
STAKE: Secure Tracing of Anomalies using
previous Knowledge and Extensions

Kevin B. Corrales
Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract—Internet of Things (IoT) devices have become more
present in our households because of an increase in availability
and affordability. However, a Smart Home is a challenging
environment. It involves people engaged with devices for a variety
of purposes, and it is difficult to detect anomalies that can be
cyber attacks. In this dissertation we introduce STAKE, a Smart
Home gateway for capturing and analysing network traffic, with
different levels of detail. The system supports anomaly detection
plug-ins to spot attacks in near real-time. We evaluated our
system with Machine Learning plug-ins based on the Elliptic
Envelope and the Random Forest models. STAKE was able to
execute different plug-ins and both detected anomalies.

As expected, each model returned different results. Both plug-
ins demonstrated promising results when they were created.
The Elliptic Envelope model obtained 93,9% accuracy and the
Random Forest obtained 96,7%. However, when re-trained in the
system the plug-ins did not demonstrate being flexible enough
to changes in the Smart Home network. The Elliptic Envelope
plug-in demonstrated tendency to produce excessively high false
positive rates, which deteriorated the difference between benign
and anomaly samples in the training data. The Random Forest
plug-in demonstrated a exceedingly tendency for overfitting when
re-trained in this kind of environment.

Keywords: Internet of Things, Intrusion Detection System,
Anomaly Detection, Machine Learning

I. INTRODUCTION

The Internet of Things (IoT) consists of a network of
billions (109) of interconnected devices, with embedded smart
sensors and computational resources, which are connected
to the Internet. IoT devices can connect and transfer data
over a network without requiring direct human interaction [1].
In many cases this makes the devices autonomous or semi-
autonomous. However, IoT devices often have characteristics
such as limited network connection, low processing power,
low storage resources, reduced dimensions and low energy
consumption.

The Smart Home is one of the promises of IoT. A Smart
Home refers to a convenient home setup where devices can
be remotely controlled, both manually or automatically [2].
The Smart Home is a challenging environment, because it
involves people engaged with devices for a variety of purposes
that involve real world interactions. Smart Home devices have
become more affordable and available, and their presence in
consumer households is increasing. The devices can be very
diverse, ranging from simple light bulbs, smart plugs and
locks, to more powerful devices, like video cameras, digital
assistants, tablets and laptops. As a result, the amount of
privacy-sensitive data uploaded to the cloud is also increasing.

If proper security measures are not taken, these new Internet-
connected devices can become entry points for an attacker.

Intrusion Detection System (IDS) is a common approach
for network security. An IDS monitors the network and
system activities, assesses the integrity of the system and data,
recognizes malicious activity patterns, generates reactions to
intrusions, and reports the outcome of detection [3]. An
important method used by IDS is anomaly detection [4], which
consists on finding patterns in data that do not conform to
expected behaviour, for example, in Internet traffic [5].

A. Objectives

In this work, we propose and implement a solution for
capturing and storing Smart Home network traffic, and an
execution environment for anomaly detection plug-ins. The
network traffic is captured in different detail levels: traces,
flows and summary features. The captured data is stored in a
persistent repository with adequate schema and indexing. The
plug-in execution environment allows using Machine Learning
models, trained from the captured data, and applied to the near
real-time detection of anomalies.

We called our solution STAKE, standing for: Secure Tracing
of Anomalies using previous Knowledge and Extensions. It
extends SPYKE [6], a previous work that already performs
device detection and applies knowledge-based rules, like quota
limits per device. We implemented a Supervised Learning
plug-in and an Unsupervised Learning plug-in.

II. BACKGROUND AND RELATED WORK

A. Network Defence

Cybersecurity solutions can be proactive, like firewalls, and
reactive, like IDS (Intrusion Detection Systems) [3].

An IDS system monitors and analyses user behaviour and
system activities, assesses the integrity of the system and data,
recognizes malicious activity patterns, generates reactions to
intrusions and reports the outcome of detection [7]. An IDS
is composed of several modules: misuse/signature detection,
anomaly detection algorithms, hybrid detection, profiling,
privacy-preservation data mining, and scan detector [3].

The misuse/signature detection module matches malicious
patterns with a high detection rate and a low false alarm
rate. However, they cannot detect unknown attacks. The
anomaly detection algorithms build normal patterns in a cyber-
infrastructure, such that they can detect the patterns that
deviate significantly from the normal model. They can detect
new attacks. The hybrid detection module is the aggregation

1



from both mentioned modules above. It normally improves
the detection rate and decreases the false alarm rate. The
profiling module performs clustering algorithms and/or other
data mining to group similar network connections and search
for dominant behaviours. Privacy-preservation data mining
focuses in reducing unauthorized access of private information,
while retaining the same functions as a normal data-mining
method for discovering useful knowledge. The objective of
this module is to prevent unauthorized users from accessing
private information, such as private data mining or ML results.
At last, the scan detector module finds vulnerabilities in cyber-
infrastructures.

B. Machine Learning

Machine Learning (ML) is a set of mathematical techniques,
implemented on computer systems, to perform information
mining, pattern discovery, and inferencing from data [3].

1) Approaches: Supervised Learning adopts a knowledge
discovery approach, using probabilities of previously observed
events to infer the probabilities of new events. On the other
hand, Unsupervised Learning methods draw abstractions from
unlabeled datasets and apply these to new data. Additionally,
there is an hybrid type of learning called Semi-supervised
Learning, an intermediate between Supervised Learning and
Unsupervised Learning. In this hybrid type of learning, the
model starts with training data that is labeled with the correct
answers and then concludes with a model with a tuned set of
weights, which is able to predict results for similar data that
have not already been labeled.

ML can aid security by performing pattern recognition and
anomaly detection [7]. Pattern recognition is usually more
adequate for cases in which the threat model is clearly known.
For unknown threats, anomaly detection is a more suitable
option.

2) Evaluation Metrics: Even though Unsupervised Learn-
ing models do not use labels to train, when labels are available,
they can be used to evaluate this type of models. Labeled data
allows us to obtain True Positives (TP), False Positives (FP),
True Negatives (TN) and False Negatives (FN) values that let
us calculate the following equations.

In general, using only accuracy (as defined in equation 1)
to measure model prediction performance is not enough, since
it is abstract and only provides an approximate measure
of a model performance. The accuracy is a simple way of
measuring the effectiveness of your model, but it can be
misleading. Therefore, other measures are necessary for us
to be able to obtain a concrete understanding of the models
behaviour and efficiency. Additionally, accuracy is sensitive to
any change in the data set and is mostly effective when data
are not balanced.

Accuracy =
TP + TN

TP + FN + TN + FP
, (1)

Therefore, it was also be considered other type of evalu-
ation. In an anomaly detection context, to comprehensively

evaluate imbalanced learning, especially for minority classifi-
cation, it is commonly used methods such as [3]: precision,
recall, f-score and ROC curve (Receiver Operating Character-
istics) plots.

In short, precision (defined in equation 2) is the fraction of
relevant instances among the retrieved instances. On the other
hand, recall (equation 3) represents the fraction of the total
amount of relevant instances that were actually retrieved. In
other words, precision measures the degree to which repeated
measurements under unchanged conditions show the same
results and recall measures the proportion of positives that
are correctly identified.

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

Possessing these values, we are able to calculate f-score
(equation 4), which allows us to measure the accuracy of the
test. The f-score represents a weighted harmonic mean of the
precision and recall of the test.

F-score = 2 ∗
Precision ∗ Recall
Precision + Recall

(4)

Furthermore, the ROC curve is generated by plotting the
True Positive Rate, also known as recall (equation 3), against
the False Positive Rate (equation 5) at various threshold
settings.

FPR =
FP

FP + TN
= 1− Specificity , (5)

Specificity =
TN
N

=
TN

TN + FP
(6)

The ROC measurement is a probability curve and AUC
(Area Under The Curve) represents degree or measure of
separability. AUC measurement represents how much model
is capable of distinguishing between classes. The higher the
AUC, the better the model is at predicting.

III. RELATED WORK

A. Smart Home Security Monitors

The baseline of this project is SPYKE [6], an open source
network intermediary for Smart Home networks, that pro-
vides communication monitoring between devices and remote
servers, and also the ability to block and limit unwanted
connections. With the objective to accept new devices to
the Smart Home network, the authentication is performed on
SPYKE via WPA2 protocol and using a password, the user
is then able to enforce whitelisting-based user policy which
provides privacy protection. The traffic in SPYKE is filtered
via iptables1, a very widely used firewall implementation
engine in the Linux kernel, with rules defined by the user. This
solution was shown to handle a large number of devices rules,

1iptables: https://linux.die.net/man/8/iptables, accessed on March 12, 2020

2



which filters outgoing packets with no significant performance
degradation.

Furthermore, Bitdefender Box [8] is a commercial security
monitor product. Bitdefender Box objective is to secure a
Smart Home. In terms of security, it offers vulnerability as-
sessment to detect network security flaws, exploitation preven-
tion to block attempts to exploit vulnerabilities in connected
devices, local device security to protect connected devices
in place of a locally installed antivirus, as well as anomaly
detection, brute force detection, and data protection. This
security monitor also provides an application that can be used
outside of the house through the Internet.

B. Machine Learning for NIDS

Recent works on NIDS using ML include Li et al. and Aung
et al. Li et al. [9] present two datasets collected from programs
involving 126 types of vulnerabilities. The authors conducted
a comparative study to quantitatively evaluate the impact of
different factors on the effectiveness of vulnerability detec-
tion, involving more semantic information, imbalanced data
processing, and different neural networks. The experimental
results show that control dependency can increase the overall
effectiveness of vulnerability detection f-measure by 20.3%.
However, the imbalanced data processing methods were not
effective for the dataset created for the study.

Aung et al. [10] show the accuracy of intrusion detection
with the complexity of time when comparing the hybrid
algorithm detection method and the single algorithm detection
method. The k-Means and Random Tree algorithms were used
and each of the methods showed advantages and disadvan-
tages. The experimental results show that the accuracy of
the Random Tree algorithm based on k-Means is good in
classification of normal and attacks in 10-fold cross-validation
but not good in validation.

C. Smart Home IDS Supervised Learning approaches

Kamaraj et al. [11] analysed the potential overhead-savings
of ML-based anomaly detection models on the edge. The test-
bed included three Raspberry Pi 3 boards, which were used
as the edge devices, the cloud, and the interface to connect to
an energy measurement platform. Then, it was shown how
each anomaly detection model performed on each dataset
(scenario) with respect to both overhead and anomaly detection
accuracy. From the many tested anomaly detection models, the
authors asserted that Random Forest, Multilayer Perceptron,
and Discriminant Analysis models can viably save time and
energy on the edge device during data transmission.

Hasan et al. [4] analysed different types of vulnerabilities
detection algorithm in IoT sensors. The performance of several
ML models to predict attacks and anomalies on the IoT
systems was compared accurately. The ML algorithms that
were used in this work were LR (Logistic Regression), SVM
(Support Vector Machine), DT (Decision Tree), RF (Random
Forest), and ANN (Artificial Neural Network). Although these
techniques have the same accuracy, other metrics showed that
RF performs comparatively better.

D. Smart Home IDS Unsupervised Learning approaches

SPATIO [12] was proposed as an anomaly detection system
designed for the IoT, based on the stream processing approach.
The system accuracy reached close to 80% detection rate in
the best scenario. The fog approach showed advantages in both
network load and attack detection latency, in comparison with
the centralized approach.

Another recent IoT IDS based on Unsupervised Learning
models is IoT-NW (Neighbourhood Watch) [13]. In this solu-
tion, each device sniffs packets in the network and performs
feature extraction both at packet and flow level, along with the
device states and user presence detection, with the objective
to detect malicious interactions between them. The result is a
statistical model of the expected values for the RMSE (Root-
Mean-Square Error) of each Autoencoder. The authors of IoT-
NW claim that their system is capable of detection, but with
some delay.

E. Smart Home IDS Hybrid Learning approaches

Cramer et al. [14] described an approach for detecting
anomalous behaviour of devices by analysing their event data
with few or no numeric characteristics. The selected ML
models in this paper were the EE (Elliptic Envelope) and the
One-Class SVM algorithm. In this work, the EE was trained
as Supervised Learning and One-Class SVM as Unsupervised
Learning. According to the authors, the main benefits of
this approach were: the ability of creating an analysis work-
flow for specific use cases, which takes much less time in
comparison to using a general-purpose data mining tool and it
is easy to encode domain-knowledge into the analysis work-
flow.

Xiao et al. [15] presented IoT security solutions based on a
combination of ML techniques including Supervised Learning,
Unsupervised Learning, and Reinforcement Learning (RL) for
authentication, access control, secure offloading, and malware
detection schemes to protect data privacy. IoT devices usu-
ally have difficulty estimating the network and attack state
accurately and have to avoid attacks. A suggested potential
solution was Transfer Learning [7]. The authors stated that the
intrusion detection schemes based on Unsupervised Learning
techniques sometimes have misdetection rates that are non-
negligible for IoT systems. Additionally, the Supervised and
Unsupervised Learning sometimes failed to detect the attacks
due to oversampling, insufficient training data, and bad feature
extraction.

IV. STAKE

In this section we present our proposal, STAKE, that stands
for Secure Tracing of Anomalies using previous Knowledge
and Extensions. The tracing refers to the network traffic
capture and the previous knowledge refers to rules that can
be defined to recognise known attacks and enforce limits on
device traffic. The extensions refer to the plug-ins that can be
installed to detect unknown attacks.

3



A. Architecture

The baseline of this project is SPYKE [6], an open source
network gateway for Smart Home networks, that provides
monitoring between devices and remote servers, and also the
ability to block and limit unwanted connections. The gateway
runs on a off-the-shelf device2 between the user IoT devices
and the cloud service providers.

The STAKE components are represented in Figure 1. The
administrator has access to a web management graphical user
interface. The network capturer will intercept traffic of devices,
running in batch or stream mode. The captured data will be
stored in files and in a database. The plug-in manager is able to
handle both supervised and unsupervised learning approaches.

Fig. 1: STAKE components.

STAKE operates in four main phases: data collection, data
pre-processing, anomaly detection and result/output. The last
three phases are executed by plug-ins. Each ML model is
trained with data from the captured traffic archives. The goal
is to detect device operation anomalies, and to do so in near
real-time

B. Data Collection

In the first phase, STAKE captures incoming and outgoing
traffic. This data is stored in a persistent repository with
adequate indexing for retrieval.

The capture operation of the STAKE infrastructure is han-
dled by a libpcap3 tool, known as Scapy4. Parsing of the
capture file will be needed. The parser extracts statistics from
the packets and store the summary of the packets in database.
Packets received by the main server are then appended to a
file with the pcap extension.

C. Data Pre-processing

Data pre-processing has a significant impact on the per-
formance of the Supervised Learning models, since unreliable

2Raspberry Pi: https://www.raspberrypi.org/, accessed on October 12, 2020
3libpcap: http://www.tcpdump.org/pcap.html, accessed on March 15, 2020
4Scapy: https://scapy.readthedocs.io/en/latest/introduction.html, accessed

on March 15, 2020

samples probably lead to wrong outputs. One of the challenges
is to choose the features that best represent the user or the
system behaviour patterns so that anomalous behaviour will be
detected, whereas benevolent behaviour will not be wrongly
classified as anomalous. The main phase is divided in sub-
phases and sub-phases divided into steps.

1) Feature Extraction: This sub-phase can be done in two
steps: data integration and data cleaning. The data integration
combines data from multiple and heterogeneous sources into
one database. The second step should only be done when
using Supervised Learning algorithms, because removing the
noise would consequently remove Unsupervised Learning al-
gorithms purpose to detect anomalies.

Likewise, training a model with a dataset that has a lot
of missing values can also drastically impact the ML model
quality. The main solutions for missing values are removing
any event with missing features or impute the value of the
missing feature with mean, median or mode of the column.

2) Feature Selection: This sub-phase should only be per-
formed in Unsupervised Learning models when data normal-
ization or data dimensionality reduction is beneficial.

Feature Selection is done in two steps: data selection and
data transformation. The selection of features is expected
to reduce overfitting probability, improve model prediction
accuracy and reduce training time [3]. On the other hand,
underfitting occurs when the model or the algorithm does not
fit the data well enough.

Data selection allows the user to obtain a reduced repre-
sentation of the data set to keep the integrity of the original
data set in a reduced volume. Having a number of features
greater than the number of data points will make the ML model
overfit. Thus, for better model performance, down-sample of
large-scale events may be needed.

Data transformation is when the selected data is transformed
into suitable formats [14]. Before data can be processed within
ML models, there are certain data transformation steps that
must be performed. The goal of normalization is to change
the values of numeric columns in the dataset to a common
scale, without distorting differences in the ranges of values.

D. Anomaly Detection

This phase classifies and detects intrusions on a network.
In a Smart Home environment, learning the devices patterns
and/or behaviours is critical for attack prediction and intrusion
detection. These behaviours can explain data and predict
patterns [3].

An anomaly detection system is considered optimal when
[3]: returns a low count of False Positives and of False
Negatives; is easy to configure, tune and maintain; adapts to
changing trends in the data; resource-efficient and suitable for
real-time application.

In case of using a Supervised Learning model plug-in, it
learns from prior data on the first step and makes a prediction
about the future behaviour on the second step. On the other
hand, an Unsupervised Learning model plug-in is able to
perform the anomaly detection in a single step.

4



E. Result/Output

When using various types of ML plug-ins, having a unified
location for reporting and alerting can make a difference in the
value of security alerts raised. The auditing of alerts raised by
an anomaly detection system is important, since it enables the
ability to evaluate the system, as well as investigating False
Positives and Negatives [7].

V. EVALUATION METHODOLOGY

In our evaluation methodology, we have the STAKE per-
formance evaluation metrics, the hardware, the dataset, and
the exemplary plug-ins to demonstrate the functionalities of
STAKE to be used for evaluation.

A. STAKE Performance Evaluation Metrics

The metrics chosen to test the system were focused on
computational and time performance. We were interested in
answering the following questions about our system:

• “How much of the device CPU (%) is used when no plug-
ins are training, when training each plug-in individually
and when training both plug-ins simultaneously?”;

• “How much of the device RAM memory (%) is used
when no plug-ins are training, when training each plug-in
individually and when training both plug-ins simultane-
ously?”;

• “What is the average delay between the moment that
the packet is captured and when it is reported as an
anomaly via an alert from each plug-in when no plug-
ins are training, when training each plug-in individually
and when training both plug-ins simultaneously?”;

• “What is the difference between the time duration of
the model training when creating each plug-in and the
duration of the model training of each plug-in when
implemented on the system?”;

• “Does the plug-ins have the same scoring results when
implemented and re-trained in STAKE system?”;

B. Hardware

We implemented the system on a Raspberry Pi 4 model B,
with Raspbian operating system, installed in a 128 GB SD
card. This small single-board computer provides a network
interface card with 2.4 GHz and 5.0 GHz IEEE 802.11ac
WLAN (wlan0 adapter) protocol and a network interface via
cable with Gigabit Ethernet (eth0 adapter) up to 300 Mbps.

The devices that constitute the network are: a Smart Plug
model TP-Link-HS110, a Raspberry pi 4 Model B 4GB with
camera model v1 for video streaming, a Raspberry pi 4 Model
B 4GB to implement STAKE system, two Android smart
phones, one Android tablet, a laptop with Windows 10 Pro
operating system and a malicious laptop with Kali 2019.3
operative system to perform attacks in the network.

C. Dataset

The dataset is one of the critical elements to be used
on anomaly detection systems. The network was captured
during a period of one week, between 30/06/2020 19:23:04

and 07/07/2020 19:22:04. This captured dataset consists in a
total of 1158539 benign samples (labelled as ‘1’) and a total
of 93778 anomaly samples (labelled as ‘-1’). In other terms,
from 1252317 captured samples, 92% are benign and 8% are
anomalies

This set of anomaly samples contains a variety of network
attacks performed by the malicious laptop, such as: port scan-
ning, TCP SYN flooding, ICMP flooding and ARP spoofing.
The devices that had their ports scanned were: STAKE, the
Raspberry Pi video streamer and the Windows 10 Pro laptop.
The SYN and ICMP flooding victim devices were STAKE and
Raspberry Pi video streamer. At last, the ARP spoofing attack
was performed with the Raspberry Pi video streamer as the
victim device.

Regarding the protocols, every protocol is captured and
stored in the database. However, STAKE system only con-
siders the following packets: Ethernet, IP, TCP, UDP, ICMP
and ARP.

The main approach for feature selection was to only select
the packet fields that could give information of an anomalous
devices behaviour in an IoT environment, while excluding the
packet fields that return same, similar or no useful information
for anomaly detection.

The selected features from the Ethernet protocol are: source
Ethernet port, destination Ethernet port and Ethernet type field.
The selected features from the IP protocol were: source IP
address, destination IP address, encapsulated protocol type,
header length, ‘do not fragment’ flag, ‘more fragments’ flag,
‘reserved’ flag, , fragment offset value, time to live (TTL) and
type of service (ToS). The selected features from the TCP
protocol were: sequence number, acknowledgement number,
source port, destination port, packet flags, data offset value,
urgent pointer flag and window size. The selected features
from the UDP protocol were: source port, destination port.
The selected features from the ICMP protocol were: type and
code (subtype) of the icmp message. The selected features
from the ARP protocol were: hardware type, sender hardware
address, target hardware address, target protocol address, target
protocol address and operation code. At last, the extra selected
features were: packet payload, packet length and timestamp.

The features from the captured data that showed high
correlation (Pearson correlation coefficient over 0.95) were the
ARP features with the IP type field feature and between the
TCP fields.

D. Exemplary Plug-ins

We need to select plug-ins with different characteristics.
Thus, we decided to implement an Elliptic Envelope based
plug-in and a Random Forest based plug-in. This plug-in
choice was influenced by algorithms chosen by other works
in the literature [4], [5], [14], [15]. By observing the machine
model selection from the related works, it is noticeable the
trend for Random Forest algorithm approach in Smart Home
environment. On the other hand, even though Elliptic Envelope
is not that frequent as Random Forest, it has shown interesting
results.

5



1) Plug-in Evaluation Techniques: Regarding evaluation
techniques, we took into consideration the use of cross-
validation to evaluate the plug-in. This type of evaluation
method is commonly used when the goal of the algorithm
is prediction. In this method, the labeled data is divided into
k equal parts and it is trained k different models. Afterwards,
each model “holds out” a different one of the k parts and trains
on the remaining k–1 parts. The held-out part is then used
for validation. Additionally, grid search was also a considered
evaluation technique. Grid search is an exhaustive search
tuning technique that attempts to compute the optimum values
of hyper-parameters.

2) Elliptic Envelope: (EE) is an Unsupervised and Super-
vised algorithm, where data is distributed across an ellipse,
hence the name [16]. In our solution, we decided to develop
this model with an Unsupervised Learning approach, because
we are interested to observe if the anomalies can be detected
in an unlabeled training data setting. This algorithm models
the data as a high dimensional Gaussian distribution with
possible co-variances between feature dimensions. In other
words, it attempts to find a boundary ellipse that contains
most of the normal distributed data. Any data outside of
the ellipse is considered to be an anomaly. This algorithm
should be suitable in anomaly detection problems with the
time dimension excluded [7].

The EE algorithm has the advantage of using a robust
covariance estimator such as the MCD (Minimum Covariance
Determinant), which minimizes the impact of training data
outliers on the fitted model. MCD is able to discriminate
between outliers and inliers, generating a better fit that results
in inliers having small distances and outliers having large
distances to the central mode of the fitted model. EE is known
to fit reasonably well in a two-dimensional contaminated
dataset with a known Gaussian distribution, but not so well on
a non-Gaussian dataset [7]. When fitting a high dimensional
multivariate Gaussian distribution, the data is structured as
an hyper-ellipsoid. This increases the complexity of anomaly
detection, since anomalies are detected by a combination of
features.

3) Random Forest: (RF) classifier is, per definition, a Su-
pervised Learning algorithm. Unsupervised learning methods
are mostly preferred over Supervised Learning methods in
most cases for anomaly detection [7]. However, we considered
that researching a Supervised Learning algorithm behaviour in
the Smart Home environment would be interesting to observe.

Even though the RF classifier is known to fit real-world
data effectively [7], the algorithm is black-box regarding
the decision making processes, meaning that these processes
are completely opaque to an external observer. A noticeable
strength is that each randomized DT (Decision Tree) that
makes up the forest is independently created and can be
individually queried for the generation of the final prediction,
this conversely makes the classifier strongly scalable [7].

In comparison with the EE algorithm, the RF classifier can
be applied on a non-Gaussian anomaly contaminated dataset.
However, it must be taken into account that we must avoid

using very low-dimensional data with the RF classifier for
anomaly detection, since it might not be suitable because of
the small number of features on which we can perform splits,
which consequently can limit the effectiveness of the algo-
rithm. Furthermore, in contrast to EE, RF can be categorized as
an univariate or multivariate anomaly detection technique. In
the univariate anomaly detection category, the system looks at
each metric by itself, learning its normal patterns and yielding
a list of anomalies for each single metric. Often, in univariate
algorithms, it is difficult to perform root cause analysis of an
issue because it is hard to see the forest for the trees.

4) Specific Plug-in Evaluation Metrics: Apart from the
general Machine Learning evaluation metrics, specific evalua-
tion metrics for the selected plug-ins were considered. Thus,
for EE, it was performed a quality measurement of the plug-
in fitted model by calculating the distance between outliers
and the model’s distribution, using a distance function such
as Mahalanobis distance. It is an useful metric that measures
the distance between a point (vector) and a distribution. This
metric has applications in multivariate anomaly detection,
classification on highly imbalanced datasets and one-class
classification. This distance function transforms the columns
into uncorrelated variables, scale the columns to make their
variance equal to 1 and, finally, calculates the Euclidean
distance (equation 7).

Euclidian Distance =

√√√√ n∑
i=1

(qi − pi)2 (7)

In case of the RF plug-in, the MSE (Mean Squared Error)
(equation 8) measurement is commonly used, which represents
the average of differences between the observed and predicted
value.

MSE =
1

n

n∑
i=1

(yi − yi)
2 (8)

VI. RESULTS

In this section, we start by discussing the experiments
that involves prototype performance evaluation in terms of
computational and time resource. Afterwards, we present the
Elliptic Envelope and Random Forest plug-ins creation, and
the experiments done to optimize the models used.

A. STAKE

This set of testing involved the designed STAKE system
architecture and its developed prototype.

1) Performance Evaluation: For the STAKE system eval-
uations, it was considered that registering only one value
would not be a correct evaluation of the system performance.
Thus, the evaluation was performed by an average of 10
values during different periods of time while training different
combinations of plug-ins. These combinations were: no plug-
ins being trained, each plug-in trained individually (Elliptic
Envelope and Random Forest respectively) and both plug-ins
trained simultaneously.

6



From the results from table I, we can firstly observe that
the processor performance is not significantly affected when
training both plug-ins simultaneously. Thus, it is possible to
conclude that the processor is not heavily affected in threading
two plug-ins simultaneously. On the other hand, RAM memory
usage is noticeable increased.

TABLE I: STAKE average of 10 tests results performance evaluation.
EE = Elliptic Envelope and RF = Random Forest.

Component
Evaluated

Plug-ins
being

Trained

Average
Value

Minimum
Value

Maximum
Value

Processor
Usage

None 18,45% 0,0% 28,10%
EE 38,80% 25,20% 51,40%
RF 33,10% 25,00% 50,70%

EE & RF 39,85% 27,50% 51,00%

RAM
Memory
Usage

None 19,45% 13,70% 23,70%
EE 31,15% 22,40% 31,70%
RF 37,35% 31,20% 38,40%

EE & RF 48,35% 43,50% 53,00%
EE

Anomaly
Detection

Delay

None 2,19 s 1,14 s 8,02 s
EE 6,26 s 5,30 s 8,16 s
RF 8,47 s 3,12 s 28,36 s

EE & RF 5,38 s 4,14 s 44,15 s
RF

Anomaly
Detection

Delay

None 1,74 s 1,04 s 14,34 s
EE 5,51 s 4,30 s 8,49 s
RF 11,47 s 2,91 s 35,10 s

EE & RF 4,68 s 3,75 s 45,14 s

Regarding the anomaly detection delay results from each
plug-in, it was expected that the delay values were lower when
no plug-in was training. However, unexpectedly, the average
delay when training both plug-in simultaneously was lower
than training each plug-in individually. It is suspected that the
system and room temperature influenced these last results.

2) Plug-ins Implementation Evaluation: The next evalua-
tion performed were related to the Machine Learning model
training duration. This comparison was performed between
training duration when creating the plug-ins and training
duration when the plug-ins are implemented in the STAKE
system.

As we can observe from the results in the table II, the
training duration from the Machine Learning models when
implemented as plug-ins in the STAKE system were longer.

TABLE II: STAKE average of 10 tests plug-ins training duration
evaluation.

Plug-ins being Trained Plug-in creation
Training duration

STAKE Plug-in
Training duration

EE 0:34:41.71 0:40:59.27
RF 1:21:05.20 3:14:40.60

EE & RF 1:26:02.11 4:15:13.26

The suspected reason for this behaviour is that the values
were strongly influenced by the model complexity, system
temperature and room temperature. However, we believe that
the training duration would not deviate significantly from the
obtained results even in optimal temperature conditions.

B. Elliptic Envelope Plug-in

Since Elliptic Envelope does not rely on linear assumptions,
it was concluded that correlation features wouldn’t cause

issues. Additionally, since we had an Unsupervised Learning
approach with this model, data cleaning was not performed.
The next data engineering consideration was feature selection.
The Elliptic Envelope model is known to not work efficiently
with continuous data. Therefore, the timestamp feature was ex-
cluded for this model. Subsequently, data transformation was
considered. Given that the Elliptic Envelope model assumes
that the training data is Gaussian, the training data had to be
transformed into Gaussian values and normalized beforehand.

1) Hyper-parameters exploration: The main hyper-
parameter of this model, which was selected for optimization,
is the contamination percentage. The contamination parameter
indicates the percentage of anomalies found in the training
data. Regarding the others hyper-parameters, it was considered
that no change would be needed. Hence, the default values
for these hyper-parameters were used. Intuitively, it made
sense to use the contamination percentage equal to the
amount of anomaly samples in the data. The first test was
performed with a contamination percentage value equal to
the anomaly percentage of the training data. However, by
increasing the anomaly percentage by 5% in relation to the
contamination percentage, the accuracy increased by 10%.
Thus, it was considered a 5% margin for the contamination
hyper-parameter percentage in relation to the real anomaly
data percentage.

2) Initial Sampling Size Evaluation: Different amount of
samples were used to test the model behaviour, ranging from
10008 to 62381, with 20% contamination hyper-parameter
percentage and training data anomaly percentage between 20
and 25%. The n samples used for training, were the n last
captured packets from the dataset. From the obtained results,
we could state that using samples between 31155 and 43581,
with 20% contamination and 25% anomaly percentage was the
best option. However, we must also consider that the 18758
showed a more realistic behaviour in the relation between
the contamination hyper-parameter percentage and anomaly
percentage of the samples (20% used for both percentages).
Therefore, it was decided to evaluate the model behaviour in
regard to the contamination hyper-parameter percentage and
anomaly percentage of the samples with 18758, 31155 and
43581 samples.

3) Hyper-parameter and Anomaly Percentage Optimiza-
tion: After finding the range of possible optimal number of
samples (18758, 31155 and 43581), we then proceeded to
test the model according to different contamination hyper-
parameter percentage and anomaly percentage, in order to fur-
ther optimize the model. The contamination hyper-parameter
percentage and anomaly percentage used for testing ranged
from 5% to 45%. Anomaly percentages higher than 50%
was not considered, because the objective of the system is
to detect anomalies in the devices behaviour and not detect
the specific captured anomalies used in the model training.
The model demonstrated better results when using lower
percentage of anomalies and contamination hyper-parameter
percentage. This behaviour is logical because, the lower the
contamination hyper-parameter percentage, the smaller the

7



generated ellipse will be. Thus, when high contamination
hyper-parameter percentages are used, the risk of having high
amount of benign packets identified as anomalies will be
increasingly higher.

The tests using 5% contamination percentage with 18758,
31155 and 43581 samples showed good accuracy results. How-
ever, these tests demonstrated excessively high false positive
rate. It was concluded that further model optimization was
required. Therefore, it was decided to evaluate the model again
according to the different number of samples, but this time
using 5% contamination hyper-parameter percentage on all
tests. From the 5% contamination hyper-parameter percentage
sampling testing, we were able observe that the model has a
tendency of having high false positive rates. High false posi-
tive rates are common in Unsupervised Learning algorithms.
However, false positive rate should be minimized, since if it
is excessively high, the administrator is forced to investigate
each packet, which removes the point of the system.

4) Extra Optimization: The first considered solution was
to reduce the number of used features. It was suspected that
the Elliptic Envelope algorithm was struggling in generating
an efficient hyper-ellipsoid for anomaly detection. However,
reducing the number of features has the risk of excluding
the possibility of detecting anomalies from those specific
removed features. Therefore, it was considered the use of
PCA (Principal Component Analysis) as alternative. PCA is
a dimensionality-reduction method that is used to reduce the
dimensionality of large data sets, while retaining most of
information from the large set.

The use of PCA to transform the training data into 2 di-
mensions demonstrated benefits in reducing the model training
duration and reducing the high positive rate between 5%-
15%. The Elliptic Envelope algorithm has the inherent problem
of result inconsistency when using data with more than 2
features. However, when transforming the data with PCA into
2 dimensions, the results became reproducible. An additional
PCA benefit, is that the PCA simplifies the representation
(figure 2) of the generated ellipse. The representation of the
generated hyper-ellipsoid was not previously possible because
of the data high dimensionality.

From the plots from the figure 2, we can observe that the
difference between benign and anomaly are too ambiguous for
the model to behave efficiently. The benign and anomalous
samples are too similar for the algorithm to generate an
efficient ellipse that separates both classes. Therefore, it was
considered that the Elliptic Envelope algorithm is not able to
fit well in this specific environment.

C. Random Forest Plug-in

The dataset featurizes each of the protocols. However, this
come at the cost of having missing values. For example, UDP
features will be empty in case of featurizing a TCP packet. For
that reason, instead of deleting instances with missing data, the
missing data is filled with zeros.

Another consideration is the data balancing. Random For-
est is a tree-based model, which uses information gain/gini

Fig. 2: Elliptic Envelope ellipse generation representation with
43581 samples, 5% contamination hyper-parameter and 5% anomaly
percentage, using PCA 2 dimensional transformation. The blue dots
represent benign samples and the red dots represent anomalous
samples.

coefficient inherently, hence does not require feature scaling.
The next consideration was feature selection. Continuous data
makes the Random Forest algorithm generalize poorly, as
a consequence, it overfits the model citeBOOK-DT-ML-CS.
Therefore, the timestamp feature will also be excluded for
this model.

The Random Forest model requires the training data to
be numerical. Hence, conversion of the categorical data to
numerical was performed with Label Encoding.

1) Hyper-parameters exploration: Before analysing the
model behaviour according to the amount of samples used
and before comparing both data transformation methods,
model hyper-parameters should be explored beforehand. The
hyper-parameters available for the Random Forest model
are: n estimators, criterion, max depth, min samples split,
min samples leaf, min weight fraction leaf, max features,
min impurity decrease, min impurity split, bootstrap,
oob score, n jobs, random state, warm start, class weight,
ccp alpha and max samples. Taking into account the
extensive set of hyper-parameters, hyper-parameter selection
was recommended. The hyper-parameter selection criteria was
based on parameter importance and how much it influences
the model.

The selected hyper-parameters for model optimization are:
The n estimators, which indicates the number of trees in the
forest. Usually the higher the number of trees the better to
learn the data. However, adding a lot of trees can slow down
the training process considerably; The max depth parameter
defines the max number of levels in each decision tree. The
deeper the tree, the more splits it has and it captures more
information about the data; The min samples split equals the
minimum number of samples required to split an internal
node. When we increase this parameter, each tree in the forest
becomes more constrained as it has to consider more samples
at each node; The min samples leaf parameter is similar
to min samples split, however, this describe the minimum
number of samples at the leafs, the base of the tree; The
max features specifies the number of features to consider
when looking for the best split, it can be defined by a float or
integer numerical value, a square root function or a logarithmic
function; The bootstrap denotes the method for sampling

8



data points (with or without replacement). If bootstrap is set
to “false”, the whole dataset is used to build each tree. If
bootstrap is set to “true”, it means that some samples will be
used multiple times in a single tree. The rest of the hyper-
parameters are set with default values.

2) Hyper-parameter Behaviour Analysis: Each of the
hyper-parameters was then evaluated with hyper-parameter roc
plots using a set of different values. This hyper-parameter
evaluation was performed with samples ranging from 8753
to 99881, all with 25% of anomalies and 33% split for test
data. The n samples used for training, were the n last captured
packets from the dataset. By analysing these plots, we were
able to discover the best set of values to avoid both under
and overfitting. The amount of samples that showed promising
results from the plots were 43581 and 62381.

The range of values inside the dark green dashed boxes
from each hyper-parameters evaluation plots (figures 3, 4 and
5) represents the ideal range selection for model complexity.
For the grid search, with the objective to optimize the model
and find the best hyper-parameter value combination while
avoiding underfitting and overfitting. The only static hyper-
parameter from the grid is bootstrap, this parameter is set as
“false” because we desire to use all the samples in the data
and avoid missing detecting any anomaly.

Fig. 3: Random Forest max depth and max features hyper-
parameters evaluation with 43581 samples.

Fig. 4: Random Forest min samples leaf and min samples split
hyper-parameters evaluation with 43581 samples.

3) Anomaly Percentage Optimization: The selected amount
of samples for grid search and anomaly percentage analysis
was 43581 and 62381, using 33% split for test data and 5
fold cross validation. Similar to the Elliptic Envelope model,
anomaly percentage higher than 50% was not considered
because the objective of the system is to detect all types of
anomalies in the devices behaviour and not detect the specific
captured anomalies used in the training data. However, every
results did overfit using grid search, achieving accuracies over

Fig. 5: Random Forest n estimators hyper-parameter evaluation with
43581 samples.

99%. It is noticeable that the Random Forest model overfits
for large depth values. The trees perfectly predicts all of the
training data, however, it fails to generalize the findings for
new data. Therefore, it is required to control the complexity
of the trees in the forest, or even prune when they grow too
much. Thus, from the grid search results, it was decided to
use static parameters to avoid overfitting and generalize the
findings for new data as much as possible. The chosen hyper-
parametrization for the Random Forest were: bootstrap=False,
max depth=2, max features=10, min samples leaf =10,
min samples split=20 and n estimators=20.

The results with the chosen hyper-parametrization demon-
strated highest accuracy using 62381 samples with 25%, 30%
and 35% anomaly percentages. In addition, the test results
with 43581 samples with 40% and 45% anomaly percentages
also demonstrated high accuracy. However, these tests showed
hyper-parametrization overfitting. Therefore, these configu-
rations settings were excluded for Random Forest plug-in
creation.

Furthermore, tests ID showed that using anomaly percent-
ages below 25% underfitted the model. This underfitting was
observable both on the evaluation scoring metrics. Therefore,
they were also excluded.

The remaining tests are the configuration settings with
43581 samples and anomaly percentages between 25% and
35%. Since all of them showed similar results, further score
evaluation was required. Even though all these previous model
configurations could be used for the Random Forest plug-in
creation, the configuration with 30% anomaly percentage was
selected because it has a middle ground anomaly percentage,
which theoretically increases the probability of data flexibility
in case the network changes its behaviour.

D. Plug-ins Re-training Evaluation

The last evaluation was the plug-ins training result compar-
ison between plug-in creation results and plug-in implemented
in STAKE system results. Since the system is capturing in real-
time and changes in the data are expected, the only difference
between these two situations will be the data used for training.
The data used to train each plug-in in the STAKE system
was: the original training data, plus one day of capture while
the plug-in anomaly detection was active. This testing was
performed individually, for each plug-in, with the objective to
avoid that one plug-in would affect the other final results. All

9



the other procedures performed and configurations sets used
were exactly the same as the ones used during plug-in creation.

TABLE III: Elliptic Envelope plug-in creation training and STAKE
implementation training results comparison.

Test
ID Accuracy Recall Precision F-score

False
Positive

Rate
Creation 93,9% 96,8% 96,8% 96,8% 60,8%
STAKE 90% 94,7% 94,7% 94,7% 100%

TABLE IV: Random Forest plug-in creation training and STAKE
implementation training results comparison.

Test
ID Accuracy Recall Precision F-score

False
Positive

Rate
Creation 96,7% 98,6% 97,4% 98% 10,9%
STAKE 100% 100% 100% 100% 0%

Both Elliptic Envelope and Random Forest plug-in training
results worsen when re-trained in STAKE system. Even though
it was expected for the Elliptic Envelope to have inconsistent
results with data changes, it was unexpected for the Random
Forest to overfit because training process was exactly the same
and this model is known to obtain consistent results. It was
evident that the plug-ins were overly optimized for the specific
trained data and not configured for flexibility.

VII. CONCLUSION

In this work, we developed STAKE, a gateway to deploy
in a smart home network between the smart devices and the
Internet. The system, demonstrated flexibility in implementing
different types of plug-ins. Even though some adjustment was
required for each plug-in, this could be easily and quickly
performed in the user interface.

In addition, the hardware used for evaluation demonstrated
being efficient in threading the local HTTP server hosting,
data collection (packet capturing), plug-ins training and plug-
ins anomaly detection processes. The hardware evaluation
results shows that the CPU is able to thread all the processes,
along with multiple plug-ins, without being strongly affected
by it. The system demonstrated being capable of announcing
anomalies in a timely manner, even when training two plug-
ins simultaneously. The most affected hardware element, even
though moderately, was the RAM memory.

Regarding the plug-ins re-training in the system, the results
were disappointing. On the contrary from the plug-in creation
results, when the plug-ins were implemented in the system,
each of the plug-ins behaviour and results deteriorated. Due to
the high false positive rate in the Elliptic Envelope plug-in, we
suspect that the model will affect the system negatively. The
difference between benign and anomaly will be less clear over
time. Thus, the model performance will deprecate significantly
on the following trainings.

The results of the Random Forest model during plug-in
showed potential in anomaly detection efficiency. The biggest
perceived challenge with this model was to avoid overfitting.
However, this was expected because it is a common problem

with this model. For this model to work the most efficiently
possible, there must be a clear dissimilarity between benign
and anomalous behaviour. This implies that the Random Forest
plug-in will work very efficiently if the devices behaviour does
not change frequently and if the dataset is not heavily affected
by false positive and/or false negatives.

Hence, for good re-training results, a plug-in with a flexible
and reproducible model or integrating human feedback will
need to be considered for future work. A human feedback
can be used to fine tune the global comprehension of the
anomalies, while preserving the efficiency of the system and
plug-ins [3].

REFERENCES

[1] C. Hosmer, Defending IoT Infrastructures with the Raspberry Pi.
Apress, 2018.

[2] S. Zheng, N. Apthorpe, M. Chetty, and N. Feamster, “User percep-
tions of smart home IoT privacy.” https://dl.acm.org/doi/pdf/10.1145/
3274469?download=false: Princeton University, USA, Nov. 2018.

[3] S. Dua and X. Du, Data Mining and Machine Learning in Cybersecurity.
Taylor and Francis Group, LLC, 2011.

[4] M. Hasan, M. Islam, I. I. Zarif, and M. Hashem, “Attack and
anomaly detection in IoT sensors in IoT sites using machine learn-
ing approaches.” https://www.sciencedirect.com/science/article/pii/
S2542660519300241: Internet of Things Research Lab, Department of
Computer Science and Engineering, Mar. 2019.

[5] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning
ddos detection for consumer internet of things devices.” https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8424629: Depart-
ment of Computer Science Princeton University Princeton, New Jersey,
USA, 2018.

[6] S. Wang, M. L. Pardal, and R. Claro, “Spyke: Security proxy with
knowledge-based intrusion prevention.” http://web.tecnico.ulisboa.pt/
∼miguel.pardal/www/pubs/2019 Wang Pardal INForum SPYKE.pdf:
Instituto Superior Técnico, Universidade de Lisboa, Dec. 2019.

[7] D. F. Clarence Chio, Machine Learning and Security. O’Reilly Media,
Inc., 2018.

[8] D.-R. Berte, “Defining iot,” 05 2018.
[9] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin, “A comparative

study of deep learning-based vulnerability detection system.” https://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8769937: National
Key Research and Development (R&D) Plan of China, Jul. 2019.

[10] Y. Aung and M. Min, “Hybrid intrusion detection system using k-
means and random tree algorithms.” https://ieeexplore.ieee.org/abstract/
document/8441094: University of Computer Studies, Mandalay Man-
dalay, Myanmar, Jun. 2018.

[11] K. Kamaraj*, B. Dezfouliy, and Y. Liuz, “Edge mining on IoT devices
using anomaly detection.” http://www.apsipa.org/proceedings/2019/
pdfs/295.pdf: Internet of Things Research Lab, Department of Computer
Science and Engineering, Nov. 2019.

[12] G. de Oliveira and V. Mouta, “Spatio: end-user protection against IoT
intrusions.” Instituto Superior Técnico, Universidade de Lisboa, Oct.
2019.

[13] P. E. Carmo and M. L. Pardal, “IoT neighborhood watch: device
monitoring for anomaly detection.” http://web.tecnico.ulisboa.pt/
∼miguel.pardal/www/pubs/2019 Carmo Pardal INForum
NWatch.pdf: Instituto Superior Técnico, Universidade de Lisboa,
Dec. 2019.

[14] I. Cramer, P. Govindarajan, M. Martin, A. Savinov, A. Shekhawat,
A. Staerk, and A. Thirugnana, “Detecting anomalies in device
event data in the IoT.” https://pdfs.semanticscholar.org/7e3c/
9790f6ff6fe2fcbe691ca21a5113a4c25814.pdf: Bosch Software Innova-
tions GmbH, IoT Analytics, Mar. 2019.

[15] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques
based on machine learning: How do IoT devices use ai to enhance
security?” https://ieeexplore.ieee.org/abstract/document/8454402: Uni-
versity of Computer Studies, Mandalay Mandalay, Myanmar, 2018.

[16] A. Ekholm and A. Avdic, “Anomaly detection in an e-transaction system
using data driven machine learning models,” http://www.diva-portal.org/
smash/record.jsf?pid=diva2%3A1335216&dswid=-7153, 07 2019.

10


