
Asynchronous Audio Sample Rate Converter

Pedro Miguel Portela Teixeira

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. José João Henriques Teixeira de Sousa

Examination Committee

Chairperson: Prof. Francisco André Corrêa Alegria
Supervisor: Prof. José João Henriques Teixeira de Sousa

Member of the Committee: Prof. Gonçalo Nuno Gomes Tavares

September 2021

ii

Declaration

I declare that this document is an original work of my own authorship and that it fullfills all the re-

quirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgments

This thesis is the result of two years of work and five years of studies in Instituto Superior Técnico.

As such, I would like to thank those who helped me in this journey.

From the two years of development of the thesis, I thank Pedro Miranda and João Lopes for helping

me testing the work performed. I also thank Valter Mario for helping me with the initial development of

the core during my internship at IObundle. Special thanks to my advisor, Professor José Teixeira de

Sousa, for proposing the subject of the thesis to me, reviewing it, and keeping me productive, even while

stressing due to the pandemic.

From the five years of studies in Instituto Superior Técnico, I want to acknowledge my colleagues

who helped me with my studies and ensured my success, as well as lifting my spirits with engineering

jokes: Daniel Pestana, Renato Dias, José Gomes, Gil Serrano, João Pinto, Miguel Cardoso, Afonso

Luis, Simão Eusébio and Thomas Berry.

Lastly, I want to give special thanks to my parents, Carlos Teixeira and Sónia Teixeira, as well as my

brother, João Teixeira, for giving me support, allowing me to achieve my objectives.

v

vi

Resumo

Esta dissertação propõe o projeto de um novo conversor de frequências de amostragem assı́ncrono

multi-canal de 24 bits ou menos, com os seguintes objetivos: (1) taxa de distorção harmónica e ruı́do

total (THD+N) de −130 dB ou menos, (2) razões de conversão suportadas entre 1:24 e 24:1; centenas

de canais de audio; (3) tempo de sincronização inferior a 200ms, (4) variação da fase entre entrada e

saı́da inferior a uma amostra de saı́da após o reset, e (5) consumo de recursos por canal semelhante

ao CWda52, ou menor.

Todos os objetivos foram cumpridos, e centenas de testes foram aplicados ao novo projeto, que

obtém uma THD+N de um mı́nimo de −143 dB até um máximo de −136 dB para um total de 121 testes,

com uma média de aproximadamente −140 dB. O novo projeto suporta razões de conversão de 1:24

até 24:1. A melhor solução alternativa é o chip SRC4194 da Texas Instruments, que suporta entre 1:16

e 16:1. O projeto também suporta dezenas ou centenas de canais, utilizando multiplexagem por divisão

de tempo; as outras soluções tipicamente suportam oito canais, e o CWda52 precisa de replicar a sua

unidade stereo para suportar mais canais. Consequentemente, a utilização de recursos por canal é

extremamente competitiva. O tempo de sincronização é 20ms, que é uma ordem de grandeza inferior

a qualquer outra alternativa. A variação da fase após reset, uma caracterı́stica importante omitida em

soluções alternativas, é inferior a uma amostra de saı́da.

Palavras-chave: Conversor de Frequências de Amostragem, Processamento Digital de

Sinal, FPGA, Filtro Digital

vii

viii

Abstract

This thesis proposes a new design of a new 24-bit or less multi-channel Asynchronous Sample Rate

Converter, with the following specification: (1) total harmonic distortion plus noise ratio (THD+N) of

−130 dB or less; (2) supported conversion ratios from 1:24 to 24:1; hundreds of audio channels; (3)

synchronisation time of less than 200ms; (4) variation of the phase between input and output of less

than one output sample after a reset; (5) resource consumption per channel similar to the CWda52, or

less.

All objectives have been met, and hundreds of tests have been applied to the new design, which

achieves a THD+N from a minimum of −143 dB to a maximum of −136 dB for a total of 121 tests, with an

average of approximately −140 dB. The new design supports conversion ratios range from 1:24 to 24:1.

The best alternative solution is the Texas Instruments SRC4194 chip, which supports a range from to

1:16 to 16:1. It can support tens or hundreds of channels using time division multiplexing; the other so-

lutions typically support eight channels, and the CWda52, the main competitor to this approach, needs

to replicate its stereo unit to handle more channels. Consequently, the resource usage per channel of

this approach is extremely competitive. The synchronisation time is 20ms, which is one order of magni-

tude lower than any other alternative. The variation of the phase after reset, an important characteristic

omitted in the alternative solutions, is less than one output sample.

Keywords:Asynchronous Sample Rate Converter, Digital Signal
Processing, FPGA, Digital Filter

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

List of Acronyms . xix

1 Introduction 1

1.1 Topic Overview . 1

1.2 Motivation . 2

1.3 Objectives . 2

1.4 Thesis Outline . 3

2 Asynchronous Sample Rate Converter Theory 5

2.1 Sample Rate Converter’s Structure . 5

2.2 Interpolation/Decimation Filter As A Fractional Delay Filter 7

3 Previous Work 11

3.1 Implementation of the Interpolation/Decimation Filter . 11

3.1.1 Direct Filtering Using a Multiply-Accumulate Unit (MACC) 11

3.1.2 Cascaded Integrator Comb Filters (CIC) . 12

3.1.3 Approximation By Piece-wise Quadratic Function 13

3.1.4 Farrow Structure . 15

3.2 Implementation Of The Sample Rate Conversion Ratio Estimator 16

3.2.1 Period Measurement And Averaging . 17

3.2.2 Digital Phase Locked Loop As Frequency Tracker 18

4 Proposed Design 21

4.1 Data Memory . 23

4.2 Ratio Estimator . 24

4.2.1 Initial Approximation - Period Measurement and Averaging 25

4.2.2 Frequency Tracker . 26

xi

4.2.3 Ratio Estimator Control Unit . 28

4.3 Resampler . 32

4.3.1 Address Generator . 32

4.3.1.1 Filter Setup . 33

4.3.1.2 Input Sample Address Generator . 34

4.3.1.3 Filter Coefficients Address Generator . 35

4.3.2 Coefficient Memory . 36

4.3.3 Multiply-Accumulator . 37

4.4 Pipeline Registers . 37

5 Testing System 39

5.1 Signal Generation and Analysis . 39

5.1.1 Parameter Adjustment . 39

5.1.2 Filter Coefficients Generation . 41

5.1.3 Input Signal Generation . 42

5.1.4 Output Signal Analysis . 43

5.1.5 Effect Of Resetting On The Group Delay . 45

5.2 IOB-SoC Hardware Implementation . 46

5.2.1 Peripherals . 47

5.2.1.1 UART . 48

5.2.1.2 Ethernet . 48

5.2.1.3 ASRC’s Wrapper . 49

5.2.2 Firmware . 53

6 Results 55

6.1 Fast Fourier Transform Setup . 55

6.2 Total Harmonic Distortion Plus Noise . 58

6.3 Frequency Response . 61

6.4 Phase Difference After Reset . 61

6.5 Linearity Of The ASRC . 63

6.6 FPGA Resource Usage . 64

6.7 ASIC Resource Usage . 66

6.8 Multi-Channel Support and Limitations . 67

7 Conclusions 69

7.1 Achievements . 70

7.2 Future Work . 71

Bibliography 73

xii

A Full Test Results A.1

A.1 THD+N . A.1

A.2 Group Delay After Reset . A.3

A.3 THD+N With Varying Input Frequency . A.6

A.4 Frequency Response . A.8

A.5 THD+N With Varying Input Magnitude . A.10

A.6 Magnitude With Varying Input Magnitude . A.12

xiii

xiv

List of Tables

4.1 Interface signals. 22

4.2 Synthesis Parameters . 22

4.3 Conversion ratio estimator FSM output signals per state. 31

5.1 IOB-SoC memory map . 47

5.2 CPU native slave interface signals . 48

5.3 ASRC testing system’s synthesis parameters. 50

5.4 Software accessible registers for the ASRC. 51

5.5 Software accessible registers for the input and output buffers. 52

5.6 Software accessible registers for the DMA. 52

6.1 Commonly used sample rates in audio applications and their particular uses 58

6.2 Total harmonic distortion+noise ratio for some conversions 58

6.3 Group delay of some conversions. 62

6.4 Results of linear regression of some conversions . 64

6.5 Resource utilization on a XCKU040 (hierarchical representation) 65

6.6 Resource utilization on a XC7A35 (left) and Cyclone V GT (right) 65

6.7 ASIC resource usage for the ASRC . 66

6.8 ASIC resource usage for the CWda52 with two audio channels 66

A.1 Total harmonic distortion+noise ratio for every tested conversion A.3

A.2 Group delay for every tested conversion . A.5

xv

xvi

List of Figures

2.1 Analog interpretation of a sample rate converter . 5

2.2 Classic digital sample rate conversion algorithm by factor L/M 6

2.3 Graphical representation of h[n] for τd = 0 . 8

2.4 Illustration of upsampling (3:4) used to determine the output sample at n = 4.5 9

2.5 Illustration of downsampling (4:3) used to determine the output sample at n = 8 10

3.1 MACC filter block diagram. 12

3.2 Example of cascaded integrator comb filter structure, used as an interpolation filter 13

3.3 Example of a piece-wise kernel filter structure . 14

3.4 Example of optimized kernel filter structure . 15

3.5 Example of farrow structure, optimized for variable fractional delay 16

3.6 Period measurement and ρ computation using a PLL. 17

3.7 Period measurement and ρ computation using a divider. 17

3.8 DPLL phase detector block diagram. 19

3.9 DPLL loop filter and VCO block diagram. 19

4.1 Symbol and interface diagram. 21

4.2 Asynchronous sample rate converter top block diagram. 23

4.3 Data memory module block diagram. 24

4.4 Ratio Estimator module block diagram. 25

4.5 Frequency Tracker module block diagram. 27

4.6 Ratio Estimator FSM state diagram. 30

4.7 Resampler block diagram. 32

4.8 Address generator block diagram. 33

4.9 Output sample address, h step and α computation submodule block diagram. 34

4.10 Input sample address computation submodule block diagram. 35

4.11 Coefficient address computation submodule block diagram. 36

4.12 Coefficient memory submodule block diagram. 36

4.13 MACC block diagram. 37

5.1 IOB-SoC block diagram. 46

5.2 Ethernet data frame format. 48

xvii

5.3 ASRC’s wrapper block diagram. 50

5.4 ASRC testing firmware flowchart. 54

6.1 Fast-Fourier transform of upsampled signals. 56

6.2 Fast-Fourier transform of downsampled signals. 57

6.3 THD+N of the ASRC’s output for fixed conversions and varying input frequency. 59

6.4 THD+N of the ASRC output for fixed conversions while varying the input magnitude. . . . 60

6.5 Frequency response of the ASRC for a few conversions. 61

6.6 Output signal before (blue) and after (red) reset for a conversion from 48 kHz to 32 kHz. . . 62

6.7 Magnitude of the ASRC’s output for fixed conversions and variable input magnitude. . . . 63

A.1 THD+N of the ASRC’s output for fixed conversions and varying input frequency (Full re-

sults - 1/2). A.6

A.2 THD+N of the ASRC’s output for fixed conversions and varying input frequency (Full re-

sults - 2/2). A.7

A.3 Frequency response (Full results - 1/2). A.8

A.4 Frequency response (Full results - 2/2). A.9

A.5 THD+N of the ASRC’s output for fixed conversions and varying input magnitude (Full

results - 1/2). A.10

A.6 THD+N of the ASRC’s output for fixed conversions and varying input magnitude (Full

results - 2/2). A.11

A.7 Magnitude of the ASRC’s output for fixed conversions and varying input magnitude (Full

results - 1/2). A.12

A.8 Magnitude of the ASRC’s output for fixed conversions and varying input magnitude (Full

results - 2/2). A.13

xviii

List of Acronyms

AES Audio Engineering Society

ASIC Application Specific Integrated Circuits

ASRC Asynchronous Sample Rate Converter

CDC Clock Domain Crossing

CIC Cascaded Integrator Comb

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DDR Double Data Rate

DMA Direct Memory Access

DPLL Digital Phase Locked Loop

DSP Digital Signal Processor

FIFO First In, First Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

IC Integrated Circuit

IP Intellectual Property

LPF Low Pass Filter

LUT Lookup Table

MACC Multiply-Accumulate

MIG Memory Interface Generator

MMCM Mixed-Mode Clock Manager

PLL Phase Locked Loop

RAM Random Access Memory

ROM Read-Only Memory

RTL Register Transfer Level

SFD Start Frame Delimiter

SRAM Static Random Access Memory

SSRC Synchronous Sample Rate Converter

SoC System-on-a-Chip

TDM Time Division Multiplexed

THDN Total Harmonic Distortion Plus Noise

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VCO Voltage Controlled Oscillator

xix

xx

Chapter 1

Introduction

1.1 Topic Overview

In 1977, with the growing popularity of audio interfaces, the Audio Engineering Society (AES) founded

the AES Digital Audio Standards Committee, creating some of the most used audio standards to this

day. One of the most popular standards, the AES3 digital audio interface is still used in current audio

equipment, like microphones and speakers with XLR connectors.

Since then, there has been a significant rise in AES standards, many of them demanding the conver-

sion of an audio signal’s sample rate. One of the classic examples is the conversion from CD quality with

a sampling rate Fs = 44.1 kHz to DVD quality with Fs = 48 kHz. Consequently, there is a great demand

for sample rate converters, both in software algorithms and hardware designs.

To answer this need, some integrated circuit manufacturers developed multiple sample rate convert-

ers with varied specifications. The AD1896 [1], for instance, is an asynchronous sample rate converter

made by Analog Devices, in 2003. It supports a stereo (2 channel) audio signal and converts its sam-

pling rate from 7.75:1 to 1:8 ratios, with a Total Harmonic Distortion Plus Noise (THD+N) ratio of around

−125 dB. Another example is the SRC4194 [2], manufactured by Texas Instruments since 2004, sup-

porting up to 4 channel inputs and a wider sampling rate ratio, ranging from 16:1 to 1:16 ratios, with a

THD+N of around −140 dB.

The implementation as Intellectual Property (IP) is quintessential for the development of embedded

audio systems, as it allows one to synthesise a new core with different configurations, fulfilling different

specifications, in a faster and cheaper way. Furthermore, one can implement the IP directly into the

system, without the need to develop a new core specifically for the system or to externally connect a

discrete core to the system.

The first IP (IP) was developed by Coreworks, an IP design company, and called the CWda52 [3]. It

supports up to 8 channels and converts sampling rates between 8 kHz and 192 kHz, with ratios from 7:1

to 1:7. The THD+N of the converted signal is around −120 dB. The core uses around 700 Slices when

implemented on a Xilinx Kintex-7 Field Programmable Gate Array (FPGA) board as a stereo converter.

This IP has some limitations that can be improved: Firstly, the configurable nature of the IP should allow

1

it to support more channels at the cost of more resources if needed. The THD+N of the output can

be further reduced to make the core more competitive with its Integrated Circuit (IC) counterparts. The

same reason justifies the improvement of the limit imposed on the ratios. Finally, as the core replicates

itself for each pair of channels, the resource usage per channel can be further reduced.

This work started in a summer internship at IObundle Lda, another IP design company, and has

been carried out in a double academic and industrial context since then. At the beginning of the work, a

preliminary document describing the ASRC, an Octave model and a non-functional Verilog were avail-

able. These materials made it possible to learn the sample rate conversion algorithm and have a starting

point.

The resampler was fixed, and its THD+N was reduced to near the theoretical limit of -146dB for 24-bit

audio. The resampler was also used to develop a Synchronous Sample Rate Converter (SSRC) core in

parallel and outside the scope of this work. Then the conversion ratio estimator module was developed

from scratch, which involves very accurate digital signal processing in a 3-clock domain implementation,

requiring synchroniser circuits and a comprehensive test environment.

1.2 Motivation

While there are currently hardware implementations of asynchronous sample rate converters, most

of them are implemented as ICs, while IP implementations are few and have limited specifications com-

pared to their IC counterparts. This context makes it difficult for companies that manufacture multi-media

devices to integrate a sample rate converter IP.

The overall growth of the market for embedded audio systems, with many requiring sample rate

conversion, motivates the development of a better sample rate converter IP core. The only existing IP

implementation of an ASRC, the CWda52, shows several limitations, so it makes sense to develop an

improved IP core, competing with both the existing IP core and the IC counterparts.

1.3 Objectives

The main objective of this work is to design an asynchronous sample rate converter (ASRC) IP core

using the Verilog hardware description language. The core should meet the following specifications:

• Support for up to 24-bit samples.

• Conversion from and to any sample rate, in the range between 8 kHz and 192 kHz.

• Capability of converting multiple channels, limited by the operation clock frequencies.

• Output THD+N equal or lower than −130 dB (for 24-bit samples).

• Synchronization time equal or lower than 200ms.

• Variation of phase between input and output after a reset of less than one output sample.

2

• Resource consumption per channel of the same order as the CWda52, or lower.

1.4 Thesis Outline

This document is composed of 6 more chapters. The second chapter explains the sample rate

conversion algorithm. The third chapter presents some sample rate converter designs, along with their

advantages and disadvantages. In the fourth chapter, the hardware design of the core is described,

including architecture, interfaces and sub-modules. The fourth chapter presents the process of testing

and integrating the ASRC into a system-on-a-chip (SoC). The fifth chapter shows and analyses the

results obtained from the tests performed. In the sixth and final chapter, some conclusions of the work

performed are drawn, as the final product is compared to its IC counterparts, and some possible future

work is proposed.

3

4

Chapter 2

Asynchronous Sample Rate Converter

Theory

An ideal Asynchronous Sample Rate Converter (ASRC) is able to convert the sample rate of an

input audio signal to a desired output sample rate without any loss of signal quality. As opposed to a

synchronous sample rate converter, the ASRC also needs to measure the value of the input and output

sample rates continuously to compute the conversion ratio. The ideal ASRC converts a discrete time

input signal x[n], sampled at a rate Fs1, to a continuous time signal x(t), using a reconstruction filter.

The signal is then filtered by an anti-aliasing filter which ensures that its output y(t) has no components

which would violate Nyquist’s law. Signal y(t) is then converted to a discrete time signal y[m], sampled

at the desired output rate Fs2 [4].

A block diagram of this model is shown in Fig. 2.1. Note that the reconstruction filter and anti-aliasing

filters can be combined in a single Low Pass Filter (LPF).

Figure 2.1: Analog interpretation of a sample rate converter

2.1 Sample Rate Converter’s Structure

One of the challenges of creating a purely digital solution is the design of the LPF digital filter, which

must be both accurate and efficient. The classical approach to the problem consists in upsampling the

5

signal by a factor L (interpolation), doing the processing at the frequency L×Fs1, and downsampling the

result by a factor M (decimation). This is a means to emulate a discrete to continuous and continuous

to discrete signal conversion [5]. A simple block design of the algorithm is shown in Fig. 2.2.

Figure 2.2: Classic digital sample rate conversion algorithm by factor L/M

In practice, an input signal x[n], sampled at frequency Fs1 is upsampled by insertion of L−1 samples

with value zero between two consecutive input samples. The resultant signal is then inserted into a low

pass filter h[n], which will interpolate the inserted samples and avoid both aliasing, caused by downsam-

pling, and imaging, caused by upsampling. Finally, the output of the filter is downsampled by taking only

every M -th sample for the output signal y[m]. The relationship between L and M is such that

Fs2 =
L

M
Fs1. (2.1)

To avoid the use of multiple frequencies in the computations, one defines a normalized frequency Ω,

given by

Ω =
2πf

Lfs1
[rad]. (2.2)

Regarding the filter h[n], its cutoff frequency depends on the relationship described in Equation (2.1).

In the upsampling case (L ≥ M), one needs to remove the resultant spectral images, using a filter with

a normalized cutoff frequency (Ωc ≤ 0.5π/L). In the case of downsampling (L < M), one needs to

filter signal frequencies that would cause aliasing, leading to a filter with a normalized cutoff frequency

(Ωc ≤ 0.5π/M). By combining these two conditions, the filter’s cutoff frequency is given by

Ωc = min(
π

2L
,
π

2M
)[rad]. (2.3)

Note that the normalization considered is in relation to the upsampled frequency:

In the current state-of-the-art, this algorithm is the basis of most synchronous and asynchronous

sample rate converters.

For conversions which use small values of L and M the computational effort is modest. However,

if the conversion involves sampling rates with a small difference, the factors L and M will increase sig-

nificantly. As a consequence the computational cost of the conversion increase drastically, only to have

6

most of the computed samples discarded. Note that, in this case, a small normalised cutoff frequency

must be used for the filter.

Furthermore, one needs to design the filter to both remove aliasing and interpolate the L−1 inserted

samples. This is why the design of the filter h[n] is the main challenge of this architecture. The solution

presented in this thesis is based on the use of a fractional delay filter.

Additionally, for asynchronous sample rate converters, the filter is not only time-varying, but also

varies with the sample rate ratio. This means that one needs to define a structure that computes the ratio

and adapts the filter. For synchronous sample rate converters, the ratio stays constant. I this case the

filter is predictable, and it is possible to trade off storage space for computation time, by pre-computing

a finite set of filters [6].

2.2 Interpolation/Decimation Filter As A Fractional Delay Filter

An efficient way of obtaining an interpolated value of a sample is to consider that the output sam-

ples needed correspond to the input samples, delayed or advanced by a certain value. Considering a

discrete-time signal y[n], obtained by delaying a signal x[n],

y[n] = x[n− τd] = x[n] ∗ hd[n], (2.4)

where τd is the normalized delay. For continuous signals, a time shift in the frequency domain can be

expressed as a product between an input X(ejω) and a filter H(ejω),

Y (ejω) = H(ejω)X(ejω), (2.5)

where

H(ejω) = e−jωτd . (2.6)

By analysis of Equation (2.6), it is possible to note that a delay filter is an all-pass filter with unitary

gain and linear phase. However this is only the case for a continuous time domain x(t) signal. For

the digital signal x[n], which needs to be reconstructed and aliasing-free, a low-pass filter with a cutoff

frequency defined by Equation (2.3) is needed. Since both the reconstruction and anti-aliasing filters

are linear systems, they can be combined together in a single filter whose frequency response Hd(e
jΩ)

is the product of the frequency responses of the two filters:

Hd(e
jΩ) =

1, |Ω| < Ωc

0, otherwise

. (2.7)

To obtain the impulse response of filter h[n], defined in Equation (2.4), the inverse discrete-time

Fourier transform (IDTFT) of Hd(e
jω) is performed.

7

h[n] = IDTFT (Hd(e
jω)) =

1

2π

∫ π

−π
e−jΩτdejΩndΩ. (2.8)

Since the integrated function is non-zero only in the interval [−Ωc,Ωc] and e−jΩτdejΩn = ejΩ(n−τd),

the integral can be solved yielding

h[n] =
sin(Ωc(n− τd))

π(n− τd)
. (2.9)

The impulse response of the filter h[n] is then defined by Equation (2.10), which is the normalized

sinc function.

h[n] =
Ωc
π
sinc

[
Ωc
π

(n− τd)
]
. (2.10)

Fig. 2.3 represents the function for τd = 0. Note that a variation of τd is equivalent to a translation

of the figure in the n (discrete time) axis. Furthermore, the cutoff frequency of the filer Ωc varies with

the sample rate conversion ratio. By direct observation of the figure, it is possible to note that for integer

values of τd, h[n] = 0 for all samples except for n = τd where h[n] = 1. This is the expected filter

response for an integer delay. On the other hand, for a fractional value of τd, h[n] is non-zero for all

samples. For the ASRC algorithm, 0 ≤ τd ≤ 1, since the objective is to use the fractional delay filter as

a way to obtain an interpolated sample using a finite number of input neighbor samples separated by an

unitary normalized delay.

Figure 2.3: Graphical representation of h[n] for τd = 0

As this function is infinite and non-causal, an approximation must be done while retaining enough

low-pass filtering capability to ensure quality, as explained in Section 2.1. This problem can be solved by

8

applying a window to the ideal filter h[n]. The choice of the format of the window and bandwidth have an

influence not only on the quality of ASRC’s output signal, but also on the complexity of the computations

done.

Using the truncation of the impulse response as an approximation technique, the resultant filter is

a section of the sinc function which contains a certain number of zeroes. To exemplify, a filter with six

zeroes is considered in Fig. 2.4, and Fig. 2.5.

Figure 2.4: Illustration of upsampling (3:4) used to determine the output sample at n = 4.5

In Fig. 2.4, the digital input signal, whose samples are represented by crosses, is plotted along its

continuous time representation. To upsample the signal by a factor of 4/3, the output samples, repre-

sented by circles, need to be computed. To interpolate these signals, the filter approximation is applied,

centering the window at the desired output sample, multiplying each input sample by the corresponding

filter value, and accumulate all obtained values. By analysis of this illustration, it is possible to note

that a larger upsampling factor will decrease the distance between the output samples. According to

Equation (2.3), the normalized cutoff frequency of the filter is 4
3/L. The filter is always the same in the

upsampling case and its number of accumulations is the same as the number of zeroes in the truncated

sinc function.

Fig. 2.5 is analogous to Fig. 2.4, representing downsampling by a factor of 4/3 instead. In this

case, according to Equation (2.3), the cutoff frequency of the filter is given by 3
4/M . The number of

accumulations is now M times the number of zeroes in the truncated sinc function.

Regarding the approximation of the filter itself, there is a great variety of techniques used to obtain

a fractional delay filter which minimizes the discretization error, ranging from applying a window to the

9

Figure 2.5: Illustration of downsampling (4:3) used to determine the output sample at n = 8

ideal filter to applying Lagrangian interpolation to compute an intermediate coefficient from a set of

known filter samples. These and other methods are explained in detail in [7–10].

10

Chapter 3

Previous Work

With the knowledge that the sample rate converter can be implemented as a filter, as was explained

in Chapter 2, multiple distinct implementations can be performed, leading to different results regarding

output fidelity and resources usage. In this chapter, some designs proposed in previous works are

shown and analyzed, regarding the implementation of the filter, as well as the implementation of the

sample rate conversion ratio estimator.

3.1 Implementation of the Interpolation/Decimation Filter

3.1.1 Direct Filtering Using a Multiply-Accumulate Unit (MACC)

As was studied in Section 2.2, the output of the sample rate converter can be obtained by applying a

low-pass filter to the input signal. As such, the most direct approach is to perform the direct computation

of the discrete convolution between the filter and the samples, using two memories for the coefficients

and samples, and a MACC unit for the computations [11]. A block diagram of the MACC unit is shown

in Fig. 3.1.

In this implementation, an accumulator is used to generate the phase of the desired output samples,

by accumulating the sample rate conversion ratio. The integer part of the accumulated value will corre-

spond to the previous input sample that is closest in phase to the current output sample. The fractional

part is the distance between the phase of the desired output sample and the closest input sample, and

is used to select the starting point of the filter. Graphically, this selection is represented as centering

the sinc to the closest input sample (as exemplified in Fig.2.4 and 2.5). It can also be interpreted as a

polyphase filter [4].

After determining the starting values, both the coefficient and sample addresses decrement in equiv-

alent values, obtaining the previous samples and respective coefficients. The output sample y[n], is

obtained by

y[n] =

N∑
i=0

aix[n− i], (3.1)

11

Figure 3.1: MACC filter block diagram.

where ai are the coefficients of the filter and x[n− i] is the input sample at phase n− i.

It is important to note that the filter implemented by this method has a finite impulse response (FIR),

which has a non-recursive structure. This is ideal, as FIR filters guarantee a linear phase, which is

desired for audio applications.

This design has the advantage of being the easiest to implement, as well as being the one that uses

the least amount of logic in comparison to the other implementations presented in this chapter, requiring

only one MACC unit for the computations. However, it requires a large amount of filter coefficients,

which, in hardware, results in high memory usage, an undesirable result. The problem can be solved by

interpolating the filter’s coefficients, leading to the use of some logic to reduce the amount of memory

used, as some intermediate values do not need to be stored in it.

To guarantee that the sample rate converter supports multiple channels, the structure of the converter

should be able to support the computation of multiple output samples. This can be done at the cost of

hardware area, by having one output computation unit per channel, or at the cost of computation time,

by having one unit computing multiple outputs sequentially.

3.1.2 Cascaded Integrator Comb Filters (CIC)

As was explained in Section 2.1, sample rate conversion can be interpreted as signal upsampling

with interpolation, followed by downsampling with decimation. Furthermore, the algorithm can be im-

plemented using FIR filters as shown in the previous section. One of the designs commonly used

for this purpose is a Cascaded Integrator Comb filter (CIC) [12]. The filter, originally designed by

Hogenauer [13], is based on the implementation of simple integrators and differentiators. CIC filters

are obtained by combining adders and delay registers, which consumes a reduced amount of memory

and has the great advantage of dispensing with multipliers, which can consume a great amount of hard-

ware resources. Due to the fact that the CIC decimator has a symmetric structure in comparison to a

12

CIC interpolator, the combination of the two components leads to a highly efficient implementation in

application specific integrated circuits (ASIC) and FPGA’s. An interpolation filter using the CIC structure

can be seen in Fig. 3.2. A decimation filter would have the same components, with the difference that

the comb filters and integrator stages would swap positions.

Figure 3.2: Example of cascaded integrator comb filter structure, used as an interpolation filter

While for one CIC structure, the frequency response does not fulfill the requirements, this problem

can be solved by cascading multiple interpolation and integration units [12], increasing the attenuation

in the filter’s stop-band. The implementation is elegant but has limited configurability, due to the fact that

no coefficients are used, making it hard to adapt the filter to variations in the sample rates. Furthermore,

this type of filter expects integer factors, which leads to the problem of making it able to convert fractional

sample rate relations. Finally, this type of filter needs an oversampled signal to properly filter it, making

it unusable for a sample rate converter without the use of another filter to obtain more samples.

3.1.3 Approximation By Piece-wise Quadratic Function

As explained in Section 2.2, the impulse response of the filter is a sinc function, as expressed by

Equation (2.10). In practice, the ideal filter impossible implement, due to its infinite number of taps and

requirement to use future samples (non-causality).

The solution presented so far is to truncate and approximate the coefficients and delay the response

to make it causal. Another way to address this problem is to split the sinc function into a piece-wise

function, and approximate each piece by a quadratic function, leading to an interpolation filter which can

be easily implemented [14, 15]. The approximation of the piece-wise sinc function h(x) into quadratic

functions can be expressed as

13

h(t) =

a1,1t
2 + b1,1t+ c1,1,

(
0 ≤ |t| ≤ 1

N

)
...

a1,nt
2 + b1,nt+ c1,n,

(
n−1
N ≤ |t| ≤ 1

)
...

as,nt
2 + bs,nt+ cs,n,

(
s− 1 + n−1

N ≤ |t| ≤ s− 1 + n
N

)
...

aS,nt
2 + bS,nt+ cS,n,

(
S − 1 + n−1

N ≤ |t| ≤ S
)

, (3.2)

where N is the number of quadratic functions used to represent a piece-wise function, and S is the

number of piece-wise functions of the kernel. This technique leads to the implementation presented in

Fig. 3.3.

Figure 3.3: Example of a piece-wise kernel filter structure

The design can be further optimized, by considering that from a certain section onward, the poly-

nomial remains the same, changing only in scale by a determined set of factors ej . The block diagram

of the structure is presented in Fig. 3.4. This leads to a structure where the polynomials used remain

the same, while the factors ej change with the sample rate conversion ratio. There are, however, some

restrictions that need to be considered, as further explained in [14].

The main advantage of this design is the ability to change sample rate ratio without need to reconfig-

ure the filter, leading to a kernel which not only is able to implement the function, but also does not need

to change over time. However, as one needs to define a high number of pieces to obtain large attenua-

tion in the stop-band (to acceptably attenuate distortion and noise), the design requires a large number

of quadratic functions, which significantly increases the computational cost. Apart from the structure

itself, there is still the high cost of computing the coefficients ej , which turns even more problematic with

applications for which the sample rate conversion ratio varies in time.

14

Figure 3.4: Example of optimized kernel filter structure

3.1.4 Farrow Structure

The Farrow Structure is one of the most common implementations of fractional delay filters [16].

The structure is based on the assumption that each sample of the filter impulse response h[n] can be

approximated by a polynomial of order q, which depends on the fractional delay d [17]:

h[n] =

q∑
m=0

cm[n]dm. (3.3)

Similar to the structure presented in Section 3.1.3, a Farrow structure requires the implementation

of a set of q FIR filters, which becomes a hardware-intensive design. Furthermore, a change in the

fractional delay forces the change of all coefficients, leading to an increase of the computational cost.

Over the years, this structure has been subjected to many changes and optimizations, with the objective

to develop filters for different applications. For the specific application this thesis is concerned, the

structure is optimized to design filters with a variable fractional delay. One possible optimization, further

explained in [18], makes it possible to implement a low area Farrow structure, with the great advantage

of having fixed coefficients and a single parameter µ that corresponds to the fractional component of the

output instant, when normalized to the input frequency. The block design of the structure is presented in

Fig. 3.5, where the value of µ can be computed by

µ =
kTout −mTin

Tin
, (3.4)

where Tin and Tout are the input and output clock periods, respectively, m is the largest integer for which

mTin ≤ kTout, and k ∈ {0, 1, 2, ...}, is a value which increments after the computation of one output. The

transfer function of each FIR sub-filter, Cm(z) is expressed by

Cm(z) =

N−1∑
k=0

cm

(
k − N

2

)
z−k. (3.5)

15

Figure 3.5: Example of farrow structure, optimized for variable fractional delay

While the structure presented in Fig. 3.5 is optimized for interpolation, there are some modifications,

explained in detail in [18] which apply to decimation. This structure has the disadvantage of having to

include all sub-filters to compute all coefficients cn, it is one of the easiest methods to allow variations

on sample rate conversion ratios, and occupies a low area, which is mainly taken by the delay elements.

3.2 Implementation Of The Sample Rate Conversion Ratio Estima-

tor

With the analysis done in Chapter 2, and the implementation of one of the filters described in Sec-

tion 3.1, a synchronous sample rate converter (SSRC) can be implemented. To implement its asyn-

chronous counterpart, the sample rate conversion ratio needs to be computed.

The sample rate conversion ratio can be expressed by

ρ =
FsOut
FsIn

, (3.6)

where ρ is the sample rate conversion ratio, and FsIn and FsOut are the respective sample rates of

the input and output signals.

16

3.2.1 Period Measurement And Averaging

By analysis of Equation (3.6), it is possible to determine the value of ρ by direct measurement of the

sample rate clock periods, TsIn and TsOut, as

ρ =
TsIn
TsOut

. (3.7)

An analysis and implementation of two different implementations of this method were done in [19].

The first implementation consists on using a phase locked loop (PLL) to multiply the input sample

rate clock’s frequency by a factor of 2L−k, where L is the desired number of precision bits of ρ, and k is

a parameter related to the number of measurements averaged. The output of the PLL is then used to

clock a counter that will count the output sample rate clock’s period. The average value of the counter’s

output is the inverse of ρ. A block diagram of this implementation is represented in Fig. 3.6.

Figure 3.6: Period measurement and ρ computation using a PLL.

The other implementation consists on using two counters clocked at a higher speed than FsIn and

FsOut, which will count the sample rate clock’s periods. The outputs of these counters can be averaged

for improved precision, and then are divided in accordance to Equation (3.7). The block diagram is

represented in Fig. 3.7.

Figure 3.7: Period measurement and ρ computation using a divider.

While the first implementation requires the implementation of the PLL, which may require additional

hardware, the second implementation uses an independent clock, as well as the hardware cost of the

17

additional counter and average block. In both implementations, the precision of the computed ρ depends

on the frequency of the clock used for the counters, as well as the amount of averages done.

Additionally, this implementation has no error tracking mechanism, leading to a drift of the group

delay of the converter, due small errors in the computed value of ρ. An additional module to avoid

the drift needs to be implemented. This mechanism can be implemented as a frequency tracker, that

stabilizes the group delay of the converter through a feedback loop.

3.2.2 Digital Phase Locked Loop As Frequency Tracker

To compute the frequency ratio of the sample rate clocks, a digital phase locked loop (DPLL) can be

used. This loop uses the value of the inverse of ρ to control the phase of the output in a feedback loop,

allowing it to track the input’s phase. Studies of this method were made in [19, 20]. Analog Devices’

ASRC [1] also uses this loop.

Similarly to a conventional PLL, the DPLL can be split into three blocks: a phase detector, a loop

filter and a voltage controlled oscillator (VCO).

The phase detector is used to compute the difference of the output and input phases. In the digital

sense, it can be done with phase counters and a subtractor. Through Equation (3.6), it is possible to

obtain

FsOut =
FsIn
ρ

. (3.8)

Since the phase can be seen as the frequency’s primitive, and assuming that the initial phase of both

input and output is zero, then the input and output’s phase, φin and φout can be expressed as

φin = FsIn × n×∆t

φout = FsOut × n×∆t

, (3.9)

where n is the discrete time passed since the beginning of counters’ accumulations. By combining

Equation (3.8) with Equation (3.9), the input and output phases can be related, yielding

φout =
1

ρ
× φin. (3.10)

Due to the fact that the counters are only updated at the sample rate clocks’ frequencies, they need to

be sampled at the same frequency. To allow this, the input’s phase is sampled at the output’s frequency.

The block diagram of the phase detector is shown in Fig.3.8.

For the loop filter, a low-pass filter needs to be implemented. The filter has the objective to attenuate

the effect of the phase detector’s jitter. However, a higher attenuation leads to a slower tracking of the

DPLL. An example of a filter is a lead-lag section filter, as explained in [19].

The VCO receives the filtered phase difference to compute an output frequency. In the digital domain,

this can be achieved with an integrator block.

The block diagram of the loop filter and VCO are shown in Fig. 3.9.

18

Figure 3.8: DPLL phase detector block diagram.

Figure 3.9: DPLL loop filter and VCO block diagram.

To improve the DPLL’s dynamic behavior, the filter’s bandwidth can be controlled, by allowing a higher

bandwidth for a faster tracking and gradually lowering it for an improved precision and noise rejection.

An in-lock detector that uses the phase difference as input can be used.

This implementation has the advantage of not requiring a fast clock to work, as the computations

are done at the output’s sample rate clock. However, it also leads to the need to determine the correct

parameters (K0, K1, K2 and K3) of the filter, as well as the additional hardware used to implement the

filter. In FPGA implementations, it may also lead to timing problems, as pipelining leads to latency in the

computations, which impacts the DPLL’s performance.

19

20

Chapter 4

Proposed Design

The symbol and interface signals of the sample rate converter design are presented in Fig. 4.1. The

data input and output signals are audio in and audio out, respectively, and the sample rate clocks are

audio in wclk and audio out wclk, respectively. The definition of all interface signals is presented in

Table 4.1.

Figure 4.1: Symbol and interface diagram.

As a core designed for FPGA and ASIC implementations, the ASRC can be configured pre-synthesis

to match the intended application. The synthesis parameters are presented in Table 4.2.

21

Name Direction Width Description
clk input 1 System clock signal.
rst input 1 Reset signal active high (1).
Nc input NC W Number of channels to convert must be power of 2.

sync cycles input 32 Number of system clock cycles to wait for synchroniza-
tion.

sync output 1 Active high (1) when the ASRC has computed conver-
sion ratio.

conv ratio output RO W Sample rate conversion ratio.
inv conv ratio output RO W Inverse of sample rate conversion ratio.

audio in input SAMP W Input audio stream.
audio in valid input 1 Input audio valid signal.
audio in ready output 1 Input audio ready signal.
audio in mclk input 1 Input audio master clock (frequency should be N × f s

where f s is the input sample rate and N is an integer
greater than the number of channels).

audio in wclk input 1 Input audio word clock (frequency should be equal to in-
put sample rate).

audio out output SAMP W Output audio stream.
audio out ready output 1 Active high (1) if the ASRC has a valid output sample

buffered.
audio out wclk input 1 Output audio word clock (frequency should be equal to

input sample rate).
audio out mclk input 1 Output audio master clock (frequency should be N × f s

where f s is the output sample rate and N is an integer
greater than the number of channels).

audio out valid input 1 Output audio valid signal.
audio out empty output 1 Set low (0) if there are output samples to retrieve.

error output 3 Error bits (2) Audio out buffer— (1) PTR DIFF— (0)
NChannels

Table 4.1: Interface signals.

Parameter Default Value Description

SAMP W 24 Audio sample width

NC W 8 Number of channels signal width

RO W 35 Sample rate conversion ratio width

SAMP BUF W 10 Data memory size (log 2)

Table 4.2: Synthesis Parameters

22

The ASRC is divided in three main modules: the Input Data Memory, the Ratio Estimator and the

Resampler. Additionally, the ASRC includes a positive edge detector circuit, implemented with a register,

to generate the start signal, used to start the computation of a new output sample, as well as an

asynchronous FIFO, used to temporarily store the output samples to be read, and to allow their crossing

from the system clock to the output audio master clock. A block diagram of the ASRC is presented in

Fig. 4.2.

As the core works in three different clock domains, all figures present the signals in three different

colors, with green arrows indicating signals in the audio in mclk domain, blue arrows for signals in the

audio out mclk domain, and black arrows for signals in the clk domain. This is important, as wherever

there is a clock domain crossing, one needs to implement a suitable synchronizer circuit.

A synchronizer module performs the crossing of the audio in wclk and audio out wclk signals to the

system clock domain. Since the wclk signals are single wires, and the transitions are from a slower to a

faster clock domain, the synchronizer module is composed by two registers, clocked by clk.

Figure 4.2: Asynchronous sample rate converter top block diagram.

4.1 Data Memory

To store the input samples, a data memory is used. The data memory is a dual port Random Access

Memory (RAM) capable of working at two different clock domains. A block diagram of the data memory

and its write port address counter is presented in Fig. 4.3.

In the input clock domain, the samples audio in are stored in the position given by audio in waddr at

the rate of audio in wclk. The write address counter audio in waddr is incremented at the audio in wclk

rate, whenever audio in valid is active. In the system clock domain, the samples are read by accessing

the position given by s addr. The read samples are used to perform the filtering. For Nc Time Division

23

Figure 4.3: Data memory module block diagram.

Multiplexed (TDM) channels, to obtain the next sample of a certain channel, the address s addr[n + 1]

is given by

s addr[n+ 1] = s addr[n] +Nc. (4.1)

Since the accumulators do not stop or reset during the conversion, they wrap around creating a

circular memory. When there is a stream of input samples, the newer ones will overwrite the older ones

which will not be used anymore in the filter. On average, the write and read pointers increment at the

same rate, which is guaranteed by the Ratio Estimator block.

Since the data memory is a true dual port memory, the synchronizer to cross the clock domains

unnecessary, as the memory already serves that purpose.

4.2 Ratio Estimator

The sample rate converter is asynchronous, so the frequency of the input and output clocks can

change over time. Furthermore, their frequencies can also take any value in the supported range. The

frequencies of the data clocks are unknown by the core, but their ratio, ρ, must be computed. The ratio

estimator computes an estimated value of the sample rate conversion ratio, ρ̂.

As was studied in section 3.2, there are two possible implementations for the ratio estimator. In this

thesis, a period measurement and averaging implementation, described in subsection 3.2.1, is used.

The system clock is used as the reference clock, and two counters and a divider obtain the approximate

sample rate conversion ratio (ρ̂), as shown in Fig. 3.7. Additionally, a frequency tracker is added to

ensure that the error in the approximation ˆρ−1 of ρ−1 does not lead to a deviation of the write and read

data memory pointers.

24

4.2.1 Initial Approximation - Period Measurement and Averaging

The block diagram of the period meter is shown in Fig. 4.4.

Figure 4.4: Ratio Estimator module block diagram.

The Period Meter block uses a counter to obtain the values, ˆTin and ˆTout of the data clocks periods

measured in system clock cycles. Since the counter is incremented at the system clock rate fsys clk,

approximate values of the data clock periods Tinseconds and Toutseconds are given by

Tinseconds =
ˆTin

fsys clk

Toutseconds =
ˆTout

fsys clk

. (4.2)

The ratio ρ between the input and output clock frequencies fin and fout is defined by

ρ =
fout
fin

. (4.3)

Combining Equation (4.2) and (4.3), an approximate value of ρ can be computed by

ρ̂ =
ˆTin

ˆTout
. (4.4)

The value of ρ̂ can be computed in hardware without knowing any clock frequencies. However, since

the counter is only able to count integer values, the periods of the input and output clocks are imprecise.

For the same clock frequency the values ˆTin and ˆTout can vary each time they are measured, with an

absolute error of 1 time unit (clock period). It should be noted that the resolution of the counter increases

25

with the frequency of the system clock: a higher system clock frequency leads to a lower error in ˆTin

and ˆTout.

To improve the precision of this approximation, the measured periods ˆTin and ˆTout are accumu-

lated (Tin acc and Tout acc) and counted (Tin cnt and Tout cnt), to compute an average value. The

operation is expressed as

T avg =
T acc

T cnt
. (4.5)

The combination of the Equations (4.4) and (4.5) leads to the expression used by the design:

ρ = Tin acc×Tout cnt
T in cnt×Tout acc = prod1

prod2

ρ−1 = Tout acc×Tin cnt
Tout cnt×Tin acc = prod2

prod1

. (4.6)

One needs to perform a significant number of accumulations to obtain an accurate average; the

accumulations are performed for a certain synchronization time. A counter, clocked at the system clock,

is used to count this synchronization time. The number of synchronization cycles counted is given by

the user through the interface of the core.

After the measurements are done and the average is computed, the resulting values of ρ̂ and ˆρ−1

are valid and accurate enough to allow the ASRC to start the conversion.

4.2.2 Frequency Tracker

The approximate values, ρ̂ and ˆρ−1, obtained are accurate enough to fulfill the specification. However,

the inaccuracy of ˆρ−1 leads to a drift of the group delay of the converter, which may lead to simultaneous

read and write operations at the same address of the data memory. The Frequency Tracker block is

used to correct the error by using the approximate value ˆρ−1
est, computed by the hardware described in

subsection 4.2.1, as an initial approximation. The frequency tracker design is a simplification of the

digital PLL described in subsection 3.2.2, as the loop filter is implemented by averaging multiple phases,

obtained by the phase detector. The block diagram of the frequency tracker is shown in Fig. 4.5.

The frequency tracker uses the phases normalized to the input sample rate. As such, on every tick of

the input word clock, the input phase accumulator adds ’1.0’. Meanwhile, the output phase accumulator

will add ˆρ−1 on every tick of the output word clock. Note that, since the output sample rate is ρ times

faster than the input counterpart, the output phase accumulator will in average accumulate ρ̂ times the

amount of input phase accumulations. During certain amount of time ∆t, the accumulated phases φin

and φout are given by

φin = 2πFsIn ×∆t

φout = ˆρ−1 × 2πFsOut ×∆t

, (4.7)

where FsIn and FsOut are the sample rates of the input and output, respectively. The normalization

of Equation (4.7) to the input sample rate, and the application of Equation (3.8) yield

26

Figure 4.5: Frequency Tracker module block diagram.

φin

2πFsIn
= ∆t

φout

2πFsIn
= ρ× ˆρ−1 ×∆t

. (4.8)

By subtracting the two expressions of Equation (4.8) one obtains the variation of the delay between

the input and output phases, given by

φin − φout
2πFsIn

= ∆t− ρ× ˆρ−1 ×∆t. (4.9)

To adapt to the discrete time domain, and normalize the variation of delay to a single variable ∆D,

Equation (4.9) can be rewritten as

∆D =
(φin − φout)

2π
= ρ−1 ×Nout − ˆρ−1 ×Nout, (4.10)

where Nout is the number of output accumulations done, given by

Nout = FsOut ×∆t = ρ× FsIn ×∆t. (4.11)

If the value of ˆρ−1 is accurate, being equal to ρ−1, the value of ∆D will be equal to zero. Otherwise,

there is a drift of the input and output phases, which will influence the value of ∆D. As such, the value

of ∆D can be used to apply corrections to the value of ˆρ−1, to ensure that ∆D converges to zero. The

correction needed to apply, C is given by

27

C = ρ−1 − ˆρ−1, (4.12)

By combining Equations (4.10) and (4.12), the expression used by the module to determine the

correction applied to ˆρ−1 is obtained, being

C =
∆D

Nout
. (4.13)

To obtain the value of ∆D in hardware, two values of the delay are measured sequentially, as the

difference between them is the value of ∆D used. The delay itself is the difference between the accu-

mulated input and output phases. To obtain more precision, the delay is measured for 4096 output clock

cycles (Nout = 4096). Additionally, to ensure that the corrections of ˆρ−1 occur as smoothly as possible,

and to reject clock jitter, the value of the correction applied is attenuated, as a strong variation of ˆρ−1

negatively impacts the audio fidelity, increasing the THD+N.

4.2.3 Ratio Estimator Control Unit

To save on the silicon area used, only one multiplier and one divider are used, and shared by both

the Ratio Estimator and the Frequency Tracker. The divider and the multiplier are implemented using

a serial shift-subtract and shift-add units, respectively, for minimum size and power consumption, as

performance is not important here.

The inputs of the multiplier and divider, as well as the accumulators and counters, are controlled by

a finite state machine (FSM). The Frequency Tracker block is also controlled by the FSM, and also uses

the divider to compute ρ̂. The state transition diagram of the FSM is shown in Fig. 4.6.

The FSM has the following states:

• State 0: Initial state - The FSM resets the counters and accumulators.

• State 1: Measure periods - The FSM keeps the enables of the period meters active. The state

does not change until the system clock cycle counter reaches the value input by the user.

• State 2: Compute ρ dividend (prod1) - The FSM selects Tin acc as multiplicand and Tout cnt as

multiplier, and enables the multiplier.

• State 3: Wait for multiplication - The FSM keeps the multiplier enabled. The state does not change

until the multiplier is ready for a new multiplication. During the state transition, the FSM enables

the register for prod1, storing the output of the multiplier in it.

• State 4: Compute ρ divisor (prod2) - The FSM selects Tout acc as multiplicand and Tin cnt as

multiplier, and enables the multiplier.

• State 5: Wait for multiplication - Similar to State 3. Instead of enabling the register for prod1 during

the state transition, the FSM enables the register for prod2.

28

• State 6: Compute ρ - The FSM selects prod1 as dividend and prod2 as divisor, enables the divider

and keeps the divider sign signal disabled (unsigned division).

• State 7: Wait for division - The FSM keeps the divider enabled. The state does not change until

the divider is ready for a new division. During state transition, the FSM enables the register for ρ.

• State 8: Compute inv ρ - The FSM selects prod2 as dividend and prod1 as divisor, enables the

divider and keeps the divider sign signal disabled (unsigned division).

• State 9: Wait for division - Similar to State 7. Instead of enabling the register for ρ, the FSM enables

the register for inv ρ during state transition.

• State 10: Measure delay - The FSM keeps the delay counter and accumulator enabled. The state

is kept while the output period counter counts up to 4096. Note that from this state onward, the

ASRC is ready to start the conversion. As such, the FSM toggles the sync signal on.

• State 11: Compute average delay - The FSM selects delay acc as dividend and delay cnt as

divisor, and enables the divider with sign active (signed division).

• State 12: Wait for division - Similar to State 7 and 9. During state transition, the FSM enables the

register for delay avg, and resets the delay counter and accumulator. This state transitions to state

10. Note that the frequency tracker module uses the value of delay avg to periodically adjust ˆρ−1

The outputs of the FSM per state are shown in Table 4.3.

29

Figure 4.6: Ratio Estimator FSM state diagram.

30

State ID Output Signals Notes

0
count rst = 1
delay cnt rst = 1
sync nxt = 0

1 count en = 1

2
multiplicand = Tin acc
multiplier = Tout cnt
mul en = 1

3 mul en = 1 Only if mul ready=0.
prod1 en = 1 Only if mul ready=1. Multiplier output is

stored in register prod1.

4
multiplicand = Tout acc
multiplier = Tin cnt
mul en = 1

5 mul en = 1 Only if mul ready=0.
prod2 en = 1 Only if mul ready=1. Multiplier output is

stored in register prod2.

6

dividend = prod1
divisor = prod2
div en = 1
div sign = 0

7 div en = 1 Only if div ready=0.
ρ en = 1 Only if div ready=1. Divider output is stored

in register ρ.

8

dividend = prod2
divisor = prod1
div en = 1
div sign = 0

9

div en = 1 Only if div ready=0.
inv ρ en = 1
sync nxt = 1 Only if div ready=1. Divider output is stored

in register inv ρ. ASRC is ready to start the
conversion.

count rst = 1

10 count en = 1
delay cnt en = 1

11

dividend = delay acc
divisor = delay cnt
div en = 1
div sign = 1

12

div en = 1 Only if div ready=0.
delay avg en = 1
delay cnt rst = 1 Only if div ready=1. Divider output is stored

in register delay avg.
count rst = 1

Table 4.3: Conversion ratio estimator FSM output signals per state.

31

4.3 Resampler

The resampler is the main module of the sample rate converter. The resampler is implemented with

a direct filter that uses a MACC unit, presented in subsection 3.1.1.

The resampler is split into three submodules: the address generator, the coefficient memory and the

multiply-accumulator submodule, which are explained in the next subsections. A block diagram of the

resampler is presented in Fig. 4.7.

Figure 4.7: Resampler block diagram.

4.3.1 Address Generator

The address generator computes the addresses of the input samples needed to compute the output

sample. Its block diagram is presented in Fig. 4.8. As explained in Section 2.2 and subsection 3.1.1,

there are two main steps needed to compute an output sample: (1) to center the filter at the time of output

sample to be computed; (2) to acess the input samples, compute the correspondent filter coefficients,

and perform the filter convolution operation.

32

Figure 4.8: Address generator block diagram.

4.3.1.1 Filter Setup

The filter setup submodule performs the computation of three parameters: the time of the current

output sample to be computed, audio out addr, the distance between audio out addr and the two adja-

cent input samples, α and 1−α, and the parameter h step, defined to impose the filter’s cutoff frequency

and normalize the output.

The submodule computes the time of the current output sample, audio out addr, through the use

of an accumulator that increments ˆρ−1 at the output sample rate. While the filter setup submodule

uses the fractional part of audio out addr for further computations, the input sample address generator

submodule uses its integer part, as is explained in Subsection 4.3.1.2.

As can be seen in the examples illustrated in 2.4 and 2.5, the filter needs to be centered at the

current output sample, and the adjacent input samples need to be multiplied with the corresponding

filter coefficients. The distance α allows one to obtain the address of the first input sample posterior to

the current output sample, leading to the first address of the coefficient to be used for the computation

of the output sample. Since the filter expands both before and after the current output sample, one

needs to compute the address of the last input sample prior to the current output sample as well. The

submodule computes α by assuming that there is an input sample audio in[n] for all integer values of n.

As such, the fractional part of audio out addr is the value of α. Consequently, the distance between the

current output sample and the last input sample prior to it is equal to 1− α. The submodule controls the

selection of α or 1− α through a multiplexer, using the current side of the filter as the selection bit.

To adapt the filter shape, ensuring that it has a cutoff frequency defined by Equation (2.3), a param-

eter h step is defined by normalizing the cutoff frequecy to the input sample clock frequency:

33

h step = min(0.875, ρ). (4.14)

Note that for an upsampling conversion, the value of h step does not follow Equation (2.3), where

it should be 1. Instead it is set to 0.875 to prevent operating near the Nyquist frequency with the fi-

nite selectivity filter used in practice. This change allows the converter to properly convert frequency

components close to the input Nyquist frequency, Fin/2.

The block diagram of the filter setup submodule is presented in Fig. 4.9.

Figure 4.9: Output sample address, h step and α computation submodule block diagram.

4.3.1.2 Input Sample Address Generator

To get the input samples’ addresses, a simple counter submodule (s addr computation) is used. The

block diagram of the submodule is presented in Fig. 4.10. The integer part of audio out addr is used

as the base address of the input samples. Knowing that the distance between two consecutive input

samples in the same channel is given by Equation (4.1), it suffices to accumulate this distance from the

offset of the current channel to get the input sample addresses that come after (or to the right of) the

output sample instant.

After the right side is completed, the left side is computed by negative accumulations from the chan-

nel offset, getting the addresses of all input samples before the output sample instant. After both sides

are done, the channel offset is incremented and the process is repeated for the next channel. This

34

means that channels are computed one at a time, using a single multiply-accumulate unit to compute

the output samples for all channels.

Figure 4.10: Input sample address computation submodule block diagram.

4.3.1.3 Filter Coefficients Address Generator

To get the coefficients’ addresses, another accumulator is used. Its block diagram is presented in

Fig. 4.11. The value of α is used as the initial coefficient address for the right-hand side samples, align-

ing the first input sample on this side to its filter coefficient. Since an increment of one input sample

corresponds to a increment of h step in the coefficient function argument, h step is used as the accumu-

lation value. These accumulations will be done until the filter is no longer defined, which happens when

the accumulator reaches or overcomes the final address of the coefficients memory. After the right-hand

side is done, the accumulations resumes on the left-hand side, with the complement 1− α as the initial

coefficient address and the same increment of h step. Considering the value of h step and the fact that

the coefficient memory contains a sinc function with 32 zeroes, the number of coefficients to be used,

Ncoeffs, and consequently the order of the resampling filter, is given by

Ncoeffs =
32

min(0.875, ρ)
. (4.15)

The coefficient address generator also produces three flags, first addr, addr valid and addr gen done.

The first addr flag indicates the first coefficient address is valid, so the accumulator can load its initial

value. The addr valid flag signals the succeeding coefficients, so the accumulator is enabled for each

of them. The addr gen done flag indicates that all coefficients have been generated for the current chan-

nel sample, so one can validate the output sample present in the MACC, and proceed to do the next

channel.

35

Figure 4.11: Coefficient address computation submodule block diagram.

4.3.2 Coefficient Memory

To get the filter coefficients, given by a sinc function, one uses a lookup table implemented with

a Read-Only Memory (ROM). The block diagram of the Coefficient Memory module is presented in

Fig. 4.12. If all the needed coefficients were stored in the ROM, it would need to be very large because

of the required precision. To solve this problem, a linear interpolator is used. When a coefficient h[i+ ∆]

is needed, h[i] and h[i + 1] exist in the lookup table, and ∆ is a fractional positive distance from i, the

coefficient is obtained by

h[i+ ∆] = h[i] + ∆(h[i+ 1]− h[i]). (4.16)

Figure 4.12: Coefficient memory submodule block diagram.

36

4.3.3 Multiply-Accumulator

This module implements the multiply-accumulate function as its name indicates. A block diagram

of the module is presented in Fig. 4.13. Its input is the product between the coefficient and the input

sample as defined by Equation (3.1). Its initial value is set by directly loading (not accumulating) the first

product.

Figure 4.13: MACC block diagram.

The final register, which produces the output sample audio out, is enabled only when all accumula-

tions have finished. This procedure ensures that audio out never has an intermediate value. The output

is updated at the output sample rate but still lives in the system clock domain. The output sample is

written an output FIFO, which can be read in the audio out wclk clock domain. Note that the output

sample is multiplied by h step, as the filter is normalized for unit gain in the pass-band (Equation (2.3).

4.4 Pipeline Registers

The ASRC implementation on a low cost FPGA at a system clock frequency of at least 100MHz

requires pipeline registers. These registers break critical paths, but are not shown in the diagrams

for simplicity. A total of 9 pipeline registers are added: 3 in the address generator module, 4 in the

coefficients ROM module, and 2 in a MACC module.

37

38

Chapter 5

Testing System

To test the results and performance of the ASRC, a system needs to be developed. This chapter

describes the system used for this purpose. Section 5.1 presents the scripts developed for the input

signal generation and output signal analysis, as well as the script used to generate the filter’s coefficients.

Section 5.2 describes the implementation in a System-on-a-Chip (SoC) environment, which enables

FPGA testing.

5.1 Signal Generation and Analysis

To test the hardware developed, one needs to generate the input samples, as well as the filter’s co-

efficients. Furthermore, with the knowledge of the input signal used, the output should be analyzed. For

this matter, three GNU Octave scripts are used: one to generate the filter’s coefficients, one to generate

the input signal, and one to analyze the output signal. The scripts need to receive some parameters that

need to be previously configured and adjusted, to allow an accurate analysis. Furthermore, an extra

script is used to test the effect of resetting the core on the group delay.

5.1.1 Parameter Adjustment

For the generation of the input samples and analysis of the output samples, the scripts need to

receive as parameters the sampling rates and the frequency of the test signal. In simulation, these

parameters can be inserted by the user directly, as the ideal case can be tested. However, in FPGA

implementations, the real frequency of the sampling rate clocks is limited to the physical clocking capa-

bilities of the board.

In the case of the work performed for this thesis, the board uses two possible sampling rate master

clocks, with periods of 42 ns and 91 ns, as is explained in section 5.2.

To approximate the sampling rate of the generated and analyzed signals to the real frequencies of

the word clocks, the frequencies are recomputed, by selecting the master clocks, f mclk0 or f mclk1,

that allow for the real frequencies, fin fpga and fout fpga closest to the desired sample rates, fin and

39

fout. Afterwards, the real frequency is computed by reducing the clock frequency by an integer division

value. A snippet of the Octave code of this adjustment is shown in Listing 5.1.

1 % real FIN

2 if (mod(Fin , 8000) > mod(Fin , 11025)) % check which mclk to use

3 % use MCLK1

4 DIV_IN = round(f_mclk1/Fin);

5 fin_fpga = f_mclk1/DIV_IN;

6 else

7 % use MCLK0

8 DIV_IN = round(f_mclk0/Fin);

9 fin_fpga = f_mclk0/DIV_IN;

10 endif

11

12 % real FOUT

13 if (mod(Fout , 8000) > mod(Fout , 11025)) % check which mclk to use

14 % use MCLK1

15 DIV_OUT = round(f_mclk1/Fout);

16 fout_fpga = f_mclk1/DIV_OUT;

17 else

18 % use MCLK0

19 DIV_OUT = round(f_mclk0/Fout);

20 fout_fpga = f_mclk0/DIV_OUT;

21 endif

Listing 5.1: Sample rate adjustment script

To increase the precision of the analysis, it is ideal if the frequency of the test signal, Ftest, is a

divisor of the output sampling rate. Due to the adjustment of both sampling rates to the real frequencies

of the word clocks, the value of Ftest is also adjusted, as

Ftest adjusted = fout fpga× round(
Ftest

fout fpga
). (5.1)

To allow an accurate analysis, the number of samples should be high enough to allow a proper

frequency resolution of the fast-Fourier transform, as well as guarantee that the analysis has enough

samples to attenuate the negative effects of windowing the output, as is explained in subsection 5.1.4.

Furthermore, the number of samples should ensure that the analyzed signal is an integer number of

periods, to avoid spectral scattering. Finally, the input signal should have some extra samples to ensure

that there are enough to account for the ASRC’s settling time, as well as to ensure that there are enough

valid output samples, as the initial output samples are invalid, since they are computed using whatever

is in the memory before an input sample is written. As such, the script computes the number of periods

40

to analyze. PERIOD ANALY SIS, as well as the number of input samples to be generated, TD.

Listing 5.2 shows an An Octave snippet of the code that performs this computation. Note that the listing

defines a minimum number of 120 signal periods and 11000 samples to analyze. Furthermore, for multi-

channel tests, each channel changes the frequency of the input signal, and the minimum number of

samples applies to the worst case.

1 PERIOD_ANALYSIS = 120; %number of periods to analyze

2 while ((PERIOD_ANALYSIS*Fout/Ftest) < 11000)

3 PERIOD_ANALYSIS = PERIOD_ANALYSIS +1;

4 endwhile

5

6 Ftest_delta = 3* Ftest_param /200 # change in FTest per channel

7 TD = floor(fin_fpga /(Ftest -Ftest_delta *(NChannels -1))*(

PERIOD_ANALYSIS +50) +2^(SAMP_BUF_W)/NChannels); %test duration in

input samples

Listing 5.2: Sample rate adjustment script

5.1.2 Filter Coefficients Generation

To generate the coefficients, the script receives three values: filter nzeros, filter nfrac, and

H bits, which give the number of zeroes of the sinc function, the number of address bits to address

the filter’s memory, and the number of bits to quantify the value of the coefficients, respectively. A

snippet of the Octave code of the script is shown in Listing 5.3.

1 function filter_tab = getCoeffROM(filter_nzeros , filter_nfrac ,

H_bits)

2 filter_t_res = 1/2** filter_nfrac;

3 filter_t = 0: filter_t_res : filter_nzeros /2 - filter_t_res; %

normalized positive time axis

4 window = kaiser (2* length(filter_t)-1, 14.4) ’;

5 window = window(length(filter_t): 2* length(filter_t) -1); %take

half window

6 filter_tab = (2^(H_bits -1) -1)*sinc(filter_t) .* window; %build

one sided impulse response filter table

7 filter_tab = do_2s_comp(round(filter_tab), H_bits);

8 return

9 endfunction

Listing 5.3: Coefficients generation script

41

With these values, the script generates an ideal sinc function and truncates it using window function.

Due to its configurability, and to the fact that it is already included in Octave’s Signal package, a Kaiser

window is used. The value chosen for the parameter (14.4) is the one that led to the fulfillment of the

specification for most tests, as can be seen in chapter 6.

Regarding the values of the received parameters, for the tests done in this thesis, filter nzeroes,

filter nfrac and H bits have are equal to 32, 10 and 24, respectively.

Since the result is a symmetric function, only half the window values are taken to fill the coefficient

memory.

5.1.3 Input Signal Generation

To generate the input samples, the script generates a sinusoidal signal and samples it at the input

sample rate. To do this, the script needs the sinusoid’s frequency and magnitude Ftest and magtest, the

duration of the signal in input samples TD, the number of bits of each sample H bits, the input signal’s

sample rate Fin, and the number of channels Nchannels. With these values, the script generates a

vector with all input samples. Regarding the amplitude of the input signal, it is slightly below unity to

prevent overflows during processing. An example script is outlined in Listing 5.4.

1 function x = genInput(Ftest , magtest , TD, H_bits , Fin , Nchannels)

2 %compute test duration in seconds

3 td = TD/Fin;

4 %compute input wave x

5 t_in = 0: 1/Fin : td -1/ Fin; %input time axis

6 % create final vector for all audio channels

7 x = zeros(1,NChannels*length(t_in));

8 for ch =1: NChannels

9 % create test wave with MagTest dBFS input gain for each

channel

10 Ftest_ch = fout_fpga/round(fout_fpga /(Ftest_param -Ftest_delta

*(ch -1)));

11 x_ch = sin(2*pi*Ftest_ch*t_in + pi/(4*ch)) * 10^(MagTest /20)

;

12

13 % interleave audio channels

14 x(ch:NChannels:end) = x_ch;

15 endfor

16

17 %quantize x to 1Q23

18 x = round(x*2^(H_bits -1));

19 %do 2s complement

42

20 x = do_2s_comp(x, H_bits);

21 return

22 endfunction

Listing 5.4: Input generation script

5.1.4 Output Signal Analysis

To test the output signal, a script which computes its spectrum and the total harmonic distortion plus

noise ratio is run. The script receives as inputs the array of output samples y, obtained by reading a file

produced by the simulation, the sampling rate Fs, the magnitude of the original signal MagTest, and

the frequency of the original signal f .

To prevent spectrum artifacts, an integer number of periods is extracted from y and used by the

script. Additionally, a Blackman-Harris window is applied to the signal to analyze, leading to a further

reduction of a spread spectrum. It is, however, important to note that, if the number of frequency bins of

the spectrum (that is related to the number of samples) is not enough, the window’s frequency response

will show its effects, affecting negatively the results of the analysis. As such, it is important to guarantee

that there are enough bins to ensure an accurate analysis.

To obtain the signal’s spectrum, a fast Fourier transform is used. Afterwards, the bin with the highest

power is found, and treated as the signal’s frequency bin. Then, the total harmonic distortion plus

noise ratio is computed by summing the power value of every bin which is not deemed to belong to

the original sinusoidal signal. The script allows a small tolerance around the signal bin’s frequency, to

compensate for the difficulty to avoid scattering when computing spectra. The bins of the tolerance area

are considered signal bins. An example script is presented in Listing 5.5.

1 function thdn = getTHDN(y, Fs, MagTest , f)

2

3 Nypts = length(y);

4 f_axis = 0: Fs/Nypts :Fs/2-Fs/Nypts;

5

6 % compute bandwidth surrounding the fundamental

7 sig_bin_width = 8;

8

9 % GET TONE MAG

10 YM=abs(fft(y))/Nypts;

11

12 [maxVal , tone_idx] = max(YM(1: Nypts /2));

13

14 signalBins = tone_idx -floor(sig_bin_width /2):tone_idx+floor(

sig_bin_width /2);

43

15 signalBins = signalBins(signalBins >0); %remove bins lower than 0

16 signalBins = signalBins(signalBins <=Nypts /2); %remove bins over

FFTpoints /2

17 s = norm(YM(signalBins));

18

19 mag = 20* log10 (2*s); % multiplied by 2 to consider negative half

of FFT

20

21 % GET THDN

22 %eliminate spectral leakage by windowing

23 window = blackmanharris(Nypts);

24 yw = y.* window;

25

26 Y=abs(fft(yw))/Nypts;

27

28 [maxVal , tone_idx] = max(Y(1: Nypts /2));

29

30 signalBins = tone_idx -floor(sig_bin_width /2):tone_idx+floor(

sig_bin_width /2);

31 signalBins = signalBins(signalBins >0); %remove bins lower than 0

32 signalBins = signalBins(signalBins <=Nypts /2); %remove bins over

FFTpoints /2

33 s = norm(Y(signalBins));

34 noiseBins = 1: Nypts /2;

35 noiseBins(signalBins) = []; %excludes signal bins

36 noiseBins (1: floor(sig_bin_width /2)) = []; %excludes DC

37 n = norm (2*Y(noiseBins));

38 thdn = 20 * log10(n);

39

40 return

41 endfunction

Listing 5.5: Output analysis script

It is important to notice that, in this case, both the THD+N and the signal’s frequency should be

analyzed. In the context of the work made for this thesis, the specification consists on having a THD+N

smaller than −130 dB, and a signal frequency equal to Ftest, with a precision of around a unit of Hertz.

44

5.1.5 Effect Of Resetting On The Group Delay

To ensure that the group delay of the output audio stream suffers close to no change, two similar

simulations of the ASRC are run. To simulate the hardware, Cadence’s NCsim simulator is used. The

use of the simulator ensures that the simulations do not have any difference regarding clock phases or

other signals that may vary on different runs of the same test.

In the first run, the simulation behaves similarly to the tests performed in the FPGA, with the difference

that the samples are not transferred through an Ethernet module. The second run is similar to the first

one, with the difference that the reset signal of the ASRC is activated on a pulse, in the middle of the

conversion. This causes the synchronization of the sample rate conversion ratio to be rerun, leading to

a possible difference in the difference between the data write and read pointers, consequently changing

the group delay of the ASRC.

The difference of the group delay of the two tests is then compared, by extracting the final periods of

the output signals, are computing the phase between them. The computation of the approximate phase

between two signals, φ, is done through the method explained in [21], being expressed as

φ = arccos
−→y1 · −→y2

|y1||y2|
, (5.2)

where y1 and y2 are vectors containing each sample as an element. It is important to note that the

approximate is only accurate if both signals are sinusoidal, and the number of samples is large enough.

A snippet of the Octave script used to compute the phase between the output signal of the first test,

y full, and the output signal of the second test, y rst is shown in Listing 5.6.

1 % OBTAIN SAMPLES AFTER RESET

2 last_zero_idx = 0;

3 if size(y_rst) < 3

4 printf("Sample Files are too small\n");

5 exit();

6 endif

7 for idx = 3:size(y_rst)

8 if((y_rst(idx -2)== y_rst(idx -1)) && (y_rst(idx -1)== y_rst(idx)))

9 last_zero_idx = idx;

10 endif

11 endfor

12

13 last_zero_idx = last_zero_idx+ceil (2^(SAMP_BUF_W)*(Fout_fpga/

Fin_fpga));

14

15 %% get waves from last_zero_idx

16 y_full_after_rst = y_full(last_zero_idx +1: end);

17 y_rst_after_rst = y_rst(last_zero_idx +1:end);

45

18

19 %% find phase difference

20

21 %% approximate method:

22 %% Good approximation for long vectors size >> 1

23 dot_product = dot(y_full_after_rst , y_rst_after_rst);

24 norm_product = (norm(y_full_after_rst)*norm(y_rst_after_rst));

25 phase_shift_rad = acos(dot_product/norm_product);

26

27 diff_seconds = phase_shift_rad /(2*pi*Ftest); % seconds

28

29 out_samples_diff = diff_seconds*Fout_fpga; % SAMPLE = s/(s/SAMPLE)

Listing 5.6: Sample rate adjustment script

5.2 IOB-SoC Hardware Implementation

IOB-SoC [22], an open-source system-on-a-chip (SoC) platform, tests the implementation of the

ASRC in FPGA,. The block diagram of the SoC is shown in Fig. 5.1.

Figure 5.1: IOB-SoC block diagram.

46

To control the system, the PicoRV32 [23], a RISC-V soft processor is included. This central pro-

cessing unit (CPU) includes integer, multiply and atomic instruction set extensions, and a RISC-V GNU

compiler toolchain is used to compile C programs to run on it [24]. The CPU is connected to an internal

static random access memory (SRAM), where the instructions and local variables are stored, as well

as a boot read-only memory (ROM) which the CPU initially accesses to receive the program through its

universal asynchronous receiver-transmitter (UART) module, and store it in the SRAM.

Additionally, an external Double Data Rate (DDR) memory is connected to a cache module, that

is accessible by the CPU. The CPU is also connected to three more peripherals: the ASRC, an Eth-

ernet module, and a UART module. The description of the Ethernet and UART modules is done in

sections 5.2.1.2 and 5.2.1.1, respectively. The description of the cache can be found in [25].

The memory map of the memories and peripherals is shown in Table 5.1. The first address is used

as a base, used to select the memory or peripheral. The addition of an offset allows the selection of a

specific register.

Memory/Peripheral Address
Internal Memory 0x0000 0000 - 0x1FFF FFFF
Boot Controller 0x2000 0000 - 0x3FFF FFFF

UART 0x4000 0000 - 0x4FFF FFFF
ASRC 0x5000 0000 - 0x5FFF FFFF

Ethernet 0x6000 0000 - 0x6FFF FFFF
Cache/External Memory 0x8000 0000 - 0xFFFF FFFF

Table 5.1: IOB-SoC memory map

To generate the sample rate clocks, a Xilinx ’s Memory Interface Generator (MIG) generates two more

independent clocks. Due to hardware limitations imposed by the MIG, the clocks have periods of 42 ns

and 91 ns. The first clock, audio mclk 0, with a period of 42 ns, is mostly used for frequencies that are

multiple of 8 kHz, as it frequency is approximately equal to 24MHz. As for the other clock, audio mclk 1,

its period is approximately equal to 11MHz, and it is mostly used for frequencies that are multiple of

11.025 kHz. It is important to note that the scripts adapt the frequencies to an approximate value, due to

the limitations imposed by the period of the clocks.

5.2.1 Peripherals

The connection to the peripherals and memory is done through a native master-slave interface,

where the CPU is always the master. The signals used for the interface, and their descriptions, are

shown in Table 5.2.

47

Name Direction Width Description
valid input 1 Native CPU interface valid signal
address input ADDR W Native CPU interface address signal
wdata input WDATA W Native CPU interface data write signal
wstrb input DATA W/8 Native CPU interface write strobe signal
rdata output DATA W Native CPU interface read data signal
ready output 1 Native CPU interface ready signal

Table 5.2: CPU native slave interface signals

5.2.1.1 UART

The UART module is used to transfer the firmware to the SoC during the boot execution, as well as

allow the display of debug messages sent by the SoC to the computer. The connection between the

module and host computer is done through an universal serial bus (USB) interface.

To allow a proper communication with the computer, a baud rate compatible to the USB interface

is configured. The baud rate is the frequency of bits transferred per second. In the case of the work

performed for this thesis, the baud rate used is equal to 115200. It is important to note that the baud rate

leads to transfers with a frequency in the same order as the sample rates. As such, this module should

not be used during the ASRC’s execution, as it will allocate the CPU for too much time.

To control the module on the side of the SoC, C drivers are used, working in a similar way to print

and scan instructions from the stdio.h C library. On the side of the computer, a C program is used to

send the firmware, as well as read data from the SoC and print it to the screen.

5.2.1.2 Ethernet

The Ethernet module is used to transfer the input and output audio samples from the computer to

the SoC, as well as the input and output sample rates to be configured. Considering that an audio file

has a size that ranges from dozens of kB to units of MB, the use of the Ethernet module instead of the

UART is essential, as a UART transfer would bottleneck the program’s execution.

The Ethernet module used works on raw sockets, without the use of an internet protocol. The data

frame’s structure is shown in Fig. 5.2.

Figure 5.2: Ethernet data frame format.

The preamble is composed by a word of 15 bytes with alternating zeroes and ones. The start frame

delimiter (SFD) section should have the value equal to 0xD5. These two sections make the frame’s

preamble.

The destination and source addresses used correspond to the MAC addresses of the FPGA and the

host computer. The protocol section indicates the Ethernet protocol used. In the case of this module,

48

the value of this section is equal to 0x8000, which corresponds to an IPv4 datagram protocol. These

three sections correspond to the frame’s header.

The data section contains the data that the SoC or the host computer need to send. The size of the

data section is variable, and needs to be configured in both the FPGA and the host computer’s side, in

order to be the same.

To validate the the results received, the cyclic redundancy check (CRC) section of the data frame is

checked, and a message is printed if the CRC is incorrect. The value of the CRC is obtained through a

checksum of the data sent, and a transmission error is detected if the computed value at the receiver’s

side does not correspond to the value sent through the Ethernet module.

On the side of the SoC, C drivers are used to control the module, allowing the easy transfer of multiple

data frames. On the side of the computer, a python script is used.

5.2.1.3 ASRC’s Wrapper

To adapt the ASRC’s interface to the native interface of the SoC, a wrapper is added. The wrapper not

only converts the SoC’s native interface to the ASRC’s interface, but also adds some control elements

to allow adaptability to different configurations. As such, the wrapper can be split into four blocks:

• software accessible registers: to control the wrapper and the ASRC, the CPU directly accesses

a bank of registers, that are mapped in the SoC’s memory, being therefore accessible by the

firmware. This bank also includes some read-only registers, used to check the ASRC’s status.

The list of software accessible registers, and their details, is shown in Tables 5.4, 5.5 and 5.6. The

synthesis parameters used to define the sizes of some of the registers are shown in Table 5.3.

• a clock selector and divider: to allow multiple combinations of input and output sampling rates,

two clocks, audio mclk 0 and audio mclk 1 are generated in the MIG, and used as inputs of the

wrapper. Two clock selectors, controlled by the value of two software accessible registers, are

used to determine which of the two clocks shall be used as the input and output master clocks,

audio in mclk and audio out mclk. Additionally, to generate the input and output word clocks,

audio in wclk and audio out wclk, two clock dividers are used, with the division values being

determined by the value of two software accessible registers. These dividers are achieved with a

counter that counts at every cycle of the respective audio master clock, and resets whenever the

division value is reached, as well as a register that compares if the counted value reached half of

its target. The result of the division is a word clock with a duty cycle of 50% (with an error of half

master clock cycle).

• an input and an output buffer: to temporarily store the input and output samples, as well as guar-

antee that they are written at the right timings, two asynchronous first in first out (FIFO) blocks

are used, one for the input and one for the output. These FIFOs not only guarantee that the input

and output sample signals are properly synchronized from the system’s clock to the audio master

clocks, but also allow the CPU to process other instructions while there are still samples in the

input buffer and slots in the output buffer. To control the write of the input in the ASRC, a counter

49

is used. The counter counts at every input audio master clock cycle, as long as the counted value

is less than the number of channels configured in the corresponding software accessible register.

While the counted value is less than the number of channels, the wrapper keeps audio in valid

active, allowing the samples to be written at every positive edge of audio in mclk.

• a direct memory access (DMA) block: to write or read a burst of samples, allowing a faster data

transfer, an AXI DMA connects the input and output buffers to the MIG. This allows a transfer of

approximately one sample per system clock cycle. The execution and configuration of the DMA is

done through the value of six software accessible registers.

The block diagram of the wrapper is shown in Fig. 5.3.

Parameter Default Value Description

SAMP W 24 Audio sample width

FIFO IN ADDR W 7 Input audio FIFO size (log2)

FIFO OUT ADDR W 7 Output audio FIFO size (log2)

DMA ADDR W 30 Addressable memory space (log2)

Table 5.3: ASRC testing system’s synthesis parameters.

Figure 5.3: ASRC’s wrapper block diagram.

50

Name R/W Address Bits Initial
Value

Description

ASRC NC W 0x00 7:0 1 Number of data channels.
ASRC SOFT RESET W 0x04 0:0 0 Resets the sample rate

converter.
ASRC DATA IN W 0x08 SAMP W-1:0 0 Data to input to sample rate

converter.
ASRC WR W 0x0c 0:0 0 Writes an input sample to

the sample rate converter.
ASRC RD W 0x10 0:0 0 Reads an output sample

from the sample rate con-
verter.

ASRC DATA OUT R 0x14 SAMP W-1:0 0 Output data from sample
rate converter.

ASRC ERROR R 0x18 2:0 0 Error bits (2) Audio out
buffer— (1) PTR DIFF—
(0) NChannels

ASRC CLKIN SEL W 0x1c 0:0 0 Select mclk 0 (0) or mclk 1
(1) as input audio clock.

ASRC CLKOUT SEL W 0x20 0:0 1 Select mclk 0 (0) or mclk 1
(1) as output audio clock.

ASRC CLKIN DIV W 0x24 12:0 500 Number of input audio
clock periods per wclk in
period minus 1 maximum
value is 4095.

ASRC CLKOUT DIV W 0x28 12:0 1000 Number of output audio
clock periods per wclk out
period minus 1 maximum
value is 4095.

SYNC CYCLES W 0x2c 31:0 0 Number of system clock
cycles to wait for synchro-
nization

RO METER SYNC R 0x30 0:0 0 ASRC has determined the
conversion ratio and is
ready to convert (1) or not
(0)

RO METER RO LOW R 0x34 31:0 0 Sample rate conversion ra-
tio (least significant bits)

RO METER RO HIGH R 0x38 2:0 0 Sample rate conversion ra-
tio (most significant bits)

RO METER RO INV LOW R 0x3c 31:0 0 Inverse of sample rate con-
version ratio (least signifi-
cant bits)

RO METER RO INV HIGH R 0x40 2:0 0 Inverse of sample rate con-
version ratio (most signifi-
cant bits)

Table 5.4: Software accessible registers for the ASRC.

51

Name R/W Address Bits Initial
Value

Description

INFIFO FULL R 0x44 0:0 0 Input sample fifo full
flag.

INFIFO EMPTY R 0x48 0:0 0 Input sample fifo empty
flag.

INFIFO LEVEL R 0x4c FIFO IN ADDR W-1:0 0 Number of Input sam-
ples in fifo.

OUTFIFO FULL R 0x50 0:0 0 Output sample fifo full
flag.

OUTFIFO EMPTY R 0x54 0:0 0 Output sample fifo
empty flag.

OUTFIFO LEVEL R 0x58 FIFO OUT ADDR W-1:0 0 Number of output sam-
ples in fifo.

Table 5.5: Software accessible registers for the input and output buffers.

Name R/W Address Bits Initial
Value

Description

INDMA ADDR W 0x5c DMA ADDR W-1:0 0 Memory address for mem-
ory to sample rate converter
transfers.

INDMA LEN W 0x60 7:0 0 Burst length for memory to
sample rate converter trans-
fers.

INDMA RUN W 0x64 0:0 0 Starts the DMA for mem-
ory to sample rate converter
transfers.

INDMA READY R 0x68 0:0 0 DMA is ready to start an in-
put sample RUN (1) or not
(0).

OUTDMA ADDR W 0x6c DMA ADDR W-1:0 0 Memory address for sam-
ple rate converter to memory
transfers.

OUTDMA LEN W 0x70 7:0 0 Burst length for sample rate
converter to memory trans-
fers.

OUTDMA RUN W 0x74 0:0 0 Starts the DMA for sam-
ple rate converter to memory
transfers.

OUTDMA READY R 0x78 0:0 0 DMA is ready to start an out-
put sample RUN (1) or not
(0).

OUTFIFO SWITCH W 0x7c 0:0 1 Disable or enable getting
samples from ASRC

PTR DIFF SWITCH W 0x80 0:0 1 Disable or enable sending
samples to data mem (stops
x addr)

Table 5.6: Software accessible registers for the DMA.

52

5.2.2 Firmware

To allow the execution of multiple tests of the ASRC, a testing firmware is developed. The firmware

allows the CPU to configure the ASRC, and send and receive audio samples from it.

To configure the ratio estimator module, a synchronization time of 20ms is chosen. Assuming a

system clock with a frequency equal to 100MHz, the internal counter of the module needs to count until
20 × 10−3

10 × 10−9 = 2× 106.

A flowchart of the firmware developed is shown in Fig. 5.4.

Initially, the CPU waits for the host computer to send the input and output sampling rates used for

the test. With this information, it configures the ASRC’s clock selection and divisors, used by the core’s

wrapper. Afterwards, it receives the input samples, and stores them in the external memory. After

receiving every sample and finishing every configuration, the ASRC is reset, while the configurations

are kept the same.

After a reset, the ASRC starts the computation of the conversion ratio. As such, to avoid wasting

input samples, the CPU waits for the computation to finish, as the ASRC does not convert while the

computation is being performed. After the computation is finished, the CPU reads and stores the value

of the conversion ratio computed, as well as its inverse.

When the ASRC starts the conversion, the CPU ensures that it is always properly working, by keeping

at least half of the input buffer full with valid input samples, and half of the output buffer empty. For both

cases, the CPU checks the number of samples in the FIFO. The DMA is commanded to transfer as many

input samples as needed to fill the input buffer, if the buffer is at less than half of its capacity. Similarly,

the DMA is also commanded to transfer as many output samples from the output buffer to the external

memory as valid samples in the buffer, if it is at more than half of its capacity.

After every input sample is sent, and the input buffer is empty, the DMA is commanded to transfer all

remaining samples in the output buffer to the external memory, and the conversion is finished. As such,

every output sample in the external memory is sent to the computer, using the Ethernet module.

As a debug measure, the value of the conversion ratio, and its inverse, obtained before, are printed,

by using the UART to send the debug message to the computer, where it is displayed.

Regarding the generation of the input samples, and analysis of the output samples, these processes

are performed in the host computer, by using the Octave scripts shown in Section 5.1.

53

Figure 5.4: ASRC testing firmware flowchart.

54

Chapter 6

Results

To validate the Asynchronous Sample Rate Converter design, a rigorous testing suite has been

applied to it, based on similar tests that can be found in [1], [2] and [3]. This chapter presents the

parameters used in each test and the results obtained. All tests have been applied to an FPGA imple-

mentation of the design, embedded in the SoC described in Section 5.2, and run on a Kintex Ultrascale

FPGA (XCKU040-FBVA676-1-C) device.

6.1 Fast Fourier Transform Setup

Before presenting the experimental results, it is important to explain that the Fast Fourier Transform

method has been used to analyse the output signal spectrum. The output signal is sent to the PC by the

SoC running on the FPGA via Ethernet. Then the signal is analysed using the Octave software package.

The plots of the FFT of the output signal for some conversions are shown in Fig. 6.1 and 6.2 as

examples. The input used in all conversions is a sine wave with a magnitude of−1 dBFS and a frequency

of 1 kHz. The FFT is computed after windowing the output, to avoid the effect of spread spectrum. It is

also important to note that only half of the FFT is being shown, as it has a symmetric counterpart from

−Fsout/2 to 0Hz.

Note that the magnitude of the signal bin is lower than the expected value. This is due to the window

applied to the FFT, used to eliminate spectral leakage. This window is, however, not applied when

obtaining the output signal’s magnitude, as can be seen in Listing 5.5.

55

(a) From 44.1 kHz to 48 kHz. (b) From 44.1 kHz to 192 kHz.

(c) From 48 kHz to 96 kHz. (d) From 96 kHz to 192 kHz.

Figure 6.1: Fast-Fourier transform of upsampled signals.

56

(a) From 192 kHz to 96 kHz. (b) From 192 kHz to 44.1 kHz.

(c) From 96 kHz to 48 kHz. (d) From 48 kHz to 44.1 kHz.

Figure 6.2: Fast-Fourier transform of downsampled signals.

57

6.2 Total Harmonic Distortion Plus Noise

To compute the Total Harmonic Distortion Plus Noise (THD+N), the script presented in Subsec-

tion 5.1.4 is used multiple times, for multiple sampling rates, as well as multiple signal frequencies.

The script runs once for every combination of input and output sampling rates shown in Table 6.1.

The input signal has a magnitude of −1 dBFS and frequency of approximately 1 kHz. A subset of the

tests is shown in Table 6.2. The remaining results are shown in Section A.1.

Table 6.1: Commonly used sample rates in audio applications and their particular uses

Sample Rate Use
8.000 kHz Telephones/walkie-talkies.
11.025 kHz Lower-quality PCM, MPEG audio and analizers of

subwoofer bandpasses.
16.000 kHz VoIP and VVoIP applications.
22.050 kHz Lower-quality PCM, MPEG audio and low frequency

energy analyzers.
32.000 kHz miniDV camcorders, and some video tapes. Also

used for high-quality wireless microphones.
44.100 kHz Audio CDs, most used with MPEG-1 audio (VCD,

MP3) covers the audible bandwidth (up to 20 kHz).
48.000 kHz Professional digital video equipment and consumer

video formats, like digital TV, DVD and films.
88.200 kHz Some professional recording equipment that targets

CD, such as mixers or equalizers.
96.000 kHz High definition DVD and blu-ray audio tracks.
176.400 kHz High definition CD recorders and other applications

targeting CD.
192.000 kHz Professional video equipment targeting high defini-

tion DVD and blu-ray audio tracks.

Input Sampling Rate [Hz] Output Sampling Rate [Hz] THD+N [dB]
8000 177242 -139.706173

11022 96006 -138.768504
44132 48003 -138.784562

177242 192012 -141.533573
192012 11022 -141.887817
87912 8000 -141.829588
48003 32002 -136.135586
11022 8000 -138.289522

Table 6.2: Total harmonic distortion+noise ratio for some conversions

By direct analysis of the results shown in 6.2 and A.1, it is possible to conclude that the specification

of a THD+N equal to −130 dB or less is fulfilled for the most common sampling rate conversions.

Fig. 6.3 shows a subset of the THD+N results when varying the input signal’s frequency. This test

is done for 16 conversions, involving combinations of 44.1 kHz, 48 kHz, 96 kHz and 192 kHz, with an input

signal with magnitude of −1 dBFS. The remaining results are shown in Section A.3.

To keep the results consistent with the ones shown in [1] and [2], the frequency responses are

measured in a range from 20Hz to the Nyquist frequency of either the input or the output sampling

58

rates, whichever is the lowest. However, it is important to note that the ASRC is designed for audio

applications, and thus only the audible range (20Hz to 20 kHz) is relevant for analysis.

(a) From 44.1 kHz to 192 kHz. (b) From 44.1 kHz to 48 kHz.

(c) From 48 kHz to 44.1 kHz. (d) From 96 kHz to 48 kHz.

Figure 6.3: THD+N of the ASRC’s output for fixed conversions and varying input frequency.

These results show that, for the case of upsampling, the THD+N increases for signals with frequen-

cies close to the Nyquist frequency (F ≈ Fin/2). This is caused by aliasing in the filtered output, as the

low-pass filter is not selective enough to completely remove the distortion caused by aliasing. The issue

is partially solved by reducing the filter’s cutoff frequency, as explained in Section 4.3.1.1.

The THD+N for a subset of conversions of a signal with a frequency of 1 kHz and varying magnitude,

between −120 dBFS and −1 dBFS, is shown in Fig. 6.4. The full test runs for the same 16 conversions

used in the previous test. The remaining results are shown in Section A.5.

One can note that the increase of the input magnitude leads to an increased THD+N. This is due

to two main factors: firstly, an increase of the signal amplitude leads to the increase of the harmonics’

amplitude as well. Secondly, due to the variation of the sample rate conversion ratio estimated by the

ASRC, caused by the corrections applied by the frequency tracker, as explained in Subsection 4.2.2,

some of the energy of the input signal is spread to adjacent frequencies. It is, however, possible to note

that the increase of the input signal magnitude does not lead to a THD+N higher than −130 dB.

59

(a) From 44.1 kHz to 192 kHz. (b) From 44.1 kHz to 48 kHz.

(c) From 48 kHz to 44.1 kHz. (d) From 96 kHz to 48 kHz.

Figure 6.4: THD+N of the ASRC output for fixed conversions while varying the input magnitude.

60

6.3 Frequency Response

The frequency responses of multiple conversions use an input signal with a magnitude of −1 dBFS.

Similar to the tests performed in the previous section, this test is performed for 16 conversions (combi-

nations of 44.1 kHz, 48 kHz, 96 kHz and 192 kHz). A subset of 4 conversions is shown in Fig. 6.5. The

remaining results are shown in Section A.3.

Similarly to the results for the test presented by Fig. 6.3, the frequency of the input varies between

20Hz to the Nyquist frequency the input or the output sampling rates.

(a) From 44.1 kHz to 192 kHz. (b) From 44.1 kHz to 48 kHz.

(c) From 48 kHz to 44.1 kHz. (d) From 96 kHz to 48 kHz.

Figure 6.5: Frequency response of the ASRC for a few conversions.

6.4 Phase Difference After Reset

The results of the phase difference after reset are obtained using the method explained in Sec-

tion 5.1.5. This test is performed for every combination of input and output sample rates contained in

Table 6.1, with the exception of conversion from 8 kHz to sample rates on the higher range, due to lim-

itations of the test script. Table 6.3 shows a subset of the results obtained. Section A.2 contains the

remaining set of results.

61

The difference in the output signal before and after reset for a single conversion is illustrated in

Fig. 6.6.

Input Sample Rate [Hz] Output Sample Rate [Hz] Phase Shift (#
Output Samples)

Phase Shift
(microseconds)

11022 96006 0.329150 3.428430
44132 48003 0.001540 0.032090
176366 192012 0.090451 0.471067
192012 11022 0.009258 0.839947
88183 8000 0.044237 5.529248
48003 32002 0.333216 10.41233
11022 8000 0.044391 5.548544

Table 6.3: Group delay of some conversions.

Figure 6.6: Output signal before (blue) and after (red) reset for a conversion from 48 kHz to 32 kHz.

From the results in Table 6.3, one concludes that the synchronization process of the ASRC may lead

to a small change in the group delay when repeated. This result is expected, as the ratio estimator

module, described in Section 4.2, uses frequency tracking to avoid frequency drift, instead of phase

tracking. The corrections use the variation of the delay ∆D instead of the delay D itself.

Although there is a small variation of the group delay with each run, the displacement of the output

signals for every test performed is less than one output sample. This is because the overall group delay

is dictated by the filter delay and only affected by the system sampling instant within the signal’s sample

62

period. As such, the difference does not negatively impact the performance of the ASRC, as for most

audio applications such a small phase difference is not audible.

6.5 Linearity Of The ASRC

Linearity is a property of a function or system. A system is considered linear if the relationship

between the output and the input can be graphically represented by a straight line. For the ASRC, one

expects that the converter is linear, with the amplitude of the output signal being equal to the amplitude

of the input signal.

To test the linearity of the ASRC, multiple conversions are performed, with a 1 kHz input signal,

and varying magnitude, between −120 kHz and −1 kHz. The output magnitude is then compared to

the corresponding input magnitude. This test is performed for the same 16 conversions as the ones

performed in the test described in Section 6.3. The results for a subset of the conversions are shown in

Fig. 6.7. The remaining results are shown in Section A.6.

(a) From 44.1 kHz to 192 kHz. (b) From 44.1 kHz to 48 kHz.

(c) From 48 kHz to 44.1 kHz. (d) From 96 kHz to 48 kHz.

Figure 6.7: Magnitude of the ASRC’s output for fixed conversions and variable input magnitude.

63

The above plots shows that, at least visually, ASRC appears to be linear. To further analyze the

results, one performs a linear regression over the results, by considering that the magnitudes of the

output, Y is related to the magnitudes of the input, X as

Y = X × β, (6.1)

where β is a regression parameter, expected to be approximate to 1. The coefficient of determination,

R2 validates the linear regression, as a value close to 100% indicates that the linear expression define

in Equation (6.1) is accurate. Note that the use of this statistical method, or any other finer validation

technique, was not found in other similar works. The values of β and R2 obtained for the tests performed

are shown in Table 6.4.

Input Sample Rate [Hz] Output Sample Rate [Hz] β R2

192012 192012 1.000022 99.99993%
192012 44132 0.999999 99.99996%
192012 48003 1.000078 99.99997%
192012 96006 1.000026 99.99997%
44132 192012 1.000058 99.99994%
44132 44132 1.000042 99.99999%
44132 48003 1.000071 99.99993%
44132 96006 1.000057 99.99994%
48003 192012 0.999945 99.99990%
48003 44132 0.999785 99.99993%
48003 48003 0.999979 99.99975%
48003 96006 0.999995 99.99991%
96006 192012 0.999981 99.99992%
96006 44132 0.999971 99.99990%
96006 48003 0.999930 99.99995%
96006 96006 0.999936 99.99992%

Table 6.4: Results of linear regression of some conversions

For the results shown in Table 6.4, one can conclude that the filter is linear for the range of input

magnitude tested, as the value of R2 is close to 100%. Furthermore, as the value of β is close to 1, one

can also conclude that the converter has an approximate gain of 1. This is close to ideal, as it means

that the output signal is approximately the same as the input signal.

6.6 FPGA Resource Usage

The detailed resource usage of the ASRC on the Kintex Ultrascale FPGA (XCKU040-FBVA676-1-C)

is shown in Table 6.5. The resource usage of the ASRC on the Basys3 board (XC7A35TCPG236-1) and

on the Cyclone-V-GT-DK board (5CGTFD9E5F35C7) are shown in Tables 6.6.

As can be seen in Table 6.5, more than half of the lookup tables (LUTs) are used by the ratio esti-

mator (ro meter) module. In it, the divider module is the most resource-hungry, as it needs to compute

averages that require many bits to account for the accumulated periods, number of accumulations and

of fractional bits of the conversion ratio.

64

Instance Name LUTs Flip-Flops RAMB36 RAMB18 DSP48
asrc hardcore 1654 1540 13 1 9

asrc hardcore (without submodules) 36 26 0 0 0
audio out fifo 29 46 0 1 0
data mem 10 32 1 0 0

data mem (without submodules) 10 32 0 0 0
mem 0 0 1 0 0

resampler 585 501 12 0 9
resampler (without submodules) 4 99 0 0 0
addr gen 234 128 0 0 2

addr gen (without submodules) 1 1 0 0 0
alpha 107 48 0 0 2
coeff addr 73 38 0 0 0
s addr 53 41 0 0 0

coef rom 170 147 12 0 1
coef rom (without submodules) 170 147 0 0 1
rom 0 0 12 0 0

macc 177 127 0 0 6
ro meter 994 935 0 0 0

ro meter (without submodules) 454 593 0 0 0
Tin meter 19 37 0 0 0
Tout meter 19 37 0 0 0
div 445 198 0 0 0
mul 57 70 0 0 0

Table 6.5: Resource utilization on a XCKU040 (hierarchical representation)

Resource Used
LUTs 1677
Registers 1540
DSPs 9
BRAM 13

Resource Used
ALM 1,083
FF 1745
DSP 8
BRAM blocks 52
BRAM bits 419,328

Table 6.6: Resource utilization on a XC7A35 (left) and Cyclone V GT (right)

65

It is also important to note that, although the resampler module only uses approximately 600 LUTs,

it also uses 9 digital signal processing blocks (DSPs) for its multipliers. In an ASIC implementation, the

multipliers would occupy a significant silicon area, most likely higher than the silicon area taken by the

ratio estimator module.

Regarding the usage of memory blocks, the coefficient ROM is the element that uses the most, as

the module stores 16384 (214) samples, with 24 bits per sample, stored. In FPGA, ROMs are typically

implemented with pre-initialised block RAMs, but in an ASIC implementation there are specific ROM

hard macros that are one order of magnitude compared to the RAM hard macros, allowing for a cheaper

implementation.

6.7 ASIC Resource Usage

By using Cadence’s IC synthesis software, Encounter RC Compiler, one can estimate the cell and

area usage of the ASRC for an ASIC implementation. Table 6.7 presents the resource usage of the core,

with a UMC130 nm technology node.

Table 6.7: ASIC resource usage for the ASRC

Resource Used
Cell count 17510

Area (mm2) 0.212

To compare this result with the Coreworks CWda52 core [3], implemented in the TSMC65 nm and

TSMC45 nm nodes, one needs to convert the area using geometric scaling. Table 6.8 shows the esti-

mated area usage of the CWda52 with two audio channels, if implemented in the UMC130 nm technol-

ogy.

Table 6.8: ASIC resource usage for the CWda52 with two audio channels

Resource Used
Cell count 9220
Area (µm2) 0.164

The area of the proposed core of is about 30% higher than the CWda52’s. However, one can note

that, while the area of the proposed core does not depend on the number of channels, the area the

CWda52 replicates most of its logic for each pair of channels. This leads to a lower and lower area

usage per channel than the CWda52, as the number of channels increases.

Regarding memory size, Coreworks reports the usage of a 28 kB ROM and a 768B RAM per channel,

plus a fixed 48-byte RAM segment. The present ASRC contains a 48 kB ROM, and 2.25 kB of RAM per

channel. Note that the RAM usage also depends on the conversion ratio, as explained in Section 6.8.

The limited downsampling conversion ratio of 7:1 for the CWda52 compared to the 24:1 ratio of the

prpoposed core explains the difference in the needed RAM.

66

6.8 Multi-Channel Support and Limitations

As defined in the core’s target specification, it should support multiple channels. With the design

presented in this chapter, there are two components that lead to the limitation of the number of channels:

the size of the data memory, presented in Section 4.1, and the number of clock cycles available to

compute a sample for every channel.

Considering that the filter is a sinc function with 32 zeroes, as explained in Subsection 5.1.2, and the

coefficients are iterated in increments of h step, as shown in Subsection 4.3.1.3, one can obtain the total

amount of coefficients used for the conversion of an output sample, Ncoeffs:

Ncoeffs =
32

h step
=

32

min(0.875, ρ)
. (6.2)

The case that leads to the biggest value for Ncoeffs is a conversion from 192 kHz to 8 kHz, where

Ncoeffs =
32
8

192

= 768. (6.3)

Since one needs to have one input sample for each coefficient, for each channel, the data memory

should have a capacity equal or greater than Ncoeffs×Nchannels input samples. As such, the number of

channels is limited by the capacity of the data memory. For the results present in this chapter, the data

memory has a capacity of 1024 input samples, as can be seen in Table 4.2. That size can, however, be

changed through the synthesis of the core with a different synthesis parameter.

Furthermore, as the MACC module performs a single multiplication per system clock cycle, as shown

in Subsection 4.3.3, the output samples can only be computed if the system clock cycle is (Ncoeffs +

10)×Nchannels times faster than the output sample rate. The 10 extra clock cycles refer to the 9 cycles

needed to allow the internal signals to pass through the pipeline registers, mentioned in Section 4.4, as

well as an extra cycle needed to change the side of the filter.

67

68

Chapter 7

Conclusions

An ASRC is a rather complex circuit, and only major semiconductor players such as Cyrrus Logic,

Analog Devices and Texas Instruments have Integrated Circuit (IC) solutions available in the market. To

the best of the author’s knowledge, the only existing ASRC IPs in the market, the CWda5x family, is

made available by the IP design company Coreworks, SA. As was explained in Section 1.1, the CWda5x

cores have a higher (worse) THD+N than the IC solutions, as well as a more limited range of conversion

ratios.

This thesis proposes a new design of an audio Asynchronous Sample Rate Converter (ASRC), im-

plements it and presents the experimental results. The circuit is described in Verilog, simulated, and

prototyped in FPGA. The ASRC is designed as a multi-channel sample rate converter Intellectual Prop-

erty (IP) module for integration into System-on-Chip. The imposed specifications have the purpose of

making it competitive to any IC or IP solutions, with the CWda52 IP core, the AD1896 and the SRC4194

chips being the leading competitors.

The specifications include: support for up to 24-bit samples, sampled in the range between 8 kHz

and 192 kHz, multiple (hundreds) of channels, THD+N of −130 dB or less, a synchronisation time lower

than 200ms, variation of phase between input and output of less than one output sample after a reset,

and a hardware resource consumption similar to the CWda52.

The ASRC developed in this thesis can be split into two main blocks: the resampler and the conver-

sion ratio estimator. The resampler uses a finite impulse response filter with a variable number of coef-

ficients dynamically computed. It uses a ROM and an interpolator circuit to determine the coefficients

for the multiply-accumulate module. The design uses very few hardware resources, as the arithmetic

computations are done sequentially.

The conversion ratio estimator uses counters to determine the conversion ratio by asynchronously

measuring the periods of the sample rate clocks. After a sufficiently high number of measurements,

the ratio between the output and input ample rates can be accurately estimated, enabling the start of

the conversion. After that, a frequency tracker performs a fine adjustment of the initial approximation,

keeping the ASRC synchronised to both the input and output clocks. The computation is done in a third

69

and high-speed system clock domain. This unique architecture was not found in any other previous

work.

7.1 Achievements

The final design fulfils every specification imposed in Section 1.3.

The bit-width of the samples can be specified as a synthesis parameter. Although the specification

imposes the upper bound of 24 bits, the IP can support any bit-width, though tests for more than 24 bits

are not performed.

Similarly to the CWda5x IP core family and the IC chips, the present core supports any sample

rate between 8 kHz and 192 kHz. The present design has no limit regarding the conversion ratio; the

supported sample rates define the conversion ratio limits. Hence, the supported range is from 24:1 to

1:24 ratios. This range is broader than the ranges of any other solution, as the maximum previously

found by the author is 16:1 to 1:16 [2].

The core supports multiple channels. The maximum number of channels supported depends on the

input and output sample rates, data memory size, and system clock’s frequency. While one can change

the size of the data memory by changing the synthesis parameters, the frequency of the system clock

may be limited by its critical path length. For example, the core can support up to 8 channels for the

worst conversion ratio: 192:8 kHz for a 100 MHz system clock For most standard conversion rates, the

core support at least 16 channels. The solution is thus the most competitive ones in terms of the number

of supported channels.

The output’s THD+Nis lower than −136 dB for all the conversions in the supported range; a total of

121 conversions have been run. For most conversions, the THD+N is around −140 dB. For the best

case, the THD+N is −143 dB. These figures are a direct improvement over the CWda52 and lead to a

sound fidelity similar to the IC counterparts, as their THD+N reaches values around −140 dB [2].

Thanks to the unique architecture of the conversion ratio estimator, the synchronisation time of the

core is only 20ms. This low synchronisation time improves the IC solutions, as the synchronisation time

is one order of magnitude lower. This architecture also presents no issues regarding the variation of the

phase after a reset; it is lower than one output sample for the 121 tested conversions.

For two channels, the FPGA implementation of core uses around 60% of the total amount of LUTs

used by the CWda52, while the DSP usage is double. However, for more than two channels, the resource

usage of the CWda52 increases as it replicates itself for each pair of channels. The core proposed in

this thesis has no hardware overhead with the number of channels, which makes the hardware resource

usage per channel of the proposed core lower and lower than the CWda52’s as the number of channels

increases. The area usage of the ASIC implementation confirms these results.

By changing the synthesis parameters, ASRCs with different specifications can be produced, trading

off its high-end features for less hardware resource usage.

Once the conversion ratio is estimated, the computation of the output samples may proceed syn-

chronously. Synchronous sample rate converters find many applications in digital audio processing to

70

operate on stored signals for which the sample rate is known. Consequently, synchronous sample rate

converter IPs can easily be implemented using just the resampler part of this work and adding the

necessary system integration circuitry.

The asynchronous nature of the algorithm dictates the need to work with multiple clock domains,

which is as complex as it can get in terms of digital hardware design. In this work, three different clock

domains are used: the input, output and processing clock domains. Typical synchronisation structures

have been developed as needed to avoid errors caused by metastability or data misses.

7.2 Future Work

The design of the ASRC can be further improved regarding the hardware resources usage. More

testing in different FPGA or even an ASIC test chip is helpful for further validating its specifications.

More interfaces can be developed for easy integration of the core in a variety of other systems. Other

interfaces can be developed as wrappers for the core to simplify the integration of the ASRC in other

systems. A host of audio interfaces could be supported to make the core even more flexible, such as

the several I2S − TDM interface [26], flavours used by the industry.

The multiply-accumulate unit of the resampler can be optimised, as the multiplication of the input

sample and coefficient uses a multiplier unit (which uses DSPs), while the scaling of the output sample

by h step uses a different multiplier unit, despite the fact it is only needed after the multiply accumulate

series. The insertion of a control unit to allow the unit to share the same multiplier for both computations

leads to a reduction of DSP usage, at the cost of very few LUTs, and a latency overhead of 1 system

clock cycle per output sample.

While the ASRC is tested in most common sample rates used by audio applications, both in simula-

tion and FPGA, it is essential to note that the same Mixed-Mode Clock Manager (MMCM) unit generates

the audio clocks used in the FPGA. The MMCM can generate non-synchronised clocks related by a

rational factor but has limits for the possible ranges. To further test the developed core, using external

clocks without any frequency constraints provides more freedom.

Additionally, to further validate the results, the output should be analysed using a professional audio

analyser, such as the equipment made available by the companyAudio Precision, even if there are

no reasons to believe that the presented results are wrong. The analysis of the results produced by the

developed core is obtained by running an Octave script on the produced data. This script already existed

when the work started but has been refined in the course of this work. Moreover, its results have been

compared to an available open-source audio measurement solution [27], and no significant differences

have been detected.

71

72

Bibliography

[1] Analog Devices, 192 kHz Stereo Asynchronous Sample Rate Converter, March 2003. Rev. A.

[2] Burr-Brown Products from Texas Instruments, 4-Channel, Asynchronous Sample Rate Converter,

June 2004. Rev. B.

[3] coreworks, Multi-Channel Audio Sample Rate Converters, June 2016.

[4] R. Crochiere and L. Rabiner, Multirate Digital Signal Processing. Prentice-Hall Signal Processing

Series: Advanced monographs, Prentice-Hall, 1983.

[5] S. K. Mitra and J. F. Kaiser, eds., Handbook for Digital Signal Processing. New York, NY, USA: John

Wiley & Sons, Inc., 1st ed., 1993.

[6] P. Beckman and T. Stilson, “An efficient asynchronous sampling-rate conversion algorithm for multi-

channel audio applications,” in AES Convention Papers Forum, no. 6553, October 2005.

[7] P. J. Kootsookos and R. C. Williamson, “Fir approximation of fractional sample delay systems,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, pp. 269–

271, March 1996.

[8] C. Tseng and S. Lee, “Design of fir fractional delay filter based on maximum signal-to-noise ratio

criterion,” in 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and

Conference, pp. 1–8, Oct 2013.

[9] V. Valimaki and T. I. Laakso, “Principles of fractional delay filters,” in 2000 IEEE International Con-

ference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), vol. 6,

pp. 3870–3873 vol.6, June 2000.

[10] A. Yardin, G. D. Cain, and A. Lavergne, “Performance of fractional-delay filters using optimal offset

windows,” in 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing,

vol. 3, pp. 2233–2236 vol.3, April 1997.

[11] R. Adams and T. Kwan, “A stereo asynchronous digital sample-rate converter for digital audio,”

IEEE Journal of Solid-State Circuits, vol. 29, no. 4, pp. 481–488, 1994.

[12] S. CHARANJIT, M. Patterh, and S. Sharma, “Efficient implementation of sample rate converter,”

International Journal of Advanced Computer Sciences and Applications, vol. 1, 01 2011.

73

[13] E. Hogenauer, “An economical class of digital filters for decimation and interpolation,” Acoustics,

Speech and Signal Processing, IEEE Transactions on, vol. 29, pp. 155 – 162, 05 1981.

[14] Y. Mori and N. Aikawa, “Kernel using piecewise nth polynomials for rate converter,” in Proceedings

of the 6th Nordic Signal Processing Symposium, 2004. NORSIG 2004., pp. 57–60, June 2004.

[15] N. Aikawa and Y. Mori, “Kernel with block structure for sampling rate converter,” in 2003 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP

’03)., vol. 6, pp. VI–269, April 2003.

[16] C. W. Farrow, “A continuously variable digital delay element,” in 1988., IEEE International Sympo-

sium on Circuits and Systems, pp. 2641–2645 vol.3, June 1988.

[17] M. Blok and P. Drozda, “Variable ratio sample rate conversion based on fractional delay filter,” 2015.

[18] D. Babic, J. Vesma, T. Saramaki, and M. Renfors, “Implementation of the transposed farrow

structure,” in 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat.

No.02CH37353), vol. 4, pp. IV–IV, May 2002.

[19] F. Rothacher, “Sample rate conversion: algorithms and vlsi implementation,” 1995.

[20] E. Stikvoort, Some subjects in digital audio : noise shaping, sample-rate conversion, dynamic range

compression and testing. PhD thesis, Department of Electrical Engineering, 1992. Proefschrift.

[21] Fat32, “Calculating the phase shift between two signals based

on samples.” https://dsp.stackexchange.com/questions/41291/

calculating-the-phase-shift-between-two-signals-based-on-samples, 2017.

[22] IObundle Lda, “IOb-SoC.” https://github.com/IObundle/iob-soc, 2020.

[23] C. Wolf and et. al., “PicoRV32 - A Size-Optimized RISC-V CPU.” https://github.com/

cliffordwolf/picorv32, 2019.

[24] K. Cheng and et. al., “RISC-V GNU Compiler Toolchain.” https://github.com/riscv/

riscv-gnu-toolchain, 2020.

[25] J. Roque, “Development Environment for a RISC-V Processor: Cache,” Master’s thesis, Instituto

Superior Técnico, Jan 2021.

[26] IObundle Lda, “IOb-I2S-TDM.” https://www.iobundle.com/products, 2020.

[27] Endolith and et. al., “Waveform analyzer.” https://github.com/endolith/waveform_analysis,

2020.

74

https://dsp.stackexchange.com/questions/41291/calculating-the-phase-shift-between-two-signals-based-on-samples
https://dsp.stackexchange.com/questions/41291/calculating-the-phase-shift-between-two-signals-based-on-samples
https://github.com/IObundle/iob-soc
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://www.iobundle.com/products
https://github.com/endolith/waveform_analysis

Appendix A

Full Test Results

In this appendix, the results for all tests performed on the proposed ASRC IP core are shown for the

sake of completeness.

A.1 THD+N

The THD+N obtained for every tested conversion is shown in Table A.1.

Input Sample Rate [Hz] Output Sample Rate [Hz] THD+N [dB]
8000 8000 -141.011684
8000 11022 -138.530518
8000 16001 -140.882912
8000 22066 -138.432015
8000 32002 -140.133722
8000 44132 -138.528623
8000 48003 -140.290626
8000 87912 -137.875565
8000 96006 -140.063857
8000 177242 -139.706173
8000 192012 -138.885908

11022 8000 -138.289522
11022 11022 -140.811012
11022 16001 -138.620632
11022 22066 -137.925631
11022 32002 -138.579419
11022 44132 -138.519941
11022 48003 -138.593798
11022 87912 -138.648082
11022 96006 -138.768504
11022 177242 -139.926637
11022 192012 -139.921249
16001 8000 -142.202396
16001 11022 -137.411226
16001 16001 -141.446781
16001 22066 -138.627725
16001 32002 -140.904698
16001 44132 -138.789158
16001 48003 -139.32498
16001 87912 -138.795488

A.1

16001 96006 -138.019154
16001 177242 -140.635133
16001 192012 -139.947812
22066 8000 -140.682308
22066 11022 -139.360062
22066 16001 -139.354148
22066 22066 -140.268077
22066 32002 -138.87156
22066 44132 -140.611269
22066 48003 -138.944743
22066 87912 -138.686315
22066 96006 -139.002938
22066 177242 -140.482407
22066 192012 -140.519239
32002 8000 -142.417186
32002 11022 -140.762483
32002 16001 -142.260718
32002 22066 -139.343116
32002 32002 -139.731319
32002 44132 -138.751445
32002 48003 -140.05235
32002 87912 -138.754049
32002 96006 -140.265518
32002 177242 -140.367458
32002 192012 -140.210348
44132 8000 -141.27054
44132 11022 -141.068312
44132 16001 -140.61727
44132 22066 -141.856592
44132 32002 -139.146076
44132 44132 -140.765805
44132 48003 -138.784562
44132 87912 -138.266626
44132 96006 -138.990988
44132 177242 -140.213909
44132 192012 -140.443879
48003 8000 -142.327267
48003 11022 -138.57661
48003 16001 -142.051965
48003 22066 -140.38474
48003 32002 -136.135586
48003 44132 -136.310933
48003 48003 -140.718072
48003 87912 -138.831915
48003 96006 -139.44882
48003 177242 -140.635922
48003 192012 -138.529765
87912 8000 -141.829588
87912 11022 -141.733057
87912 16001 -141.617312
87912 22066 -141.092989
87912 32002 -140.654618
87912 44132 -140.19514
87912 48003 -138.989243
87912 87912 -140.919474
87912 96006 -139.067869
87912 177242 -140.541631

A.2

87912 192012 -140.540154
96006 8000 -142.193299
96006 11022 -141.879077
96006 16001 -141.96826
96006 22066 -141.256779
96006 32002 -142.246329
96006 44132 -140.381846
96006 48003 -142.215722
96006 87912 -136.920476
96006 96006 -141.359662
96006 177242 -140.703636
96006 192012 -143.8303
177242 8000 -142.019908
177242 11022 -141.987755
177242 16001 -141.829816
177242 22066 -141.327332
177242 32002 -141.197921
177242 44132 -140.944601
177242 48003 -141.180059
177242 87912 -139.869287
177242 96006 -139.900566
177242 177242 -142.642202
177242 192012 -141.533573
192012 8000 -142.391516
192012 11022 -141.887817
192012 16001 -142.335637
192012 22066 -141.694367
192012 32002 -142.211564
192012 44132 -141.334853
192012 48003 -142.267555
192012 87912 -138.063176
192012 96006 -142.203783
192012 177242 -138.536784
192012 192012 -143.796734

Table A.1: Total harmonic distortion+noise ratio for every tested conversion

A.2 Group Delay After Reset

The group delay obtained for every tested conversion is shown in Table A.2.

Input Sample

Rate [Hz]

Output Sam-

ple Rate [Hz]

Phase Shift (# Output Sam-

ples)

Phase Shift (mi-

croseconds)

8000 8000 0.000002 0.0002282628
8000 11022 0.009835 0.8922735
8000 16001 0.001794 0.1121198
8000 22066 0.526498 23.85985
8000 32002 0.006160 0.1924749
8000 44132 0.643224 14.57482
8000 48003 0.008208 0.1709873
11022 8000 0.044391 5.548544
11022 11022 0.000002 0.0001584548
11022 16001 0.450584 28.15971

A.3

11022 22066 0.000460 0.02084268
11022 32002 0.713158 22.28478
11022 44132 0.000556 0.01259015
11022 48003 0.177509 3.697871
11022 88183 0.064500 0.7314325
11022 96006 0.329150 3.42843
11022 176366 0.269239 1.526586
11022 192012 0.339561 1.768435
16001 8000 0.000000 3.303036e-05
16001 11022 0.515777 46.79489
16001 16001 0.000002 0.0001274857
16001 22066 0.113512 5.144147
16001 32002 0.000997 0.0311462
16001 44132 0.313876 7.112115
16001 48003 0.001173 0.02444472
16001 88183 0.312138 3.53965
16001 96006 0.001623 0.01690017
16001 176366 0.616469 3.495379
16001 192012 0.002853 0.01485741
22066 8000 0.099363 12.4196
22066 11022 0.005251 0.4764416
22066 16001 0.208738 13.04529
22066 22066 0.000002 9.454921e-05
22066 32002 0.707478 22.10728
22066 44132 0.005814 0.1317463
22066 48003 0.630368 13.13183
22066 88183 0.112613 1.277033
22066 96006 0.133732 1.392957
22066 176366 0.418037 2.370269
22066 192012 0.032669 0.170138
32002 8000 0.000000 4.010472e-05
32002 11022 0.083320 7.559399
32002 16001 0.000001 8.111579e-05
32002 22066 0.063100 2.859553
32002 32002 0.000002 7.592318e-05
32002 44132 0.052207 1.182966
32002 48003 0.000540 0.01125465
32002 88183 0.077713 0.8812601
32002 96006 0.000755 0.007867538
32002 176366 0.155831 0.8835641
32002 192012 0.001328 0.006915732
44132 8000 0.081321 10.16448
44132 11022 0.002865 0.2599766
44132 16001 0.000487 0.0304303
44132 22066 0.000213 0.009635942
44132 32002 0.012563 0.3925651
44132 44132 0.000003 6.436396e-05
44132 48003 0.001540 0.03209046
44132 88183 0.355219 4.028188
44132 96006 0.384749 4.007546
44132 176366 0.436397 2.474373
44132 192012 0.231672 1.206549
48003 8000 0.000000 2.383269e-05
48003 11022 0.061109 5.544201
48003 16001 0.000001 6.640037e-05
48003 22066 0.129037 5.847688
48003 32002 0.333216 10.41233

A.4

48003 44132 0.792722 17.96228
48003 48003 0.000002 4.940345e-05
48003 88183 0.003298 0.03739722
48003 96006 0.000748 0.007794552
48003 176366 0.000061 0.0003451026
48003 192012 0.001523 0.00793401
88183 8000 0.022164 2.770314
88183 11022 0.051249 4.649652
88183 16001 0.055153 3.446863
88183 22066 0.143591 6.507247
88183 32002 0.027542 0.8606251
88183 44132 0.084036 1.904169
88183 48003 0.333071 6.938534
88183 88183 0.000004 4.496655e-05
88183 96006 0.419096 4.365301
88183 176366 0.005708 0.03236453
88183 192012 0.001460 0.007605842
96006 8000 0.000001 6.799052e-05
96006 11022 0.024072 2.183948
96006 16001 0.000001 7.034833e-05
96006 22066 0.045812 2.076096
96006 32002 0.000002 6.459731e-05
96006 44132 0.009311 0.2109765
96006 48003 0.000002 3.786889e-05
96006 88183 0.003540 0.04013956
96006 96006 0.000004 4.549214e-05
96006 176366 0.008088 0.04586147
96006 192012 0.010162 0.05292369
176366 8000 0.020439 2.554766
176366 11022 0.018455 1.674331
176366 16001 0.033931 2.12053
176366 22066 0.019670 0.8913893
176366 32002 0.124957 3.904657
176366 44132 0.151731 3.43808
176366 48003 0.146333 3.0484
176366 88183 0.496731 5.63293
176366 96006 0.041693 0.4342786
176366 176366 0.000012 6.89182e-05
176366 192012 0.165392 0.8613627
192012 8000 0.000000 0.0
192012 11022 0.009258 0.8399472
192012 16001 0.000000 2.914076e-05
192012 22066 0.015760 0.7141931
192012 32002 0.000001 4.2554e-05
192012 44132 0.200233 4.537069
192012 48003 0.000001 2.543088e-05
192012 88183 0.075704 0.8584818
192012 96006 0.500115 5.209197
192012 176366 0.842821 4.778796
192012 192012 0.000013 6.54621e-05

Table A.2: Group delay for every tested conversion

A.5

A.3 THD+N With Varying Input Frequency

The THD+N for varying input frequency obtained for every tested conversion is shown in Fig. A.1 and

Fig. A.2.

(a) From 192.0 kHz to 192.0 kHz. (b) From 192.0 kHz to 44.1 kHz.

(c) From 192.0 kHz to 48.0 kHz. (d) From 192.0 kHz to 96.0 kHz.

(e) From 44.1 kHz to 44.1 kHz. (f) From 44.1 kHz to 96.0 kHz.

Figure A.1: THD+N of the ASRC’s output for fixed conversions and varying input frequency (Full results
- 1/2).

A.6

(a) From 48.0 kHz to 192.0 kHz. (b) From 48.0 kHz to 48.0 kHz.

(c) From 48.0 kHz to 96.0 kHz. (d) From 96.0 kHz to 192.0 kHz.

(e) From 96.0 kHz to 44.1 kHz. (f) From 96.0 kHz to 96.0 kHz.

Figure A.2: THD+N of the ASRC’s output for fixed conversions and varying input frequency (Full results
- 2/2).

A.7

A.4 Frequency Response

The frequency response obtained for every tested conversion is shown in Fig. A.3 and Fig. A.4.

(a) From 192.0 kHz to 192.0 kHz. (b) From 192.0 kHz to 44.1 kHz.

(c) From 192.0 kHz to 48.0 kHz. (d) From 192.0 kHz to 96.0 kHz.

(e) From 44.1 kHz to 44.1 kHz. (f) From 44.1 kHz to 96.0 kHz.

Figure A.3: Frequency response (Full results - 1/2).

A.8

(a) From 48.0 kHz to 192.0 kHz. (b) From 48.0 kHz to 48.0 kHz.

(c) From 48.0 kHz to 96.0 kHz. (d) From 96.0 kHz to 192.0 kHz.

(e) From 96.0 kHz to 44.1 kHz. (f) From 96.0 kHz to 96.0 kHz.

Figure A.4: Frequency response (Full results - 2/2).

A.9

A.5 THD+N With Varying Input Magnitude

The THD+N for varying input magnitude obtained for every tested conversion is shown in Fig. A.5

and Fig. A.6.

(a) From 192.0 kHz to 192.0 kHz. (b) From 192.0 kHz to 44.1 kHz.

(c) From 192.0 kHz to 48.0 kHz. (d) From 192.0 kHz to 96.0 kHz.

(e) From 44.1 kHz to 44.1 kHz. (f) From 44.1 kHz to 96.0 kHz.

Figure A.5: THD+N of the ASRC’s output for fixed conversions and varying input magnitude (Full results
- 1/2).

A.10

(a) From 48.0 kHz to 192.0 kHz. (b) From 48.0 kHz to 48.0 kHz.

(c) From 48.0 kHz to 96.0 kHz. (d) From 96.0 kHz to 192.0 kHz.

(e) From 96.0 kHz to 44.1 kHz. (f) From 96.0 kHz to 96.0 kHz.

Figure A.6: THD+N of the ASRC’s output for fixed conversions and varying input magnitude (Full results
- 2/2).

A.11

A.6 Magnitude With Varying Input Magnitude

The output magnitude for varying input magnitude obtained for every tested conversion is shown in

Fig. A.7 and Fig. A.8.

(a) From 192.0 kHz to 192.0 kHz. (b) From 192.0 kHz to 44.1 kHz.

(c) From 192.0 kHz to 48.0 kHz. (d) From 192.0 kHz to 96.0 kHz.

(e) From 44.1 kHz to 44.1 kHz. (f) From 44.1 kHz to 96.0 kHz.

Figure A.7: Magnitude of the ASRC’s output for fixed conversions and varying input magnitude (Full
results - 1/2).

A.12

(a) From 48.0 kHz to 192.0 kHz. (b) From 48.0 kHz to 48.0 kHz.

(c) From 48.0 kHz to 96.0 kHz. (d) From 96.0 kHz to 192.0 kHz.

(e) From 96.0 kHz to 44.1 kHz. (f) From 96.0 kHz to 96.0 kHz.

Figure A.8: Magnitude of the ASRC’s output for fixed conversions and varying input magnitude (Full
results - 2/2).

A.13

A.14

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Topic Overview
	1.2 Motivation
	1.3 Objectives
	1.4 Thesis Outline

	2 Asynchronous Sample Rate Converter Theory
	2.1 Sample Rate Converter's Structure
	2.2 Interpolation/Decimation Filter As A Fractional Delay Filter

	3 Previous Work
	3.1 Implementation of the Interpolation/Decimation Filter
	3.1.1 Direct Filtering Using a Multiply-Accumulate Unit (MACC)
	3.1.2 Cascaded Integrator Comb Filters (CIC)
	3.1.3 Approximation By Piece-wise Quadratic Function
	3.1.4 Farrow Structure

	3.2 Implementation Of The Sample Rate Conversion Ratio Estimator
	3.2.1 Period Measurement And Averaging
	3.2.2 Digital Phase Locked Loop As Frequency Tracker

	4 Proposed Design
	4.1 Data Memory
	4.2 Ratio Estimator
	4.2.1 Initial Approximation - Period Measurement and Averaging
	4.2.2 Frequency Tracker
	4.2.3 Ratio Estimator Control Unit

	4.3 Resampler
	4.3.1 Address Generator
	4.3.1.1 Filter Setup
	4.3.1.2 Input Sample Address Generator
	4.3.1.3 Filter Coefficients Address Generator

	4.3.2 Coefficient Memory
	4.3.3 Multiply-Accumulator

	4.4 Pipeline Registers

	5 Testing System
	5.1 Signal Generation and Analysis
	5.1.1 Parameter Adjustment
	5.1.2 Filter Coefficients Generation
	5.1.3 Input Signal Generation
	5.1.4 Output Signal Analysis
	5.1.5 Effect Of Resetting On The Group Delay

	5.2 IOB-SoC Hardware Implementation
	5.2.1 Peripherals
	5.2.1.1 UART
	5.2.1.2 Ethernet
	5.2.1.3 ASRC's Wrapper

	5.2.2 Firmware

	6 Results
	6.1 Fast Fourier Transform Setup
	6.2 Total Harmonic Distortion Plus Noise
	6.3 Frequency Response
	6.4 Phase Difference After Reset
	6.5 Linearity Of The ASRC
	6.6 FPGA Resource Usage
	6.7 ASIC Resource Usage
	6.8 Multi-Channel Support and Limitations

	7 Conclusions
	7.1 Achievements
	7.2 Future Work

	Bibliography
	A Full Test Results
	A.1 THD+N
	A.2 Group Delay After Reset
	A.3 THD+N With Varying Input Frequency
	A.4 Frequency Response
	A.5 THD+N With Varying Input Magnitude
	A.6 Magnitude With Varying Input Magnitude

