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Resumo

Os dispositivos de Internet das Coisas (Internet of Things, IoT) têm-se tornado mais presentes

em nossas casas. No entanto, uma casa inteligente (Smart Home) é um ambiente desafiador.

Este tipo de ambiente consiste em pessoas envolvidas com dispositivos para uma variedade de

propósitos, do qual é dif́ıcil detectar anomalias que possam ser ciberataques. Nesta dissertação

introduzimos o STAKE, uma solução para capturar e analisar o tráfego de rede numa Smart

Home, com diferentes ńıveis de detalhes. O sistema suporta extensões (plug-ins) de detecção de

anomalias para detectar ataques em tempo útil. Avaliamos a nossa proposta com plug-ins de

Machine Learning baseados nos modelos Elliptic Envelope e Random Forest. STAKE foi capaz

de executar diferentes plug-ins e ambos detectaram anomalias.

Conforme esperado, cada modelo retornou resultados diferentes. Ambos os plug-ins demon-

straram resultados promissores quando foram criados. O modelo Elliptic Envelope obteve 93,9%

de accuracy e o Random Forest obteve 96,7% de accuracy. No entanto, quando treinados no-

vamente no sistema, os plug-ins não demonstraram ser flex́ıveis o suficiente para alterações na

rede Smart Home. O plug-in Elliptic Envelope demonstrou tendência de produzir taxas de falso

positivo excessivamente altas, o que deteriorou a diferença entre amostras benignas e anomalias

nos dados de treinamento. O plug-in Random Forest demonstrou uma tendência excessiva para

overfitting quando retreinado neste tipo de ambiente.

Palavras-chave: Internet das Coisas, Sistema de Detecção de Intrusões, Detecção de

Anomalias, Aprendizagem Automática
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Abstract

Internet of Things (IoT) devices have become more present in our households because of an

increase in availability and affordability. However, a Smart Home is a challenging environment.

It involves people engaged with devices for a variety of purposes, and it is difficult to detect

anomalies that can be cyber attacks. In this dissertation we introduce STAKE, a Smart Home

gateway for capturing and analysing network traffic, with different levels of detail. The system

supports anomaly detection plug-ins to spot attacks in near real-time. We evaluated our system

with Machine Learning plug-ins based on the Elliptic Envelope and the Random Forest models.

STAKE was able to execute different plug-ins and both detected anomalies.

As expected, each model returned different results. Both plug-ins demonstrated promising

results when they were created. The Elliptic Envelope model obtained 93,9% accuracy and

the Random Forest obtained 96,7%. However, when re-trained in the system the plug-ins did

not demonstrate being flexible enough to changes in the Smart Home network. The Elliptic

Envelope plug-in demonstrated tendency to produce excessively high false positive rates, which

deteriorated the difference between benign and anomaly samples in the training data. The

Random Forest plug-in demonstrated a exceedingly tendency for overfitting when re-trained in

this kind of environment.

Keywords: Internet of Things, Intrusion Detection System, Anomaly Detection, Ma-

chine Learning
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Glossary

EE Elliptic Envelope consists in a robust co-variance estimate that assumes that the data is

Gaussian distributed. It will define the shape of the data we have, creating a frontier that

delimits the contour. 32

IDS Intrusion Detection System is a device or software application that monitors a network or

systems for malicious activity or policy violations. 1

IoT Internet of Things is the network resulting from the connection of physical devices to the

Internet and/or to each other. 1

RF Random Forest consists of a large number of individual decision trees that operate as an

ensemble. Each individual tree in the random forest splits out a class prediction and the

class with the most votes becomes the model prediction. 34

RL Reinforcement learning is the training of machine learning models to make a sequence

of decisions. The agent learns to achieve a goal in an uncertain, potentially complex

environment. 15

SL Supervised Learning refers to a type of Machine Learning model category, where the algo-

rithm is given labeled input data and the expected output results. 15

UL Unsupervised Learning refers to a type of Machine Learning model category, where the

algorithm identifies patterns in the input data that are neither classified nor labeled. 15
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Chapter 1

Introduction

The Internet of Things (IoT) consists of a network of billions (109) of interconnected devices, with

embedded smart sensors and computational resources, which are connected to the Internet. IoT

devices can connect and transfer data over a network without requiring direct human interaction

[Hos18]. In many cases this makes the devices autonomous or semi-autonomous. However, IoT

devices often have characteristics such as limited network connection, low processing power, low

storage resources, reduced dimensions and low energy consumption.

The Smart Home is one of the promises of IoT. A Smart Home refers to a convenient home

setup where devices can be remotely controlled, both manually or automatically [ZACF18]. The

Smart Home is a challenging environment, because it involves people engaged with devices for a

variety of purposes that involve real world interactions. Smart Home devices have become more

affordable and available, and their presence in consumer households is increasing. The devices

can be very diverse, ranging from simple light bulbs, smart plugs and locks, to more powerful

devices, like video cameras, digital assistants, tablets and laptops. As a result, the amount of

privacy-sensitive data uploaded to the cloud is also increasing. If proper security measures are

not taken, these new Internet-connected devices can become entry points for an attacker.

Intrusion Detection System (IDS) is a common approach for network security. An IDS mon-

itors the network and system activities, assesses the integrity of the system and data, recognizes

malicious activity patterns, generates reactions to intrusions, and reports the outcome of detec-

tion [DD11]. An important method used by IDS is anomaly detection [HIZH19], which consists

on finding patterns in data that do not conform to expected behaviour, for example, in Internet

traffic [DAF18].

However, applying traditional IDS techniques to IoT is difficult due to the resource con-

straints of the devices and because the traffic pattern of smart devices is different from tradi-

tional network hosts [OM19]. The resources available on each IoT device are limited and the

1



volume of traffic generated by these devices is significant. Therefore, it is critical to choose an

appropriate anomaly detection approach that can effectively and efficiently identify abnormal

behaviours, to make real-time network level analysis possible and successful.

1.1 Objectives

In this work, we propose and implement a solution for capturing and storing Smart Home

network traffic, and an execution environment for anomaly detection plug-ins. The network

traffic is captured in different detail levels: traces, flows and summary features. The captured

data is stored in a persistent repository with adequate schema and indexing. The plug-in

execution environment allows using Machine Learning models, trained from the captured data,

and applied to the near real-time detection of anomalies.

We called our solution STAKE, standing for: Secure Tracing of Anomalies using previous

Knowledge and Extensions. It extends SPYKE [WPC19], a previous work that already per-

forms device detection and applies knowledge-based rules, like quota limits per device. We

implemented a Supervised Learning plug-in and an Unsupervised Learning plug-in.

1.2 Contributions

The fundamental contribution of this work is the development of STAKE. The system was

designed, implemented1 and tested as a Smart Home gateway device, standing between the

user IoT devices and the cloud service providers. The STAKE anomaly detection plug-in engine

provides a modular system that allows for swapping out, removing, and reimplementing Machine

Learning algorithms. The plug-in engine allows both Unsupervised and Supervised learning

approaches, as demonstrated by the Elliptic Envelope and Random Forest plug-ins, respectively.

There were a few more contributions from this work:

� A state-of-the-art summary on previous research of anomaly detection in Smart Home and

IoT environments;

� A web-based management console implementation, allowing full configuration and opera-

tion of the system and its plug-ins, through an user-friendly interface;

� A dataset2 with instance data collected from actual Smart Home devices in a realistic

scenario, that can be reused for future works.

1The source code for STAKE is open-source and is available at: https://github.com/inesc-id/STAKE, ac-
cessed on March 29, 2021

2The dataset is publicly available at: http://surething.tecnico.ulisboa.pt/files/STAKE-dataset.zip,
accessed on March 29, 2021

2

https://github.com/inesc-id/STAKE
http://surething.tecnico.ulisboa.pt/files/STAKE-dataset.zip


1.3 Thesis Outline

The remainder of the document is structured as follows: Chapter 2 presents the background

surrounding the topic of our work and the related work focusing on anomaly detection and

other security alternatives applied to IoT environments. Chapter 3 describes the proposed

solution. Chapter 4 defines the evaluation approach. Chapter 5 describes the obtained results.

Finally, Chapter 6 concludes this document.
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Chapter 2

Background and Related Work

In this Chapter we present theoretical concepts to support our proposed solution, starting with

Firewall and Intrusion Detection System network defences. Additionally, we look at Machine

Learning (ML) and its use in Cybersecurity. At last, we present a literature review to support

our proposed solution covering works on IDS, especially those proposed for IoT and the Smart

Home.

2.1 Network Defence

Firewalls are perhaps the best-known defence in network systems. A Firewall is based on access

control, enforcing predefined policies for how devices in the network are allowed to communicate

with one another, filtering unauthorized traffic between devices in the network.

An IDS system monitors and analyses user behaviour and system activities, assesses the

integrity of the system and data, recognizes malicious activity patterns, generates reactions to

intrusions and reports the outcome of detection [CC18]. IDS detects attempts or successful

breaches of a network by making passive observations of traffic. An IDS is composed of several

modules: misuse/signature detection, anomaly detection algorithms, hybrid detection, profiling,

privacy-preservation data mining, and scan detector [DD11].

The misuse/signature detection module matches malicious patterns with a high detection

rate and a low false alarm rate. However, they cannot detect unknown attacks. The anomaly

detection algorithms build normal patterns in a cyber-infrastructure, such that they can detect

the patterns that deviate significantly from the normal model. They can detect new attacks.

However, if normal data shows the same patterns as malicious data, the number of false alarms

rises. The hybrid detection module is the aggregation from both mentioned modules above. It

normally improves the detection rate and decreases the false alarm rate.

5



The profiling module performs clustering algorithms and/or other data mining to group

similar network connections and search for dominant behaviours. Privacy-preservation data

mining focuses in reducing unauthorized access of private information, while retaining the same

functions as a normal data-mining method for discovering useful knowledge. The objective

of this module is to prevent unauthorized users from accessing private information, such as

private data mining or ML results. At last, the scan detector module finds vulnerabilities in

cyber-infrastructures. Thus, this module is considered a preventive process.

The IDS system can be a Network-based Intrusion Detection System (NIDS) or a Host-based

Intrusion Detection System (HIDS). NIDS monitors network traffic to identify different kinds of

malicious activities. HIDS monitors the activity of a single host and the events occurring within

that host. It generally monitors the log files, the various running processes and applications,

file access and modification, system and application configuration changes. IDS have been an

important tool for the protection of networks and information systems so it would be useful if

they could also be applied to IoT deployments and use the latest advances in data processing,

such as ML.

2.2 Machine Learning

Machine Learning (ML) is a set of mathematical techniques, implemented on computer systems,

to perform information mining, pattern discovery, and inferencing from data [DD11].

2.2.1 Approaches and Components

ML can be divided into four approaches: Supervised Learning, Unsupervised Learning, Semi-

supervised Learning, and Reinforcement Learning.

Supervised Learning adopts a knowledge discovery approach, using probabilities of previously

observed events to infer the probabilities of new events. Unsupervised Learning methods draw

abstractions from unlabeled datasets and apply these to new data. Both families of methods

above can be applied to problems of classification (assigning observations to categories) or regres-

sion (predicting numerical properties of an observation). Additionally, there is Semi-supervised

Learning [CC18]. In this hybrid type of learning, the model starts with training data that is

labeled with the correct answers and then concludes with a model with a tuned set of weights,

which is able to predict results for similar data that have not already been labeled. Finally, Re-

inforcement Learning can be used with both labeled and unlabeled data. Wang et al. [WZZ19]

considers Reinforcement Learning the study of the problem to achieve the best trade-off between

exploitation of current knowledge and exploration of a black box environment.

6



All ML algorithms are defined by three interdependent components [CC18]: model family,

loss function and optimization procedure.

A model family shares a set of characteristics: computational complexity, mathematical com-

plexity and explainability [CC18]. Computational complexity affects the training duration of

the model. Using too much data available may affect the model negatively. Mathematical com-

plexity also impacts the model training. Although, many datasets have non-linear boundaries,

the data might be such that a linear decision boundary will provide good classification. Finally,

explainability states how clear the model is able to explain why and how it achieved that decision

or classification.

A loss function allows us to quantitatively compare different models. This function is used

to measure the “cost” of wrong predictions or the “loss” associated with them. Mathematically,

a loss function is a function that maps a set of pairs of predicted label and truth label to a real

number. Optimization allows us to search for the optimal set of parameters that minimizes the

loss function. This procedure is executed iteratively by comparing solutions until an optimal

or a satisfactory solution is found. There are a diverse range of algorithms for optimization,

including gradient-based algorithms, derivative-free algorithms and meta-heuristics [BCN18].

2.2.2 Evaluation Metrics

Even though Unsupervised Learning models do not use labels to train, when labels are available,

they can be used to evaluate this type of models. Labeled data allows us to obtain True Positives,

False Positives, True Negatives and False Negatives values that let us calculate the following

equations.

In general, using only accuracy (as defined in equation 2.1) to measure model prediction

performance is not enough, since it is abstract and only provides an approximate measure of a

model performance. The accuracy is a simple way of measuring the effectiveness of a model,

but it can be misleading. Therefore, other measures are necessary for us to be able to obtain

a concrete understanding of the models behaviour and efficiency. Additionally, accuracy is

sensitive to any change in the data set and is mostly effective when data are not balanced.

Accuracy =
TP + TN

TP + FN + TN + FP
, (2.1)

where TP = True Positive, FN = False Negative, TN = True Negative and FP = False Positive

Therefore, it was also considered other type of evaluation metrics. In an anomaly detection

context, to comprehensively evaluate imbalanced learning, especially for minority classification,

it is commonly used methods such as [DD11]: precision, recall, f-score and ROC curve (Receiver
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Operating Characteristics) plots.

In short, precision (defined in equation 2.2) is the fraction of relevant instances among the

retrieved instances. On the other hand, recall (equation 2.3) represents the fraction of the total

amount of relevant instances that were actually retrieved. In other words, precision measures

the degree to which repeated measurements under unchanged conditions show the same results

and recall measures the proportion of positives that are correctly identified [KDL19].

Precision =
TP

TP + FP
, (2.2)

where TP = True Positive and FP = False Positive

Recall =
TP

TP + FN
, (2.3)

where TP = True Positive and FN = False Negative

Possessing these values, we are able to calculate f-score (equation 2.4), which allows us to

measure the accuracy of the test. The f-score represents a weighted harmonic mean of the

precision and recall of the test.

F-score = 2 ∗ Precision ∗ Recall

Precision + Recall
(2.4)

Furthermore, the ROC curve is generated by plotting the True Positive Rate, also known as

recall (equation 2.3), against the False Positive Rate (equation 2.5) at various threshold settings.

FPR =
FP

FP + TN
= 1− Specificity , (2.5)

where FP = False Positive and TN = True Negative and

Specificity =
TN

N
=

TN

TN + FP
(2.6)

The ROC measurement is a probability curve and AUC (Area Under The Curve) represents

degree or measure of separability. AUC measurement represents how much model is capable of

distinguishing between classes. The higher the AUC, the better the model is at predicting.
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2.3 Smart Home Security Monitors

The baseline of this project is SPYKE [WPC19], an open source network intermediary for Smart

Home networks, that provides communication monitoring between devices and remote servers,

and also the ability to block and limit unwanted connections.

SPYKE’s architecture is subdivided into two modules: the first one is authentication, where

devices authenticate with the gateway in order to make requests; the second one is user policy

enforcement that SPYKE uses for providing privacy protection. Figure 2.1 presents an overview

of the entirety of the SPYKE system.

Figure 2.1: SPYKE proposed architecture.

With the objective to accept new devices to the Smart Home network, the authentication is

performed on SPYKE via WPA2 protocol and using a password, the user is then able to enforce

whitelisting-based user policy which provides privacy protection, by selecting which devices have

the permission to access the Internet. Every device status is saved on a database, which can

set up as “NEW”(by default), “ALLOWED” or “BLOCKED”. The traffic in SPYKE is filtered

via iptables1, a very widely used firewall implementation engine in the Linux kernel, with rules

defined by the user.

Figure 2.2 represents the data flow of the SPYKE system. First, devices authenticate them-

selves and obtain an IP address from DHCP server provided by dnsmasq2. The engine stores the

device information in the database and waits for the user’s approval. After the user’s approval,

the engine adds rules on iptables allowing the access of the device to the Internet, and adds the

defined period to the In-Memory data storage that relies on main memory of the computer data

storage.

1iptables: https://linux.die.net/man/8/iptables, accessed on March 12, 2020
2dnsmasq: http://www.thekelleys.org.uk/dnsmasq/doc.html, accessed on December 19, 2020
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Figure 2.2: SPYKE Data Flow Diagram.

The SPYKE prototype was evaluated in regard to performance and security. This solution

was shown to handle a large number of devices rules, which filters outgoing packets with no

significant performance degradation.

Furthermore, Bitdefender Box [Ber18] is a commercial security monitor product. Bitdefender

Box objective is to secure a Smart Home. As their documentation3 says, it only requires a small

setup to be functional. In addition, on the setup process, it deauthenticates all devices from

introduced Wi-Fi and connects to it with the same SSID name and password.

In terms of security, it offers vulnerability assessment to detect network security flaws, ex-

ploitation prevention to block attempts to exploit vulnerabilities in connected devices, local

device security to protect connected devices in place of a locally installed antivirus, as well

as anomaly detection, brute force detection, and data protection. This security monitor also

provides an application that can be used outside of the house through the Internet.

2.4 Machine Learning for NIDS

ML can aid security by performing pattern recognition and anomaly detection [CC18]. Pattern

recognition can discover explicit or hidden characteristics in a given dataset. For example, Deep

Neural Networks (Deep NN) have shown promise in outperforming traditional ML techniques

for large datasets [DAF18]. However, Deep NN models come with the drawback of being very

computationally expensive. Recent works on NIDS using ML include articles by Li et al. and

Aung et al.

Li et al. [LZT+19] present two datasets collected from programs involving 126 types of vul-

3Bitdefender Box documentation: https://download.bitdefender.com/resources/media/materials/box/

v2/user_guide/BOX_UserGuide_v2_en_.pdf, accessed on December 19, 2020
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nerabilities. The authors conducted a comparative study to quantitatively evaluate the impact

of different factors on the effectiveness of vulnerability detection, involving more semantic in-

formation, imbalanced data processing, and different neural networks. The experimental results

show that control dependency can increase the overall effectiveness of vulnerability detection f-

measure by 20.3%. However, the imbalanced data processing methods were not effective for the

dataset created for the study. Additionally, Bidirectional RNNs (Bidirectional Recurrent Neu-

ral Networks) are more effective than Unidirectional RNNs and Convolutional Neural Networks,

which in turn are more effective than Multilayer Perceptrons. Finally, using the last output

corresponding to the time step for the BLSTM (Bidirectional Long Short-Term Memory) can

reduce the False Negative Rate by 2.0% at the price of increasing the False Positive Rate by

0.5%.

Aung et al. [AM18] show the accuracy of intrusion detection with the complexity of time

when comparing the hybrid algorithm detection method and the single algorithm detection

method. The k-Means and Random Tree algorithms were used and each of the methods showed

advantages and disadvantages. The experimental results show that the accuracy of the Random

Tree algorithm based on k-Means is good in classification of normal and attacks in 10-fold cross-

validation but not good in validation. Nevertheless, the model training time of k-Means and

Random Trees manifested more suitable time than using single Random Tree algorithm both in

10-fold cross-validation and 66-34 percent validation.

2.5 Machine Learning for IoT and Smart Home IDS

The IoT and the Smart Home are a new challenge for intrusion detection, because instead of just

relying on network entities communicating, now there is a diversity of network technologies and

protocols involved. Each of the following subsections focuses on related work using a specific

Machine Learning approach.

2.5.1 Unsupervised Learning approaches

SPATIO [OM19] was proposed as an anomaly detection system designed for the IoT, based on

the stream processing approach. Stream processing is a data processing paradigm in which high-

rate data sources are processed and generate results on-the-fly. SPATIO uses a fog computing

approach to leverage processing and storage resources of gateway devices, such as routers and

base stations in an IoT network to reduce latency and processing cost. SPATIO performs feature

extraction, feature selection and outlier detection. For the outlier detection, different type of

Unsupervised Learning algorithms were tested, namely: MCOD, ExactSTORM, ApproxSTORM

11



and AbstractC. The authors of SPATIO claim that the system accuracy reached close to 80%

detection rate in the best scenario. The fog approach showed advantages in both network load

and attack detection latency, in comparison with the centralized approach.

Another recent IoT IDS based on Unsupervised Learning models is IoT-NW (Neighbourhood

Watch) [CP19]. In this solution, each device sniffs packets in the network and performs feature

extraction both at packet and flow level, along with the device states and user presence detection,

with the objective to detect malicious interactions between them. The information gathered is

used to build behaviour patterns, which allows the detection of abnormal events. The result

is a statistical model of the expected values for the RMSE (Root-Mean-Square Error) of each

Autoencoder, after running the training phase, for the detection phase to obtain the probability

of each network and flow instance being normal, for each device. The authors of IoT-NW

claim that their system is capable of detection, but with some delay. The results were sightly

improved by inserting contextual information about the user and adjusting thresholds, resulting

in a reduction of the False Positive Rate.

2.5.2 Supervised Learning approaches

Kamaraj et al. [KDL19] analysed the potential overhead-savings of ML-based anomaly detection

models on the edge, in three different IoT scenarios. The analysis started by first specifying

the test-bed, the model creation process and the model benchmarking process. The test-bed

included three Raspberry Pi 3 boards, which were used as the edge devices, the cloud, and

the interface to connect to an energy measurement platform. Then, it was shown how each

anomaly detection model performed on each dataset (scenario) with respect to both overhead

and anomaly detection accuracy. The final result showed the best model for each scenario. From

the many tested anomaly detection models, the authors asserted that Random Forest, Multilayer

Perceptron, and Discriminant Analysis models can viably save time and energy on the edge

device during data transmission. Furthermore, it was also asserted that k-Nearest Neighbours

(k-NN), although reliable in terms of prediction accuracy, demanded excessive overhead and

results in net time and energy loss on the edge device.

Hasan et al. [HIZH19] analysed different types of vulnerabilities detection algorithm in IoT

sensors. The performance of several ML models to predict attacks and anomalies on the IoT

systems was compared. The ML algorithms that were used in this work were LR (Logistic

Regression), SVM (Support Vector Machine), DT (Decision Tree), RF (Random Forest), and

ANN (Artificial Neural Network). LR used coordinate descent. SVM and ANN used conven-

tional gradient descent technique. The optimizer was not used in the case of DT and RF because
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these are non-parametric models. The final model was evaluated against the testing set using

different evaluation metrics. The authors claim that the system obtained 99.4% test accuracy

for DT, RF, and ANN. However, although these techniques have the similar accuracy, other

metrics showed that RF performs comparatively better. Therefore, the authors concluded that

RF was the best technique for this particular study.

Finally, Doshi et al. [DAF18] demonstrated that using IoT-specific network behaviours

to inform feature selection can result in high accuracy DDoS detection in IoT network traffic

with a variety of ML algorithms. Building on this observation, the authors developed a ML

pipeline for data collection, feature extraction, and binary classification for IoT traffic DDoS

detection. The features used were extracted from IoT-specific network behaviours, while also

leveraging network flow characteristics such as packet length, inter-packet intervals, and type

of protocol. Furthermore, a variety of classifiers were compared for attack detection, including

RF, k-NN, SVM, DT, and NN (Neural Networks). The classifier training data was generated by

simulating a consumer IoT device network, comprised of a router, some consumer IoT devices

for benign traffic, and some adversarial devices performing DoS attacks. The authors found that

that RF, k-NN, and NN classifiers were particularly effective in identifying attack traffic. The

linear SVM classifier performed the worst, suggesting that the data is not linearly separable.

The DT classifier performed well, achieving an accuracy of 0.99, suggesting that the data can

be segmented in a higher feature space. The k-NN classifier also achieved the same accuracy,

suggesting that the two different data classes clustered well in feature space. The NN performed

well despite having fewer than half a million training samples from a 10-minute packet capture.

2.5.3 Hybrid Learning approaches

Cramer et al. [CGM+19] described an approach for detecting anomalous behaviour of devices

by analysing their event data with few or no numeric characteristics. To perform anomaly

detection, the log data passed through feature generation, feature aggregation, and analysis.

The first ML approach used was EE (Elliptic Envelope), which is based on fitting an ellipse

to the data by assuming that the inlier data are Gaussian distributed. Additionally, the One-

Class SVM algorithm was also used, a novelty detection algorithm because it assumes that

the training data set is not polluted by outliers or anomalies. Both of these algorithms are,

per definition, Supervised Learning algorithms, however, they can be trained as Unsupervised

Learning. The EE was trained as Supervised Learning and One-Class SVM as Unsupervised

Learning, to compare the results with different approaches. According to the authors, the main

benefits of this approach were: the ability of creating an analysis work-flow for specific use
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cases, which takes much less time in comparison to using a general-purpose data mining tool;

and it is easy to encode domain-knowledge into the analysis work-flow so that the necessary

data transformations and feature engineering tasks are made part of the whole analysis.

Xiao et al. [XWL+18] presented IoT security solutions based on a combination of ML

techniques including Supervised Learning, Unsupervised Learning, and Reinforcement Learning

(RL) for authentication, access control, secure offloading, and malware detection schemes. The

authors stated that several challenges have to be addressed to implement learning techniques in

practical systems. IoT devices usually have difficulty estimating the network and attack state

accurately and have to avoid attacks. A suggested potential solution was Transfer Learning

[CC18], which explores existing defence experiences with data mining to reduce random explo-

ration, accelerate the learning speed, and decrease the risks of choosing bad defence policies at

the beginning of the learning process. Another challenge was computation and communication

overhead. Many existing ML based security schemes have intensive computation and communi-

cation costs and require a large number of training data and a complicated feature extraction

process. Therefore, new ML techniques with low computation and communication overhead

should be investigated. Furthermore, the authors stated that the intrusion detection schemes

based on Unsupervised Learning techniques sometimes have non-negligible misdetection rates

for IoT systems. Additionally, the Supervised and Unsupervised Learning sometimes failed to

detect the attacks due to oversampling, insufficient training data, and bad feature extraction.
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Table 2.1: Related work articles comparison.

Article
Traffic

Capture
IoT SL UL Machine Learning Algorithms

Wang et al. [WPC19] Yes Yes No No None

Berte et al. [Ber18] Yes Yes ?? ?? Unknown

Carmo et al. [CP19] Yes Yes No Yes ANN - Autoencoders (UL)

Mouta et al. [OM19] Yes Yes No Yes

MCOD (UL),
ApproxSTORM (UL),
ExactSTORM (UL),
AbstractC (UL)

Doshi et al. [DAF18] Yes Yes Yes No

Random Forest (SL/ ∼UL),
k-NN (SL), NN (SL/ ∼UL),
SVM (SL/ ∼UL),
Decision Trees (SL/ ∼UL)

Xiao et al. [XWL+18] ∼Yes Yes Yes Yes

Naive Bayes (SL/ ∼UL),
k-NN (SL), NN (SL/ ∼UL),
Deep NN (SL/ ∼UL),
SVM (SL/ ∼UL),
Random Forest (SL/ ∼UL),
Infinite Gaussian Mixture Model (UL),
Q-learning (RL), Dyna-Q (RL),
Post-Decision State (RL),
Deep Q-network (RL)

Cramer et al. [CGM+19] No Yes Yes Yes
Elliptic Envelope (SL/UL),
One-Class SVM (SL/SS)

Kamaraj et al. [KDL19] No Yes Yes No
Random Forest (SL/ ∼UL),
k-NN (SL), Multilayer Perceptron (SL),
Discriminant Analysis Classifier (SL)

Hasan et al. [HIZH19] No Yes Yes No

Logistic Regression (SL),
Decision Tree (SL/ ∼UL),
Random Forest (SL/ ∼UL),
ANN (SL/ ∼UL), SVM (SL/ ∼UL)

Aung et al. [AM18] No No Yes No k-Means (UL), Random Forest(SL/ ∼UL)

Li et al. [LZT+19] No No Yes Yes

Recurrent Neural Networks (UL/ ∼SL),
Convolutional Neural Network (SL/UL),
Multilayer Perception (SL)
Bidirectional Long Short-term Memory
(UL/ ∼SL)

The “??” signifies that the information is unavailable.

The “∼Yes” signifies that the traffic capture is simulated.

Each algorithm is classified by their possible learning types:

(UL) - Unsupervised Learning; (SL) - Supervised Learning;

(SS) - Semi-supervised Learning; (RL) - Reinforcement Learning;

(SL/ ∼UL) - The algorithm is per definition a Supervised Learning algorithm, although technically, they can be trained as Unsu-

pervised Learning for the purpose of clustering;

(UL/ ∼SL) - The algorithm is per definition a Unsupervised Learning method, although technically, they can be trained as Super-

vised Learning methods, referred to as self-supervised.

15



2.6 Summary

In this Chapter we started by presenting different Network Defences, where we went more in

depth about the Firewall and Intrusion Detection System concept. Then, we introduced Machine

Learning and its use for Cybersecurity. Afterwards, we summarized works on anomaly detection

mainly applied to IoT environments. Table 2.1 compares the related work according with traffic

capture, ML algorithms used and if it is applied to an IoT environment.

The decision to use either a Supervised or Unsupervised ML algorithm depends on factors

related to the structure and volume of data and the use case. From the comparison on the

Table 2.1, we notice a trend to use Supervised Learning models for anomaly detection in IoT

environments. This is an interesting fact, since anomaly detection is strongly related with

Unsupervised Learning. Additionally, Unsupervised Learning models are also very adaptive,

which means they adjust to and eventually accept changes in the time series when they change

to a new normal. The suspected reason for the strong predominance of Supervised Learning is

because of the available labeled data from IoT environments, which turn the use of supervised

models for anomaly detection more effective. Even though there is a noticeable predominance

on Supervised ML, both approaches have potential to be effective for anomaly detection.

16



Chapter 3

STAKE

In this Chapter we present our proposal, STAKE, which stands for: Secure Tracing of Anomalies

using previous Knowledge and Extensions. The tracing component refers to the network traffic

capture. The previous knowledge refers to rules that can be defined to recognise known attacks

and enforce limits on device traffic. Finally, the extensions refer to the Machine Learning (ML)

plug-ins that can be installed and used to detect unknown attacks.

STAKE is a new system, based on the previous SPYKE [WPC19] system, presented in the

Section 2.3, where the extensions part is novel. We start by presenting with the solution overview

and architecture, and then we detail the operation phases: data collection, data pre-processing,

anomaly detection and result/output.

3.1 Overview

STAKE is intended to run as a gateway device, located at the Smart Home, between the user

IoT devices and the cloud service providers, as represented in Figure 3.1. The Raspberry Pi

logo appears on the figure to illustrate the kind of off-the-shelf device where STAKE can run.

Network traffic is constantly changing, especially if new devices are added to the Smart Home

or the firmware of existing devices is updated with new features. Thus, a well performing ML

model today may no longer be suitable after some time [CC18]. To make the anomaly detection

system maintainable, STAKE has a modular system that allows for swapping out, removing, and

reimplementing plug-ins. The possibility to update, change or test various type of ML models,

which are set up in different kind of plug-ins, is expected to be beneficial in the long run.

For device authentication in a wireless network, we have different security algorithms options

to choose from, such as: WEP (Wired Equivalent Privacy), WPA-PSK (Wi-Fi Protected Access

with Pre-Shared Key mode) or WPA2-PSK [WPC19]. However, choosing the wrong one, could
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Figure 3.1: STAKE solution overview.

affect the network security. WEP is the oldest and has proven to be vulnerable. WPA improved

security in comparison with WEP, but is now also considered vulnerable to intrusion. On the

other hand, WPA2 has shown, even though is not perfectly secure, to be the current most

secure device authentication option. From the WPA2 security algorithm, there are two different

types of encryption to choose from: Temporal Key Integrity Protocol (TKIP) and Advanced

Encryption Standard (AES). TKIP is no longer considered secure and is now deprecated. AES,

on the other hand, is a more secure encryption protocol. AES itself is a very strong cipher,

but the AES-CCMP variation increases the algorithm security by making it more difficult for

an eavesdropper to spot patterns, and the CBC-MAC message integrity method ensures that

messages have not been tampered with. Taking the previous into consideration, it was decided

to use WPA2-PSK algorithm in our system for key management and AES-CCMP algorithm for

pairwise cipher.

3.2 Architecture

The STAKE system components are represented in Figure 3.2. The administrator has access

to a management graphical user interface via HTTP. The network capturer will intercept traffic

of devices, running in batch or stream mode. In batch processing, the system processes all or

most of the data at once. In stream processing, on the other hand, the system processes data in

a given time window or using only the most recent record. The captured data will be stored in

files and in a database. The plug-in manager is able to handle both supervised and unsupervised

learning approaches.

In order to avoid loss of packets, processes such as: local HTTP server hosting, data collec-

tion (packet capturing), plug-ins training and plug-ins anomaly detection cannot be performed
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Figure 3.2: STAKE components.

sequentially. For example, if the processes were performed sequentially, the system would need

to wait for the plug-ins to finish their training before capturing more packets. Therefore, parallel

processing will be required, as represented on the DFD (Data Flow Diagram) in figure 3.3.

Figure 3.3: Level 0 DFD of STAKE.

The user web interface, except from the template, was built from scratch. After the admin-

istrator is authenticated on the system user interface, the administrator is able to: edit his/her

account information, identify the network devices according to the associated mac address and

add/edit/remove plug-ins. The automatic re-training and anomaly detection function of the
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plug-ins are disabled by default. When adding or editing plug-ins, the administrator is able

to: enable/disable plug-in anomaly detection, enable/disable automatic re-training, select the

re-training periodicity, choose the anomaly percentage of the data, select the amount or time

period of the data, select data transformation options, choose the features and choose the eval-

uation methods. Additionally, the administrator has access to information such as: captured

packets statistics, system hardware status information (hard disk memory usage, CPU usage,

RAM memory usage and network bandwidth usage), system log, anomalies alerts, plug-in status

(enabled, disabled, training or error) and plug-in training results. The plug-in training results

helps the administrator to confirm if the plug-in is well configured or requires further adjustment.

Figure 3.4 presents a screenshot of the STAKE solution with the administrator dashboard.

The dashboard displays a summary of information available from the other pages, such as:

Captured Traffic page, System Information page, Device Management page, Alerts page and

Plug-ins Results page.

Figure 3.4: STAKE dashboard of the Web interface.

When configuring the plug-ins, the administrator has the option to select the samples used

for training according to the quantity of samples or according to the time period of the samples.

By selecting the quantity of samples option, the last n samples from both benign and anomaly

datasets are read for training. On the other hand, by selecting the time period of samples option,

the samples selection is performed according the chosen time period by the administrator. This

period selection can be done from seconds to months. Both samples selection options should be

performed attentively when the system is recently implemented, since the selected number of

samples or time period of samples could not match with the existing samples in the datasets.
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In addition to the system settings and information that the administrator has access after the

authentication (stored in the PostgreSQL1 database), the administrator also has a system con-

figuration file, saved as “.ini” extension, for configurations that are necessary to configure before

implementing and starting the system. These initial system configurations located in the con-

figuration file are settings related to the web server cookies, connection to the database located

in postgreSQL, file paths (dataset, logs and plots), network adapter settings, IP configuration

and system port configuration that the server will be hosting.

STAKE operates in four main phases: data collection, data pre-processing, anomaly detec-

tion and result/output. The last three phases are executed by plug-ins using models. Each ML

model is trained with data from the captured traffic archives, with the objective to detect device

operation anomalies, and to do so in near real-time. By “near real-time” we mean that the data

processing may be slightly slower than real-time, but the anomaly detection alarms should still

be raised in a timely way for security purposes [DD11].

3.3 Data Collection

In the first phase, STAKE captures incoming and outgoing traffic in different detail levels: net-

work traces, network flows, and summary features. This data is stored in a persistent repository

with adequate indexing for retrieval e.g. by device, by time range.

Network trace contains whole communication between IP devices over LAN, a network flow

is a series of communications between two endpoints that are bounded by the opening and

closing of the session, and summary features is the representation of network traces according

to the specific selected information.

Examples of well known capture software are tcpdump2 and Wireshark3. The capture op-

eration of the STAKE infrastructure is handled by a libpcap4 tool, known as Scapy5. During

collection, real-time parsing of the capture file is needed. The parser extracts statistics, infor-

mation from the packets and store the summary of the packets in a database. Packets received

by the main server are then appended to a file with the pcap extension.

The pcap file reading was first tested with Scapy as well. However, a faster alternative

was found. The dpkt6 tool demonstrated to be more efficient and notably faster when reading

packets in comparison to Scapy. Nevertheless, in terms of packets capturing, Scapy performed

1PostgreSQL: https://www.postgresql.org/, accessed on September 29, 2020
2tcpdump: http://www.tcpdump.org/, accessed on March 15, 2020
3Wireshark: https://www.wireshark.org/, accessed on March 15, 2020
4libpcap: http://www.tcpdump.org/pcap.html, accessed on March 15, 2020
5Scapy: https://scapy.readthedocs.io/en/latest/introduction.html, accessed on March 15, 2020
6dpkt: https://dpkt.readthedocs.io/en/latest/index.html, accessed on June 20, 2020
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faster.

Both sampling and filtering was considered when handling data. Unfortunately, inadequate

sampling can miss packets that would identify or describe an incident, and filtering without a

good understanding of the packets can be detrimental in a way that analysts will not be able to

understand incidents [DCL18]. Filtering can be implemented in-line or post-processing. Post-

processing takes place after the storing of the captured traffic and in-line takes place during

the actual traffic capture process [DCL18]. For STAKE, we opted for post-processing filter-

ing, performed individually by each plug-in, since each plug-in has its own data pre-processing

requirements.

An additional consideration for data collection was to decide if the system will operate in

batch processing or stream processing. In a situation where timely decision-making is required,

a stream processing approach should be considered. However, in situations where time is not a

critical factor in decision-making, batch ML algorithms can be performed. Since STAKE aims

for a near real-time detection of device operation anomalies, we opted mainly with a stream

processing approach. Nevertheless, batch processing will also be available for plug-ins whose

ML models require this kind of processing.

The last consideration was the benign and anomaly packets segregation, as shown in the

figure 3.3. Labeled data is essential for the plug-ins to be evaluated and for the supervised

plug-ins to be trained. Two solutions were taken into account: store all the packets on a single

pcap file and have the packet labels in a separated file or segregate both benign and anomaly

packets into two different pcap files. The second solution was considered the most efficient and

simpler one. Additionally, by segregating both types into different files, it was considered that

false negatives and positives analysis would be an easier task.

3.4 Plug-in types and processing phases

STAKE allows one or more plug-ins to be installed. Each plug-in can use the collected data

to train a ML model, and then use it to detect anomalies. Figure 3.5 provides an overview of

the operation phases, sub-phases and steps for the plug-ins. On the left-side, we see the phases

for the Supervised Learning, and on the right-side, for the Unsupervised Learning. The data

cleaning and data selection steps are not required, so they are greyed out. The following sections

will detail these phases: Data Pre-processing, Anomaly Detection and Result/Output.
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Figure 3.5: Plug-in types comparison.

3.5 Data Pre-processing

An important phase for Supervised Learning algorithms is data pre-processing [DD11], because

it allows for improvement in the quality of the data that is used. Data pre-processing has a

significant impact on the performance of Supervised Learning models, since unreliable samples

probably lead to wrong outputs. On the other hand, some of the Unsupervised Learning models

have the the ability to pre-process the data in the anomaly detection phase. Thus, this phase is

not always needed for this type of ML models [CC18].

Anomalies may be undetectable at one level of granularity, or abstraction, but easy to detect

at another level [DD11]. One of the main challenges is to choose the features that best represent

the user or the system behaviour patterns so that anomalous behaviour will be detected, whereas

benevolent behaviour will not be wrongly classified as anomalous. Therefore, considering the

complexity of this phase, it was decided to divide the phase into Feature Extraction and Feature

Selection.

3.5.1 Feature Extraction

Feature Extraction can be done in two steps: data integration and data cleaning. The data

integration step consists in combining data from multiple and heterogeneous sources into one

database. This first step is required on every ML model category, to simplify the data training

process. Considering the fact that the objective of Unsupervised Learning is to detect outliers,

the second step should only be done when using Supervised Learning algorithms. Removing

the noise would consequently remove the Unsupervised Learning algorithms purpose of anomaly

detection.

A feature extractor derives basic features that are useful in event analysis engines. The
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features chosen for extraction to train the model depend on the context of the problem. In

building an anomaly detection system, it is important to consider whether the data used to train

the initial model is contaminated with anomalies. Data cleaning, also known as data cleansing,

removes noise and irrelevant data from the collected data [HIZH19]. However, cleaning a dataset

with the intention to remove anomalies is risky, since anomalies can turn out to be a new pattern

behaviour of a benign device. In these cases, the best option is to start off by accepting that

the data contains anomalies and iteratively move towards a better solution.

Using unbalanced datasets can result in a bias that is difficult to detect [CC18], such as

selection bias and exclusion bias. Selection bias is when proper randomization is not achieved,

thereby ensuring that the sample obtained is not representative of the device behaviour intended

to be analysed. On the other hand, exclusion bias may also exist, which results from exclusion of

benevolent device behaviour from the sample, e.g. exclusion of new benevolent device behaviours

which have recently been performed in the Smart Home network.

Likewise, training a model with a dataset that has a lot of missing values can also drastically

impact the ML model quality. The main solutions for missing values are removing any event

with missing features or impute the value of the missing feature. This impute of missing values

can be done with the mean, median, or most frequently appearing value (mode) of the column.

3.5.2 Feature Selection

Feature Selection should only be performed in Unsupervised Learning models when data nor-

malization or data dimensionality reduction is beneficial. It consists in reducing the number of

random variables under consideration by obtaining a set of main variables.

This sub-phase is done in two steps: data selection and data transformation. The selection

of features is expected to reduce overfitting probability, improve model prediction accuracy and

reduce training time. Overfitting occurs when the model or the algorithm fits the data too well.

On the other hand, underfitting occurs when the model or the algorithm does not fit the data

well enough [CC18]. Data selection allows the user to obtain a reduced representation of the

data set to keep the integrity of the original data set in a reduced volume. Having a number

of features greater than the number of data points will make the ML model overfit. Thus, for

better model performance, down-sample of large-scale events may be needed.

Regardless of the model being used, it is recommended to use regularization parameters

based on experimental data. Regularization is a technique which makes slight modifications

to the learning algorithm such that the model generalizes better. This in turn improves the

performance of the model on the unseen data as well.
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Data transformation is when the selected data is transformed into suitable formats [CGM+19].

Before data can be processed within ML models, there are certain data transformation steps

that must be performed. These transformations include changing data types, removing string

formatting and non-alphanumeric characters, converting categorical data to numerical and con-

verting timestamps. Additionally, normalization is a technique often applied as part of data

transformation for ML models. The goal of normalization is to change the values of numeric

columns in the dataset to a common scale, without distorting differences in the ranges of values.

Even though not all datasets require using this technique, it should be used when features have

different value ranges.

3.6 Anomaly Detection

This phase enables the ability to classify and detect intrusions on a network, such as a Smart

Home. An anomaly detection system is considered optimal when [DD11]: returns a low count

of False Positives and of False Negatives; is easy to configure, tune and maintain; adapts to

changing trends in the data; resource-efficient and suitable for real-time application.

In case of using a Supervised Learning model plug-in, it learns from prior data on the first

step and makes a prediction about the future behaviour on the second step. Taking this into

consideration, when using Supervised Learning this phase is separated into two steps: data

mining and pattern evaluation. In the data mining step, the analysis tools are applied to

discover potentially useful patterns. The upcoming step, pattern evaluation, useful patterns are

identified using given validation measures. On the other hand, an Unsupervised Learning model

plug-in is able to perform the anomaly detection in a single step.

Before initiating the training phase, hyper-parameters are typically chosen. Hyper-parameters

are a fragile component of ML systems because their optimality can be affected by small changes

in the input data or other parts of the system [CC18]. Therefore, an efficient hyper-parameter

optimization should be considered. The optimal hyper-parameter configuration can be found by

providing a fitting metric for comparing each classifier performance with different possible combi-

nations of hyper-parameter values. Even for algorithms that have only a few hyper-parameters,

grid search, an exhaustive sweep through the hyper-parameter space of a ML algorithm, is a

very time and resource-intensive way to solve the problem because of combinatorial explosion

[CC18].
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3.7 Result/Output

When using various types of ML plug-ins, having a unified location for reporting and alerting

can make a difference in the value of security alerts raised. The auditing of alerts raised by an

anomaly detection system is important, since it enables the ability to evaluate the system, as

well as investigating False Positives and Negatives [CC18]. Therefore, alerts will be stored in a

log file and the packets information will be stored in the benign or anomalous pcap files.

Developing a system which returns explainable results is critical to build trust in the ML

system. The system is explainable if it presents enough information to allow the user to derive

an explanation for the decision. Thus, the alerts provides information about the source and

destination devices of the detected anomalous packet and which plug-in detected the anomaly.

The possibility of the ML security systems being themselves attacked must also be taken

into account. Common attacks on this kind of system are model poisoning and model evasion.

Systems that continually learn from input data and instantaneously feedback labels which are

provided by users, are vulnerable for model poisoning, in which the attacker inject intentionally

misleading data to skew the decision boundaries of the model classifiers. Furthermore, model

evasion implies that the attacker evade classifiers with adversarial examples that are specially

crafted to trick specific model and implementations. Using robust statistical algorithms which

are resilient to poisoning and probing attempts is a way of slow down the attacker. This can be

done by maintaining test sets and heuristics that periodically test for abnormalities in the input

data, model decision boundary, or classification results [CC18].

3.8 Summary

In this chapter, we presented our solution, STAKE, that will be able to: provide an execution

environment with plug-ins for anomaly detection, using ML models trained from the captured

data archives, and execute near real-time detection of device operation anomalies. The phases,

sub-phases and steps will be different depending on the ML model category.
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Chapter 4

Evaluation Methodology

In this Chapter we present our evaluation methodology. We start by discussing the system per-

formance evaluation, the hardware to be used, and the dataset evaluation metrics, considerations

and description. Additionally, we also discuss the exemplary plug-ins that will demonstrate the

functionalities of STAKE, and the plug-ins specific evaluation metrics.

Overall, the methodology is the following: create a test-bed with diverse Smart Home equip-

ments, deploy the STAKE software in the gateway, collect significant and representative datasets,

assess performance, develop exemplary plug-ins and confirm that these plug-ins are effective at

anomaly detection, showing that the STAKE platform supports the execution of diverse plug-

ins. The plug-ins results are illustrative of what can be achieved with the STAKE platform, and

they show by example, that more and better plug-ins can be developed by the community.

4.1 STAKE Performance Evaluation Metrics

The metrics chosen to test the system were focused on computational and time performance.

We were interested in answering the following questions about our system:

� “How much of the device CPU (%) is used when no plug-ins are training, when training

each plug-in individually and when training both plug-ins simultaneously?”;

� “How much of the device RAM memory (%) is used when no plug-ins are training, when

training each plug-in individually and when training both plug-ins simultaneously?”;

� “What is the average delay between the moment that the packet is captured and when it

is reported as an anomaly via an alert from each plug-in when no plug-ins are training,

when training each plug-in individually and when training both plug-ins simultaneously?”;

� “What is the difference between the time duration of the model training when creating
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each plug-in and the duration of the model training of each plug-in when implemented on

the system?”;

� “Does the plug-ins have the same scoring results when implemented and re-trained in

STAKE system?”;

From these metrics, we aim to compare all the possible situations and observe how to system

reacts in each one of them.

4.2 Hardware

We implemented the system on a Raspberry Pi 4 model B (figure 4.1), with Raspbian operating

system, installed in a 128 GB SD card. This small single-board computer provides a network

interface card with 2.4 GHz and 5.0 GHz IEEE 802.11ac WLAN (wlan0 adapter) protocol and

a network interface via cable with Gigabit Ethernet (eth0 adapter) up to 300 Mbps.

Figure 4.1: Raspberry Pi 4 model B.

Using a Raspberry Pi as an IoT gateway has the benefit of having the ability to build pro-

grams that can use other services and third-party libraries. Additionally, not only many access

points have lower CPU power and RAM size compared to Raspberry Pi, but also access points

with similar CPU values are more expensive than the Raspberry Pi. Furthermore, Raspberry

Pi 4 model B has the benefit of possessing a QuadCore processor (Broadcom BCM2711, Quad

core Cortex-A72 64-bit SoC @ 1.5GHz), which allows us to process threading efficiently.

For storing the collected packets, it was used the available free memory in the mentioned 128

GB SD card. However, other possible considered alternatives were Hard Disk Drives (HDDs)

and Solid State Drives (SSDs).

The Smart Home network used for dataset creation consists in devices beyond the usual

standard devices. The devices that constitute the network are: a Smart Plug model TP-Link-

HS110, a Raspberry pi 4 Model B 4GB with camera model v1 for video streaming, a Raspberry

pi 4 Model B 4GB to implement STAKE system, two Android smart phones, one Android
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tablet, a laptop with Windows 10 Pro operating system and a malicious laptop with Kali 2019.3

operative system to perform attacks in the network.

4.3 Dataset

The dataset is one of the critical elements to be used on anomaly detection systems. Datasets

contain information about how systems can learn normal behaviour patterns, in order to identify

abnormal behaviour. Since we are interested in evaluating STAKE behaviour in a Smart Home

environment, we decided to capture our own set of data from a real smart home network.

4.3.1 Evaluation Metrics

An efficient measure for dataset evaluation is analysing the dataset feature correlation, which

allows us to discover how strong a relationship is between features. The selected correlation

coefficient was Pearson method (equation 4.1).

pearson =
cov(X,Y )√

var(X) ∗ var(Y )
(4.1)

Given a pair of random variables (X,Y ), where cov = covariance and var = variance

The correlation coefficient ranges from -1 to 1. A value of 1 implies that a linear equation

describes the relationship between X and Y perfectly. A value of -1 implies that all data points

lie on a line for which Y decreases as X increases. A value of 0 implies that there is no linear

correlation between the variables.

4.3.2 Considerations

During the dataset evaluation, we took into consideration that the data may start out with one

particular pattern and then, after a period of time, change into a totally different one [DCL18].

An additional important considered aspect was whether the data has seasonal patterns. A

seasonal pattern exists when a series is influenced by seasonal factors (e.g. the quarter of the

year, the month, the hour of the day or the day of the week) [DCL18]. Assuming seasonal

patterns have two major drawbacks: it may require too many data points to obtain a reasonable

baseline and it may produce a poor normal model. It was also considered that if we assume

there are no seasonal patterns in any of the metrics and we apply standard techniques, we are

either going to be very insensitive or too sensitive to outliers, depending on which technique we

are using. This highlights the need for adaptive learning algorithms with the ability to learn the

model with every new data captured.
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Updating the model with every captured packet (including abnormal ones), is one possible

strategy, but it is not considered a good one. If an outlier persists beyond that captured packet,

the model will start considering that outlier as a normal behaviour. Therefore, there should be

a balance in how fast we learn versus how adaptive we are towards the dataset.

Each captured packet in the dataset should address topics, through at various levels of detail

and represented as features, activities concerned with who or what is communicating over the

network, how those communications are taking place and the purpose of those communications.

Last consideration was feature correlation. Correlation is a way to understand the relation-

ship between multiple features in the data. Features with correlation coefficient over 0.95 are

usually considered as highly correlated features. If the dataset has highly correlated features,

then there is a high chance that the performance of the model will be impacted by a problem

called “multicollinearity”. Multicollinearity happens when one feature in a model with linear

classification approach can be linearly predicted from the other features with a high degree of

accuracy. This normally leads to skewed or misleading results. However, non-linear models are

not affected by this problem.

4.3.3 Description

The network was captured during a period of one week, between 30/06/2020 19:23:04 and

07/07/2020 19:22:04. This captured dataset consists in a total of 1158539 benign samples

(labeled as ‘1’) and a total of 93778 anomaly samples (labeled as ‘-1’). In other terms, from

1252317 captured samples, 92% are benign and 8% are anomalies.

This set of anomaly samples contains a variety of network attacks performed by the malicious

laptop, such as: port scanning, TCP SYN flooding, ICMP flooding and ARP spoofing. The de-

vices that had their ports scanned were: STAKE, the Raspberry Pi video streamer and the

Windows 10 Pro laptop. The SYN and ICMP flooding victim devices were: STAKE and Rasp-

berry Pi video streamer. At last, the ARP spoofing attack was performed with the Raspberry

Pi video streamer as the victim device.

Regarding the protocols, every protocol is captured and stored in the database. However,

STAKE system only considers the following packets: Ethernet, IP, TCP, UDP, ICMP and ARP.

The protocols and features were selected according to the information that they offer for anomaly

detection In other words, the features in which attacks cannot be performed are excluded for

analysis.

The first selected protocol was the Ethernet, because this protocol is commonly used in local

area networks. This protocol describes how the networked devices share their data through the
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physical medium. The IP is an important protocol for network analysis, because it provides

end-to-end datagram transmission across multiple IP networks. The TCP was selected because

it is the dominant protocol for a majority of internet connectivity. Additionally, the UDP was

selected because it is a communications protocol that enables process-to-process communication

and runs on top of IP. The UDP protocol improves data transfer rates over TCP and best

suits applications that require lossless data transmissions. The ICMP protocol is commonly

used for error reporting and to perform network diagnostics, therefore it considered for anomaly

detection. At last, the final selected protocol was the ARP, which maps an IP address to a MAC

address that is recognized in the local network.

The feature selection on all the protocol had the same approach. The main approach was

to only select the packet fields that could give information of an anomalous devices behaviour

in an IoT environment, while excluding the packet fields that return same, similar or no useful

information for anomaly detection.

The selected features from the Ethernet protocol were: source Ethernet port, destination

Ethernet port and Ethernet type field. No features were excluded on this protocol.

The selected features from the IP protocol were: source IP address, destination IP address,

encapsulated protocol type, header length, ‘do not fragment’ flag, ‘more fragments’ flag, ‘re-

served’ flag, , fragment offset value, time to live (TTL) and type of service (ToS). The excluded

features from the IP protocol were: version, options field, ‘fragment offset’ flag, checksum and

identification field.

The selected features from the TCP protocol were: sequence number, acknowledgement

number, source port, destination port, packet flags, data offset value, urgent pointer flag and

window size. The excluded features from the TCP protocol were: options field and checksum.

The selected features from the UDP protocol were: source port, destination port. The

excluded features from the UDP protocol were: checksum.

The selected features from the ICMP protocol were: type and code (subtype) of the icmp

message. The excluded features from the ICMP protocol were: checksum.

The selected features from the ARP protocol were: hardware type, sender hardware address,

target hardware address, target protocol address, target protocol address and operation code.

The excluded features from the ARP protocol were: hardware address length and protocol type.

At last, the extra selected features were: packet payload, packet length and timestamp.

The features from the captured data that showed high correlation (pearson correlation co-

efficient over 0.95) were the ARP features with the IP type field feature and between the TCP

fields. This was expected, since the mentioned features return the same information. However,
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none of them were excluded because attacks can be performed on a single feature.

4.4 Exemplary Plug-ins

To demonstrate that STAKE is a functional executing environment for anomaly detection plug-

ins, we developed two exemplary plug-ins. We decided to implement an Elliptic Envelope based

plug-in and a Random Forest based plug-in. This plug-in choice was influenced by algorithms

chosen by other works in the literature [HIZH19, DAF18, XWL+18, CGM+19]. From the related

work Table 2.1, it is noticeable the trend for Random Forest algorithm approach in Smart Home

environment. On the other hand, even though Elliptic Envelope is not that frequent as Random

Forest, it has shown interesting results, which spiked curiosity for further investigation.

4.4.1 Plug-in Evaluation Techniques

Regarding evaluation techniques, we took into consideration the use of cross-validation to eval-

uate the plug-in. Cross-validation is a standard method model evaluation in situations where

there is not a lot of training data, so every labeled example is able to make a significant contri-

bution to the learned model [CC18]. This type of evaluation method is commonly used when

the goal of the algorithm is prediction. In this method, the labeled data is divided into k equal

parts and it is trained k different models. Afterwards, each model “holds out” a different one of

the k parts and trains on the remaining k–1 parts. The held-out part is then used for validation.

Finally, the k different models are combined by averaging both the performance statistics and

the model parameters [LZT+19].

Additionally, grid search was also a considered evaluation technique. Grid search is a tuning

technique that attempts to compute the optimum values of hyper-parameters. It is an exhaustive

search that is performed on the specific parameter values of a model. The model is also known

as an estimator.

4.4.2 Elliptic Envelope

The Elliptic Envelope (EE) is an Unsupervised and Supervised algorithm, where data is dis-

tributed across an ellipse, hence the name [EA19]. In our solution, we decided to develop this

model with an Unsupervised Learning approach, because we are interested to observe if the

anomalies can be detected in an unlabeled training data setting. This algorithm routine models

the data as a high dimensional Gaussian distribution with possible co-variances between feature

dimensions. In other words, it attempts to find a boundary ellipse that contains most of the

normal distributed data. Any data outside of the ellipse is considered to be an anomaly. For
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distributed datasets, EE fitting can be a simple and elegant way to perform anomaly detection.

More likely than not, this algorithm should be suitable in anomaly detection problems with

the time dimension excluded [CC18]. Applying an EE-based plug-in in a streaming anomaly

detection system is straightforward. This can be achieved by periodically fitting the EE to new

data. The system will have to constantly update decision boundary with which to classify new

data points.

The EE model is categorized as a multivariate anomaly detection technique. Multivariate

anomaly detection techniques take input from all the devices together as one, without separating

them. The most noticeable downsides in using multivariate anomaly detection techniques is the

scalability and it is often hard to interpret the cause of the anomaly. These type of techniques

are best used with just several hundred or fewer metrics [DCL18].

The EE algorithm has the advantage of using a robust covariance estimator such as the MCD

(Minimum Covariance Determinant), which minimizes the impact of training data outliers on

the fitted model. MCD is able to discriminate between outliers and inliers, generating a better

fit that results in inliers having small distances and outliers having large distances to the central

mode of the fitted model. EE is known to fit reasonably well in a two-dimensional contaminated

dataset with a known Gaussian distribution, but not so well on a non-Gaussian dataset [CC18].

Additionally, EE are also known to work better on datasets with low dimensionality. When

fitting a high dimensional multivariate Gaussian distribution, the data is structured as an hyper-

ellipsoid. This increases the complexity of anomaly detection, since anomalies are detected by

a combination of features. In some scenarios, the recommended practice is to remove time from

the feature set and just fit the model to a subset of other features. However, in these cases,

there are risks that the outliers might not be detected.

With this EE Unsupervised Learning based plug-in, we aim to demonstrate that STAKE

supports the necessary calls for an Unsupervised Learning algorithm that uses multivariate

anomaly detection technique, excludes time dimension and requires training data to be Gaussian

distributed. Obtaining good results with this model will demonstrate that the anomalous and

benign traffic is distinct enough for it to be fitted efficiently in the model. On the other hand,

if the model is not able to fit the data efficiently, it will prove that the captured data is not

distinct enough, in other words, benign and anomalous data are excessively mixed inside and

outside the generated ellipse or hyper-ellipsoid (depending on the dimension of the data).
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4.4.3 Random Forest

The second exemplary plug-in was selected to be distinct for the first one. The Random Forest

(RF) classifier is, per definition, a Supervised Learning algorithm, although technically, it can

be trained as Unsupervised Learning with the purpose of clustering. In case of our solution, we

decided to develop this model with an Supervised Learning approach. Even though Unsupervised

learning methods are mostly preferred over Supervised Learning methods in most cases for

anomaly detection [CC18]. We considered that researching a Supervised Learning algorithm

behaviour in the Smart Home environment would be interesting to observe.

Tree-based models, such as DT and RF, tend to have very good prediction performance.

The reason for this good prediction performance is due to the fact that every query interacts

only with a small portion of the model space. Nevertheless, single DT tend to overfit to their

training sets and, on the contrary, RF mitigates this effect by taking the average of multiple

DT, which consequently improves the model performance.

Even though the RF classifier is known to fit real-world data effectively [CC18], the algorithm

is black-box in relation about the decision making processes, meaning that these processes are

completely opaque to an external observer. A noticeable strength from the RF classifier, is that

it can be parallelised to a high degree [CC18].

Given that each randomized DT (Decision Tree) that makes up the forest is independently

created and can be individually queried for the generation of the final prediction, this conversely

makes the classifier strongly scalable.

The RF classifier have shown better prediction accuracy on large data sets with high dimen-

sional feature space [CC18]. This algorithm trains a model by iterating through data points in

the given training set, randomly selects a feature and randomly selects a split value between

the maximum and minimum values of that given feature across the entire dataset [CC18]. The

intuition behind this method is that inliers have more feature value similarities, which requires

them to go through more splits to be isolated. Outliers, on the other hand, are theoretically

easier to isolate with a small number of splits, since they will presumable have some feature

value differences that distinguish them from inliers. In other words, anomalous data points have

tendency to have shorter path lengths than regular data points.

In comparison with the EE algorithm, the RF classifier can be applied on a non-Gaussian

anomaly contaminated dataset. However, it must be taken into account that we must avoid

using very low-dimensional data with the RF classifier for anomaly detection, since it might

not be suitable because of the small number of features on which we can perform splits, which

consequently can limit the effectiveness of the algorithm. Furthermore, in contrast to EE,
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RF can be categorized as an univariate or multivariate anomaly detection technique. In the

univariate anomaly detection category, the system looks at each metric by itself, learning its

normal patterns and yielding a list of anomalies for each single metric. Often, in univariate

algorithms, it is difficult to perform root cause analysis of an issue because it is hard to see

the forest for the trees. The advantage of this category is that it is easier to build than other

type of methods. Not only the scalability, in terms of computation, is better, but also less data

is needed to learn normal device behaviour since the system looks at each metric by itself, as

opposed to looking at combinations of metrics. However, one of the drawbacks is that, when

something unexpected happens, it affects a lot of metrics, an the system yields a “storm” of

anomalies.

4.4.4 Specific Plug-in Evaluation Metrics

Apart from the general Machine Learning evaluation metrics from the Section 2.2.2, specific

evaluation metrics for the selected plug-ins were considered. For EE, it was performed a quality

measurement of the plug-in fitted model by calculating the distance between outliers and the

model’s distribution, using a distance function such as Mahalanobis distance. It is an useful

metric that measures the distance between a point (vector) and a distribution. This metric has

applications in multivariate anomaly detection, classification on highly imbalanced datasets and

one-class classification. This distance function transforms the columns into uncorrelated vari-

ables, scale the columns to make their variance equal to 1 and, finally, calculates the Euclidean

distance (equation 4.2).

Euclidian Distance =

√√√√ n∑
i=1

(qi − pi)2 (4.2)

In case of the RF plug-in, the MSE (Mean Squared Error) (equation 4.3) measurement is

commonly used, or just a SSE (Sum of Squared Errors) (equation 4.4), which represents the

differences between the observed and predicted value.

MSE =
1

n

n∑
i=1

(yi − yi)
2 (4.3)

SSE =
n∑

i=1

(yi − yi)
2 (4.4)
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4.5 Summary

In this Chapter we presented the evaluation methodology. We started by discussing the evalu-

ation methodology regarding the system performance. In addition, we discussed the Prototype

Hardware to be used in the evaluation of this solution. Afterwards, we discussed the dataset

evaluation metrics, considerations and description and how it could affect the final evaluation of

the STAKE system. At last, we discussed the two selected Exemplary Plug-ins, and the plug-ins

specific evaluation metrics.

The selected Elliptic Envelope and Random Forest plug-ins differ in many different aspects,

such as: model category (Supervised vs Unsupervised Learning), type of expected input data

(Gaussian vs non-Gaussian), efficiency in different dimensional data (Low dimensional vs High

dimensional). In addition, while discussing the plug-in evaluation, we concluded that having a

variety of different types of plug-ins, has the benefit of providing different metrics of evaluating

an anomaly. Therefore, this will allow us to analyse the best Machine Learning approach given

the specific environment.
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Chapter 5

Results

In this Chapter, we start by discussing the experiments involved the STAKE prototype per-

formance evaluation in terms of computational and time resource. Afterwards, we present the

Elliptic Envelope and Random Forest plug-ins creation, and the evaluation methodology criteria

used to optimize the models used in the plug-ins. During each plug-in creation and evaluation,

it was taken into account: the plug-ins different types of behaviour, specific machine learning

algorithm behaviour, general and specific machine learning algorithm evaluation methodologies

and all the dataset engineering considerations. At last, we discuss the training results compar-

ison when creating each plug-in and the training results when the plug-ins were implemented

and re-trained in STAKE.

In Section 5.1 we analyse STAKE prototype performance. In Section 5.2 we present the

results of the Elliptic Envelope plug-in creation and evaluation. Subsequently, in Section 5.3 we

present the results of the Random Forest plug-in creation and evaluation. At last, in Section 5.4

we compare the training results of the plug-ins before and after implementing in the system.

5.1 STAKE

This set of testing involved the designed STAKE system architecture and its developed pro-

totype. First we evaluated the system and hardware performance, and then we compared the

plug-ins training duration from plug-in creation with the plug-in training duration when imple-

mented in the system.

5.1.1 Performance Evaluation

For the STAKE system evaluations, it was considered that registering only one value would not

be a correct evaluation of the system performance. Thus, the evaluation was performed by an
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average of 10 values during different periods of time while training different combinations of

plug-ins. These combinations were: no plug-ins being trained, each plug-in trained individually

(Elliptic Envelope and Random Forest respectively) and both plug-ins trained simultaneously.

From the results from Table 5.1, we can firstly observe that the processor performance is

not significantly affected when training both plug-ins simultaneously. Thus, it is possible to

conclude that the processor is not heavily affected in threading two plug-ins simultaneously. On

the other hand, RAM memory usage is noticeable increased. This observation was expected,

since each plug-in training is threaded, each plug-in needs to store the training data individually.

Table 5.1: STAKE average of 10 tests results performance evaluation. EE = Elliptic Envelope
and RF = Random Forest.

Component Evaluated
Plug-ins

being Trained
Average

Value
Minimum

Value
Maximum

Value

Processor
Usage

None 18,45% 0,0% 28,10%
EE 38,80% 25,20% 51,40%
RF 33,10% 25,00% 50,70%

EE & RF 39,85% 27,50% 51,00%

RAM
Memory
Usage

None 19,45% 13,70% 23,70%
EE 31,15% 22,40% 31,70%
RF 37,35% 31,20% 38,40%

EE & RF 48,35% 43,50% 53,00%

Elliptic Envelope
Anomaly
Detection

Delay

None 2,19 s 1,14 s 8,02 s
EE 6,26 s 5,30 s 8,16 s
RF 8,47 s 3,12 s 28,36 s

EE & RF 5,38 s 4,14 s 44,15 s

Random Forest
Anomaly
Detection

Delay

None 1,74 s 1,04 s 14,34 s
EE 5,51 s 4,30 s 8,49 s
RF 11,47 s 2,91 s 35,10 s

EE & RF 4,68 s 3,75 s 45,14 s

Regarding the anomaly detection delay results from each plug-in, it was expected that the

delay values were lower when no plug-in was training. However, unexpectedly, the average delay

when training both plug-in simultaneously was lower than training each plug-in individually. It

is suspected that the system and room temperature influenced these last results. The conclusion

we obtained from the maximum anomaly detection delay values, is that training both plug-ins

simultaneously may sometimes affect heavily the anomaly detection delay, but in average the

system will maintain its performance.

5.1.2 Plug-ins Implementation Evaluation

The next evaluation performed were related to the Machine Learning model training duration.

This comparison was performed between training duration when creating the plug-ins and train-
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ing duration when the plug-ins are implemented in the STAKE system. As we can observe from

the results in the Table 5.2, the training duration from the Machine Learning models when

implemented as plug-ins in the STAKE system were longer. The biggest difference was noticed

when training the Random Forest plug-in. The Random Forest model training duration in-

creased more than double, while the Elliptic Envelope model training duration increased only a

bit more than 6 minutes.

Table 5.2: STAKE average of 10 tests plug-ins training duration evaluation.

Plug-ins being Trained
Plug-in creation

Training duration
STAKE Plug-in

Training duration

Elliptic Envelope 0:34:41.71 0:40:59.27

Random Forest 1:21:05.20 3:14:40.60

Elliptic Envelope and Random Forest 1:26:02.11 4:15:13.26

The big contrast between the models training durations was unexpected. The suspected

reason for this behaviour is that the values were strongly influenced by the model complexity,

system temperature and room temperature. However, we believe that the training duration

would not deviate significantly from the obtained results even in optimal temperature conditions.

5.1.3 Discussion

The STAKE system demonstrated being efficient in multi-threading the different processes.

Additionally, we considered that the delay between the moment that a packet is captured and

the moment that an anomaly is detected, and alerted, is adequate for an intrusion detection

system. However, plug-in model training durations were heavily affected when multiple tasks

were executed simultaneously.

The most noticeable challenge was RAM memory efficiency. If multiple plug-ins anomaly

detection are activated and multiple plug-ins training are simultaneously executed, the RAM

memory was heavily affected and sometimes ran out of memory. Thus, it is recommended to

not train more than 2 plug-ins simultaneously.

5.2 Elliptic Envelope Plug-in

Before model optimization, data engineering was required. Since Elliptic Envelope does not rely

on linear assumptions, it was concluded that correlation features would not cause issues [CC18].

Additionally, since we had an Unsupervised Learning approach with this model, data cleaning

was not performed. The next data engineering consideration was feature selection. The Elliptic

Envelope model is known to not work efficiently with continuous data. Therefore, the timestamp
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feature was excluded for this model.

Subsequently, data transformation was considered. Given that the Elliptic Envelope model

assumes that the training data is Gaussian, the training data had to be transformed into

Gaussian values and normalized before training the model. Since categorical data cannot be

transformed directly as Gaussian, all categorical features were label encoded beforehand. La-

bel encoding consists in transforming categorical features in numerical values between 0 and

n classes− 1, where n classes is the number of distinct labels.

5.2.1 Model Hyper-parameters Exploration

The hyper-parameters for the Elliptic Envelope model are: store precision, assume centered,

support fraction, random state and contamination . The selected hyper-parameters with default

values were: The store precision parameter, which specifies if the estimated precision is stored

(default=True). The assume centered parameter, which, when set to “true”, the support of

robust location and covariance estimates is computed, and a covariance estimate is recomputed

from it, without centering the data. On the other hand, if the assume centered is set to “false”

(default), the robust location and covariance are directly computed with the FastMCD algorithm

without additional treatment; The support fraction parameter, which indicates the proportion

of points to be included in the support of the raw Minimum Covariance Determinant (MCD)

estimate. The MCD method is a highly robust estimator of multivariate location and scatter,

for which a fast algorithm is available (FastMCD). If “None”(default), the minimum value of

support fraction will be used within the algorithm; At last, the random state parameter, which

determines the pseudo random number generator for shuffling the data.

The main hyper-parameter of this model, which was selected for optimization, is the con-

tamination percentage [HRP+16]. The contamination parameter indicates the percentage of

anomalies found in the training data. Others hyper-parameters were not considered essential,

hence, the default values for these hyper-parameters were used. Intuitively, it made sense to

use the contamination percentage equal to the amount of anomaly samples in the data. The

first test was performed using 43581 samples, 20% contamination percentage and 20% anomaly

percentage, which resulted in 60,1% accuracy. The first intuition to improve the model accuracy

was to lower the hyper-parameter contamination percentage by 5% or increase the anomaly

percentage of the samples. By increasing the anomaly percentage by 5%, the algorithm im-

proved its accuracy to 69,3%. Therefore, it was considered a 5% margin for the contamination

hyper-parameter percentage in relation to the real anomaly data percentage.
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5.2.2 Initial Sampling Size Evaluation

Before further optimizing the hyper-parameter, it was decided to first analyse the model be-

haviour according to the amount of samples. Different amount of samples were used to test the

model behaviour, ranging from 10008 to 62381. The n samples used for training, were the n

last captured packets from the dataset. It must also be considered, that dataset splitting is not

performed for Unsupervised Learning plug-in models. For that reason, all data samples were

used to train the model.

From the obtained results in the Table 5.3, we could state that using samples between 31155

and 43581 was the best option. However, we must also consider that the 18758 showed a more

realistic behaviour in the relation between the contamination hyper-parameter percentage and

anomaly percentage of the samples. Therefore, it was decided to evaluate the model behaviour

in regard to the contamination hyper-parameter percentage and anomaly percentage of the

samples with 18758, 31155 and 43581 samples.

Table 5.3: Elliptic Envelope behaviour in relation to data samples. TPR = True Positive Rate
(Recall) and FPR = False Positive Rate.

Test
ID

Conta-
mination

Samples
Anomaly

%
Accuracy TPR FPR

Processing
Time

EE 1

20%

5550 25% 61,1% 77,4% 87,7% 0:10:45,232
EE 2

10008
20% 62,6% 76,6% 93,5% 0:21:30,343

EE 3 25% 65,6% 82,6% 85,3% 0:21:51,564
EE 4

18758
20% 62,6% 72% 89,7% 0:38:41,695

EE 5 25% 60,2% 76,6% 93,5% 0:34:41,713
EE 7

31155
20% 63,1% 76,9% 92,3% 1:10:13,098

EE 8 25% 67,2% 81,5% 75,6% 1:08:11,522
EE 9

43581
20% 60,1% 75,2% 99,9% 1:38:32,654

EE 10 25% 69,3% 82,9% 71,3% 1:36:50,534
EE 11 52381 25% 55,6% 73,70% 98,9% 2:10:45,435
EE 12 62381 25% 61,4% 77,6% 87,2% 3:03:59,837

5.2.3 Hyper-parameter and Anomaly Percentage Optimization

Each number of samples used for the contamination hyper-parameter percentage and anomaly

percentage of the samples model behaviour evaluation are represented in the Tables 5.4, 5.5

and 5.6. Anomaly percentages higher than 50% was not considered, because the objective of

the system is to detect anomalies in the devices behaviour and not detect the specific captured

anomalies used in the model training.

The model demonstrated better results when using lower percentage of anomalies and con-

tamination hyper-parameter percentage. This behaviour is logical because, the lower the con-
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Table 5.4: Elliptic Envelope behaviour in relation to contamination hyper-parameter, with 18758
samples.

Samples
Conta-

mination
Anomaly

%
Accuracy TPR FPR

Processing
Time

18758

5%
5% 90,1% 94,8% 99% 0:38:15,324
10% 85% 94,5% 99,8% 0:40:01,432

10%
5% 86% 90% 90,3% 0:39:05,324
10% 81,3% 89,3% 91,5% 0:36:43,654
15% 81,9% 90,1% 92,1% 0:36:50,435

15%
10% 76,2% 83,7% 91,5% 0:37:20,345
15% 71,4% 83,2% 95,5% 0:38:34,532
20% 67,1% 82,6% 94,8% 0:37:59,435

20%
20% 62,6% 72% 89,7% 0:38:41,695
25% 60,2% 76,6% 93,5% 0:34:41,713

Table 5.5: Elliptic Envelope behaviour in relation to contamination hyper-parameter, with 31155
samples. TPR = True Positive Rate (Recall) and FPR = False Positive Rate.

Samples
Conta-

mination
Anomaly

%
Accuracy TPR FPR

Processing
Time

31155

5%
10% 85% 94,4% 100% 1:09:45,897
5% 90% 94,7% 100% 1:11:24,659

10%
5% 85% 89,5% 100% 1:12:13,043
10% 82,6% 90,4% 86,8% 1:10:43,098
15% 75% 88,2% 100% 1:06:54,623

15%
10% 75,9% 83,82% 95,6% 1:08:34,790
15% 70% 82,4% 100% 1:08:10,932
20% 67,8% 83% 93,1% 1:07:22,121

20%
20% 63,1% 76,9% 92,3% 1:10:13,098
25% 67,2% 81,5% 75,6% 1:08:11,522

Table 5.6: Elliptic Envelope behaviour in relation to contamination hyper-parameter, with 43581
samples. TPR = True Positive Rate (Recall) and FPR = False Positive Rate.

Samples
Conta-

mination
Anomaly

%
Accuracy TPR FPR

Processing
Time

43581

5%
5% 91% 95,77% 100% 1:37:03,454
10% 85% 94,4% 100% 1:35:13,543

10%
5% 85% 89,5% 100% 1:36:52,129
10% 80% 88,9% 100% 1:34:53,644
15% 75% 88,2% 100% 1:37:43,654

15%
10% 75% 83,3% 100% 1:40:12,324
15% 72,2% 83,7% 92,6% 1:38:42,235
20% 66,2% 82% 96,9% 1:37:21,123

20%
20% 60,1% 75,2% 99,9% 1:38:32,654
25% 69,33% 82,9% 71,3% 1:36:59,435

tamination hyper-parameter percentage, the smaller the generated ellipse will be. Thus, when

high contamination hyper-parameter percentages are used, the risk of having high amount of

benign packets identified as anomalies will be increasingly higher.
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The tests using 5% contamination percentage with 18758, 31155 and 43581 samples showed

good accuracy results. However, these tests demonstrated excessively high false positive rate.

It was concluded that further model optimization was required. Therefore, it was decided to

evaluate the model again according to the different number of samples, but this time using 5%

contamination hyper-parameter percentage.

5.2.4 Optimized Hyper-parameter Sampling Size Evaluation

The initial observation we were able obtain from the results in Table 5.7 is that the model

has a tendency of having high false positive rates. High false positive rates are common in

Unsupervised Learning algorithms [DD11]. However, false positive rate should be minimized,

since if it is excessively high, the administrator is forced to investigate each packet, which removes

the point of the system.

Table 5.7: Elliptic Envelope behaviour in relation to data samples, with 5% hyper-parameter
contamination percentage. TPR = True Positive Rate (Recall) and FPR = False Positive Rate.

Test
ID

Conta-
mination

Samples
Anomaly

%
Accuracy TPR FPR

Processing
Time

EE 13

5%

10008 5% 90% 94,7% 100% 0:20:22,426
EE 14 18758 5% 90,1% 94,8% 99% 0:38:15,324
EE 16 20000 5% 90,3% 95% 100% 0:40:11,472
EE 17 31155 5% 90% 94,7% 100% 1:11:24,659
EE 18 43581 5% 91% 95,77% 100% 1:37:03,454
EE 19

52381
5% 90,8% 95,62% 100% 2:08:30,755

EE 20 10% 85% 94,4% 100% 2:12:15,910
EE 21

62381
5% 93,1% 96,2% 64,9% 3:00:30,409

EE 22 10% 85% 94,5% 100% 3:05:11,432
EE 23 74881 5% 89,9% 94,6% 100% 4:10:04,898
EE 24 84488 5% 90,3% 95,1% 100% 5:05:03,423

5.2.5 Extra Optimization

The first considered solution was to reduce the number of used features. It was suspected that,

since it is was used 33 features in total, the Elliptic Envelope algorithm was struggling in generat-

ing an efficient hyper-ellipsoid for anomaly detection. However, reducing the number of features

has the risk of excluding the possibility of detecting anomalies from those specific removed fea-

tures. Therefore, it was considered the use of PCA (Principal Component Analysis) or LDA

(Linear Discriminant Analysis) as alternative. PCA is an unsupervised dimensionality-reduction

method that is often used to reduce the dimensionality of large data sets, by transforming a

large set of variables into a smaller one that still contains most of the information in the large set

[CC18]. On the other hand, LDA is a supervised dimensionality-reduction method. The LDA
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method assumes that all classes are linearly separable, and draws hyperplanes and projects the

data onto these hyperplanes in such a way as to maximize the separation of the classes [TGIH17].

Our goal of the Elliptic Envelope plug-in was to have an entirely unsupervised approach.

Therefore, LDA was excluded as an option. By using PCA to reduce the training data dimen-

sionality, we expected to not lose any information from all the features selected for anomaly

detection.

The use of PCA to transform the training data into 2 dimensions demonstrated benefits in

reducing the model training duration (due to smaller training data dimension), maintaining the

results reproducibility and reducing the high positive rate between 5%-15%, as represented in the

Table 5.8. The Elliptic Envelope algorithm has the inherent problem of result inconsistency when

using data with more than 2 features (2 dimensions), which means that the final results may not

be always reproducible. However, when transforming the data with PCA into 2 dimensions, the

results became reproducible. Reproducibility with respect to machine learning means that you

can repeatedly run your algorithm on certain datasets and obtain the same results. Moreover,

reproducibility creates trust and credibility in the ML model.

Table 5.8: Elliptic Envelope behaviour in relation to data samples, using PCA and with 5%
hyper-parameter contamination percentage. TPR = True Positive Rate (Recall) and FPR =
False Positive Rate.

Test
ID

Conta-
mination

Anomaly
%

Samples Accuracy TPR FPR
Processing

Time

EE 25

5% 5%

10008 91,5% 95,5% 85,4% 0:19:02.315
EE 26 18758 91,3% 95,4% 87,1% 0:37:40.532
EE 27 20000 91,3% 95,4% 87,4% 0:39:08,029
EE 28 31155 91,3% 95,4% 87,3% 1:08:53.612
EE 29 43581 91,3% 95,4% 87% 1:35:53,644
EE 30 52381 92,8% 96,2% 72,4% 2:06:45,423
EE 31 62381 93,9% 96,8% 60,8% 2:58:42,279
EE 32 74881 90% 94,8% 99,7% 4:02:32,532
EE 33 84488 90% 94,8% 99,7% 5:01:24,897

An additional PCA benefit, is that the PCA simplifies the representation (figure 5.1) of the

ellipse which the model generates for anomaly detection. The representation of the generated

hyper-ellipsoid was not previously possible because of the data high dimensionality.

From the plots from the figure 5.1, we were able observe that the difference between benign

and anomaly are too ambiguous for the model to behave efficiently. The benign and anomalous

samples are too similar for the algorithm to generate an efficient ellipse. Therefore, it was

considered that the Elliptic Envelope algorithm is not able to fit well in this specific environment.
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Figure 5.1: Elliptic Envelope ellipse generation representation with 43581 samples, 5% contami-
nation hyper-parameter and 5% anomaly percentage, using PCA 2 dimensional transformation.
The blue dots represent benign samples and the red dots represent anomalous samples.

5.2.6 Discussion

Since it was considered that no further improvement was possible, we selected the test ID ‘EE 31’

configuration, from the Table 5.7, for the plug-in creation. The configuration selection criteria

was that this test configuration obtained the best accuracy (93,9%) with the lowest possible

false positive rate (60,8%).

Due to the high false positive rate, we suspect that the model will affect the system negatively.

The difference between benign and anomaly will be less clear over time. Thus, the model

performance will deprecate significantly on the following trainings and will produce several false

positive alerts.

We initially suspected that the gaussian data transformation that was used, may have af-

fected negatively the final outcome. The data was transformed into gaussian values, this is a

correct procedure because the model inherently expects gaussian data for training. However,

by transforming into gaussian, we suspect that the difference between the benign and anomaly

packets may have faded. Hence, the model derived high positive rates. Removing the gaus-

sian transformation was not an option since the Elliptic Envelope model expects a gaussian

distributed dataset.

It was also considered that the high false positive rate issue could have caused by the model

difficulty in generating an efficient hyper-ellipsoid for the given features and the data trans-

formation process. At first, we considered that the model would benefit in having multiple

features to analyse from. However, we came to the conclusion that increasing the complexity

for the Elliptic Envelope deprecates the model efficiency in detecting anomalies. Reducing the

amount of features was not considered an option, because it will remove the model possibility
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of detecting anomalies in specific protocols flags. Therefore, it was considered the use of PCA

to transform the data into 2 dimensions, which improved the final results and maintained most

of the information available from all the selected features.

5.3 Random Forest Plug-in

Data engineering is an essential step to perform before optimizing a Supervised Learning model.

In general highly correlated features causes a problem in Random Forest models [DD11]. How-

ever, after testing the model behaviour with and without highly correlated features, no differ-

ence in the model behaviour was noticed. Since keeping the highly correlated features would not

change the model classification, it was decided to keep the highly correlated features because it

gives an opportunity to detect anomalies that may not be detected in other features.

As mentioned previously, the dataset featurizes each of the protocols. However, this come at

the cost of having missing values. For example, UDP features will be empty in case of featurizing

a TCP packet. For that reason, deleting instances with missing data was not an option.

Another consideration is the data balancing. Scaling is done to normalize data so that

priority is not given to a particular feature. The objective of scaling is mostly important in

algorithms that are distance based. Random Forest is a tree-based model, which uses information

gain/gini coefficient inherently, hence does not require feature scaling [CC18].

The next data engineering consideration was feature selection. Similar to the Elliptic Enve-

lope model, the Random Forest is known to not work efficiently with continuous data. Contin-

uous data makes the Random Forest algorithm generalize poorly, as a consequence, it overfits

the model. Therefore, the timestamp feature will also be excluded for this model.

The Random Forest model requires the training data to be numerical. To convert the

categorical data to numerical, two options were found: One Hot Encoder and Label Encoder.

As mentioned before, label encoding consists in transforming categorical features in numerical

values between 0 and n classes − 1. And, on the other hand, one hot encoding consists in

performing “binarization” of the categoric data and split it into multiple features. However, for

a model to predict near real-time captured packets, a static number of feature dimension will

be required. If the features used for prediction are different from the features used for training,

an exception will be returned by the model. Therefore, One Hot Encoder will be excluded as

an option for data transformation.
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5.3.1 Model Hyper-parameters Exploration

Before analysing the model behaviour according to the amount of samples used, and before

comparing both data transformation methods, the model hyper-parameters should be explored

beforehand. The hyper-parameters available for the Random Forest model are: n estimators, cri-

terion, max depth, min samples split, min samples leaf, min weight fraction leaf, max features,

min impurity decrease, min impurity split, bootstrap, oob score, n jobs, random state, warm start,

class weight, ccp alpha and max samples. Taking into account the extensive set of hyper-

parameters, hyper-parameter selection was recommended. The hyper-parameter selection crite-

ria was based on parameter importance and how much it influences the model.

The selected hyper-parameters with default values are: The criterion parameter, which spec-

ifies the function to measure the quality of a split. Supported functions to measure the quality of

split are gini impurity (default) and the information gain (entropy); The min weight fraction leaf,

which indicates the minimum weighted fraction of the sum total of weights required to be at a leaf

node, the default is 0; The Random Forest model grows trees with max leaf nodes in best-first

fashion. Best nodes are defined as relative reduction in impurity and if the max leaf nodes pa-

rameter is set to “none”, then unlimited number of leaf nodes are grown; A tree node will be split

if this split induces a decrease of the impurity greater than or equal to the min impurity decrease

parameter value. The default value of the min impurity decrease is 0; The min impurity split

indicates the threshold for early stopping in tree growth, the default is “none”; The oob score

specifies whether to use out-of-bag samples to estimate the generalization accuracy, being “false”

the default value; The n jobs is the number of jobs to run in parallel, the default value is “none”;

The random state controls both the randomness of the bootstrapping of the samples used when

building trees (if bootstrap=True) and the sampling of the features to consider when looking for

the best split at each node (if bootstrap=False); The warm start when set to “true”, the model

reuses the solution of the previous call to fit and add more estimators to the ensemble, if set to

“false” (default) the model just fits a whole new forest; The class weight specifies the weights

associated with classes in the form {class label : weight}. If the dictionary is not given in the

class weight parameter, all classes are supposed to have weight one; The ccp alpha indicates the

complexity parameter used for Minimal Cost-Complexity Pruning (default=0). The sub-tree

with the largest cost complexity that is smaller than ccp alpha will be chosen; The max samples

indicates the number of samples to draw from X to train each base estimator.

The selected hyper-parameters for model optimization are: The n estimators, which indicates

the number of trees in the forest. Usually the higher the number of trees the better to learn

the data. However, adding a lot of trees can slow down the training process considerably; The
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max depth parameter defines the max number of levels in each decision tree. The deeper the tree,

the more splits it has and it captures more information about the data; The min samples split

equals the minimum number of samples required to split an internal node. When we increase this

parameter, each tree in the forest becomes more constrained as it has to consider more samples

at each node; The min samples leaf parameter is similar to min samples split, however, this

parameter describes the minimum number of samples at the leafs of each tree; The max features

specifies the number of features to consider when looking for the best split, it can be defined by a

float or integer numerical value, a square root function or a logarithmic function; The bootstrap

denotes the method for sampling data points (with or without replacement). If bootstrap is set

to “false”, the whole dataset is used to build each tree. If bootstrap is set to “true”, it means

that some samples will be used multiple times in a single tree.

5.3.2 Hyper-parameter Behaviour Analysis

Each of the hyper-parameters was then evaluated with hyper-parameter roc plots using a set

of different values. This hyper-parameter evaluation was performed with samples ranging from

8753 to 99881 packets, all with 25% of anomalies and 33% split for test data. The n samples

used for training, were the n last captured packets from the dataset. By analysing these plots

and table, we were able to discover the best set of values (Table 5.9) to avoid both under and

overfitting. The amount of samples that showed promising results from the plots were 43581

and 62381.

Table 5.9: Random Forest hyper-parameters evaluation in relation with amount of samples.

Samples
n

estimators
max

features
max
depth

min
samples

split

min
samples

leaf

Plot
Analysis

8753 [25] [5] [2,3,4,5] [10,15,20] [10,15,20,25] Underfitting

17458 [25] [5] [3,4,5] [10,15,20] [5,10,15] Underfitting

24958 [23] [10] [2,3,4,5] [10,15,20] [10,15,20] Acceptable

31158 [25,30] [10] [2,3,4,5] [10,15,20] [10,15,20] Acceptable

43581 [5,10,15,20] [5] [2,3,4,5,6] [10,15,20] [5,10,15,20] Good

47681 [25] [5,10] [2,3,4,5,6] [10,20] [10,15,20] Acceptable

52381 [37,40,50] [10] [2,3,4,5,6] [5,10,15,20] [10,15,20] Acceptable

62381 [25] [5] [3,4,5,6] [10,20,30] [15,20] Good

68481 [25] [5] [2,3,4,5,6] [20] [10,15,20] Overfitting

74881 [15,20,25,30] [5,6,7] [2,3,4,5] [10,15,20] [10,15,20,25] Overfitting

99881 [25] [5] [3,4,5,6] [20] [20] Overfitting

The range of values inside the dark green dashed boxes from each hyper-parameters evalua-

tion plots (figures 5.2, 5.3 and 5.4) represents the chosen approach of the ideal range selection for

model complexity. This range of values were later used for the grid search, with the objective to
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optimize the model and possibly find the best hyper-parameter value combination while avoiding

underfitting and overfitting. The only static hyper-parameter from the grid is bootstrap, this

parameter is set as “false” because we desire to use all the samples in the data and avoid missing

detecting any anomaly.

Figure 5.2: Random Forest max depth and max features hyper-parameters evaluation with 43581
samples.

Figure 5.3: Random Forest min samples leaf and min samples split hyper-parameters evalua-
tion with 43581 samples.

Figure 5.4: Random Forest n estimators hyper-parameter evaluation with 43581 samples.
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5.3.3 Anomaly Percentage Optimization

The selected amount of samples for grid search and anomaly percentage analysis was 43581

and 62381, using 33% split for test data and 5 fold cross validation. Similar to the Elliptic

Envelope model, anomaly percentage higher than 50% was not considered because the objective

of the system is to detect all types of anomalies in the devices behaviour and not detect the

specific captured anomalies used in the training data. However, every results did overfit using

grid search, achieving accuracies over 99%. In general, every Machine Learning algorithm with

high complexity is inclined to overfit. It is noticeable that the Random Forest model overfits

for large depth values. The trees perfectly predicts all of the train data, however, it fails to

generalize the findings for new data. Therefore, it is required to control the complexity of the

trees in the forest, or even prune when they grow too much. Thus, from the grid search results,

it was decided to use static parameters to avoid overfitting and generalize the findings for new

data as much as possible. The chosen hyper-parametrization for the Random Forest were:

bootstrap=False, max depth=2, max features=10, min samples leaf =10, min samples split=20

and n estimators=20.

An additional observation from the results with static hyper-parametrization in Table 5.10,

is that tests ID ‘RF 7’, ‘RF 8’, ‘RF 9’, ‘RF 10’ and ‘RF 11’ had the highest accuracy (from

∼98% to ∼99%).

Table 5.10: Random Forest test data behaviour in relation to anomaly percentage using grid
search and 43581 samples.

Test
ID

Samples Anomaly % Accuracy FP FN TN
Processing

Time

RF 1

43581

10% 95,8% 597 0 789 2:27:24,659
RF 2 15% 94,1% 810 42 1079 1:54:43,297
RF 3 20% 97,5% 310 56 2151 1:39:38,940
RF 4 25% 96,7% 309 157 2727 1:23:29,983
RF 5 30% 96,7% 318 153 2999 1:21:05,196
RF 6 35% 96,7% 315 156 3404 1:24:07,411
RF 7 40% 97,7% 176 151 3918 1:24:51,811
RF 8 45% 97,8% 167 145 4341 1:19:47,581

RF 9
62381

25% 97,6% 419 74 3983 2:30:28,313
RF 10 30% 98,1% 330 54 4438 2:27:51,081
RF 11 35% 98,5% 263 48 5078 2:29:21,923

However, these tests showed hyper-parametrization overfitting in the hyper-parametrization

evaluation plots (fig 5.5). Therefore, tests ID ‘RF 7’, ‘RF 8’, ‘RF 9’, ‘RF 10’ and ‘RF 11’ were

excluded for Random Forest plug-in creation.

Furthermore, tests ID showed that ‘RF 1’, ‘RF 2’ and ‘RF 3’ underfitted the model. This

underfitting was observable both on the evaluation scoring metrics and hyper-parametrization
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Figure 5.5: Random Forest ‘RF 9’ n estimators overfitting and ‘RF 8’ max depth overfitting.

evaluation plots (fig 5.6). Therefore, they were also excluded.

Figure 5.6: Random Forest ‘RF 2’ n estimators underfitting and ‘RF 3’ min samples splits un-
derfitting.

The remaining tests are ‘RF 4’, ‘RF 5’ and ‘RF 6’. Since all of them showed similar results,

further score evaluation was required. However, all of the tests scoring results still showed

similar values (Table 5.11). Even though all these previous model configurations could be used

for the Random Forest plug-in creation, test ID ‘RF 5’ configuration was selected because it

has a middle ground anomaly percentage, which theoretically increases the probability of data

flexibility in case the network changes its behaviour.

Table 5.11: Random Forest best tests results comparison.

Test
ID

Recall Precision F-score Specificity
False

Positive
Rate

MSE

RF 4 98,6% 97,4% 98% 89,1% 10,9% 0,1296

RF 5 98,6% 97,2% 97,9% 90,4% 9,6% 0,131

RF 6 98,5% 97,1% 97,8% 91,5% 8,5% 0,131
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5.3.4 Extra Optimization

A further consideration was feature importance. Feature importance assigns a score to input

features based on how useful they are at predicting a target variable. The trained model from

test ID ‘RF 5’ assigned 0 importance to 16 features. A good practice would be removing these 0

coefficient value features. Nevertheless, the model behaviour and evaluation metrics scores did

not change by removing these features. In addition, since a Smart Home network may change its

behaviour pattern, its difficult to know if these features may be useful in the future. Therefore,

no action will be taken about the 0 importance valued features.

Last consideration taken was Random Forest result consistency. On the contrary from El-

liptic Envelope, Random Forest results are reproducible no matter the amount of features used.

Which means that the model has the tendency to obtain the same result with the same model

and data configuration.

5.3.5 Discussion

The results of the Random Forest model showed potential in anomaly detection efficiency. The

biggest perceived challenge with this model was to avoid overfitting. However, this was expected

because it is a common problem with this model. For this model to work the most efficiently

possible, there must be a clear dissimilarity between benign and anomalous behaviour. This

implies that the Random Forest plug-in will work very efficiently if the devices behaviour does

not change frequently and if the dataset is not heavily affected by false positive and/or false

negatives.

An additional consideration is that implementing other type of models as plug-ins in parallel

with the Random Forest plug-in should be done with care. Since an inefficient plug-in could

affect heavily the Random Forest plug-in performance.

5.4 Plug-ins Re-training Evaluation

The last evaluation was the plug-ins training result comparison between plug-in creation results

and plug-in re-trained in STAKE system results. Since the system is capturing in real-time

and changes in the data are expected, the only difference between these two situations will be

the data used for training. The data used to train each plug-in in the STAKE system was:

the original training data, plus one day of capture while the plug-in anomaly detection was

active. This testing was performed individually, for each plug-in, with the objective to avoid

that one plug-in would affect the other final results. All the other procedures performed and
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configurations sets used were exactly the same as the ones used during plug-in creation.

As we can observe from the Tables 5.12 and 5.13, both Elliptic Envelope and Random Forest

plug-in training results worsen when re-trained in STAKE system. Even though it was expected

for the Elliptic Envelope to have inconsistent results with data changes, it was unexpected for

the Random Forest to overfit because training process was exactly the same and this model is

known to obtain consistent results. It was evident that the plug-ins were overly optimized for

the specific trained data and not configured for flexibility. Hence, with changes in the training

data, the Random Forest started to overfit. Thus, further plug-in testing was performed while

implemented in STAKE system.

Table 5.12: Elliptic Envelope plug-in creation training and STAKE implementation training
results comparison.

Test
ID

Accuracy Recall Precision F-score
Speci-
ficity

False
Positive

Rate

Mahalanobis
[Mininum;
Maximum]

EE 31 93,9% 96,8% 96,8% 96,8% 39,2% 60,8%
[0,0006;

7350,1820]

EE ST 90% 94,7% 94,7% 94,7% 0% 100%
[0.0002;

1359,8267]

Table 5.13: Random Forest plug-in creation training and STAKE implementation training results
comparison.

Test
ID

Accuracy Recall Precision F-score
Speci-
ficity

False
Positive

Rate
MSE

RF 5 96,7% 98,6% 97,4% 98% 89,1% 10,9% 0,1296

RF ST 100% 100% 100% 100% 100% 0% 0,0

As a result of the high false positive rate of the Elliptic Envelope model, the comparison

between anomaly and benign packets became less clear for the model over time. Therefore, the

model scoring has worsen when re-trained in the STAKE system. Alternative number of samples

and alternative percentage values for the contamination hyper-parameter were tested, however,

same problems were presented.

Regarding the Random Forest plug-in, further evaluation was performed by testing other

alternative configurations and different anomaly percentages. These alternative configurations

involved in limiting even further the hyper-parameter optimization (Table 5.14) with the objec-

tive of avoiding overfitting as much as possible. Regarding the set of anomaly percentages used,

it consisted of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% and 45%.

However, using both 43581 and 62381 samples, all configurations settings still overfitted with

the same results as test ID ‘RF ST’ in Table 5.13. Further tests were executed by decreasing
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Table 5.14: Random Forest hyper-parameters evaluation in relation with amount of samples.

Plug-in ID
n

estimators
max

features
max
depth

min
samples

split

min
samples

leaf

RF SL 1 20 10 2 20 10

RF SL 2 20 10 1 20 10

RF SL 3 3 2 1 80 60

the number of features gradually. Nevertheless, the model behaviour did not change from this

action and still overfitted. Plus, removing some features will make the system insecure for some

attacks.

5.4.1 Discussion

Regarding the developed plug-ins, Elliptic Envelope demonstrated tendency to produce exces-

sively high false positive rates. This behaviour affects heavily all the implemented plug-ins,

because the difference between benign and anomaly packets will be less clear over time. We

concluded that the Elliptic Envelope has the benefit of being flexible to changes. However,

the model demonstrated serious difficulty in identifying anomalies in this specific environment.

Thus, it was considered that no further optimization was possible with this plug-in in this specific

environment.

On the other hand, Random Forest plug-in demonstrated an exceedingly tendency for overfit-

ting in this kind of environment. The problem in this situation is that the model is memorizing

the packets, therefore it will be hard for the model to generalize and detect new device be-

haviours. This will cause the system to have high amount of false negative and positives. We

considered that the Random Forest is a powerful algorithm when optimized for specific static

environments. However, not flexible enough for dynamic environments, which is the case of most

Smart Home networks. For this plug-in to work efficiently, it will require adjustments each time

it will be trained.

5.5 Summary

In this Chapter we started by discussing the STAKE system development results, by comparing

the system and plug-ins performance in different situations. Afterwards, we discussed the results

from both the Elliptic Envelope plug-in and the Random Forest plug-in. Finally, we discussed

the difference between the plug-in training results when optimizing the models and the plug-in

training results when re-trained in the system.
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Chapter 6

Conclusion

This dissertation described the design, implementation, evaluation methodology and results

of STAKE, a solution for capturing and storing Smart Home network traffic, and an execution

environment for anomaly detection plug-ins. This Chapter presents the achievements of STAKE

and describes future work that can be developed to improve STAKE.

STAKE’s novel contribution is the execution environment. It was evaluated in a test-bed

with data from real devices. The system, demonstrated flexibility in implementing different

types of plug-ins. Even though some adjustment was required for each plug-in, this could be

easily and quickly performed in the user interface. The changes in the plug-in configuration

that takes longer time are model hyper-parameters related, which cannot be performed directly

on user interface and requires a new trained model to be uploaded as plug-in. Nevertheless,

changing model hyper-parameters is usually a frequent action when optimizing the plug-in and

not when implemented in a system.

The benign and anomaly packets segregation system component exhibited the drawback in

adding false positives in the benign dataset and false negatives in anomaly dataset. However,

this component showed benefits in simplifying anomaly analysis in different detail levels, sim-

plifying the discovery of the source of anomaly and identifying the false positives and negatives.

Additionally, with the support of device manager component, if the devices were previously cor-

rectly identified by the administrator, the identification of the devices affected by the anomalies

are easily identified by the system and easily evaluated in the segregated datasets.

In addition, the hardware used for evaluation demonstrated being efficient in threading the

local HTTP server hosting, data collection (packet capturing), plug-ins training and plug-ins

anomaly detection processes. The hardware evaluation results shows that the CPU is able to

thread all the processes, along with multiple plug-ins, without being strongly affected by it. The

most affected hardware element, even though moderately, was the RAM memory. However, this
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was expected because each plug-in needs to store the training data individually. Even though

multiple plug-ins did not strongly influence the overall anomaly detection delay, it still strongly

affected the plug-ins training duration. From these observations, we can conclude that the

selected hardware supports the system and multiple plug-ins efficiently.

Transfer learning can be performed in the STAKE system. This process consists of taking a

model trained on one dataset and then use it to predict another related problem. However, this

method might perform well in some plug-ins, but will not in many [CC18]. Therefore, for the

plug-ins to be effective, it is recommended to re-train each plug-in after a period of time.

If the features used for prediction are different from the features used for training, an excep-

tion will be returned by the model. This is a normal behaviour from machine learning models,

however, should be taken into consideration when implementing a new plug-in.

Regarding the results of the plug-ins when being created and optimized, the Elliptic Envelope

obtained reasonable results, while Random Forest obtained good results. Nevertheless, more can

be developed and/or improved, because this work will be available to the community at large.

However, on the contrary from the plug-in creation results, when the plug-ins were re-trained

in the system, each of the plug-ins behaviour and results deteriorated. As regard to the Elliptic

Envelope plug-in, the model demonstrated tendency to produce excessively high false positive

rates. On the other hand, Random Forest plug-in demonstrated an exceedingly tendency for

overfitting in this kind of environment.

6.1 Achievements

The STAKE system user interface is accessible via HTTP. After the administrator is authen-

ticated, the administrator is able to: edit his/her account information, identify the network

devices according to the associated mac address and add/edit/remove plug-ins. Additionally,

the administrator has access to information such as: captured packets statistics, system hard-

ware status information (hard disk memory usage, cpu usage, ram memory usage and network

bandwidth usage), system log, anomalies alerts, plug-in status and plug-in training results.

In regard to plug-in development, both Elliptic Envelope and Random Forest based plug-ins

were successfully created. Both plug-ins demonstrated promising results when they were created.

However, when re-trained in the system the plug-ins behaviour deteriorated. This is a common

problem in environments that change frequently. Hence, for good re-training results, a plug-in

with a flexible and reproducible model or integrating human feedback will need to be considered

for future work. A human feedback can be used to fine tune the global comprehension of the

anomalies, while preserving the efficiency of the system and plug-ins [DD11].
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Even though the plug-ins implementation results were disappointing, the system showed

promising results. The system demonstrated being capable of announcing anomalies in a timely

manner, even when training two plug-ins simultaneously. Additionally, the system processor

exhibited being capable of withstanding the threading architecture. Nevertheless, the most

noticeable drawback in the system was the RAM memory limitation, which caused exceptions

when a large number of samples were used. To avoid this problem, it is recommended to train,

at maximum, two plug-ins simultaneously in this selected hardware.

6.2 Future Work

Regarding future work, we propose the following implementations suggestions for further system

improvements. The list is ordered top-bottom from the suggestions/improvements we think are

more interesting in our perspective:

1. Implement more plug-ins with different algorithms, such as clustering algorithms that

could be used to find anomalies relation, origin and data flow of the intrusion. Algorithm

with clustering approaches allows us to find anomalies correlation and possibly the source

of the system vulnerability. Additionally, it would be also interesting to see the system

behaviour with a plug-in which algorithm uses time series as training data.

2. Add the option to order plug-in priority for anomaly detection. There is an extensive set

of Machine Learning models to choose from and some models will work more efficiently

than others on the given Smart Home environment. Giving priority to the most efficient

plug-ins would probably reduce the amount of detected false positives on the system. The

level of priority could be configured by ordering or weighting the plug-ins priority.

3. Integrating human feedback should be considered. If security analysts are able to report

false positives and false negatives directly to a system that adjusts model parameters based

on this feedback, the maintainability and flexibility of the system can be vastly elevated.

In untrusted environments, however, directly integrating human feedback into the model

training can have negative effects.

4. Add more protocols for anomaly detection, such as: HTTP (Hypertext Transfer Proto-

col), HTTPS (Hypertext Transfer Protocol Secure), FTP (File Transfer Protocol), SSH

(Secure Socket Shell), Telnet, IMAP (Internet Message Access Protocol), DNS (Domain

Name System) and IRC (Internet Relay Chat). Aggregating more protocols for anomaly
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detection, which are used in a Smart Home environment, could increase the probability of

a more effective anomaly detection and a more detailed analysis of the source of intrusion.

5. The current system is analysing multiple protocols in the same dataset. A possible alter-

native approach would be to analyse each protocol individually. This alternative could

make the anomaly detection of the system more efficient or affect the anomaly detection

negatively.

6. The STAKE system returns alerts and a short reports about the detected anomalies.

However, the report could be upgraded to a full detailed report. This full detailed report

could have information such as: intrusion origin, which part of the system or devices were

affected, which plug-ins detected this anomaly, possible solution, etc...

7. Blocking devices with anomalous behaviour should be an option. However, it must be

taken into account that this will prevent collecting any further information about the

attackers capabilities, intent and origin. Additionally, it must also be taken into account

that this option could wrongly block benign devices when false negatives are detected.

Therefore, this option is recommended to be implemented in conciliation with the human

feedback integration feature.
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