsible boxes, and
classification error is only penalized if an object exists in that
grid cell, hence the conditional class probability mentioned
above.

In the YOLOv2 paradigm, the majority of predicted boxes
are not responsible for detecting objects. This sets their
objectness scores (confidence scores) to zero, thus, over-
whelming the gradient from cells that contain objects. This
leads to model instability, making the training diverge early
on. To tackle this issue, a smaller weight is attributed to
the confidence loss of non-responsible boxes, by multiplying
its term with λnoobj = 0.5. Similarly, the localization loss
is multiplied by λcoord = 5 to assign more weight to the
localization error in the backward propagation of errors to
assure convergence in the early stages of training. At test
time, the C conditional class probabilities are multiplied by
the box’s objectness score (2):

P (Classc|Object)× P (Object)× IoU ground truth
prediction =

P (Classc)× IoU ground truth
prediction , c ∈ C. (4)

This results in class-specific confidence (objectness) scores
for each predicted box. These scores reflect the probability
of a given class appearing in the box and how well the
predicted box captures the object. Lastly, the iterative NMS
(Non-Maximum Suppression) algorithm is applied. It filters
the best fitting bounding box, for each object, out of all
the predicted bounding boxes. It works by selecting the box
whose objectness score is higher and then removing similar
boxes with high IoU with the selected box.



C. Complex-YOLO

Complex-YOLO [1] is a real-time 3D object detector
whose input is LiDAR-based only. It expands on YOLOv2,
by predicting the orientation of the regressed bounding
boxes. The input point cloud is pre-processed into a BEV
RGB image where each channel encodes handcrafted fea-
tures. These channels encode the points’ height, intensity,
and density, respectively. The resulting BEV RGB map is fed
into the Complex-YOLO network whose novel E-RPN (Euler
Region Proposal Network) is responsible for estimating the
heading of the object by adding a real and an imaginary
fraction, tre and tim, to the regression network. With the
oriented bounding boxes obtained on the BEV perspective, a
pre-defined height for each class is attributed to the objects
to output 3D bounding boxes.

Following YOLOv2, Complex-YOLO also predicts B =
5 bounding boxes per grid cell based on five different
anchor boxes. Since boxes now comprise their orientation
angle, the degrees of freedom increased, i.e., the number
of possible anchors increased. However, Complex-YOLO
keeps the number of predicted bounding boxes B = 5 for
efficiency reasons. Therefore, based on the KITTI dataset box
distribution, three different sizes and two angle directions
were selected for anchor boxes, w.r.t BEV orientation: (1)
car size (heading up), (2) car size (heading down), (3) cyclist
size (heading up), (4) cyclist size (heading down), and (5)
pedestrian size (heading left).

The novel E-RPN extends the Grid-RPN, used in
YOLOv2, by also predicting a complex angle

bφ = arg(|z|eibφ) = atan2(tim, tre) (5)

encoded by an imaginary and real part, tim and tre, re-
spectively, which are predicted by the output feature map.
The estimated angle corresponds to the orientation of the
predicted bounding box. With the two added parameters to
predict for each bounding box, the number of filters in the
output feature map is now given by

N = B × (7 + C). (6)

Complex-YOLO loss function extends YOLOv2’s loss
function (3) by adding an Euler regression part:

LComplex-YOLO = LYOLOv2 + LEuler. (7)

Complex-YOLO predicts a complex number |ẑ| eib̂φ en-
coded by tim and tre. However, the predicted modulus |ẑ|
value is irrelevant to the orientation of the proposed bounding
box, consequently, the loss function assumes that both the
predicted and ground truth complex numbers fall onto the
unit circle, i.e |ẑ| = 1 and |z| = 1. Consequently, only phase
estimation is penalized. The network aims to minimize the

absolute value of the squared error to get a real loss:
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Similarly to (3), the Euler loss term is also scaled by
the factor λcoord to guarantee convergence in early training
stages. Moreover, the prediction of tim and tre is only
penalized for responsible bounding boxes, i.e., 1obj

ij equals
to one only if the jth bounding box predictor in cell i has
the highest IoU between itself and the ground truth box.

D. YOLOv3

YOLOv3 [6] is the follow-up work of YOLOv2. Similarly,
it takes as input a single RGB image, I ∈ RH×W×3, and
performs bounding box regression in the same way from an
output feature map. However, YOLOv3 innovates by making
predictions at three different scales, i.e., an output feature
map, F̂ ∈ RH

R×
W
R ×N , is obtained for each scale. R denotes

the downscaling factor of the feature maps and N denotes the
number of channels, which, similarly to YOLOv2, is given
by (1) with B = 3, i.e., it predicts B = 3 bounding boxes
per grid cell of the output feature map.

YOLOv3’s architecture exploits residual connections be-
tween lower-level features and higher-level features to build
the output feature maps at each scale. Downscaling of the
feature maps is achieved by convolutional operations to
prevent the loss of low-level features attributed to pooling.
The first scale outputs a feature map, F̂ , with a similar
downscaling factor to YOLOv2, i.e., R = 32. This scale
is adequate at detecting large objects but lacks in detecting
small objects. Consequently, a second and third scale with
downscaling factors R = 16 and R = 8, respectively, are
introduced in the network. Predicting at a higher resolution
feature map allows fine-grained bounding box regression,
which results in better detection of small objects in the
image.

As stated in Sec. III-B, YOLOv2 computes its loss func-
tion in (3) concerning the output feature map. The same idea
is applied in YOLOv3, thus, the following loss function is



computed for each scale of the output feature maps:
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with

BCE(ŷ, y) = −y log (ŷ)− (1− y) log (1− ŷ) . (10)

It is identical to (3), however, the objectness (confidence) and
classification terms (the last three terms) are now optimized
by the Binary Cross-Entropy (BCE) loss. YOLOv3 aims to
optimize the sum of the three loss functions corresponding
to each output scale. Consequently, its loss function is given
by

LYOLOv3 =

3∑
s=1

LYOLOv3 Scale s. (11)

E. YOLOv4

YOLOv4 [5] has an identical pipeline to its predeces-
sor. However, it presented some modifications to increase
the model performance. These innovations are two-fold: (i)
changes that only increase the training cost and (ii) changes
that slightly increase the inference cost but result in a
significant accuracy improvement.

The changes which increase the training cost comprise
essentially data augmentation techniques, which increase the
variability of an image to increase the model’s robustness
and improve its generalization.

YOLOv4 significantly altered YOLOv3’s feature extractor.
These modifications significantly improve the accuracy of
the model, with a slight increase in the inference cost. The
feature extractor is redesigned to accommodate Cross-stage
Partial (CSP) connections, a Spatial Pyramid Pooling (SPP)
module, and a Path Aggregation Network (PANet). In short,
these methods are used to (i) reduce the vanishing gradient
problem (i.e., the difficulty of backpropagating loss signals
in very deep networks), (ii) reinforce feature propagation,
(iii) promote features reuse, and (iv) reduce the number of
network parameters.

Despite the significant changes promoted to the architec-
ture, YOLOv4 still predicts bounding boxes at three different
scales. YOLOv4 changed from SSE to MSE (Mean Square
Error) for the localization loss terms of each scale (the first

two terms), and it is now given by:
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Ôi, Oi

)

+

S2∑
i=0

B∑
j=0

1
obj
i

∑
c∈Classes

BCE (p̂ij(c), pij(c)) , (12)

where N denotes the number of predicted bounding boxes.
YOLOv4 loss function is given by

LYOLOv4 =

3∑
s=1

LYOLOv4 Scale s. (13)

IV. PROPOSED PIPELINE

Our pipeline performs semantic segmentation on a 2D
image and fuses this information with a 3D point cloud
to obtain a 3D semantic point cloud. Then, it performs 3D
object detection and tracking on this rich environment repre-
sentation that offers both semantic and depth information.
In this chapter, the developed pipeline is described, and
the choices behind the design are justified. The dataset of
choice, the Semantic Segmentation module, the 3D Object
Detection, and the 3D Object Detection and Tracking module
are described in detail in Sec. IV-A, Sec. IV-B, Sec. IV-C,
and Sec. IV-D, respectively.

A. KITTI dataset

The KITTI dataset [7] was chosen due to its popularity
and widespread use among research methods that apply
deep learning techniques focused on autonomous driving
scenarios. Two branches of the dataset were used, the 3D
Object Detection and the 3D Multi-Object Tracking datasets.
The former is a set of unordered frames and was used to
train and evaluate the object detector. The latter is a set of
sequences of frames and was used to train and evaluate the
proposed joint object detector and tracker.

The 3D Object Detection and 3D Multi-Object Tracking
datasets consist of frames from the KITTI vehicle’s en-
vironment. Each frame corresponds to a full spin of the
LiDAR scanner, with a sampling frame rate equal to 10 Hz.
KITTI’s ego-vehicle is equipped with two grayscale cameras
(indexed 0 and 1), two color cameras (indexed 2 and 3), a
LiDAR sensor, and an IMU/GPS module. The monocular
RGB images used are captured by Camera 2. Every time
the Velodyne laser scanner (LiDAR) rotates to the vehicle’s
forward position, the cameras are triggered to capture one
image, guaranteeing the synchronization between the camera
and LiDAR sensors.



TABLE I: Dataset class distribution (percentage) of the
relevant KITTI branches. Clear domination of the Car class,
on both datasets, makes them imbalanced datasets.

Dataset Class Distribution (%)
Class 3D Object Detection 3D Multi-object Tracking
Car 72.7 70.5
Van 7.3 8

Truck 2.8 3.8
Cyclist 4 4.1

Pedestrian 11.4 12.8
Person Sitting 0.6 0

Tram 1.2 0.8

Both 3D Object Detection and 3D Multi-object Track-
ing datasets label seven different classes: Car, Van, Truck,
Cyclist, Pedestrian, Person Sitting, and Tram. The class
distribution for these datasets is detailed in Table I. The
dominance of the Car class will reflect on the experimental
results, as detailed in Sec. V.

To project a 3D point x = [x, y, z, 1]T in the world, in
homogeneous coordinates, to a 2D point y = [u, v, 1]T in
the ith camera image plane, the equation

y ∼ P
(i)
rectR

(0)
rectT

velo
camx (14)

is applied. Here, ∼ means the equation is defined up to a
scale factor, P

(i)
rect ∈ R3×4 denotes the camera projection

matrix, after rectification, of the ith camera, and is given by
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v 0
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This matrix describes the mapping of 3D points in the world,
through a pinhole camera model [8], to 2D points in the ith

camera image plane.
R

(0)
rect ∈ R3×3 is the rectifying rotation matrix of the ref-

erence camera, i.e., camera number 0. Rectification consists
of applying a rotation to make images of distinct cameras
lie on the same plane [9]. Finally, Tcam

velo ∈ R4×4 denotes
the 3D rigid-body transformation that takes points from the
Velodyne coordinate system to the camera coordinate system.
This transformation matrix is given by

Tcam
velo =

[
Rcam

velo tcam
velo

0 1

]
(16)

where Rcam
velo ∈ R3×3 denotes the rotation matrix from the

Velodyne coordinate system to the camera coordinate system
and tcam

velo ∈ R1×3 denotes the translation vector from the
Velodyne coordinate system to the camera coordinate system.

B. Semantic Segmentation Module

In this module, the goal is to obtain a 3D semantic point
cloud, i.e., a point cloud whose points contain not only
their location information (x, y, z) but also their class label.
To take advantage of the dense environment representation,
the semantic segmentation is performed, pixel-wise, on 2D
images and then projected to the respective 3D points.

Following the SOTA methods for semantic segmentation
[10]–[16], which are all based on deep learning techniques,

using a deep learning network to perform semantic segmenta-
tion was the obvious choice. Since the semantic segmentation
module will be fed with images from the KITTI domain,
the semantic segmentation network should be trained on
RGB images from the Semantic Segmentation branch of the
KITTI dataset. However, the KITTI Semantic Segmentation
dataset is quite limited, as it only provides 200 labeled
RGB images. Training a deep learning network on such a
low number of samples would lead to poor results in the
task at hand. A solution to this problem is presented by
the MSeg dataset [17]. The authors introduce a composite
dataset that combines several existing semantic segmentation
datasets, including the KITTI dataset, into a unified domain.
Their composite dataset enables training a single semantic
segmentation network, which is effective even when tested
on individual datasets. Besides solving the scarce dataset
problem, the authors in [17] also offer a pre-trained model2,
similarly named MSeg, ready to use with the KITTI dataset.
Performing semantic segmentation on the RGB images,
captured by the ego-vehicle’s Camera 2, implies feeding the
images to the pre-trained MSeg model. The network outputs
pixel-wise class labels, predicted from 193 different class
labels.

With the semantic segmentation results obtained for the
RGB image, the final step of this module consists of mapping
3D points in the world to pixels in the image plane, in order
to obtain a 3D semantic point cloud. Initially, to simplify
computation, every point in the point cloud is converted to
homogeneous coordinates, i.e., a point x = [x, y, z]T now
has the coordinates x = [x, y, z, 1]T . Next, (14) is applied to
project the whole point cloud onto the 2nd image plane (RGB
is captured by camera number 2). Then, the whole point
cloud is normalized by the z-coordinate to convert to pixel
coordinates. Given the whole point cloud in pixel coordinates
of the 2nd image plane, the points that live outside the
camera FoV are removed. Finally, having every 3D point
inside the camera FoV associated with a pixel from camera
2, the correspondent pixel-wise class label is copied onto the
respective 3D point.

C. 3D Object Detection Module

The 3D object detection module is based on the Complex-
YOLO pipeline [1]. The selected Complex-YOLO pipeline
consists of an implementation based on YOLOv4. Hence-
forth, this implementation will be called Complex-YOLOv4.

The Complex-YOLOv4 pipeline was altered to accom-
modate the semantic information obtained in the Semantic
Segmentation module (Sec. IV-B). The main difference to the
original pipeline, to achieve 3D object detection only, lies in
the network input. Further changes to embed the tracking
task to this pipeline are later explained in Sec. IV-D. For
now, only the changes made to achieve object detection on
semantic point clouds are described. Originally, the network
takes as input a BEV RGB map where each channel consists

2https://github.com/mseg-dataset/mseg-semantic

https://github.com/mseg-dataset/mseg-semantic


of handcrafted features, such as the points’ height, inten-
sity, and density, respectively. Now, the Complex-YOLOv4
network takes as input a BEV RGB map where the RGB
channels encode the points’ semantic class labels.

Another change promoted to the Complex-YOLOv4
pipeline is related to its network architecture, in order to
predict and detect an extra class, the Truck class. The KITTI
dataset labels seven different classes of objects (see Table I).
The Complex-YOLOv4 implementation follows the original
paper and predicts only three classes: Car, Pedestrian, and
Cyclist. It does so by grouping Car and Van into the same
Car class, Pedestrian and Person Sitting into the unique
Pedestrian class, and Cyclist needs no further grouping.
Therefore, the classes Truck and Tram were ignored by the
model. Since Trams are rarer than Trucks on the dataset (see
Table I), only objects whose class was Truck were made to
be predicted/detected by the network. The change consists
of incrementing the number of classes, denoted by C, in (6).

In short, the 3D object detection module comprises the
Complex-YOLO pipeline, based on YOLOv4, whose input
RGB encodes semantic labels and allows the detection of
objects from the Truck class.

In Velodyne coordinates, the BEV perspective of the se-
mantic point cloud is obtained by discarding the z-coordinate
and mapping the xy plane (ground plane) onto an image
plane. The labelled points whose coordinates fall into the
square delimited by x ∈ [0, 50]m and y ∈ [−25, 25]m are
mapped onto a square image with 608 × 608 resolution,
thus preserving the aspect ratio. The mapping is simply
done by converting the points’ coordinates in meters to pixel
coordinates, where each pixel corresponds to approximately
0.08m. Finally, the pixels are assigned a color according to
the respective point’s class label previously obtained in the
Semantic Segmentation module. The class-color pair associ-
ation is given by a dictionary that reduces the 193 different
classes output by MSeg to nine classes and consequently nine
different colors. Bright and contrasting colors are attributed
to the four classes to be detected (Car, Pedestrian, Cyclist,
Truck), whereas dim and similar colors are attributed to non-
detectable classes.

D. 3D Object Detection and Tracking Module

The 3D Object Detection and Tracking module picks up
where the 3D Object Detection module left off. Further
changes to the ones presented in Sec. IV-C were promoted
to embed the tracking task into the 3D object detection
model based on Complex-YOLOv4. Adapting the Complex-
YOLO architecture to predict object’s offsets (dx, dy) im-
plies adding two additional parameters to their predicted
bounding box tensor. This predicted offset between two
consecutive frames is the core mechanism for our tracking
method, since it allows the prediction of objects’ velocity.
Besides the offset prediction, heatmap prediction was also
embedded within the network, and the input was changed to
accept two consecutive BEV frames and a heatmap from the
previous frame.

Based on CenterTrack [2], the goal is to predict object-
wise bounding boxes, their offsets relative to the previous
frame, and a heatmap depicting the objects’ locations in the
current frame. The input consists of (i) the frame whose
objects will be detected, (ii) the previous frame, and (iii) the
heatmap with the objects’ location on the previous frame. In
our case, the current and previous frames consist of Semantic
BEV RGB maps. At test time, it comprises a feedback
loop that feeds the pipeline on instant t with the heatmap
predicted on the previous instant, t-1. During training, the
input heatmap consisted of the ground truth. Consequently,
a heatmap dataset was produced to train the network.

The goal of the heatmaps is to feed the network the
location in the previous frame of the objects to be detected
in the current frame. A dataset of ground truth heatmaps was
generated so the network could compare its output with the
ground truth, therefore, learning how to predict heatmaps.
Ground truth heatmaps are also used during training as the
input heatmap from the previous frame. In other words, the
feedback loop does not exist during training. Thus, it is
performed in an offline manner.

Ground truth heatmaps are fed to the network with the
same orientation as the Semantic BEV RGB maps to make
the learning task easier. Should the heatmaps have a different
orientation than the Semantic BEV inputs, the network
would have to learn this rotation as well. A heatmap is a
4 channel tensor, where each channel corresponds to the
C = 4 different classes. Each of these channels consists
of a grayscale image where the background is white and the
splattered objects’ centroids are colored in shades of gray.

Two different heatmap styles were generated and tested.
Initially, centroids were depicted as ellipses to better re-
semble the rectangular bounding boxes. Results showed that
this idea didn’t work so well, as detailed in Sec. V-B.
Consequently, the second type of heatmaps was tested where
the centroids depict circular shapes adaptive to the object’s
dimensions, similarly to CenterTrack’s method.

Objects’ locations are splat onto the heatmap using a 2D
gaussian kernel

g(x, y) = A·
exp

(
−
(
a(x− x0)2 + 2b(x− x0)(y − y0) + c(y − y0)2

))
(17)

where,

a =
cos2 θ

2σ2
X

+
sin2 θ

2σ2
Y

b = − sin 2θ

4σ2
X

+
sin 2θ

4σ2
Y

c =
sin2 θ

2σ2
X

+
cos2 θ

2σ2
X

.

(18)

In (17), the pair (x0, y0) denotes the mean value of the
normal distribution and it equals to the coordinates of the
splattered object’s centroid. The amplitude value A = 1 in
order to get normalized values, i.e., within the range [0, 1].
In (18), the standard deviation parameter is what gives the



centroids’ gaussian blobs different shapes. For the elliptical
centroids, σX = w/2 and σY = l/2, where w and l
depict the object’s width and length, respectively. For circular
centroids, σX = σY and their value is a function of the
object size [18]. Finally, the angle θ = ry , where ry depicts
the object rotation over the y axis in camera coordinates.

The generated ground truth heatmaps have a resolution
of 152 × 152, i.e., a resolution four times smaller than the
input heatmap resolution of 608 × 608. Comparing lower
resolution heatmaps, in the loss function, lead to smaller loss
values for the heatmap loss, and, consequently, overall better
loss convergence. During the training stage, the input ground
truth heatmaps were upsampled using nearest-neighbor inter-
polation, in order to keep the centroid’s peak value equal to
1. At test time, the predicted heatmaps are also upsampled
using nearest-neighbor interpolation, for the same reason.

The network predicts a heatmap directly from the output
feature map. This is achieved by downsampling the number
of channels via convolution operations and upsampling the
spatial dimensions using bilinear interpolation. Bilinear in-
terpolation upsampling keeps fine-grained features better due
to its smaller sampling step compared to Nearest Neighbor
interpolation which would lose fine-grained features from
the output feature map, consequently, producing a worse
prediction for the heatmap. Finally, the heatmap is fed to a
sigmoid activation function to bound the values in the range
[0, 1].

The goal of the 3D Object Detection and Tracking module
is to predict (i) bounding boxes, (ii) their displacements
between consecutive frames, and (iii) a heatmap with the
objects’ centroids location. Therefore, the loss function is
given by

L = LYOLOv4 Scale 3 + LOffsets + LHeatmap (19)

where LYOLOv4 Scale 3 is given by (12),

LOffsets =
1

N

S2∑
i=0

B∑
j=0

1
obj
ij

[
(dxi − d̂xi)2 + (dyi − d̂yi)2

]
(20)

is similarly computed to the localization loss in (12). LOffsets
consists of the MSE loss for every responsible bounding box
(as detailed in Sec. III-B), and

LHeatmap = −λhm
1

M
·

C∑
c=1

P 2∑
p=0

{
(1− Ĥxyc)

α log(Ĥxyc) if Hxyc = 1

(1−Hxyc)
β(Ĥxyc)

α log(1− Ĥxyc) otherwise
(21)

depicts the loss function for the predicted heatmap. It consists
of an adapted focal loss function [18], with parameters α = 2
and β = 4. It iterates over each cell of every channel in
the predicted heatmap, with C = 4 classes and P = 152
pixels/cells. M denotes the number of objects in the current
frame, and λhm = 0.5 is responsible for decreasing the
weight of the heatmap loss value. The minus sign, in the
beginning, is to invert the logarithmic growth. A high penalty

is given when a ground truth peak (H = 1) is wrongly
predicted and a low ground truth value is predicted as a peak
or a neighboring point to the peak. However, any predicted
values near the peaks (0.7 < Ĥ < 0.9) are barely and equally
penalized for either a right or wrong prediction.

The predicted offset (dx, dy) for a given object consists
of its displacement relative to the ego-vehicle. Knowing the
sampling frame rate is f = 10Hz, the velocity of an object
relative to the ego-vehicle is given by

~vobject ego =

[
dx
T
dy
T

]
. (22)

Applying the relative velocity equation

~vobject ego = ~vobject − ~vego, (23)

and using the ego-vehicle velocity (given by the IMU)

~vego =

[
vego right
vego forward

]
, (24)

we can compute the velocity of an object

~vobject = ~vobject ego + ~vego =

[
dx
T
dy
T

]
+

[
vego right
vego forward

]
. (25)

As detailed in Sec. IV-C, a pixel in the BEV RGB
map corresponds to 0.08m. Given this ratio, the predicted
velocities of the detected objects can be drawn onto the BEV
RGB map.

The track ID’s are obtained by matching bounding boxes
between frames. The matching is done using Euclidean
distance between centroids. However, before comparing dis-
tances, the predicted offsets are subtracted for each object
before computing the distance to the centroids’ location in
the previous frame.

V. EXPERIMENTAL RESULTS

In this section, the detection results obtained for the 3D
Object Detection module are presented. Then, the results
obtained for the 3D Object Detection and Tracking module
are detailed along with empirical results that justify design
choices and an ablation study for the final model architecture.
Lastly, a comparison between our model and the baseline
model, Complexer-YOLO, is performed.

All models were trained for 300 epochs on an NVIDIA
GeForce GTX 1070, with a batch size equal to 2, using the
Adam optimizer. A cosine learning rate decay is applied and
its initial value is 0.001. Other hyperparameters include the
weights associated to the loss functions (12) and (21).

A. 3D Object Detection

In this section, the stock Complex-YOLOv4 is compared
to the different modified versions that were tested before
reaching the final 3D Object Detection module, which is
described in Sec. IV-C.

Initially, the 3D object detection Complex-YOLOv4 was
only altered to accept Semantic BEV RGB maps instead of
the handcrafted features encoded in the RGB map of stock
Complex-YOLOv4. Then, we added the Truck class as an



Fig. 1: AP per class per 3D Object Detection Model.

extra class to be detected. Finally, the FoV filtering was
applied to filter out ground truth objects whose locations
were outside the camera FoV. If the objects live outside the
FoV they do not have semantic features, therefore, do not
appear in the BEV RGB map. Before the FoV filtering, the
network was penalized for not predicting objects not visible
in the BEV RGB map, i.e., feature-less objects. This change
was promoted to both the 3-class and 4-class models, and in
both cases, it increased the mAP.

Average Precision (AP) values for each class and model
are depicted in Fig. 1. It is visible that the overall better-
detected class is the Car class, for any of the tested object
detection modules. This occurs due to the imbalanced class
distribution (see Table I) present in the 3D Object Detection
of the KITTI dataset. The Car class (Car and Van together)
make up for over 80% of the available ground truth objects,
while Pedestrians, Cyclists, and Trucks comprise 11%, 4%,
and 2% of the labeled objects, respectively. Eventhough
there are more Pedestrian than Cyclist and Truck instances
combined in the dataset, the tested 3D object detection
models yielded better results for Cyclist and Truck detection
than for Pedestrian detection. This happens because the size
of the objects also plays a role in the model’s performance
at detecting them. In the point clouds, the Pedestrian object
instances comprise the least amount of points per instance.

Although the stock Complex-YOLOv4 model achieves the
highest mAP (88.77%) out of all the tested models, unlike
Complex-YOLOv4, our method does not use handcrafted
features to build the BEV RGB maps. Instead, it exploits
semantic information to obtain the BEV RGB maps and
achieves an on-par mAP result (85.52%).

B. 3D Object Detection and Tracking

In this section, empirical results that dictated the choice
of the interpolation method used to upsample the heatmaps
are presented, as well as empirical results that validate the
chosen loss function and respective weight tuning. Finally,
the results obtained from the conducted ablation study for
the 3D Object Detection and Tracking module are presented
and discussed.

The bounding boxes and respective offsets are predicted
across every scale. Then, from a large number of predictions,
only a few are selected, to display detections, by the NMS
algorithm. Following the same principle, we tested heatmap

prediction across the three output scales. Through empirical
observation, it was noted that the deeper the scale, the better
the heatmap prediction was. This follows the underlying
logic of neural networks that higher-level features live in
the deepest layers of a network.

C. Heatmap Loss Function and Tuning

Initially, the heatmap loss function was implemented as
the MSE loss for each cell in the output heatmap. Since the
heatmaps are mostly comprised of background pixels whose
value is close to 0 and every pixel of the heatmap is bounded
between 0 and 1, the MSE loss leads to the heatmap loss
decreasing rapidly and establishing itself in a divergent cycle
of nearly zero values.

To try to fix this issue, a higher weight value was attributed
to the heatmap loss by multiplying its value by a factor λhm.
Several values were tested, and through empirical observa-
tion, it was noted that changing this value would result in
good early convergence for the heatmap loss curve. However,
it only delayed the divergent course for the heatmap MSE
loss curve. Identical results were obtained by changing the
loss function to the L1 loss. Finally, the adapted focal loss
proposed in [18] was implemented, tested, and resulted in
convergence for the heatmap loss. Contrary to the MSE
loss, which penalized errors equally, the focal loss penalized
predictions more heavily when the predicted and ground
truth values were far apart, as stated in Sec. IV-D. Although
converging, the loss values for the heatmap loss were still
too high compared to the other losses. Ideally, the loss curves
should converge at about the same rate. Therefore, the factor
λhm was set to 0.5. Thus, decreasing the weight given to the
heatmap loss function.

Computing the loss function for each cell of a high-
resolution heatmap leads to high loss values for the heatmap
loss. Consequently, a dataset of low resolution (4 times
smaller) ground truth heatmaps was generated to compare
the output heatmap with the target heatmap directly. This
lead to a decrease by a factor of 16 of the heatmap loss
value since the square-shaped heatmaps decreased both their
spatial dimensions by a factor of 4.

D. Heatmap Upsampling

As explained in Sec. V-C, the predicted heatmaps output
by the network have a low resolution of 152×152. Therefore,
they must be upsampled to the input heatmap resolution of
608×608, to close the feedback loop present during the test-
ing phase. The generated ground truth heatmaps also have a
resolution of 152×152 to prevent the need for downsampling
them when computing the heatmap loss function between
the target and the predicted heatmap. Therefore, both of
these heatmaps (the target during training and the predicted
during testing) need to be upsampled to match the BEV
RGB maps resolution of 608×608 before concatenating with
them. Through empirical observation, the nearest-neighbor
interpolation method was chosen for these upsampling steps
since it kept the heatmap peaks (object’ centroids whose
value is 1 on the heatmap). Keeping these peaks during



TABLE II: Class distribution of the test split from the 3D
Multi-Object Tracking Dataset.

Class Test Split Class Distribution (%)
Car 81.52
Van 3.58

Truck 0.59
Cyclist 3.71

Pedestrian 10.60
Person Sitting 0.00

Tram 0.00

the training stage is crucial because the adapted focal loss
applied to the heatmap loss needs to have these peaks where
the target heatmap is 1, to correctly compute the loss and,
consequently, correctly predict the heatmaps.

The output feature map of scale 3 has its spatial dimen-
sions upsampled and the number of channels downsampled
to reach the desired output heatmap shape of 4× 608× 608.
Applying the coarser nearest-neighbor interpolation to the
output feature maps would render the loss of features,
whereas the application of the finer bilinear interpolation to
the output feature maps leads to maintaining the important
features needed to mimic the gaussian blobs of the target
heatmaps. Through empirical observation, bilinear interpola-
tion leads to better heatmap prediction.

E. Train-Test Split

The 3D Multi-object Tracking branch from the KITTI
dataset (detailed in Sec. IV-A) contains 21 labeled sequences
of frames. These sequences can be divided into four different
categories, according to the environment where they were
obtained. These categories include (i) urban, (ii) fast-lane,
(iii) highway, and (iv) pedestrian zones.

The train-test split was performed following the rule of
thumb that 80% of the samples should be used for training
and the remaining 20% for testing. This results in 17
sequences used for training and 4 sequences used for testing
purposes. Besides the 80/20 split, each of the four sequences
selected for the testing stage belongs to the four environment
categories stated above. The resulting class distribution for
the test split is detailed in Table II.

F. Ablation Study

Initially, a dataset of elliptical style heatmaps was gener-
ated to train the network within the 3D Object Detection and
Tracking module. The ablation study conducted came to be
because the heatmap prediction, from this model, was sub-
par. The network predicted the objects’ centroids. However,
it failed to predict the spread of the gaussian blob, dictated
by the standard deviation parameter. The feedback loop was
broken and the ground truth heatmap was fed to the network
to test whether the poor location and offset predictions were
caused by the poor heatmap prediction (which would feed
the network on the next iteration). This experiment confirmed
that (i) the network could not predict the spread given by the
centroids’ standard deviation parameter and, consequently,
(ii) the poor location and offset predictions were caused by
the poor input heatmap coming from the feedback loop.

Fig. 2: AP per class per 3D Object Detection and Tracking
Model.

The next logical step was taken, a dataset of circular style
heatmaps was generated. The circular centroids within these
heatmaps have a reduced standard deviation value which
decreases the spread of the gaussian blobs. The network
was trained using this heatmap style. Qualitative results
showed that (i) the predicted heatmaps, which go through
the feedback loop, were quite similar to the ground truth
(target) heatmaps and, consequently, (ii) more objects are
detected, using this type of heatmaps. Another experiment
was conducted, in which the ground truth circular heatmap
was fed to the network.

A final heatmap experiment was conducted in which the
input heatmap at instant t is obtained via a post-processing of
the heatmap predicted at t− 1. Instead of directly injecting
the predicted heatmap in the following instant, it injected
a new heatmap generated from the predicted centroids in
the heatmap and bounding box dimensions. It increased the
mAP value for the elliptical style heatmap models, since it
feeds the network a true elliptical style heatmap. However,
many centroids are still missing in the predicted heatmap,
thus, they are not present on the post-processing heatmap,
consequently, degrading the object detection performance of
the model. In the case of the post-processed heatmap for
the circular heatmap model, the mAP yielded a similarly
poor result to the direct feeding of heatmaps without post-
processing.

Lastly, the heatmaps were completely removed from the
3D Object Detection and Tracking module. Therefore, the
location and offset predictions were based on the semantic
BEV RGB maps from instants t and t− 1 only.

Average Precision (AP) values for each model and class
are depicted in Fig. 2. The domination of the Car class in the
dataset makes every model perform significantly better for
this class. The poor detection of the other classes is explained
by the class distribution as well (see Table I). This lowers
the mAP value significantly since it averages the AP value
across all classes.

Feeding the heatmap models with the ground truth
heatmap leads to a significant improvement of the recall
value, i.e., more and more occluded objects are being de-
tected correctly. This demonstrates that the features from
the heatmap influence the detection and offset prediction.
Moreover, the elliptical model fares better than the circular



model when both take the ground truth heatmap as input
(mAP = 67.60% vs. mAP = 46.07%). This happens
because the elliptical model comprises heatmaps whose
centroids mimic the orientation and shape of the bounding
boxes, thus, making the bounding box regression task easier.

The heatmap feedback improves the detection by feeding
the network the location of the objects in the previous frame.
However, the best performing model was the no-heatmap
model (mAP = 28.38%) because the network cannot predict
heatmaps correctly, therefore, decreasing the performance of
the heatmap-based models.

G. Complexer-YOLO vs. Ours

As a final evaluation, we are comparing our method
to the baseline method, Complexer-YOLO. On one hand,
Complexer-YOLO voxelizes the semantic point cloud, which
is computationally expensive. Instead, we project the se-
mantic point cloud to the ground plane to feed it to the
CNN. On the other hand, Complexer-YOLO uses a non-
deep learning approach to the tracking method, whereas our
tracking method is based on a deep learning approach which
allows for an end-to-end model capable of joint 3D object
detection and tracking. This results in a faster joint object
detection and tracking module, as explained below.

Complexer-YOLO runs the real-time ENet for semantic
segmentation at 90 FPS. We applied the MSeg model since
it was the one readily available to deploy. Complexer-YOLO
performs object detection (predicting on voxelized input) at
15 FPS and runs the tracking method at 100 FPS. Conse-
quently, their bottleneck relies on the detection task, which
added to the tracking task amounts to 13 FPS. Our method
runs the proposed joint detection and tracking network at
18 FPS. Therefore, our method improves the bottleneck
computational time of the Complexer-YOLO pipeline, while
performing detection and tracking with an end-to-end train-
able deep network.

VI. CONCLUSION

This work exploits the fusion of dense 2D semantic
information with 3D geometric data to achieve robust ob-
ject detection in the three-dimensional space. The track-
ing paradigm from CenterTrack was embedded within the
Complex-YOLO architecture to achieve a joint 3D object
detection and tracking pipeline. Results demonstrated that
input heatmaps, containing objects’ locations in the previous
frame, help the detection task because they explicitly offer
a feature map that helps to detect more occluded objects.
However, the achieved heatmap prediction presented poor
results, which degraded the model’s performance. Therefore,
the heatmap absent model yielded overall better results.

Comparing with the baseline method of Complexer-
YOLO, our method improved their bottleneck computational
time from 13 FPS to 18 FPS, by performing joint object
detection and tracking in an end-to-end fashion using a deep
neural network.

Future work can be done towards experimenting with other
heatmap loss functions to improve the heatmap prediction

and using data augmentation techniques to counter the bad
class distribution in the dataset, thus, improving the model
generalization.
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