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Abstract

This thesis proposes a new design of a new 24-bit or less multi-channel Asyncrhonous Sample Rate
Converter, with the following specification: (1) total harmonic distortion plus noise ratio (THD+N)
of —130dB or less; (2) supported conversion ratios from 1:24 to 24:1; hundreds of audio channels;
(3) synchronisation time of less than 200ms; (4) variation of the phase between input and output
of less than one output sample after a reset; (5) resource consumption per channel similar to the
CWda52, or less. All objectives have been met, and hundreds of tests have been applied to the
new design, which achieves a THD+N from a minimum of —143dB to a maximum of —136dB for a
total of 121 tests, with an average of approximately —140dB. The new design supports conversion
ratios range from 1:24 to 24:1. The best alternative solution is the Texas Instruments SRC4194 chip,
which supports a range from to 1:16 to 16:1. It can support tens or hundreds of channels using time
division multiplexing; the other solutions typically support eight channels, and the CWda52, the main
competitor to this approach, needs to replicate its stereo unit to handle more channels. Consequently,
the resource usage per channel of this approach is extremely competitive. The synchronisation time is
20 ms, which is one order of magnitude lower than any other alternative. The variation of the phase af-
ter reset, an important characteristic omitted in the alternative solutions, is less than one output sample.
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1. Introduction

In 1977, with the growing popularity of audio
interfaces, the Audio Engineering Society (AES)
founded the AES Digital Audio Standards Commit-
tee, creating some of the most used audio standards
to this day. Omne of the most popular standards,
the AES3 digital audio interface is still used in cur-
rent audio equipment, like microphones and speak-
ers with XLR connectors.

Since then, there has been a significant rise in
AES standards, many of them demanding the con-
version of an audio signal’s sample rate. One of the
classic examples is the conversion from CD quality
with a sampling rate Fy = 44.1kH z to DVD quality
with Fy = 48kHz. Consequently, there is a great
demand for sample rate converters, both in software
algorithms and hardware designs.

To answer this need, some integrated circuit man-
ufacturers developed multiple sample rate convert-
ers with varied specifications. The AD1896 [3],
for instance, is an asynchronous sample rate con-
verter made by Analog Devices, in 2003. It sup-
ports a stereo (2 channel) audio signal and converts
its sampling rate from 7.75:1 to 1:8 ratios, with a
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Total Harmonic Distortion Plus Noise (THD+N)
ratio of around —125dB. Another example is the
SRC4194 [5], manufactured by Texas Instruments
since 2004, supporting up to 4 channel inputs and
a wider sampling rate ratio, ranging from 16:1 to
1:16 ratios, with a THD+N of around —140dB.

The first IP (IP) was developed by Coreworks,
an IP design company, and called the CWda52 [7].
It supports up to 8 channels and converts sampling
rates between 8 kHz and 192 kHz, with ratios from
7:1 to 1:7. The THD-+N of the converted signal is
around —120dB. The core uses around 700 Slices
when implemented on a Xilinz Kintezx-7 Field Pro-
grammable Gate Array (FPGA) board as a stereo
converter. This IP has some limitations that can
be improved: Firstly, the configurable nature of
the IP should allow it to support more channels at
the cost of more resources if needed. The THD+N
of the output can be further reduced to make the
core more competitive with its Integrated Circuit
(IC) counterparts. The same reason justifies the
improvement of the limit imposed on the ratios.
Finally, as the core replicates itself for each pair
of channels, the resource usage per channel can be



further reduced.

The overall growth of the market for embedded
audio systems, with many requiring sample rate
conversion, motivates the development of a better
sample rate converter IP core. The only existing IP
implementation of an ASRC, the CWda52, shows
several limitations, so it makes sense to develop an
improved IP core, competing with both the existing
IP core and the IC counterparts.

The main objective of this work is to design
an asynchronous sample rate converter (ASRC) IP
core using the Verilog hardware description lan-
guage. The core should meet the following spec-
ifications: (1) Support for up to 24-bit samples;
(2) conversion from and to any sample rate, in the
range between 8 kHz and 192 kHz; (3) capability of
converting multiple channels, limited by the opera-
tion clock frequencies; (4) output THD+N equal or
lower than —130dB (for 24-bit samples); (5) syn-
chronization time equal or lower than 200 ms; (6)
variation of phase between input and output after
a reset of less than one output sample; (7) resource
consumption per channel of the same order as the
CWdab2, or lower.

2. Background
2.1. Theoretical Operation

The ideal ASRC converts a discrete time input sig-
nal z[n], sampled at a rate Fs;, to a continuous
time signal x(t), with the use of a reconstruction
filter. The signal is then filtered by an anti-aliasing
filter which ensures that its output y(t) has no com-
ponents which would violate Nyquist’s law. Signal
y(t) is then converted to a discrete time signal y[m],
sampled at the desired output rate Fso [8]. One of
the challenges of creating a purely digital solution is
the design of the LPF digital filter, which is at one
time accurate and efficient. The classical approach
to the problem consists in upsampling the signal by
a factor L (interpolation), doing the processing at
the frequency L x Fs1, and downsampling the result
by a factor M (decimation), as a means to emulate
a discrete to continuous and continuous to discrete
signal conversion [I3]. A simple block design of the
algorithm is shown in Fig.
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Figure 1: Classic digital sample rate conversion al-
gorithm by factor L/M

In practice, an input signal z[n], sampled at fre-

quency Fli is upsampled by insertion of L — 1 sam-
ples with value zero between two consecutive input
samples. The resultant signal is then inserted into
a low pass filter h[n], which will interpolate the in-
serted samples and avoid aliasing. Finally, the out-
put of the filter is downsampled by taking only ev-
ery M-th sample for the output signal y[m]. The
relationship between L and M is such that

L
7 (1)
Regarding the filter h[n], its cutoff frequency de-
pends on the relationship described in Equation .
In the upsampling case (L > M), there is the
need to remove the resultant spectral images, using
a filter with a normalized cutoff frequency (. <
0.5m/L). In the case of downsampling (L < M),
there is the need to filter signal frequencies that
would cause aliasing, leading to a filter with a nor-
malized cutoff frequency (2. < 0.57/M). By join-
ing the two conditions, the resultant filter should
have a cutoff frequency

ESZ = Esl-

T
Q. = mm(i, m)[rad]. (2)
In the current state of the art, this algorithm is
the basis of most synchronous and asynchronous
sample rate converters. For conversions which use
small values of L and M the computational effort
is modest. However, if the conversion involves sam-
pling rates with a small difference, the factors L and
M will increase significantly, increasing drastically
the computational cost of the conversion, only to
have most of the computed samples discarded. Note
that in this case a small normalized cutoff frequency
must be used for the filter. Furthermore, one needs
to design the filter to both remove aliasing and in-
terpolate the L — 1 inserted samples. This is why
design of the filter h[n] is the main challenge of this
architecture. The solution presented in this thesis
is based on the use of a fractional delay filter. Ad-
ditionally, for asynchronous sample rate converters,
the filter is not only time-varying, but also varies
with the sample rate ratio. This means that there
is the need to define a structure that computes the
ratio and adapts the filter. For synchronous sample
rate converters, the ratio stays constant. This can
lead to a predictable filter, leading to the possibil-
ity to trade off storage space for computation time,
by precomputing a finite set of filters [4]. Since
both the reconstruction and anti-aliasing filters are
linear systems, they can be combined together in
a single filter whose frequency response Hy(e/®) is
the product of the frequency responses of the two
filters:

Hyfe?) = {1’ < ®)

0, otherwise



To obtain the impulse response of filter h[n], one
performs the inverse discrete-time Fourier trans-
form (IDTFT) of Hy(e/®).

As this function is infinite and non-causal, an ap-
proximation must be done while retaining enough
low-pass filtering capability to ensure quality. Some
methods to approximate of the filter include win-
dowing the ideal filter, applying Lagrangian in-
terpolation to compute an intermediate coefficient
from a set of known filter samples, etc. These and
other methods are explained in detail in [12], [I7]
18| 19]. The resultant filter is a section of the sinc
function which contains a certain number of zeroes.

2.2. State Of The Art

Multiple distinct implementations of the filter can
be performed, leading to different results regarding
output fidelity and resources usage. The most di-
rect approach is to perform the direct computation
of the discrete convolution between the filter and
the samples, using two memories for the coefficients
and samples, and a MACC unit for the computa-
tions [I]. A block diagram of the MACC unit is
shown in Fig.
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Figure 2: MACC filter block diagram.

In this implementation, an accumulator generates
the phase of the desired output samples, by accumu-
lating the sample rate conversion ratio. The integer
part of the accumulated value will correspond to the
previous input sample that is closest in phase to the
current output sample. The fractional part is the
distance between the phase of the desired output
sample and the closest input sample, and is used to
select the starting point of the filter. Graphically,
this selection is represented as centering the sinc to
the closest input sample. It can also be interpreted
as a polyphase filter [§]. After the starting values
are determined, both the coefficients and samples
addresses are decremented in equivalent values, ob-
taining the previous samples and respective coeffi-
cients. The output sample y[n], is obtained by

where a; are the coefficients of the filter and
x[n — 4] is the input sample at phase n — i. This
design has the advantage of being the easiest to im-
plement, as well as being the one that uses the least
amount of logic in comparison to the other imple-
mentations presented in this chapter, requiring only
one MACC unit for the computations. However, it
requires a large amount of filter coefficients, which,
in hardware, results in high memory usage, an un-
desirable result. The problem can be solved by in-
terpolating the filter’s coefficients, leading to the
use of some logic to reduce the amount of memory
used, as some intermediate values do not need to
be stored in it. The MACC unit is the implemen-
tation used for the work performed. Other possi-
ble implementations include a Cascaded Integrator
Comb filter [6], a approximation of the piece-wise
sinc function into quadratic functions [14] 2], or a
Farrow Structure [9].

The implementation of the filter allows one to de-
sign a synchronous sample rate converter. To im-
plement its asynchronous counterpart, the sample
rate conversion ratio needs to be computed. The
sample rate conversion ratio can be expressed by

FsOut
= 6
Ee]n ’ ( )

where p is the sample rate conversion ratio, and
Fsr, and Fyo.: are the respective sample rates of
the input and output signals. There are two pos-
sible implementations for the estimator of p. The
first implementation uses multiple accumulators to
compute the input and output sample periods. This
implementation has no error tracking mechanism,
leading to a drift of the group delay of the con-
verter, due small errors in the computed value of
p. An additional module to avoid the drift needs to
be implemented. The second implementation is the
use of a digital phase locked loop (DPLL) as a fre-
quency tracker [I5] [T6]. Similarly to a conventional
PLL, the DPLL can be split into three blocks: a
phase detector, a loop filter and a voltage controlled
oscillator (VCO). The loop filter is a low-pass filter,
and it attenuates the effect of the phase detector’s
jitter, at the cost of tracking speed.

3. Implementation

Fig. B]illustrates the symbol and interface signals of
the sample rate converter designed. The green sig-
nals are defined in the audio_in_mclk domain, while
the blue signals are defined in the audio_out_mclk
domain. The remaining signals are in the system
clock domain.



conv_ratio [Ro_w-1.0]

inv_conv_ratio [Ro_w-1:0]
sync - -

4

audio_in [samMp_w-1.0 — —» audio_out (samp_w-1:0]

audio_in_valid ——» ~<— audio_out_valid

Asynchronous Sample —> audio_out_ready

audio_in_ready Rate Converter

<— audio_out_wclk
<— audio_out_mclk

audio_in_wclk ———»

audio_in_mclk ———» i
- — audio_out_empty

IR
clk rst error [2:0]

sync_cycles [31:0]
Nc [NC_W-1:0]

Figure 3: Symbol and interface diagram.

Table [1| presents the synthesis parameters avail-
able to configure the synthesis of the core.

Parameter Default Value
SAMP_W 24
NC_W 8
ROW 35
SAMP_BUF_W 10

Table 1: Synthesis Parameters

The ASRC is divided in three main modules: the
Input Data Memory, the Ratio Estimator and the
Resampler. Additionally, the ASRC includes a pos-
itive edge detector circuit, implemented with a reg-
ister, to generate the start signal, used to start the
computation of a new output sample, as well as
an asynchronous FIFO, used to temporarily store
the output samples to be read, and to allow their
crossing from the system clock to the output audio
master clock. Fig. [ illustrates the block diagram
of the core.
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Figure 4: Asynchronous sample rate converter top
block diagram.

3.1. Input Data Memory

The data memory is a circular dual port Random
Access Memory (RAM) capable of working at two
different clock domains. In the input clock domain,

the samples audio_in are stored. A counter con-
trols the address at which the samples should be
written. In the system clock domain the samples
are read by accessing the position given by s_addr.
The read samples are used to perform the filtering.
For N¢ Time Division Multiplexed (TDM) chan-
nels, the address of the next sample of a certain
channel, s_addr[n + 1], is given by

s_addrin + 1] = s_addr[n] + Nec. (7)
3.2. Conversion Ratio Estimator

In this work, the use both techniques presented in
section 2.2 constitutes the conversion ratio estima-
tor. The period measurement and averaging per-
form the first approximation, obtaining the approx-
imate conversion ratio, p, and the approximate in-
verse of the conversion ratio p~—1.

As the error in the approximations leads to a de-
viation of the read and write pointers of the data
memory, as well as a variable group delay of the fil-
ter, a DPLL, used as a frequency tracker, performs
a finer adjustment of the approximation of p—1, by
using the variation of the average delay measured
by the phase detector, AD = 27 (dip, — Pout), tO
apply corrections. The variation of the delay be-
tween the input and output phases, ¢;;, and @ou¢
respectively, over a certain time period, At is given
by

Pin = Pout _ ny_ 5 )71 AL

27TFS[n (8)

By adapting to discrete time, one can obtain the
value of the correction, C, needed to apply, by en-
suring that AD converges to zero,

_AD
B Nout.

c (9)

To allow a smoother variation of pil, the value
of the correction is attenuated.

The conversion ratio estimator is controlled by
a finite state machine (FSM). Initially, the FSM
enables the period meters and allows them to accu-
mulate for a certain time, performing the average of
the measured periods, allowing the computation of
pand p~1. Afterwards, the FSM enters a loop that
performs the measurement and average of the delay,
using it to periodically apply new corrections.

3.3. Resampler
The resampler is the main module of the sample
rate converter, and is implemented with a MACC
unit, as explained in Section [2.2] The resampler
splits into three submodules: address generator, co-
efficient memory and multiply-accumulator.

The address generator computes the addresses of
both the input samples used to compute the output



sample, and the addresses of the corresponding co-
efficients. A filter setup block computes the address
of the current output sample, the initial address of
the coefficient to be used, « (this address changes
depending on the side of the sinc that is being cur-
rently used), and the parameter h_step, a parameter
related to the normalized cutoff frequency of the fil-
ter. The integer part of the address of the current
output sample is the base address of the input sam-
ples to be used. A accumulator that accumulates on
increments of the number of channels, N¢, outputs
the address of the offset to be applied to the base.
Depending on the side of the sinc the offset can be
positive or negative. The address of the coefficient
comes from an accumulator that is initialized with
« and accumulates in increments of h_step. When
the accumulated value reaches the end of the coeffi-
cient memory, the side of the sinc function switches,
and the coefficient accumulator resets with the new
value of a.

The coefficient memory is a read-only memory
(ROM) that contains the truncated sinc function.
To reduce the amount of coefficients stored, the
module also contains a linear interpolator. When
a coefficient h[i + A] is needed, h[i] and h[i + 1] ex-
ist in the lookup table, and A is a fractional positive
distance from i, the coefficient is obtained by

hli + A] = h[i] + A(h[i + 1] — h[d]). (10)

As its name indicates, the multiply-accumulator
implements the multiply-accumulate function. The
accumulated values are the products between the
coefficient and the correspondent input sample.
The initial value of the accumulator is set by di-
rectly loading (not accumulating) the first prod-
uct. The final register stores the output sample
audio_out, and is only enabled when all accumula-
tions have finished. The output sample is multiplied
by h_setp, as the filter is normalized for unit gain
in the pass-band.

To optimize the implementation of the ASRC, al-
lowing it to run with a system clock frequency of at
least 100 MHz on a low cost FPGA, 9 pipeline regis-
ters are added: 3 in the address generator module, 4
in the coefficients ROM module, and 2 in a MACC
module.

4. Test Environment
4.1. Signal Generation and Analysis

To test the hardware developed, there is the need to
generate the input samples, as well as the filter’s co-
efficients. Furthermore, with the knowledge of the
input signal used, the output should be analyzed.
For this matter, four Octave scripts are used: one
to generate the filter’s coefficients, one to generate
the input signal, one to analyze the output signal

and one to test the effect of resetting the core on
the group delay.

The script that generates the input samples re-
ceives the input and output sampling rates, and the
frequency and magnitude of the test signal to be
generated. The script also adapts the value of the
sampling rate to the closest values that can be ob-
tained by the FPGA’s clock generator, using master
clocks with periods of 42ns and 91ns. It also ad-
justs the frequency of the test signal, allowing it to
be a divisor of the output sampling rate. To guaran-
tee that the output has enough samples for analysis,
the input signal generated has enough samples to
ensure a minimum of 120 signal periods and 11000
output samples. The test wave generated is a sine
wave.

To generate the coefficients, the script receives
three values: filter nzeros, filternfrac, and
H _bits, which give the number of zeroes of the sinc
function, the number of address bits to address the
filter’s memory, and the number of bits to quantify
the value of the coefficients, respectively. The filter
generates an ideal sinc function and truncates it us-
ing a Kaiser window. The values of filter_nzeroes,
filter_nfrac and H bits are 32, 10 and 24, respec-
tively.

The analyze the output, the script computes its
spectrum, through a Fast Fourier Transform (FFT).
Afterwards, it computes the THD+N by summing
the power value of every bin which is not deemed
to belong to the original sinusoidal signal. It also
allows a small tolerance around the signal bin’s fre-
quency to compensate for the difficulty to avoid
scattering when computing spectra.

The script that analyzes the effect of resetting
the core on the group delay receives two versions
of the output: one that ran without a reset during
the conversion, and one that ran with a reset during
the middle of the conversion. The script compares
the results and computes the approximate phase be-
tween them, expressed as

vi s

¢ = arccos

(11)

ly1]ly2|’

where y; and y5 are vectors containing each sam-
ple as an element. For a number of samples large
enough, the approximation is accurate, as explained
in [10].

4.2. I0b-SoC Hardware Platform
IOB-SoC [II], an open-source system-on-a-chip
(SoC) platform, tests the implementation of the
ASRC in FPGA,. The block diagram of the SoC
is shown in Fig.

The PicoRV32 [?], a RISC-V soft processor, con-
trols the SoC. The CPU can access an internal static



Internal Memory Xilinx

PicoRV32 MIG Controller

CPU 4,—» SRAM » Boot ROM T

External Memory
5 ———» Cache ——

Peripherals T

4|—> ASRC

—» Ethernet

—|-> UART

ol Xilinx
AXI Interconnect

Split

-

Split

Figure 5: IOB-SoC block diagram.

RAM, an external Double Data Rate (DDR) mem-
ory (through a cache), and three peripherals:

e the ASRC, connected through a wrapper that
uses registers, FIFOs and a Direct Memory Ac-
cess (DMA) module to configure the core, as
well as send and receive the samples.

e the UART, used to send runtime messages to
the user.

e the Ethernet module, used to receive the in-
put samples from the PC, and send the output
samples.

Fig.[fillustrates the flowchart of the firmware ran
by the CPU.
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Figure 6: ASRC testing firmware flowchart.

5. Results

To validate the Asynchronous Sample Rate Con-
verter design, a rigorous testing suite has been ap-
plied to it, based on similar tests that can be found
in [3], [5] and [7]. All tests have been applied to
an FPGA implementation of the design, embedded
in the SoC described in Section [£.2] and run on a
Kintex Ultrascale FPGA (XCKU040-FBVAG76-1-
C) device.

The Fast Fourier Transform (FFT) method is the
main process to obtain the results, as most of the
rely on the magnitude of the signal, or the sum of
magnitude of the noise. By default, the input signal
is a sine wave with a magnitude of —1dB, and a fre-
quency of 1kHz. Most of the performed tests ran
16 times, using combinations of 44.1kHz, 48 kHz,
96 kHz, 192kHz for the input and output sample
rates. The tests for the Total Harmonic Distortion
Plus Noise (THD+N) and group delay ran for every
combination of the 11 most commonly used sample
rates in audio applications, from 8 kHz to 192 kHz.
All of the tests met the specification defined in Sec-
tion [

The plot of the FFT of the output signal for
a conversion from 44.1kHz to 48kHz is shown in
Fig. [} Note that the magnitude of the signal bin
is lower than the expected value. This is due to
the window applied to the FFT, used to eliminate
spectral leakage.
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Figure 7: FFT of a conversion from 44.1kHz to
48 kHz.

The THD+N obtained for a subset of the conver-
sions tested is shown in Table 2

The results shown in [2[ show that that the spec-
ification of a THD+n equal to —130dB or less is
fulfilled for some the most common sampling rate
conversions.

Fig. [§| shows the THD+n results when varying
the input signal’s frequency, for a single conversion.

Fig. [8] shows that the THD+n increases for sig-
nals with frequencies close to the Nyquist frequency



Fin [Hz] | Fout [Hz] | THD+N [dB]
8000 177242 -139.706173
11022 96006 -138.768504
44132 48003 -138.784562
177242 192012 -141.533573
192012 11022 -141.887817
87912 8000 -141.829588
48003 32002 -136.135586
11022 8000 -138.289522

Table 2: Total harmonic distortion+noise ratio for
some conversions

-80 [

THD+N [dB]

10 15
Input signal frequency [kHz]

Figure 8: THD+N with varying input signal fre-
quency for conversion from 44.1kHz to 48 kHz.

(F =~ F;,/2). This is caused by aliasing in the fil-
tered output, as the low-pass filter is not selective
enough to completely remove the distortion caused
by aliasing.

The THD+n for a subset of conversions of a sig-
nal with a frequency of 1kHz and varying mag-
nitude, between —120dB and —1dB, is shown in

Fig. [10]
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Figure 9: From 44.1kHz to 48 kHz.

Figure 10: THD+N of the ASRC output for fixed
conversions while varying the input magnitude.

The increase of the input magnitude leads to an
increased THD+N. This is due to the increase of
the harmonics’ amplitude, as well as the spread of
some of the energy of the signal to adjacent frequen-
cies, caused by the adjustments of the conversion
ratio, performed by the core. In these conditions,
the specification is still met.

Fig. shows the frequency responses of a con-
version from 44.1 kHz to 48 kHz.

Output signal magnitude [dBFS]

10 15
Input signal frequency [kHz]

Figure 11: Frequency response of the ASRC for a
conversion from 44.1 kHz to 48 kHz.

The results of the phase difference after reset are
obtained using the method explained are shown in



Table B

Fin [Hz] | Fout [Hz] Phase Shift (#

Output Samples)
11022 96006 0.329150
44132 48003 0.001540
176366 192012 0.090451
192012 11022 0.009258
88183 8000 0.044237
48003 32002 0.333216
11022 8000 0.044391

Table 3: Group delay of some conversions.

Although the synchronization process leads to a
small change in the group delay, due to the lack of a
phase tracker, displacement is less than one output
sample. As such, it presents no audible effect.

The ASRC is considered linear, as the amplitude
of the output signal is equal to the amplitude of the
input signal. Table [4] shows the value of the pro-
portionality constant, 3, and coefficient of determi-
nation R2, when performing a linear regression on
some conversions.

Fin [Hz] | Fout [Hz] Jé] R?
192012 44132 0.999999 | 99.99996%
192012 96006 1.000026 | 99.99997%
44132 48003 1.000071 | 99.99993%
44132 96006 1.000057 | 99.99994%
48003 192012 0.999945 | 99.99990%
48003 44132 0.999785 | 99.99993%
96006 192012 0.999981 | 99.99992%
96006 48003 0.999930 | 99.99995%

Table 4: Results of linear regression of some con-
versions

Table [] allows one to conclude that the filter is
linear for the range of input magnitude tested, as
the value of R? is close to 100%. The value of 3
shows that the gain of the ASRC is close to 1.

The detailed resource usage of the ASRC on the
Kintex Ultrascale FPGA (XCKU040-FBVA676-1-
C) is shown in Table

Resource | Used
LUTs 1654
Registers 1540
DSPs 9
BRAM 13

Table 5: Resource utilization on a XCKU040

More than half of the lookup tables (LUTSs) are
used by the ratio estimator (ro_meter) module. In
it, the divider module is the most resource-hungry,
as it needs to compute averages that require many

bits to account for the accumulated periods, num-
ber of accumulations and of fractional bits of the
conversion ratio.

The core also uses 9 digital signal processing
blocks (DSPs) for its multipliers. In an ASIC im-
plementation, the multipliers would occupy a signif-
icant silicon area, most likely higher than the silicon
area taken by the ratio estimator module.

Regarding the usage of memory blocks, the coef-
ficient ROM is the element that uses the most, as
the module stores 16384 (2!%) samples, with 24 bits
per sample, stored. In FPGA, ROMs are typically
implemented with pre-initialised block RAMs, but
in an ASIC implementation, the implementation of
ROMs leads to an area one order of magnitude lower
than the implementation of RAMs.

There are two components that lead to the lim-
itation of the number of channels: the size of the
data memory, presented in Subsection and the
number of clock cycles available to compute a sam-
ple for every channel.

Considering that the filter is a sinc function with
32 zeroes and the coefficients are iterated in incre-
ments of h_step, and acknowledging that one needs
one input sample for each coefficient, size of the
data memory, which should have a capacity to store
enough input samples for the computation of an
output sample per channel, should be given by the
expression

32

Mem._Size > — 22 _
M-o12e = in(0.875, p)

X Nchannels- (12)

That size can, however, be changed through the
synthesis of the core with a different synthesis pa-
rameter.

As the MACC module performs a single multi-
plication per system clock cycle,the output samples
can only be computed if the system clock cycle is
(Neoeffs+10) X Nenannets times faster than the out-
put sample rate. The 10 extra clock cycles refer to
the 9 cycles needed to allow the internal signals to
pass through the pipeline registers, as well as an
extra cycle needed to change the side of the filter.

6. Conclusions

An ASRC is a rather complex circuit, and only
major semiconductor players such as Cyrrus Logic,
Analog Devices and Texas Instruments have Inte-
grated Circuit (IC) solutions available in the mar-
ket. To the best of the author’s knowledge, the
only existing ASRC IPs in the market, the CWdabx
family, is made available by the IP design company
Coreworks, SA. As was explained in Section [} the
CWdabx cores have a higher (worse) THD+N than
the IC solutions, as well as a more limited range of
conversion ratios.



This thesis proposes a new design of an audio
Asynchronous Sample Rate Converter (ASRC), im-
plements it and presents the experimental results.
The circuit is described in Verilog, simulated, and
prototyped in FPGA. The ASRC is designed as
a multi-channel sample rate converter Intellectual
Property (IP) module for integration into System-
on-Chip. The imposed specifications have the pur-
pose of making it competitive to any IC or IP solu-
tions, with the CWda52 IP core, the AD1896 and
the SRC4194 chips being the leading competitors.

The specifications include: support for up to
24-bit samples, sampled in the range between
8 kHz and 192 kHz, multiple (hundreds) of channels,
THD+N of —130dB or less, a synchronisation time
lower than 200 ms, variation of phase between input
and output of less than one output sample after a
reset, and a hardware resource consumption similar
to the CWdab2.

The bit-width of the samples can be specified as
a synthesis parameter. Although the specification
imposes the upper bound of 24 bits, the IP can
support any bit-width, though tests for more than
24 bits are not performed.

Similarly to the CWdabx IP core family and the
IC chips, the present core supports any sample rate
between 8 kHz and 192 kHz. The present design has
no limit regarding the conversion ratio; the sup-
ported sample rates define the conversion ratio lim-
its. Hence, the supported range is from 24:1 to 1:24
ratios. This range is broader than the ranges of any
other solution, as the maximum previously found by
the author is 16:1 to 1:16 [5].

The core supports multiple channels. The maxi-
mum number of channels supported depends on the
input and output sample rates, data memory size,
and system clock’s frequency. While one can change
the size of the data memory by changing the syn-
thesis parameters, the frequency of the system clock
may be limited by its critical path length. For ex-
ample, the core can support up to 8 channels for the
worst conversion ratio: 192:8 kHz for a 100 MHz
system clock For most standard conversion rates,
the core support at least 16 channels. The solution
is thus the most competitive ones in terms of the
number of supported channels.

The output’s THD+Nis lower than —136 dB for
all the conversions in the supported range; a total
of 121 conversions have been run. For most conver-
sions, the THD+N is around —140 dB. For the best
case, the THD+N is —143 dB. These figures are a
direct improvement over the CWdab2 and lead to
a sound fidelity similar to the IC counterparts, as
their THD+N reaches values around —140dB [5].

Thanks to the unique architecture of the conver-
sion ratio estimator, the synchronisation time of the
core is only 20ms. This low synchronisation time

improves the IC solutions, as the synchronisation
time is one order of magnitude lower. This archi-
tecture also presents no issues regarding the varia-
tion of the phase after a reset; it is lower than one
output sample for the 121 tested conversions.

For two channels, the FPGA implementation of
core uses around 60% of the total amount of LUTSs
used by the CWdab2, while the DSP usage is dou-
ble. However, for more than two channels, the re-
source usage of the CWdab2 increases as it repli-
cates itself for each pair of channels. The core pro-
posed in this thesis has no hardware overhead with
the number of channels, which makes the hardware
resource usage per channel of the proposed core
lower and lower than the CWda52’s as the number
of channels increases.

By changing the synthesis parameters, ASRCs
with different specifications can be produced, trad-
ing off its high-end features for less hardware re-
source usage.

Once the conversion ratio is estimated, the com-
putation of the output samples may proceed syn-
chronously. Synchronous sample rate converters
find many applications in digital audio processing
to operate on stored signals for which the sample
rate is known. Consequently, synchronous sample
rate converter IPs can easily be implemented using
just the resampler part of this work and adding the
necessary system integration circuitry.

The asynchronous nature of the algorithm dic-
tates the need to work with multiple clock domains,
which is as complex as it can get in terms of digital
hardware design. In this work, three different clock
domains are used: the input, output and process-
ing clock domains. Typical synchronisation struc-
tures have been developed as needed to avoid errors
caused by metastability or data misses.
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