
Precise Information Flow Control for JavaScript
(extended abstract of the MSc dissertation)

Francisco João do Vale Lopes e Silva Quinaz
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professors José Fragoso Santos and Ana Almeida Matos

Abstract
Nowadays, information flow control is particularly important
on the Web. JavaScript programs that run in the browser
can include scripts from different providers, which are often
unknown to the user and execute in the context of the main
web page with access to all the user’s resources.

JavaScript poses two fundamental problems to information
flow analyses. On the one hand, the dynamic nature of the lan-
guage makes it a difficult target for static analyses, resulting
in too coarse over approximations with large numbers of false
positives. On the other hand, the complexity of the language
semantics renders the direct development of precise program
analyses for JavaScript a challenging task. To counter these
issues, we propose a new dynamic analysis for securing infor-
mation flow in JavaScript that works by first compiling the
given JavaScript program to a novel intermediate language
for JavaScript analysis and specification called ECMA-SL.

This thesis is part of a larger project, whose goal is to
build a tool-suit for JavaScript analysis based on ECMA-SL.
Here, we contribute to the overarching ECMA-SL project in
three different ways: first, we define the formal semantics
of ECMA-SL and describe its interpreter; second, we design
a new information flow monitor and inlining compiler for
ECMA-SL; finally, we develop two distinct embedders for
running ECMA-SL in JavaScript. By combining the various
elements of the constructed infrastructure, we obtain a precise
information flow monitor inlining compiler for JavaScript.

1 Introduction
Software security is a primary concern in modern software
development. Hence, there are plenty of mechanisms for en-
forcing different types of security properties such as access
control, secure information flow, and availability. However,
security mechanisms in practice are not sufficiently robust
to protect modern systems from security attacks, which may
have a significant economic impact. Examples of relevant
attacks in the last few years are: the Spectre [27], the Melt-
down [28], and the Foreshadow [45], which took advantage
of vulnerabilities found in microprocessors; and the Heart-
bleed Bug [12], a memory related vulnerability found in the
OpenSSL’s (version 1.0.1) [32] Heartbleed extension. In this
project, we are specifically interested in security vulnerabil-
ities that can be tackled using language-based mechanisms,
such as program analysis (e.g. [8, 34, 37]) and instrumenta-
tion (e.g. [2–4, 9, 29, 39]). For this reason, the Heartbleed

Bug is of special interest to us, as it could have been prevented
using either static or dynamic language-based mechanisms.

Non-interference, defined in [31], is a mathematical prop-
erty used to reason about how the execution of a program
propagates dependencies between the resources that it ma-
nipulates, that is, how information flows between resources
during the execution of a program. Informally, we say that a
program is non-interferent if it is information flow secure, that
is, if its execution does not generate illegal dependencies be-
tween the program’s resources. Since the late 90s, the research
community has proposed an extensive amount of mechanisms
for enforcing non-interference such as: type systems, (e.g.
[7, 25]; information flow monitors, (e.g. [2–4, 9, 29, 39]);
program logics, (e.g. [5, 18, 24, 38]); abstract interpreters,
(e.g. [19]), amongst others, (e.g. [40]) However, none of the
proposed mechanisms has been widely adopted in practice.
As pointed out by Steve Zdancewic in [46]:

“Despite their long history and appealing strengths, information-
flow-based enforcement mechanisms have not been widely
(or even narrowly!) used."

JavaScript poses two fundamental problems to information
flow analyses. On the one hand, the dynamic nature of the lan-
guage makes it a difficult target for static analyses, resulting
in too coarse over approximations with large numbers of false
positives. On the other hand, the complexity of the language
semantics, whose standard has about 1000 pages, renders the
direct development of precise program analyses a challeng-
ing task. Indeed, even the simplest language constructs, such
as a variable assignment, might trigger numerous implicit
program behaviors.

Due to the dynamicity of the language, the information
flow analyses for JavaScript proposed so far are based on
dynamic approaches. Furthermore, they offer no guarantees
of capturing all of the JavaScript’s implicit information flows.

We believe that the complexity of the JavaScript language
makes it impossible to design a reasonably precise informa-
tion flow control mechanism directly on JavaScript. As for
other types of program analyses, an alternative approach is to
compile the program to be analyzed to a simpler intermediate
representation and perform the information flow analysis on
that intermediate representation. This approach has been used
by both the JaVerT tool-chain [15] for verifying and testing

1

JavaScript programs, and the ADsafety tool [35] for verifying
isolation properties of JavaScript applications.

This thesis is part of a larger project, developed at Insti-
tuto Superior Técnico, whose goal is to build a tool-suit for
JavaScript analysis based on a new intermediate language
called ECMA-SL. This language was specifically designed for
specifying the JavaScript standard and analyzing JavaScript
programs. The main advantage of the ECMA-SL compilation
pipeline when compared to other compilation pipelines for
JavaScript analyses is that it is tightly connected to the text
of the standard, in that the ECMA-SL implementation of the
JavaScript standard follows the text of the standard line-by-
line. Furthermore, the ECMA-SL compilation pipeline was
designed so that it can be easily adapted to new versions
of the standard. This is a major concern regarding existing
implementations, which mostly target older versions of the
standard and are difficult to extend.

In the context of this thesis, we contribute to the overar-
ching ECMA-SL project in three ways: first, we defined the
formal semantics of ECMA-SL and implemented its inter-
preter; second, we designed a new information flow monitor
and inlining compiler for ECMA-SL; finally, we developed
two distinct embeddings for running ECMA-SL in JavaScript.

By combining several elements of the constructed infras-
tructure, we are able to obtain a precise information flow inlin-
ing compiler for JavaScript. To this end, we first compile the
given JavaScript program to ECMA-SL using the JS2ECMA-
SL compiler; then, we inline the information flow monitor
into the generated ECMA-SL program using our ECMA-SL
inlining compiler; finally, we compile the obtained inlined
ECMA-SL program back to JavaScript using our shallow em-
bedder.

2 Related Work
2.1 Secure Information Flow
Programs manipulate information to complete the task at
hand. This manipulation creates dependencies between re-
sources. Understanding these dependencies is fundamental to
check whether or not an execution is secure. Information flow
security [23, 41] focuses on two main properties: confiden-
tiality and integrity. The former is related to the disclosure
of unauthorized data, that is, users without sufficient permis-
sions should not be able to access private data. While the
latter is related to the ability to change existing data, that is,
untrusted users should not be able to modify critical/trusted
data. To avoid clutter, in the remainder of the document we
focus on confidentiality. All results apply trivially to integrity.
In order to specify an information flow policy, the system’s
designer needs to assign security levels to data resources
and specify the relation between these levels. Although nor-
mally expressed as a complex lattice (following [11]), for
the sake of simplicity, we consider a simple two-point lattice:
private (high level, H) and public (low level, L). This lattice
captures a flow relation ≤, with L ≤ H and H ≰ L, mean-
ing that information may flow from L-labelled resources to
H-labelled resources.

2.2 Non-Interference
Secure information flow can be defined as a mathematical
property called non-interference [31]. This property states
that a program is safe if, during its execution, there is no
propagation of private information into public resources; put
formally, we say that a statement S is non-interferent if and
only if, for all stores ρ1 and ρ2, the following holds:

ρ1 ∼Γ
L ρ2 ∧ ρ1, S ⇓ ρ ′1,ω1 ∧ ρ2, S ⇓ ρ ′2,ω2

⇒ ρ ′1 ∼
Γ
L ρ ′2 ∧ ω1 ∼Γ

L ω2

where: Γ is a security labeling mapping program variables
to security levels, ρ1 and ρ2 denote the two initial stores, ρ ′1
and ρ ′2 denote the final stores, and ω1 and ω2 denote the two
output streams. The low equality ρ1 ∼Γ

L ρ2 states that the ini-
tial stores coincide in their low projections, mutatis mutandis
for output streams ω1 ∼Γ

L ω2. Informally, non-interference
mandates that the execution of a statement S in two stores ρ1
and ρ2, that coincide in their low projections, produce two
stores ρ ′1 and ρ ′2, that also coincide in their low projections.

2.3 Lock-Step Monitors
A lock-step information flow monitor is a security mechanism
that enforces non-interference, running in lock-step with the
targeted language semantics to prevent illegal information
flows. The idea is to “monitor” the execution of the input
program by checking if each operation can be safely executed
before its actual execution. To this end, the monitor keeps an
internal representation of the security levels of the resources
handled by the given program.

Figure 1. Lock-step monitor architecture

We refer to this monitor as a lock-step monitor given that
for each operation, the interpreter “asks" the lock-step moni-
tor whether or not the operation is secure. If it is secure, the
interpreter is allowed to execute it; otherwise, the execution
is aborted. This process ends with one of two alternatives:
either the execution of the program is completed, meaning
that the execution did not violate the information flow policy
enforced by the monitor, or it is aborted due to a potential
illegal flow.

2

2.4 Monitor Inlining
As shown in Figure 2, an alternative to a lock-step monitor
is to inline the information flow monitor in the program to
be executed with the help of a dedicated compiler, typically
called an inlining compiler. The general idea behind monitor
inlining, as originally presented in [9], is to inline the monitor-
ing logic into the program itself, effectively delegating to the
language interpreter the enforcement of the information flow
policy. This means that we do not have to modify the origi-
nal implementation of our programming language to enforce
secure information flow. Consider for instance JavaScript pro-
grams executing in the browser. If we were to implement the
monitor directly on top of the browser, we would have to
extend all the different JavaScript engines (e.g. Blink [36],
SpiderMonkey [13], WebKit [26], and V8 [20]) with support
for information flow tracking. Instead, if we inline the moni-
tor in the programs to be executed, we can run those programs
securely in all available browsers.

Figure 2. Comparison between Lock-step and Inlined Moni-
tor Architectures

The basic idea behind an inlining compiler is to add a new
shadow variable for each program variable of the original pro-
gram. Shadow variables are used to keep track of the security
levels of their corresponding original variables. For instance,
given a variable x , we denote by x̂ the shadow variable that
is used to store the security level of x . Additionally, an in-
lining compiler must keep track of the level of the current
context in a dedicated variable pc. For an inlining compiler to
work, one has to extend the language with security levels and
level-related operators; for instance, the operators ⊑ and ⊔ to
compare security levels and compute the least-upper-bound
between two security levels.

3 ECMA-SL
ECMA-SL is a simple imperative language with top-level
functions and commands for operating on extensible ob-
jects. Importantly, it supports the core dynamic features of

JavaScript: extensible objects, dynamic field access, and dele-
tion, dynamic function calls, and runtime code evaluation.

3.1 Core ECMA-SL
The Core ECMA-SL language is composed of the syntactic
categories described in the table below, which comprise: state-
ments st ∈ St , expressions e ∈ E, variables x ∈ X, and values
v ∈ V. Values include integers i ∈ I, floats f ∈ F , booleans
b ∈ B, strings s ∈ S, types τ ∈ TY, locations l ∈ L, and
symbols sy ∈ SY. Expressions include values, program vari-
ables, and a variety of unary and binary operators. Finally,
statements include both the usual imperative statements used
to manage the variable store and program control-flow (vari-
able assignment, skip, while, sequence, conditional statement,
function call, and return), as well as various non-control-flow
statements that provide the machinery for interacting with
ECMA-SL objects (object creation, dynamic field access, dy-
namic field assignment, field deletion, and field collection).

Syntax of the ECMA-SL Language
v ∈ V := i | f | s | b | l | [v1, ..., vn] | τ | (v1, ..., vn) | void |

null | sy

e ∈ E := v | x | ⊖ e | e1 ⊕ e2 | ⊗(e1, ..., en)

st ∈ St := st1; st2 | skip | merge | fail (e) | x := e |

if (e) then {st1} else {st2} | while (e) do {st} |

return (e) | x := e(e1, ..., en) | x := {} |

x := e1 in e2 | e1[e2] := e3 | delete e1[e2] |
x := fields e | x := e1[e2] | x := e@(e1, ..., en)

Evaluation of Basic Statements Using the semantics of ex-
pressions, we define a small-step semantics for ECMA-SL
statements in Figure 3. The semantic judgment {h, ρ, cs, st}

o
−→

{h′, ρ ′, cs ′, st ′} means that the evaluation of the statement st
on heap h, store ρ, and call stack cs, results in the heap h′,
store ρ ′, call stack cs ′, and continuation st ′. Semantic tran-
sitions are annotated with a label o to be consumed by the
information flow monitor, which we will present later. Essen-
tially, the label o carries all the information required by the
monitor for its state transition. For instance, when evaluating
an Assignment, the label o will be AssignLab (x, e). Notice
that the label • is used when no information is required by the
monitor. The semantics of ECMA-SL statements is standard,
following that of typical object calculi for reasoning about
JavaScript [15, 21]. Here, we only explain the semantic rules
for variable assignments, conditional statements, function
calls, field assignments, and field deletions. The remaining
rules are analogous.

Conditional Statement These rules (true and false) first
evaluate the test expression e in the store ρ and create the
respective label o. If the test result is true, the output continu-
ation is prefixed with the first statement st1. Otherwise, it is
prefixed with the second statement st2. In both cases, we add
a merge statement to the continuation for signaling the end
of the branch to the monitor.

3

COND. STATEMENT - TRUE
JeKρ = true o = BranchLab (e, true)

{h, ρ, cs, if (e) then {st1} else {st2}}
o
−→ {h, ρ, cs, st1;merge }

ASSIGN
JeKρ = v o = AssignLab (x, e)

{h, ρ, cs, x := e}
o
−→ {h, ρ[x 7→ v], cs, skip }

SEQUENTIAL COMPOSITION - 1
st1 < Call {h, ρ, cs, st1}

o
−→ {h′, ρ ′, cs, st ′1}

{h, ρ, cs, st1; st2}
o
−→ {h′, ρ ′, cs, st ′1; st2}

SEQUENTIAL COMPOSITION - 2
{h, ρ, cs, skip ; st}

•
−→ {h, ρ, cs, st}

OBJECT CREATION
l < locs(h) o = AssignNewObjLab (x, l)

{h, ρ, cs, x := {}}
o
−→ {h, ρ[x 7→ l], cs, skip }

FIELD ASSIGN
Je1Kρ = l Je2Kρ = f Je3Kρ = v

h = h′ ⊎ (l, f) 7→ − h′′ = h′ ⊎ (l, f) 7→ v
o = FieldAssignLab (l, f , e1, e2, e3)

{h, ρ, cs, e1[e2] := e3}
o
−→ {h′′, ρ, cs, skip }

FIELD DELETE
Je1Kρ = l Je2Kρ = f h = h′ ⊎ (l, f) 7→ −

o = FieldDeleteLab (l, f , e1, e2)

{h, ρ, cs, delete e1[e2]}
o
−→ {h′, ρ, cs, skip }

Figure 3. Semantics of Statements

Variable Assignment This rule evaluates the expression e,
obtaining the value v, and updates the variable x to v in the
output store ρ. The generated label simply records the variable
name and the assigned expression.

Field Assignment This rule first evaluates the expressions
e1, e2, and e3, obtaining the location of the object l , the name
of the field f , and the value v to be assigned, respectively.
Then, the value v is assigned to the pair (l ,f) in the heap h
and the respective label o is created.

Field Deletion This rule first evaluates the expressions e1
and e2 obtaining the location of the object l and the name of
the field to be deleted f . If the pair (l ,f) exists in the heap
h, the object’s field is deleted. Finally, the respective label o
is created.

3.2 Example
Heap Commands The point of the exampleis to illustrate
the behaviour of the heap manipulation commands. In partic-
ular, the example creates a new object o2, reads the field p of
the object o1, assigns it to o2.q, and finally deletes the field p

of o1. Note that each object corresponds to a key-value map
stored at its corresponding location.

4 ECMA-SL Security Monitor
In order to present the security monitor independently of
the language semantics, we pair up semantic transitions with
monitor transitions. We refer to the combined transition as
monitored semantics. The idea is simple: the language seman-
tics performs a single step, generating a semantic label with
the relevant information, and this label is given to the security
monitor for it to produce the correspondent monitoring step.
The monitored semantics transition is defined in the table
below:
Monitored Semantics

Monitor Configuration: Φ
Monitored Semantics Configuration: (Ω,Φ)
Semantic Transition: Ω

o
−→ Ω′

Monitored Semantic Transition: Φ
o
−→ Φ′

General Monitor Transition:
Ω

o
−→ Ω′ Φ

o
−→ Φ′

{Ω,Φ}
o
−→ {Ω′,Φ′}

We use Φ to denote the monitor configuration and Ω to
denote the language semantic configuration, forming the pair
(Ω,Φ), which describes the monitored semantics configu-
ration. Analogously to semantic transitions, monitor transi-
tions are also annotated with a semantic label o ∈ O . Essen-
tially, the interpreter gives a step generating the label o, and
that label is then consumed by the security monitor, which
performs a parallel step to that of the language semantics.
Therefore, we can define the monitored semantic transition as
{Ω,Φ}

o
−→ {Ω′,Φ′}, where Ω′ and Φ′ are the result of apply-

ing the semantics and the monitor to Ω and Φ, respectively.
In order to formally define the observational power of an

attacker at a given security level, we resort to the notion
of low-projection. The low-projection of a state at a given
security level σ corresponds to the part of that state that an
observer at level σ can see. Here, as ECMA-SL configurations
are composed of a heap, a store, and a call stack, we define
low-projections for heaps and stores. We write: ρ ↾σsρ for
the low-projection of ρ at level σ with respect to sρ and
h ↾σsh for the low-projection of h at level σ with respect to sh.
The formal definition of the heap low-projection is given in
Table 1.

Low-projection for Stores The low-projection of a store
ρ with respect to a security store sρ at a given level σ is
computed point-wise. For each x in the domain of the store,
we check if its security level given by sρ is smaller than
or equal to σ (sρ(x) ⊑ σ). If it is, we keep it in the low-
projection; otherwise, it is simply erased.

Low-projection for Heaps The low-projection of a heap h
with respect to a security heap sh at a given level σ is also
computed point-wise. For each pair (l, f) in the domain of the
heap, we check if both the existence level σ1 and the value

4

Figure 4. Execution Example

h ↾σsh

EMPTY HEAP

� ↾σsh≜ �

VISIBLE CELL WITH VISIBLE VALUE
sh = sh′ ⊎ (l,p) → (σ1,σ2) σ1 ⊔ σ2 ⊑ σ

(h ⊎ (l,p) → v) ↾σsh≜ (l,p) → v ⊎ h ↾σsh′

INVISIBLE CELL WITH INVISIBLE VALUE
sh = sh′ ⊎ (l,p) → (σ1,σ2) σ1 @ σ

(h ⊎ (l,p) → v) ↾σsh≜ h ↾σsh′

VISIBLE CELL WITH INVISIBLE VALUE
sh = sh′ ⊎ (l,p) → (σ1,σ2) σ1 ⊑ σ σ2 @ σ

(h ⊎ (l,p) → v) ↾σsh≜ (l,p) →? ⊎ h ↾σsh′

Table 1. Low-Projection for Heaps

level σ2 of f in l are smaller than or equal to σ (σ1,σ2 ⊑ σ).
If both levels are visible, the entire cell is kept in the low-
projection as a σ -observer sees both the existence of the field
and its value. If only the existence level is visible, the pair
(l, f) is kept in the low-projection, but its value is replaced
with the special symbol ? denoting an unknown value. Finally,
if both levels are invisible, the cell is entirely excluded from
the low-projection.

Example To better understand the concept of low-projection,
let us consider the labeled heap given in the top of Figure
5. The labeled heap contains five ECMA-SL objects. Each
object is depicted as a circle containing its corresponding
fields. Recall that each field is associated with two levels: the
existence level and the value level. The existence level is rep-
resented on the right side of each field, while the value level
annotates the arrow that connects the field to its correspond-
ing value; for instance, the field meta of object O1 has a low
existence level and high value level. The bottom of Figure 5

presents a labelled heap together with its low-projection at
level L. The low-projection captures the parts of the heap that
are visible to an observer at level L. For instance:

• the field info of object O_1 has both low value level
and low existence level; hence, both the field and its
value are kept in then low-projection of the heap.

• the field aux of object O_1 has both high value level
and high existence level; hence, both the field and its
value are excluded from the low-projection of the heap.
Notice that, due to the low-level nature of O_5, it is
kept in the low-projection of the heap.

• the field meta of object O_1 has both high value level
and high existence level; hence, both the field and its
value are excluded from the low-projection of the heap.

• the field address of object O_4 has a high value level
but a low existence level; hence, the field is kept in
the object, while its value is excluded from the low-
projection of the heap.

4.1 Security Monitor Definition
We define an information flow monitor for ECMA-SL state-
ments in small-step style. The monitor transition

{sm, sh, sρ,pc}
o
−→ {sm′, sh′, sρ ′,pc ′}

means that the monitor step triggered by o in the security
heap sh, security store sρ, security call stack scs, and program
counter pc generates the security heap sh′, security store sρ ′,
security call stack scs ′, and program counter pc ′. Note that,
while the monitor transition requires the label o as an input,
the semantics transition generates the label o as an output.

Bellow, we explain three rules of the ECMA-SL monitor,
which illustrate how our monitor propagates security labels
and enforces the no-sensitive-upgrade discipline.

Conditional Statement This rule starts by obtaining the
level of the expression e, σe . The monitor then extends the
program counter pc with the least-upper-bound between σe

5

Figure 5. Low-projection example as a low-level observer

and its current context level (lvl(pc)). We take the least-upper-
bound between σe and lvl(pc) instead of simply σe to guaran-
tee that the levels in the program counter are monotonically
decreasing: higher security levels on top and lower security
levels below (the level of the current execution context always
corresponds to the level at the top of the pc stack). Had we
not done this, we would have to traverse the entire pc stack
every time we would need to obtain the level of the current
context.

BRANCHLAB
o = BranchLab (e) σe = lev(sρ, e)

pc ′ = (σe ⊔ lvl(pc)) :: pc

{sm, sh, sρ, scs,pc}
o
−→ {sm, sh, sρ, scs,pc ′}

Field Assignment (Field Update) This rule starts by obtain-
ing the security levels of the expressions denoting the object,
field, and value involved in the field assignment, respectively,
σo , σf , and σv . Then, it obtains the context level, σctx , by
computing the least-upper-bound between σo , σf , and lvl(pc).
The NSU discipline mandates that the context level be less
than or equal to the level of the resource being updated. Hence,

we check that σctx is smaller than or equal to the value level
of the field being updated, the value level of the object’s field
is updated to σv ⊔ σctx . If not, an information flow error is
raised.

FIELDASSIGNLAB - FIELD UPDATE
o = FieldAssignLab (l, f , e1, e2, e3)
σo = lev(sρ, e1) σf = lev(sρ, e2)

σv = lev(sρ, e3) σctx = σo ⊔ σf ⊔ lvl(pc)
sh = sh′ ⊎ (l, f) 7→ (σexists ,σval)

σctx ⊑ σval sh′′ = sh′ ⊎ (l, f) 7→ (_,σv ⊔ σctx)

{sm, sh, sρ, scs,pc}
o
−→ {sm, sh′′, sρ, scs,pc}

Field Delete This rule starts by obtaining the security levels
of the expressions denoting the object and field involved in
the field deletion, respectively σo and σf . Then, it obtains
the context level, σctx , by computing the least-upper-bound
between lvl(pc), σo , and σf . Following the NSU discipline,
we check that σctx is smaller than or equal to the existence
level of the field being updated. If the constraint is satisfied,
the object’s field is deleted; otherwise, an information flow
error is raised.

FIELDDELETELAB
o = FieldDeleteLab (l, f , e1, e2)

σo = lev(sρ, e1) σf = lev(sρ, e2)
σctx = σo ⊔ σf ⊔ lvl(pc)

sh = sh′ ⊎ (l, f) 7→ (σexists , _) σctx ⊑ σexists

{sm, sh, sρ, scs,pc}
o
−→ {sm, sh′, sρ, scs,pc}

To better understand the inner workings of our information
flow monitor, we will now illustrate its application to one
simple example. Figure 6 shows the monitored execution of
the program given in Table 2. We represent the transitions of
the semantics on the left and the transitions of the monitor
on the right. Similar to semantic execution contexts, each
security execution context is represented as a box containing
its corresponding security store sρ, heap sh, call stack scs, and
pc stack. Transitions between execution contexts are labeled
with the respective security labels. Furthermore, we represent
each semantic execution context together with its correspond-
ing security context; more precisely, semantic context on the
left and security context on the right.

The example starts with the pc stack [L] indicating that the
program is executing in a low context. After the definition
of a new object o, the guard of the conditional statement
is evaluated; hence, the pc stack is extended to [H , L]. Then,
within the scope of the conditional statement, the execution of
the field assignment o.f0 := false triggers an information
flow exception as it constitutes a no-sensitive-upgrade. Note
that the value level of o.f0 is L and the level of the execution
context is H .

4.2 Monitor Inlining
The monitor inlining approach achieves the same results as the
lock-step monitor approach by compiling the given program

6

l1 := true ;
o := {}L ;
o.f0 := true ;
if (h0) then {

o.f0 := false
};
if (o.f0) then {

l0 := false
}

Table 2. Type II Program Example

Figure 6. Monitored Execution Example

into an equivalent program that also ‘monitors" itself. To this
end, we extend the language with support for security levels
and their associated operations (e.g. level comparison and
least-upper-bound between levels). In the examples, we will
use the usual two-point lattice hiдh − low .

We have implemented our inlining compiler in OCaml
following the information flow monitor described in the pre-
vious section. Analogously to well-established approaches
[9, 10, 14, 30, 43], our compiler works by pairing up each
variable with a shadow variable that holds its corresponding
security level, and each object field with two shadow fields
respectively holding its value and existence levels. More con-
cretely, for each variable x, the compiler adds a new shadow
variable x_lev that holds the security level of x. Analo-
gously, for each field f, the compiler adds two new shadow
fields f_e_lev and f_v_lev respectively holding the the

existence and the value levels of f. In the following, we
refer to f_e_lev as the shadow existence field of f and
to f_v_lev as the shadow value field of f. Moreover, the
compiler adds to every object o a shadow structure field,
struct_lev, holding the structure security level of o. Fig-
ure 7 represents a labeled heap on the left and its instrumented
counterpart on the right.

Figure 7. Inlining Trasformation on Projections

In contrast to variables, whose names are known at compile-
time, field names can be dynamically computed. Therefore,
we make use of two runtime functions, fieldExists and
fieldValue, to dynamically compute the existence shadow
field and the value shadow field of a given field f. For in-
stance, fieldValue(f) will evaluate to the value shadow
field associated with f.

Compiler Formalization We formalize our information flow
compiler as a function mapping pairs consisting of an ECMA-
SL statement st and a variable xpc to a new statement st ′.
Formally, we write Cstmt (st, xpc) = st

′ to mean that the com-
pilation of st results in st ′, assuming that the current context
level is stored in the variable xpc . In defining the compiler for
statements, we make use of an auxiliary compiler Cexpr (e)
which returns the statement st ′e that computes the level of e
and assigns it to a fresh variable xe . The statement st ′e uses
the function lub to compute the least-upper-bound between
all the shadow variables corresponding to program variables
that occur in e; for instance:

Cexpr (x + y) = lev_1 := lub(x_lev,y_lev)
where lev_1 corresponds to the generated program variable
used to hold the level of the expression.

Our compiler is defined recursively in a syntax-directed
fashion, following existing information flow compilers [9, 10,
14, 30, 43]. Below we explain the Variable Assignment and

7

Conditional Statement compilation rules. The remaining rules
are similar.

Variable Assignment The compiled code first checks whether
or not the NSU constraint associated with the assignment
holds. To this end, it compares the level of the current context
xpc against the level of the variable to be assigned x̂ using the
function leq. If this constraint does not hold, the compiled
code throws an information flow exception. If it does hold, the
compiled code updates both the value and the level of x . To
this end, it uses the function lub to compute the least-upper-
bound between the level of the context xpc and the level of
the expression κ. The obtained level is then assigned to the
shadow variable of x , x̂ .

Cexpr (e) = κ := lub(ŷ1, ..., ŷn);
Cstmt (x := e, xpc) =

w1 := leq(xpc , x̂);
if (w1) then {

κ := lub(ŷ1, ..., ŷn)
x̂ := lub(xpc , κ);
x := e
}

else {

fail ("Illegal Variable Assign")
}

Conditional Statement The compiled code first computes
the level of the conditional guard e (denoted as κ). Then, it
assigns the least-upper-bound between κ and the current xpc
level to a fresh variable x ′

pc . Note that, x ′
pc will hold the level

of the control-flow context created by the if statement, either
the then-context or the else-context. The compiled branches
of the conditional statement are obtained by applying the
compiler recursively, using the new context x ′

pc .

Cexpr (e) = κ := lub(ŷ1, ..., ŷn)
st ′1 = Cstmt (st1, x

′
pc) st

′
2 = Cstmt (st2, x

′
pc)

Cstmt (if (e) then {st1} else {st2}, xpc) =
κ := lub(ŷ1, ..., ŷn)
x ′
pc := lub(xpc , κ);

if (e) then {st ′1} else {st ′2}

5 Embedding ECMA-SL in JavaScript
5.1 Deep Embedder
In order to run ECMA-SL programs in JavaScript engines,
we designed a deep embedder of ECMA-SL into JavaScript,
which consists of an ECMA-SL interpreter written in JavaScript.

Our interpreter has at its core three main abstract classes:
Statement, Expression, and Value. These three classes have
various subclasses corresponding to each specific syntactic
construct. For instance, the Statement class has, among others,
the subclasses Block, Assignment, and Conditional Statement.
These classes are arranged according to the Composite pattern
[17], which is applicable when dealing with class hierarchies
where objects of a given subclass are composed of one or
several objects of its super-class(es). The advantage of this

Figure 8. Shallow Embedding Pipeline

pattern is that it allows for the uniform treatment of all sub-
classes. Following the Composite pattern, the subclasses of
Statement may also contain statements, mutatis mutandis for
expressions and values.

5.2 Shallow Embedder
To obtain a more performant implementation of ECMA-SL
in JavaScript, we developed a shallow alternative to the deep
embedder introduced in the previous section. Our shallow
embedder of ECMA-SL into JavaScript consists of a compiler
that translates ECMA-SL programs into JavaScript programs,
as illustrated in the compilation pipeline depicted below.

Our ECMA-SL to JavaScript compiler comprises three
main components:

1. The ECMA-SL parser that creates the abstract syntax
tree (AST) of the input ECMA-SL program,
Core_ECMA-SL_Code.esl, and serializes it as a
JSON document, ECMA-SL_AST.json;

2. The Embedder that transforms the given ECMA-SL
AST into a JavaScript AST represented as a JSON
document, JS_AST.json;

3. The escodegen code generator that pretty-prints the
final AST as a JavaScript program, JS_Code.js.

6 Evaluation
6.1 Unit Tests
We developed a series of basic tests that cover the different
types of legal and illegal information flows in ECMA-SL.
These tests were designed to cover categories such as basic
operations, basic control-flow, heap operations, and logical
operations to evaluate how adequately our information flow
monitor and inlining compiler analyze these features. Each
ECMA-SL test program was executed with both the lock-
step monitor and the inlining compiler. Each test is expected
to have the same result using the two different monitoring
approaches. Furthermore, our test suite includes both negative
tests, whose execution is supposed to throw an information
flow error, and positive tests, whose execution is supposed to
complete successfully. These results allow us to conclude that
each test behaves as expected; the tests that were expected to
pass do pass and the tests that were expected to fail do fail
with the appropriate information flow exception being raised.

8

Figure 9. ECMA-SL Monitors Unit Test Pipeline

7 Test262
To test our shallow embedder, we used the Test262, the offi-
cial ECMAScript test suite [1]. Test262 comprises thousands
of non-normative software tests and is routinely used by de-
velopers of ECMAScript reference interpreters to check the
conformance of their JavaScript implementations with the EC-
MAScript standard [6, 33]. As the ECMAScript language is
in constant evolution, Test262 also has to evolve to cover the
new features of the language. Test262 comprises thousands
of test files, often including multiple test cases.

Test262 comes with several auxiliary functions to be used
in test cases. For instance, the function assert(e) is used
to check whether or not e evaluates to true; the function
isEqual(num1, num2) tests if two numbers denote the same
value; and the function compareArray(a,b) checks whether
two arrays have the same length and, if so, if they have equal
values at equal indexes. These functions are all organized in a
single file referred to as the harness of Test262. Hence, to run
any Test262 test, one needs to include the code of the harness.
In our project, we simply prepend the code of the harness to
the code of the test to be executed.

In order to test our embedder using Test262, we first com-
pile Test262 tests to Core ECMA-SL and then recompile
the obtained Core ECMA-SL programs back to JavaScript.
The obtained JavaScript programs are then executed using
the Node engine and their outcomes are checked against the
expected outcomes.

To validate the correctness of the embedded file, it is im-
portant to confirm the expected result of its execution. Some
programs must run in strict mode, therefore, the embedder
test script must also signal the resulting program to run in
strict mode. Another point worth mentioning is that the in-
terpretation of a Test262 program can result in an exception.
Consequently, the test passes if the original Test262 program
is supposed to throw an exception and the interpretation em-
bedded program also throws an exception.

Figure 10. Embedding Test Pipeline

7.1 Results
We divided our testing results into two tables, one for Expres-
sions 3 and another for Statements 4.

Expressions Results These tests were split into 1400 pos-
itive tests, indicating that the execution is expected to end
normally, and 31 negative tests, indicating that the execution
is expected to throw an exception. Every test from the 1431
files behaved as expected, covering 100% of the Expressions
test suite.

Statements Results These tests were split into 417 positive
tests, indicating that the execution is expected to end nor-
mally, and 129 negative tests, indicating that the execution
is expected to throw an exception. Every test from the 546
files behaved as expected, covering 100% of the Statements
test suite.

8 Conclusion
We developed our inlining compiler as part of a wider project,
whose goal is to build a tool-suit for JavaScript analysis based
on a new intermediate language called ECMA-SL. We con-
tributed to the overarching ECMA-SL project in three different
ways: first, we defined the formal semantics of ECMA-SL and
described its interpreter; second, we designed a new informa-
tion flow monitor and inlining compiler for ECMA-SL; finally,
we developed two distinct embedders for running ECMA-
SL in JavaScript. By combining these components together,
we obtained a precise information flow inlining compiler for
JavaScript. We tested the obtained inlining compiler against
a subset of Test262, the official JavaScript test suite, show-
ing that it preserves the semantics of the original programs.
Furthermore, we have created a set of unit tests to test our
monitoring mechanism, confirming that it correctly flags all
types of insecure information flows at the ECMA-SL level.

The developed work will be open-sourced and made avail-
able online together with the remaining components of the
ECMA-SL project.

9

Test Positive Tests Successful Positives Negative Tests Successful Negative

Arithmetic Expressions 343 343 0 0
String Expressions 5 5 0 0
Logical Expressions 397 397 0 0
Primary Expressions 35 35 1 1
Assignment Expressions 376 376 13 13
Expressions with Side Effects 117 117 15 15
Objects and Properties 127 127 2 2

Total 1400 1400 31 31

Table 3. Expression Test Results

Test Positive Tests Successful Positives Negative Tests Successful Negative

Block 10 10 2 2
Break 8 8 10 10
Continue 5 5 10 10
Do While 15 15 8 8
Empty 1 1 0 0
Expression 2 2 1 1
For 62 62 22 22
For In 20 20 5 5
Function 133 133 8 8
If 17 17 12 12
Labeled 1 1 1 1
Return 5 5 10 10
Switch 5 5 6 6
Throw 14 14 0 0
Try 58 58 16 16
Variable 39 39 10 10
While 15 15 7 7
Whith 7 7 1 1

Total 417 417 129 129

Table 4. Test262 Statements Results

Future Work We distinguish between two types of future
work: immediate and long-term. Due to the extension of this
project and its inherent time constraints, we have not con-
cluded the ideal evaluation of the project. Therefore, we de-
fine the immediate future work to be the completion of the
project’s evaluation, which would include:

• Testing our information flow monitoring pipeline against
the complete Test262 test suite.

• Testing the combination of our inlining compiler with
our shallow embedder by generating a random informa-
tion flow test suite.

• Proving that the proposed ECMA-SL information flow
monitor is non-interferent.

In the long term, we would like to assess the real-world
applications of our tool-suit, which can be used to test other,
less precise, information flow control tools for JavaScript, as
well as to directly find information flow bugs in JavaScript
programs. More concretely, we would like to:

• Use our inlining compiler for JavaScript to test other
monitors/inlining compilers for securing information
flow in JavaScript. We are particularly interested in
testing the JSFlow [22] information flow monitor and
the JEST inlining compiler [10]. To do this, we would
generate a random information flow test suite by anno-
tating Test262 tests with random security levels, and
we would compare the results of our tool against the
results of other tools for the obtained test-suite.

• Use our monitor together with a symbolic execution
engine for JavaScript, such as JaVerT 2.0 [15, 16, 42]
to find illegal information flows in JavaScript programs.
By instrumenting the program with the information
flow analysis, one can find inputs that trigger illegal
information flows.

• Create other ECMA-SL information flow monitors with
different levels of granularity and overhead. We are par-
ticularly interested in implementing a taint monitor for
ECMA-SL, as it was pointed out in current research

10

that implicit flows do not lead to serious security vul-
nerabilities for the majority of web applications [44].

• Set up a streamlined procedure for automatically obtain-
ing the implementation of a new security lattice from its
declarative specification and integrating the resulting
implementation in our tool-chain. This would greatly
ease the process of defining and implementing new
security lattices, which are often application-specific.

References
[1] [n.d.]. Test262 - Official ECMAScript Conformance Test Suite. https:

//github.com/tc39/test262/ Accessed on 2020-06-07.
[2] Thomas H. Austin and Cormac Flanagan. 2009. Efficient Purely-

Dynamic Information Flow Analysis. In Proceedings of the ACM SIG-
PLAN Fourth Workshop on Programming Languages and Analysis for
Security (PLAS ’09). Association for Computing Machinery, New York,
NY, USA, 113–124. https://doi.org/10.1145/1554339.1554353

[3] Thomas H. Austin and Cormac Flanagan. 2010. Permissive Dynamic
Information Flow Analysis. In Proceedings of the 5th ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security (PLAS
’10). Association for Computing Machinery, New York, NY, USA, Arti-
cle Article 3, 12 pages. https://doi.org/10.1145/1814217.1814220

[4] Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. 2017.
Multiple Facets for Dynamic Information Flow with Exceptions. ACM
Trans. Program. Lang. Syst. 39, 3, Article Article 10 (May 2017),
56 pages. https://doi.org/10.1145/3024086

[5] Lennart Beringer and Martin Hofmann. 2007. Secure Information
Flow and Program Logics. In Proceedings of the 20th IEEE Computer
Security Foundations Symposium (CSF ’07). IEEE Computer Society,
USA, 233–248. https://doi.org/10.1109/CSF.2007.30

[6] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner,
Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith.
2014. A Trusted Mechanised JavaScript Specification. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’14). Association for Computing
Machinery, New York, NY, USA, 87–100. https://doi.org/10.1145/
2535838.2535876

[7] Luca Cardelli. 1996. Type Systems. ACM Comput. Surv. 28, 1 (March
1996), 263–264. https://doi.org/10.1145/234313.234418

[8] H. Chen, A. Tiu, Z. Xu, and Y. Liu. 2018. A Permission-Dependent
Type System for Secure Information Flow Analysis. In 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). 218–232.

[9] Andrey Chudnov and David A. Naumann. 2010. Information Flow
Monitor Inlining. In Proceedings of the 2010 23rd IEEE Computer
Security Foundations Symposium (CSF ’10). IEEE Computer Society,
USA, 200–214. https://doi.org/10.1109/CSF.2010.21

[10] Andrey Chudnov and David A. Naumann. 2015. Inlined Information
Flow Monitoring for JavaScript. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS
’15). Association for Computing Machinery, New York, NY, USA,
629–643. https://doi.org/10.1145/2810103.2813684

[11] Dorothy E. Denning. 1976. A Lattice Model of Secure Information
Flow. Commun. ACM 19, 5 (May 1976), 236–243. https://doi.org/10.
1145/360051.360056

[12] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro
Beekman, Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson,
Michael Bailey, and J. Alex Halderman. 2014. The Matter of Heartbleed.
In Proceedings of the 2014 Conference on Internet Measurement Con-
ference (IMC ’14). Association for Computing Machinery, New York,
NY, USA, 475–488. https://doi.org/10.1145/2663716.2663755

[13] Mozilla Foundation. 1996. The SpiderMonkey Engine. https://
spidermonkey.dev/.

[14] José Fragoso Femenin dos Santos. 2014. Enforcing secure information
flow in client-side Web applications. Theses. Université Nice Sophia
Antipolis. https://tel.archives-ouvertes.fr/tel-01135001

[15] José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienundefined,
Thomas Wood, and Philippa Gardner. 2017. JaVerT: JavaScript Veri-
fication Toolchain. Proc. ACM Program. Lang. 2, POPL, Article 50
(Dec. 2017), 33 pages. https://doi.org/10.1145/3158138

[16] José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and
Philippa Gardner. 2019. JaVerT 2.0: Compositional Symbolic Exe-
cution for JavaScript. Proc. ACM Program. Lang. 3, POPL, Article 66
(Jan. 2019), 31 pages. https://doi.org/10.1145/3290379

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc., USA.

[18] Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith. 2012.
Towards a Program Logic for JavaScript. SIGPLAN Not. 47, 1 (Jan.
2012), 31–44. https://doi.org/10.1145/2103621.2103663

[19] Roberto Giacobazzi and Isabella Mastroeni. 2004. Abstract Non-
Interference: Parameterizing Non-Interference by Abstract Interpre-
tation. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL ’04). Asso-
ciation for Computing Machinery, New York, NY, USA, 186–197.
https://doi.org/10.1145/964001.964017

[20] Google. 2017. The V8 JavaScript Engine. https://v8project.blogspot.
ie/.

[21] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The
Essence of JavaScript. In ECOOP 2010 – Object-Oriented Program-
ming, Theo D’Hondt (Ed.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 126–150.

[22] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld.
2014. JSFlow: Tracking Information Flow in JavaScript and Its APIs.
In Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting (SAC ’14). Association for Computing Machinery, New York,
NY, USA, 1663–1671. https://doi.org/10.1145/2554850.2554909

[23] Daniel Hedin and A. Sabelfeld. 2012. A Perspective on Information-
Flow Control. In Software Safety and Security.

[24] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.
Commun. ACM 12, 10 (Oct. 1969), 576–580. https://doi.org/10.
1145/363235.363259

[25] Hui Jiang, Dong Lin, Xingyuan Zhang, and Xiren Xie. 2001. Type
system in programming languages. Journal of Computer Science and
Technology 16, 3 (01 May 2001), 286–292. https://doi.org/10.1007/
BF02943207

[26] KDE. 1998. The Webkit Engine. https:///webkit.org/.
[27] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 40th IEEE Symposium on Security
and Privacy (S&P’19).

[28] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18).

[29] Y. Liu and A. Milanova. 2010. Static Information Flow Analysis with
Handling of Implicit Flows and a Study on Effects of Implicit Flows
vs Explicit Flows. In 2010 14th European Conference on Software
Maintenance and Reengineering. 146–155.

[30] Jonas Magazinius, Alejandro Russo, and Andrei Sabelfeld. 2010. On-
the-fly Inlining of Dynamic Security Monitors. In Security and Privacy
– Silver Linings in the Cloud, Kai Rannenberg, Vijay Varadharajan, and
Christian Weber (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
173–186.

[31] Heiko Mantel. 2011. Information Flow and Noninterference.
Springer US, Boston, MA, 605–607. https://doi.org/10.1007/
978-1-4419-5906-5{_}874

[32] OpenSSL. 2011. OpenSSL 1.0.1 implementation. https:///openssl.
org/.

[33] Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: A
Complete Formal Semantics of JavaScript. In Proceedings of the 36th

11

https://github.com/tc39/test262/
https://github.com/tc39/test262/
https://doi.org/10.1145/1554339.1554353
https://doi.org/10.1145/1814217.1814220
https://doi.org/10.1145/3024086
https://doi.org/10.1109/CSF.2007.30
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/234313.234418
https://doi.org/10.1109/CSF.2010.21
https://doi.org/10.1145/2810103.2813684
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/2663716.2663755
https://spidermonkey.dev/
https://spidermonkey.dev/
https://tel.archives-ouvertes.fr/tel-01135001
https://doi.org/10.1145/3158138
https://doi.org/10.1145/3290379
https://doi.org/10.1145/2103621.2103663
https://doi.org/10.1145/964001.964017
https://v8project.blogspot.ie/
https://v8project.blogspot.ie/
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/BF02943207
https://doi.org/10.1007/BF02943207
https:///webkit.org/
https://doi.org/10.1007/978-1-4419-5906-5{_}874
https://doi.org/10.1007/978-1-4419-5906-5{_}874
https:///openssl.org/
https:///openssl.org/

ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’15). Association for Computing Machinery,
New York, NY, USA, 346–356. https://doi.org/10.1145/2737924.
2737991

[34] Benjamin C. Pierce. 2002. Types and Programming Languages (1st
ed.). The MIT Press.

[35] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and
Shriram Krishnamurthi. 2011. ADsafety: Type-Based Verifica-
tion of JavaScript Sandboxing. In 20th USENIX Security Sympo-
sium (USENIX Security 11). USENIX Association, San Francisco,
CA. https://www.usenix.org/conference/usenix-security-11/
adsafety-type-based-verification-javascript-sandboxing

[36] Chromium Project. 2013. The Blink Web Engine. https://chromium.
org/blink/.

[37] Vineet Rajani, Iulia Bastys, Willard Rafnsson, and Deepak Garg.
2017. Type Systems for Information Flow Control: The Question
of Granularity. ACM SIGLOG News 4, 1 (Feb. 2017), 6–21. https:
//doi.org/10.1145/3051528.3051531

[38] J. C. Reynolds. 2002. Separation logic: a logic for shared mutable
data structures. In Proceedings 17th Annual IEEE Symposium on Logic
in Computer Science. 55–74. https://doi.org/10.1109/LICS.2002.
1029817

[39] Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-
Sensitive Security Analysis. In Proceedings of the 2010 23rd IEEE
Computer Security Foundations Symposium (CSF ’10). IEEE Computer
Society, USA, 186–199. https://doi.org/10.1109/CSF.2010.20

[40] A. Sabelfeld and A. C. Myers. 2003. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications 21, 1
(2003), 5–19.

[41] A. Sabelfeld and A. C. Myers. 2006. Language-Based Information-
Flow Security. IEEE J.Sel. A. Commun. 21, 1 (Sept. 2006), 5–19.
https://doi.org/10.1109/JSAC.2002.806121

[42] José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian
Dolby, and Philippa Gardner. 2018. Symbolic Execution for JavaScript.
In Proceedings of the 20th International Symposium on Principles and
Practice of Declarative Programming (PPDP ’18). Association for
Computing Machinery, New York, NY, USA, Article 11, 14 pages.
https://doi.org/10.1145/3236950.3236956

[43] José Fragoso Santos and Tamara Rezk. 2014. An Information Flow
Monitor-Inlining Compiler for Securing a Core of JavaScript. In ICT
Systems Security and Privacy Protection, Nora Cuppens-Boulahia,
Frédéric Cuppens, Sushil Jajodia, Anas Abou El Kalam, and Thierry
Sans (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–292.

[44] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael
Pradel, and Andrei Sabelfeld. 2019. An Empirical Study of Informa-
tion Flows in Real-World JavaScript. CoRR abs/1906.11507 (2019).
arXiv:1906.11507 http://arxiv.org/abs/1906.11507

[45] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In Proceedings of the 27th USENIX Security Symposium. USENIX
Association.

[46] Steve Zdancewic. 2004. Challenges for information-flow security. In In
Proc. Programming Language Interference and Dependence (PLID.

12

https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://www.usenix.org/conference/usenix-security-11/adsafety-type-based-verification-javascript-sandboxing
https://www.usenix.org/conference/usenix-security-11/adsafety-type-based-verification-javascript-sandboxing
https://chromium.org/blink/
https://chromium.org/blink/
https://doi.org/10.1145/3051528.3051531
https://doi.org/10.1145/3051528.3051531
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/CSF.2010.20
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/3236950.3236956
http://arxiv.org/abs/1906.11507
http://arxiv.org/abs/1906.11507

	Abstract
	1 Introduction
	2 Related Work
	2.1 Secure Information Flow
	2.2 Non-Interference
	2.3 Lock-Step Monitors
	2.4 Monitor Inlining

	3 ECMA-SL
	3.1 Core ECMA-SL
	3.2 Example

	4 ECMA-SL Security Monitor
	4.1 Security Monitor Definition
	4.2 Monitor Inlining

	5 Embedding ECMA-SL in JavaScript
	5.1 Deep Embedder
	5.2 Shallow Embedder

	6 Evaluation
	6.1 Unit Tests

	7 Test262
	7.1 Results

	8 Conclusion
	References

