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Resumo

Nos últimos anos, o interesse por nano-satélites tem vindo a crescer. Entre a tecnologia envolvida

nestes veı́culos, é de destacar o sistema de determinação e controlo de atitude (ADCS). Uma partic-

ularidade dos projetos espaciais prende-se com a dificuldade em testar as tecnologias num ambiente

que simule as condições a que o veı́culo estará sujeito. O principal objetivo desta dissertação é de-

senvolver um protótipo que permita testar os sistemas de ADCS desenvolvidos no âmbito do projeto

NANOSTAR. Para isso, um ADCS que utiliza rodas de momento e ”magnetorquers” é considerado. A

determinação da atitude é baseada em medidas de um giroscópio, magnetómetro e acelerómetro. As

rodas de momento são usadas para direcionar o satélite na direção Nadir. Dois controladores ótimos

em regime estacionário são considerados, um controlador LQR e um controlador LQR com ação inte-

gral. Os ”magnetorquers” são usados para ”detumbling” e descarga de momento. Três algoritmos de

estimação são considerados, dois dos quais baseados em filtros de Kalman, um deles formulado em

ângulos de Euler e o outro em quaterniões. O terceiro filtro é baseado na técnica SLERP. Os algoritmos

são testados num ambiente de software que simula de forma realı́stica as condições a que o satélite

estará sujeito no espaço. De seguida, o design de uma plataforma de testes e de um protótipo de um

CubeSat são descritos. Resultados referentes ao desempenho do sistema ADCS são apresentados

tanto no ambiente de simulação como no ambiente experimental.

Keywords: Nano-satélites, Controlo Ótimo, Filtros Complementares, Ensaios em Voo
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Abstract

There is a recent growth on the interest for nanosatellites. A key particularity of space projects is the

difficulty to test the technologies in a realistic environment before the mission is deployed. The Attitude

Determination and Control System (ADCS) is a critical subsystem in a nanosatellite. The main goal of

this thesis is to help the NANOSTAR project to overcome this difficulty by designing a ground proto-

type to test the ADCS system and provide grounded studies on the attitude control and determination

algorithms that can be employed in the missions. To this end, a low-cost ADCS is projected, having

momentum wheels and magnetorquers as actuators. Attitude estimation is based on vector measure-

ments provided by a magnetometer, rate gyroscope and accelerometer. Two optimal control strategies

are used for Nadir pointing using the momentum wheels, namely an LQR controller and an LQR con-

troller with integral action. Detumbling and momentum dumping are accomplished through the use of

magnetorquers. Three estimation filters are considered, two based on Kalman filtering, one of them

formulated on Euler angles and the other on quaternion. The third filter is based on the SLERP tech-

nique. The control and estimation algorithms are tested in a software simulation platform that describes

the space environment realistically, allowing orbit generation and propagation. Then, a test bench and a

CubeSat prototype are desgined and built, allowing to test the algorithms on ground, thus reducing the

risk of failure. Results for the ADCS system performance are presented both from the simulation and

the experimental environments.

Keywords: Nanosatellites, Optimal Control, Complementary Filters, Ground-testing
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Chapter 1

Introduction

1.1 Motivation

As of 2020 October 4, arround 1417 nanosatellites have been launched by 518 companies in 68 coun-

tries. In the next 6 years, 2500 more will be launched [1]. In here, the term nanosatellite also encom-

passes CubeSats, Picosatellites, and other small satellites. Strictly speaking, the term nanosatellite is

used to describe small satellites between 1 and 10 Kg. The term small satellite is used to describe

satellites under 500 Kg [2]. Three small satellites were the first to be launched between 1957 and 1958,

beginning the space age: Sputnik, Explorer and Vanguard [3].

A particularly relevant type of small satellite is the CubeSat. In 1999, California Polytechnic State

University and Stanford University developed this new class of satellite with educational purposes [4].

The motivation was to provide students with hands-on experience, allowing them to work on the entire

life-cycle of a space project. This motivation required that the development, launching and operation

costs were kept as low as possible, which led to project standardization, the use of Commercial Off-

The Shelf (COTS) components and the reduction of the number of tests. Later, it became evident

that the CubeSats could be used for other purposes rather than education. CubeSats are used for

testing technologies and science missions such as those related to astronomy, space weather and Earth

observation [5].

The Attitude Determination and Control System (ADCS) is a critical subsystem in a nanosatellite [6].

Only 20% of pico and nanosatellites are left tumbling free in space. Most of the times, the system is

used simply for rotation damping. This is important for maintaining a reliable power generation and com-

munications link. About 15% of pico and nanosatellites are equipped with control to point an instrument,

generally a nadir pointing camera or a radiation detector pointing along the magnetic field lines. The

involved control algorithms and technologies are rather simple when compared to larger satellites and

one should not expect more than a rough pointing capability.

A key particularity of space projects is the difficulty to test the technologies in a realistic environment

before the mission is deployed. This is due to the fact that the conditions in space are much different

from those on Earth, namely in what concerns the atmosphere and gravity. To overcome this difficult,
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the ADCS are tested in a computer simulation against realistic models of the conditions it will be subject

to when in orbit.

Nevertheless, ADCS development, sensor integration, precision pointing algorithm validation, hard-

ware in the loop verification and performance verification of momentum exchange devices can largely

benefit from ground testing [7]. This reduces the risk of failure, by allowing the algorithms to be tested

at an earlier stage. Since the beginning of the space race, air bearing based platforms have been used

as testbeds for simulating the spacecraft torque-free conditions in space. An air bearing provides an

environment as close as possible to that of space, and for this reason it is the preferred technology for

ground-based research in spacecraft dynamics and control [8].

As far as the author is aware, there is no such an air-bearing as the one proposed in this work in

Portugal yet. Furthermore, space education activities in Portugal lack a more hands-on experience such

as the one that is provided in other countries. The main goal of this thesis is to build a low-cost air-

bearing based testbed and use it to test the ADCS subsystem of a 1U CubeSat functional prototype,

thus validating the technology and providing the know-how to continue with the development of a facility

for ground testing of CubeSats.

Although primarily designed for educational purposes, this testbed application reaches beyond it to

any payload onboard a nanosatellite requiring attitude control. The testbed allows any ADCS containable

withing the 1U standard to go through testing prior to launch. This allows to assess the stability and

pointing accuracy.

1.1.1 The NANOSTAR Project

The NANOSTAR Project [9], funded by the Interreg Sudoe Programme, aims at using the nanosatellite

standard in Southern Europe universities and companies to attract the best students and engineers.

This experience and the network that comes from the consortium of universities, aerospace clusters

and ESA Business Incubation Centres provides the conditions for developing the nanosatellite sector in

France, Spain and Portugal.

The training is to be provided through student challenges, which are specific problems related with

the design and development of small satellite missions. There are two types of challenges: the pre-

design challenges and the detailed design challenges [10].

Space mission predesign challenges are competitions in which teams of university students develop

their design solutions to satisfy a set of mission requirements using the NANOSTAR Software Suite

(NSS). Students are assisted by faculty members in the process of creating a satellite mission coopera-

tively in the framework of concurrent engineering.

This thesis is framed within the context of the Detailed Design Challenges. These are research

based challenges in which an institution offers specific challenges on the detailed design, development

and testing of nanosatellite components.

Up to now, two Space Mission Predesign Challenges were launched, one in February and the other

in September 2019. In October 2019, each institution started offering specific Detailed Design and Test
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Challenges. This work is one of the 38 active challenges as of November 30.

1.2 Topic Overview

Satellites are classified based on their applications, orbits, mass, etc. The mass-based classification is

useful since in different classes different technologies are usually employed. The classification ranges

of mass vary with organizations. The one in Tab. 1.1 is used by many of them [11].

Class Mass (Kg)
Large Satellite >1000
Medium Satellite 500 - 1000
Small Satellite <500
Minisatellite 100 - 500
Microsatellite 10 - 100
Nanosatellite 1 - 10
Picosatellite 0.1 - 1
Femto-satellite <0.1

Table 1.1: Classification of satellites.

The segment of nanosatellites has shown an incresing popularity and growth [1] due to the lower

costs of development and the way they are launched into space. As opposite to traditional satellite

launching logic, in which no more than a few satellites are launched by vehicle, there is a greater number

of nanosatellites launched by a single vehicle. That, combined with the intense use of the International

Space Station (ISS), significantly reduced the costs of deploying a satellite into orbit. These aspects

granted easy access to space for a significant number of private companies [5].

CubeSats are a particular type of nanosatellite (or microsatellite in some cases), following The Cube-

Sat Design Specification (CSD) [12], created in 1999. A CubeSat is made up of multiples of units,

denoted as ”U”, each unit consisting of a 10 cm cube with a mass of up to 1.33 kg. The most used

configuration is 3U [5], but there are several other configurations such as 1U, 2U, 6U and so forth, as

depicted in Fig. 1.1.

Figure 1.1: CubeSat configurations.From [13].

Attitude determination of a spacecraft means determining its orientation in space with respect to a

given reference frame. There are static and recursive attitude determination methods. Static methods

are memory-less, meaning that each time the attitude is determined is independent from the others,
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ignoring statistical properties of the attitude measurements. The most used static attitude determination

methods are, by chronological order: the TRIAD algorithm [14]; Davenport’s solution to the Wahba’s

problem [15]; the QUEST algorithm [16]. Recursive attitude determination methods take advantage

from past measurements to provide more accurate solutions and allow for estimates with less than

two measurements. The most popular recursive algorithm is the Kalman Filter [17]. Other methods

include the Extended Kalman Filter and the Recursive QUEST [17]. Cascade observers such as the

one introduced by Batista, Silvestre and Oliveira in [18] can also be used for attitude determination.

Spacecraft attitude control is less well documented than attitude determination. However, a good

review on the history of attitude control can be found in [19]. Early satellites in the 1950s-60s did not

have any kind of pointing requirements. Spacecraft attitude stabilization methods can be divided into

two types. Passive stabilization techniques such as Gravity Gradient stabilization, Passive Magnetic

Stabilization, and Aerodynamic stabilization in Low Earth Orbit take advantage of the geometric and

magnetic design of a satellite and the orbit properties to passively provide attitude stabilization and

rough pointing. As on-board computers became more capable, more demanding pointing requirements

became achievable, shifting the design of spacecraft control systems towards active control, namely

three-axis stabilization. For CubeSats, magnetorquers are often the primary actuator for attitude control

due to their simplicity and low cost [20]. Nowadays, designs adopting reaction / momentum wheels as

primary actuators and magnetorquers for momentum dumping are being increasily adopted for better

pointing accuracy.

Air bearing based platforms can be divided into 3 types.

Planar platforms provide two translational degrees of freedom and oftentimes also one rotational

(vertical spin) [8]. These platforms usually carry their own compressed air tanks and create an air

cushion, providing almost frictionless planar sliding motion on a flat surface. Vertical spin motion can be

added using a reaction wheel or compressed air thrusters. Planar platforms are of great interest to test

docking and rendezvous operations as in the case of this MIT platform [21] or the Naval Postgraduate

School Space Robotics Laboratory [22].

Rotational systems aim at providing a frictionless rotational movement. Depending on the geometry

of the platform, the pitch, yaw or roll rotations may be limited. Tabletop systems consist of a table

attached to a spherical air bearing. Umbrella systems have a cylindrical bar connecting the table to

the spherical air bearing. These two guarantee full freedom yaw rotation and limited pitch and roll

rotations. Lastly, the dumbbell systems guarantee full freedom yaw and roll rotations and limited pitch

rotation. Examples for the tabletop, umbrella and dumbbell systems can be found on [23], [24] and [25]

respectively.

The last type are combinational systems that often provide 5 to 6 degrees of freedom. The Marshall

Space Flight Center’s Flight Robotics Laboratory provides 6 DOF [26]. The Advanced Autonomous

Multiple Spacecraft (ADAMUS) laboratory’s platform provides 6 degrees of freedom (DOF) [27] and

also guarantees dynamical reproduction of motion about the 6 DOF. The attitude stage of this platform

provides full 360 degrees of yaw freedom, but only ±45 about the pitch and roll motions.

The air-bearing-based platform developed under the scope of this thesis is classified as a rotational
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system. However, it does not fit into any of the three classical geometries previously described. It

consists of an empty spherical air bearing. Inside it, one can fit any 1U CubeSat and test its ADCS.

1.3 Problem Statement

The efforts placed on this master thesis can be divided into four challenges. Firstly, attitude control

and determination methods are developed for the selected set of actuators and sensors. Then, these

algorithms are tested against a MATLAB/Simulink simulation environment that realistically describes the

conditions the spacecraft will be subject to in space. A 1U CubeSat functional prototype is designed and

built allowing for the test of the algorithms in the air-bearing-based testbed. Lastly, a testbed for ground-

testing of 1U CubeSats is designed, built and tested. Experiments on the control of the yaw angle are

conducted in order to validate the developed technology, setting the foundations for future work.

The testbed was developed following an Agile methodology (see appendix D). A CubeSat prototype

is to be built, along with a testbed able to provide 3 Degrees Of Freedom (DOF) and full 360º rotation

around the 3 axis. Previous work on the development of a functional CubeSat three-axis simulator with

full 360º freedom of rotation around the 3 axis has been done by [28] and [7], but neither have fulfilled

the task of having a functional platform. On 2014, EyasSAT demonstrated a three degreee of freedom

CubeSat Air Bearing for classroom purposes, designed in cooperation with the United States Air Force

[29]. Inspired on this work, the design and development of an unrestricted satellite motion simulator with

a variable inertia model can be found in [30].

The testbed is required to have disturbance torques at most of the same order of magnitude of

those those present in space. Requirements for the Attitude Determination and Control System (ADCS)

include a pointing accuracy of 20º and a limit angular rate of 5º/s. Also, the satellite should be able

to stop tumbling from at least 30º/s. These are the ADCS requirements established for the ISTsat-1

satellite [31] and are the baseline for the present work.

1.4 Thesis Outline

This thesis aims at providing the NANOSTAR project with grounded studies in ADCS algorithms that

can be employed in the missions designed under the scope of the project. For that, a MATLAB/Simulink

simulation environment is developed, allowing the algorithms to be tested against a simulation platform

that realistically describes the nanosatellite environment, including orbit generation and propagation.

Then, a test bench and a CubeSat prototype are built, allowing for the algorithms to be tested on the

ground.

The work developed under the scope of this dissertation is documented in the following chapters:

• Chapter 2 provides the technical background on attitude representations, the reference frames

commonly used in space applications, the equations that describe orbital motion, the attitude dy-

namics and kinematics of a spacecraft and a model for the environmental forces and torques acting
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upon a spacecraft in space;

• Chapter 3 documents the theory behind the attitude determination and control methods used in

this work;

• Chapter 4 focuses on the design of the CubeSat functional prototype and the testbed, providing

the rationale for the different design choices that led to the final configuration;

• Chapter 5 addresses the implementation of the Attitude Determination and Control System (ADCS)

presented in chapter 3, the simulation environment based on equations from chapter 2 and the

code deployment and communication protocols involved in the project;

• Chapter 6 describes and presents the results of the simulation case scenarios used for testing the

ADCS algorithms;

• Chapter 7 presents the experimental results of the testbed and ADCS algorithms validation;

• Chapter 8 recaps the work performed with remarks and ideas for future work.
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Chapter 2

Theoretical Background

2.1 Attitude Representations

To find a model that accurately represents a rigid body, namely, a spacecraft, one needs to find a way

to represent the orientation of the body. One way to achieve this is to represent the orientation by the

rotation that brings the spacecraft body frame to some reference frame. This means that we need to find

a rotational axis and an appropriate rotational angle that rotates one given frame (X, Y, Z) to another

given frame (x, y, z).

The attitude of a spacecraft is treated in this work as a mathematical concept. The attitude of a

spacecraft belongs to the group of rotation matrices, the Special Orthogonal Group SO(3) = {A ∈

O(3) : det(A) = 1}.

2.1.1 Euler Angles

Euler angles represent a rotation by a series of rotations about the described coordinate, i.e., first the

frame is rotated at an angle γ around the Z axis, then it is rotated at an angle β around the Y axis and

finally it is rotated at an angle α around the X axis.

Figure 2.1: Rotations arround each axis. Adapted from [32].

The rotation matrix from the (X, Y, Z) frame to the (x, y, z) is obtained by multiplying the correspond-

ing 3 rotation matrixes:

AZYX(γ, β, α) = AX(α)AY (β)AZ(γ). (2.1)
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There is a one-to-one correspondence between Euler angles and rotation matrices only if the Euler

angle domains are restricted, e.g. to 0 ≤ α < 2π, 0 ≤ β ≤ π, 0 ≤ γ < 2π.

Euler angles have an intuitive interpretation, however they have the disadvantage of presenting a

mathematical singularity. Quaternions are an alternative to overcome the singularity.

2.1.2 Axis-Angle representation

Any rotation represented by a rotation matrix A can be represented by a rotation about a fixed axis, e,

as stated by Euler’s theorem. The angle of rotation is denoted by α. Denoting the rotation matrix by

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (2.2)

the rotation angle can be obtained from

cos(α) =
1

2
(A11 +A22 +A33 − 1). (2.3)

If sin(α) 6= 0, the rotation axis e, with |e| = 1 is defined by

e =
1

2sin(α)


A23 −A32

A31 −A13

A12 −A21

 . (2.4)

The general rotational matrix can be expressed as

A = cos(α)I + (1− cos(α))eeT − sin(α)S(e). (2.5)

where S(.) is the skew-symmetric function that represents the cross product as defined in appendix A.

A is also called Direction Cossine Matrix.

This equation shows that the rotation matrix is a periodic function (with period 2π) of the rotation

angle. Also, note that a rotation by α around e is equivalent to a rotation of −α around -e.

2.1.3 Quaternion

Quaternion represent a rotation by a rotational angle around a rotational axis, which is not necessarily

X, Y or Z. The concept was first introduced by the Irish mathematician William Rowan Hamilton in 1843.

The mathematical development of the quaternion concept can be found on the appendix A.

In aerospace engineering one always use a special normalized quaternion:

q̄ = q0 + q = cos(
α

2
) + esin(

α

2
). (2.6)

where e is the rotational axis and α is the rotational angle.
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The quaternion rotation operator is a linear operator that rotates a vector by an angle α around e:

w = q̄⊗ v ⊗ q̄∗ = (cos2(
α

2
)− sin2(

α

2
))v + 2(q.v)q + 2q0(q× v). (2.7)

Successive rotations can be easily computed by equation A.16.

The attitude matrix can be computed from the quaternion by equation A.14.

The derivative of a quaternion is given by

dq̄
dt

= q̄(t)⊗ (0 +
1

2
w(t)). (2.8)

where Ω(t) = dα
dt is a scalar, w(t) = e(t)Ω(t) is a vector and (0+ 1

2w(t)) = 1
2 (0, w1, w2, w3) is a quaternion.

This can also be represented as


q̇0

q̇1

q̇2

q̇3

 =
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0

w1

w2

w3

 . (2.9)

Quaternion can be obtained from the Euler angles, (ψ, θ, φ), for a 3-2-1 sequence (also known as

Tait-Bryan angles) by the following expression


q0

q1

q2

q3

 =


cos(φ/2)cos(θ/2)cos(ψ/2) + sin(φ/2)sin(θ/2)sin(ψ/2)

sin(φ/2)cos(θ/2)cos(ψ/2)− cos(φ/2)sin(θ/2)sin(ψ/2)

cos(φ/2)sin(θ/2)cos(ψ/2) + sin(φ/2)cos(θ/2)sin(ψ/2)

cos(φ/2)cos(θ/2)sin(ψ/2)− sin(φ/2)sin(θ/2)cos(ψ/2)

 . (2.10)

The quaternion rotational error is defined as in [33]

δq̄ = q̄⊗ q̄−1
r , (2.11)

where q̄−1
r is the quaternion inverse of the reference quaternion. δq̄ is a quaternion that defines the

desired rotational motion from q̄ to q̄r.

2.2 Reference Frames

A reference frame is defined by its origin and the orientation of its axis. The attitude representations

defined in section 2.1 represent the components of a reference frame along the axis of some other

reference frame.

Many reference frames are used in space. In the present section, only the reference frames used in

this work will be discussed. For further reading see [34].
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2.2.1 North-east Down Frame (NED)

The North-east Down Frame (NED) is a noninertial coordinate system with its origin fixed at the satellite’s

center of mass. Its Xned and Yned axis are parallel to the geoid surface, meaning that they lie on the

local horizontal plane. The Xned axis points towards the north. The Yned axis points towards the east.

The Zned axis points downwards, towards the Earth on Nadir direction.

2.2.2 Body-Fixed Frame

The origin of the Body-Fixed frame is located at the center of mass of the spacecraft. The axis definition

will vary from mission to mission. In the present work, the Zb axis is aligned with the main scientific

payload. The Xb axis is aligned with the normal to the bottom plate of the spacecraft. The Yb axis follows

the right hand rule.

2.2.3 The Earth Centered Inertial (ECI) Frame

The ECI frame is important as the Newton’s laws applied to the spacecraft are defined in the inertial

frame. On the other hand, many satellites are inertial pointing and require an inertial frame to represent

the pointing target. The origin of the ECI frame is the center of the Earth. The XI is the direction from the

Earth center to the vernal equinox. The ZI axis is the Earth rotational axis. The YI follows the right-hand

rule.

Any frame moving without rotation and at constant velocity with respect to an inertial frame is also

an inertial frame. Since Earth is rotating arround the Sun, the ECI frame has a linear acceleration.

However, this acceleration is negligible for attitude determination and control of a spacecraft orbiting the

Earth [19].

A more pure inertial frame would be International Celestial Reference Frame (ICRF 3) [35].

2.2.4 Local Vertical Local Horizontal Frame

The Local Vertical Local Horizontal (LVLH) is broadly used in Earth-Observation satellites because its

Zlvlh direction is always pointing towards the center of the Earth (Nadir pointing). The origin of the LVLH

frame is the center of mass of a given spacecraft. The Xlvlh direction is the same as the spacecraft

velocity’s and perpendicular to Zlvlh. Finally, the Ylvlh direction is perpendicular to the orbital plane and

follows the right-hand rule.

In Fig. 2.2, the LVLH frame is represented, along with the orbital path and the ECI frame.

2.3 Orbital Motion

In its simplest form, the orbit of a spacecraft can be modeled as if only two bodies are involved and both

behave as spherical point-masses. For this case, where no other forces act on the body, the orbit model
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Figure 2.2: LVLH and ECI frames. From [36].

is simplified to a Keplerian orbit, than can be modeled as a conic section. According to this model, the

distance, r, between a central body and an orbiting body is

r(θ) =
a(1− e2)

1 + ecos(θ)
, (2.12)

where θ is the true anomaly, a is the semi-major axis and e is the eccentricity.

Given the ECI frame, the 6 classical keplerian orbital parameters describe a spacecraft on orbit:

• a - the semi-major axis defines the size of the orbit;

• e - the eccentricity defines the shape of the orbit;

• M = n(t − t0) - the mean anomaly defines the spacecraft position on the orbit (n is the rate of

sweep, t is the current time and t0 is the time the body passed the periapsis);

• im - the inclination is the angle between the orbit and the equator planes;

• Ω - the right ascension is the angle between the XI axis (pointing towards the vernal equinox) and

the node line pointing towards the ascending node;

• ω - the argument of the perigee is the angle between the node line pointing towards the ascending

node and P, where P is the unit length vector from the primary focus (the center of the mass of the

Earth) pointing to the perigee of the orbit.

The six orbital parameters, [a, e,M, im,Ω, ω], are illustrated in Fig. 2.3. Clearly, there is another way

to present the spacecraft moving around the orbit, given by the velocity, v, and position, r, at any time.

For more details on Keplerian orbits and on the transformations between these representations, resort

to [20].

Given the spacecraft position and Earth’s gravitational parameter, the acceleration a spacecraft is

subject to is obtained by combining Newton’s second law with his law of gravitation to obtain the so

called two-body equation of motion [37]:

r̈ = −µ�
|r|3

r. (2.13)
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Figure 2.3: Classical Orbital Parameters. From [20].

During its orbit, a spacecraft is subject to forces that deviate it from a perfect Keplerian orbit. These

disturbances must be taken into account in the equation of motion with an acceleration term, ad

r̈ = −µ�
|r|3

r + ad. (2.14)

As a result, instead of the six classical orbital elements being constant, they will be time-varying.

The spacecraft velocity and position is obtained by consecutively integrating its acceleration, given

by equation 2.14.

2.4 Attitude Kinematics and Dynamics

A full quaternion model does not have any singular point in any rotational sequence, being thereafter a

suitable choice in control design methods.

Regarding a general spacecraft let its inertia matrix be denoted by

J =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 . (2.15)

Let wI = [wI1, wI2, wI3]T denote the angular velocity of the spacecraft body with respect to the iner-

tial frame and hI the angular momentum vector of the spacecraft about its center of mass represented

in the inertial frame and h the same vector as hI but represented in the body frame.

The external torque, T, acting on the body about its center of mass can be computed as follows

T =

(
dhI
dt

)
b

=

(
dh
dt

)
+ wI × h, (2.16)
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which is equivalent to

(
dh
dt

)
= JẇI = −wI × JwI + T. (2.17)

Ignoring the disturbance torques, td, T can be replaced by the control torque, u to obtain the Dynam-

ics equation:

JẇI = −wI × (JwI) + u. (2.18)

Denoting the quaternion that represents the rotation of the body frame relative to the reference frame

by

q̄ = [q0,qT ]T =
[
cos(

α

2
),eT sin(

α

2
)
]T
, (2.19)

the Kinematics equation of motion comes directly from 2.9:

 q̇ = − 1
2w× q + 1

2q0w

q̇0 = − 1
2wTq

. (2.20)

Using the fact that q0 =
√

1− q2
1 − q2

2 − q2
3 , one can reduce the system dimension:


q̇1

q̇2

q̇3

 =
1

2


√

1− q2
1 − q2

2 − q2
3 −q3 q2

q3

√
1− q2

1 − q2
2 − q2

3 −q1

−q2 q1

√
1− q2

1 − q2
2 − q2

3



w1

w2

w3

 . (2.21)

This can be denoted as q̇ = 1
2Q(q)w = g(q,w). Since det(Q(q))= 1√

1−q21−q22−q23
, the matrix Q is a full

rank matrix except for α = ±π, which makes this reduced quaternion representation valid, except for

α = ±π.

The Inertial Pointing Spacecraft Model

Let hw = [h1, h2, h3]T be the angular momentum of the momentum wheels’ system in the body frame.

Including hw, the dynamics equation 2.18 becomes

JẇI = −wI × (JwI + hw) + u, (2.22)

and the reduced Kinematics equation is 2.21.

Applying a 1st Order Taylor Expansion around the stationary point, q1 = q2 = q3 = 0,wl = [0, 0, 0]T ,hw =

[hn1 , h
n
2 , h

n
3 ]T , the linearized model is obtained:

ẇI

q̇

 =

J−1Aw 03

1
2 I3 03

 wI

q

+

 J−1

03

u = Ax + Bu, (2.23)

with Aw given by
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Aw =


0 −hn3 hn2

hn3 0 −hn1
−hn2 hn1 0

 . (2.24)

The controllability matrix for an LTI system with dimension n is defined as

C = [B AB A2B ... An−1B]. (2.25)

Replacing matrix A and B for the linearized inertial pointing spacecraft model

C =

J−1 J−1AwJ−1 (J−1Aw)2J−1 (J−1Aw)3J−1 (J−1Aw)4J−1 (J−1Aw)5J−1

03
1
2J−1 1

2J−1AwJ−1 1
2 (J−1Aw)2J−1 1

2 (J−1Aw)3J−1 1
2 (J−1Aw)4J−1

 , (2.26)

which is full rank [20], meaning that the system is controllable in the vicinity of the linearization point.

Nadir Pointing Momentum Biased Spacecraft Model

Nadir describes the direction below a particular location, opposite to the Zenith. Nadir-pointing is the

action of pointing directly below the satellite perpendicular to Earth. This operation can increase the

performance of the attitude control system, allowing more efficient downlinks and solar charge for power.

Let hw = [h1, h2, h3]T be the angular momentum of the momentum wheels’ system in the body frame.

The momentum of the entire system can be divided between the momentum of the momentum wheel

and the momentum of the rigid body. The spacecraft model 2.16 becomes:

JẇI = −wI × (JwI + hw) + td + u. (2.27)

For a Nadir Pointing spacecraft, the attitude of the spacecraft is represented by the rotation of the

spacecraft body frame relative to the local vertical and local horizontal (LVLH) frame. The quaternion

and body rate are measured with respect to the LVLH frame.

In other words, w = [w1, w2, w3]T is the body rate with respect to the LVLH frame, represented in the

body frame. Denote the LVLH frame rate with respect to the inertial frame represented in the LVLH frame

by wlvlh = [0, w0, 0]T , where w0 is the orbit rate. For orbits with low eccentricity, w0 can be approximately

computed assuming a circular orbit with period p at a distance r from the center of the Earth:

w0 =
2π

p
. (2.28)

The spacecraft body with respect to the inertial frame can be computed by

wI = w + Ablwlvlh, (2.29)

where Abl is the rotation matrix from the LVLH frame to the body frame.
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Assuming that ẇlvlh is small and can be neglected and denoting the rate of the LVLH frame with

respect to the inertial frame, represented in the body frame by wb
lvlh = Ablwlvlh and noting that ˙Abl =

−w× Abl , one can compute ẇI :

ẇI = ẇ−w× Ablwlvlh = ẇ−w×wb
lvlh. (2.30)

Rearranging and replacing equations 2.29 and 2.27 in the above equation:

Jẇ = JẇI + J(w×wb
lvlh)

⇔ Jẇ = −wI × (JwI + hw) + td + u + J(w×wb
lvlh)

⇔ Jẇ = J(w×wb
lvlh)−w× (Jw)−w× (Jwb

lvlh)−wb
lvlh × (Jw)−wb

lvlh × (Jwb
lvlh)

−w× hw −wb
lvlh × hw + td + u.

In short,

Jẇ = f(w,wb
lvlh,hw) + td + u. (2.31)

Before writing the linearized attitude equations, one must analyze the main perturbations affecting

the satellite. For low-earth orbit spacecraft, both the aerodynamic and the gravity-gradient torques are

of great importance. However, the aerodynamic torque may be difficult to model due to its multi-factor

provenience. According to [38] the gravity-gradient torque, on the other hand, can be modeled by

tgg =


3w2

0(J33 − J22)φ

3w2
0(J33 − J11)θ

0

 . (2.32)

For small Euler angles, one can approximate the roll by φ = 2q1 and the pitch by θ = 2q2, leading to

tgg =


6w2

0(J33 − J22)q1

6w2
0(J33 − J11)q2

0

 . (2.33)

Noticing that the spacecraft body rate with respect to the LVLH frame shall be as small as possible; and

also that the spacecraft body frame shall be aligned with the LVLH frame, being the error as small as

possible; it follows that the linearized model is the first order Taylor expansion of 2.21 and 2.31 about

hw = [hn1 , h
n
2 , h

n
3 ]T , w = [0, 0, 0]T and q1 = q2 = q3 = 0. Following the steps from [20], but including 3

momentum wheels instead of 1, one can determine the linearized Nadir Pointing Spacecraft Model:

ẇ

q̇

 =

J−1A1 J−1A2

1
2 I3 03

w

q

+

J−1

03

u, (2.34)

where A1 and A1 are given by
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A1 =


0 −hn3 (J11 − J22 + J33)w0 + hn2

hn3 0 −hn1
−(J11 − J22 + J33)w0 − hn2 hn1 0

 , (2.35)

A2 =


8w2

0(J33 − J22) + 2hn2w0 0 0

−2hn1w0 6w2
0(J33 − J11) −2hn3w0

0 0 2w2
0(J11 − J22) + 2hn2w0

 . (2.36)

Replacing matrix A and B in Eq. 2.25

C =

J−1 J−1A1J−1 ...

03
1
2J−1 ...

 , (2.37)

which is also full rank [20], meaning that this model is also controllable in the vicinity of the linearization

point.

As a remark, note that equation 2.27 has a structure that is independent of the choice of coordinate

system, as long as all quantities are referred to the same coordinate system. As a result, the inertia

tensor does change. Rewriting the equation with u = −ḣb:

Jbẇb = −wb × (Jbwb + hb)− ḣb + tb, (2.38)

where the subscript b is used to denote that the values are measured in the body frame. If the quantities

were to be expressed in the principle axis, for example, the structure of the equation would not change.

Denoting the rotation matrix from the body frame to the principal axis by Abp, the quantities related to the

body frame can be expressed by wb = Abpwp and Jb = AbpJpA
bT
p , hp = Abphb, tb = Abptp. Replacing in

2.38 yields

d

dt
(AbpJpA

bT
p Abpwp) = −Abpwp × (AbpJpA

bT
p Abpwp + Abphp)− Abpḣp + Abptp. (2.39)

Noting that Aw× Ah = A(w× h):

Jpẇp = wp × (Jpwp + hp)− ḣp + tp, (2.40)

which is the dynamics in its original structure but now expressed in the principal axis instead of the body

axis. This is frequently useful since the inertia tensor in the principal axis is, by definition, diagonal.

2.5 Environment Model

In order to test the attitude control and determination algorithms in a realistic simulation scenario, an

accurate model of the environment where the satellite operates is necessary. Disturbance forces affect

the accelerations a spacecraft is subject to and, as result, its position. This affects the attitude desired

for the spacecraft if one aims to point to a specific object, for example. Disturbance torques, on the other
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hand, directly affect a spacecraft’s attitude.

Even though the disturbance torques are normally not considered in the models used to design the

controller, the designed controller should be able to compensate for these unmodelled disturbances.

Given the spacecraft’s geometry, position, velocity, the current time, etc, it is possible to simulate these

disturbances and test the controller against the space model.

2.5.1 Disturbance Forces

Non-spherical Earth Perturbation

The most used approach to model the non-spherical gravity of the Earth uses a spherical harmonic

expansion. In this work, only the second order zonal harmonic of the 6th order geopotential model

presented in [39] is considered, since this harmonic is much bigger than the higher order terms. The

perturbing acceleration is given by

ag = −3

2
J2

(
µ�
|r|2

)(
R

|r|

)2


(
1− 5

(
rz
|r|
)2) rx
|r|(

1− 5
(
rz
|r|
)2) ry
|r|(

3− 5
(
rz
|r|
)2) rz
|r|

 , (2.41)

where J2 is the zonal coefficient associated with the second order harmonic of the model, R is the radius

of the Earth, µ� is the geocentric gravitational constant, |r| is the distance of the spacecraft to the center

of the earth, and r = (rx, ry, rz) is the position of the spacecraft in the Earth Centered Earth Fixed frame.

Third Body Forces

The Keplerian motion only takes into consideration two bodies. Third bodies account for perturbations

in the orbit of the spacecraft. The motion of a body with mass m2 at position r2 about a body with mass

m1 at position r1, under the influence of N-2 other bodies with masses mi at position ri is, according to

[19],

r̈ = −µ�
|r|3

r−
N∑
i=3

µi

(
r1 − ri + r
|r1 − ri + r|3

− r1 − ri
|r1 − ri|3

)
, (2.42)

where r = r2 − r1, µ� = G(m1 +m2) and µi = Gmi for i ≥ 3.

Aerodynamic Drag

An expression for aerodynamic drag follows from the analysis in [19]. The aerodynamic force can be

approximated by the following equation

f = −1

2
ρCDS|vrel|vrel, (2.43)

where ρ is the atmospheric density, S is the spacecraft area projected along the direction of motion, CD

is a dimensionless drag coefficient. The drag coefficient is determined empirically, and is usually in the
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range between 1.5 and 2.5. The spacecraft’s relative velocity to the atmosphere in the ECI frame, vrel,

can be approximately computed, if one assumes that the atmosphere co-rotates with the Earth:

vrel = vI + wEarth × rI , (2.44)

where vI and rI are the spacecraft’s velocity and position in the ECI frame and wEarth is the Earth’s

angular velocity. In the ECI, wEarth = [0, 0, 0.000072921158553]T rad/s

Solar Radiation Pressure

The mean momentum flux pressure acting on a surface normal to the Sun is, according to [20], P =

4.563×10−6N/m2 at 1 astronomic unit from the Sun. For a flat plate, the solar radiation pressure induced

force is, according to [40],

f = Fnn + Ftt, (2.45)

where t is the transverse unit vector, perpendicular to n, the unit evector normal to the surface and

opposite to the vector of incoming photons.

The components of f are given by

Fn = PA
[
(1 + ρs)cos

2(α) +
2

3
ρdcos(α)

]
, (2.46)

Ft = PA(1− ρs)cos(α)sin(α), (2.47)

where A is the surface area, ρs the fraction of specularly reflected photons, ρd the fraction of diffusely

reflected photons and ρa the fraction of absorved photons.

2.5.2 Disturbance Torques

The order of magnitude of the considered disturbance torques is summarized in table 2.1.

Torque Magnitude [N.m]
Gravitational 4× 10−8

Atmosphere-induced 3× 10−7

Magnetic Field-induced 2× 10−6

Solar Radiation 8× 10−9

Table 2.1: Orders of magnitude of the main disturbance torques [41].

Gravitational Torques

Following the analysis from [20], the gravitational torque or gravity gradient torque, tgg is given by

tgg =
3µ�
|r|5

∫
(r.p)(p× r)dm = −3µ�

|r|5
R×

∫
p(pdm.r) =

3µ�
|r|5

r× Jr, (2.48)
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where dm denotes a small element of the spacecraft, p the vector from the center of mass of the

spacecraft to dm, r the vector from the center of Earth to the center of mass of the spacecraft and

µ� = Gm1 the geocentric gravitational constant of the Earth, where m1 is the mass of the Earth and G

is the universal constant of gravitation.

When the body frame is close to the LVLH frame and assuming that J = diag([J11, J22, J33]) and that

the velocity of the spacecraft can be approximated by the velocity of a body in a circular orbit of radius

|r|, expression 2.32 is obtained.

Atmosphere-Induced Torques

Air density is the most significant factor that causes atmosphere-induced torques. Having the aerody-

namic force from section 2.5.1, the aerodynamic torque, ta, can be evaluated by

ta = ra × f, (2.49)

where ra is the moment arm.

Magnetic Field-Induced Torques

Magnetic disturbance torques are a result of the interaction between the spacecraft’s residual magnetic

field and the geomagnetic field. The main source of the magnetic disturbance torque is the magnetic

moment induced torque [20]. The magnetic moment induced torque is given by

tm = m× Bm, (2.50)

where m (in A.m2) is the sum of the individual magnetic moments caused by permanent and induced

magnetism and the spacecraft current loops, and Bm is the geocentric magnetic flux density (inWb/m2).

The Earth magnetic field at a specific location and time is obtained using the World Magnetic Model

(WMM). The current model is WMM2020, which is valid for the year 2020 through the year 2025. The

World Magnetic Models can be found at [42].

Solar Radiation Torques

Given the solar radiation pressure induced force, f, the solar pressure induced torque is given by

ts = rs × f, (2.51)

where rs is the vector from the body center of mass to the optical center of pressure.
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Chapter 3

Attitude Determination and Control

3.1 Lyapunov Stability Theory

In this work, the concept of Lyapunov stability is used to study the behavior of the spacecraft. The

definitions presented in this section follow from [43].

Consider the system

ẋ = f(x) (3.1)

Without loss of generality, suppose that x=0 is an equilibrium point of 3.1.

Definition 3.1.1 (Stability). The equilibrium point x=0 of 3.1 is

• stable if for each ε > 0, there is a δ = δ(ε) > 0 such that

|x(0)| < δ ⇒ |x(t)| < ε,∀t ≥ 0

• unstable if it is not stable;

• asymptotically stable if it is stable and δ can be chosen such that

|x(0)| < δ ⇒ lim
t→0

x(t) = 0

Consider a scalar function L(x) of the system state. This function is called positive definite in a

domain D ⊂ IRn if

L(x) > 0 ∀x ∈ D − {0}

L(x) = 0 if x = 0

The function is called positive semidefinite in a domain D ⊂ IRn if

L(x) ≥ 0 ∀x ∈ D
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A function L is called negative definite (negative semidefinite) if -L is poitive definite (positive semidefi-

nite).

Lyapunov’s Direct Method makes use of a Lyapunov function, a continuously differentiable function

L : D → IR, for demonstrating stability.

Definition 3.1.2 (Lyapunov’s Stability Theorem). Let x=0 be an equilibrium point for the system 3.1

and suppose there is a continuously differentiable function L(x), defined on a domain D ⊂ IRn which

contains the equilibrium. If

L(x) > 0, and

L̇(x) ≤ 0

in D, then x=0 is stable. If

L(x) > 0, and

L̇(x) < 0

in D, then x=0 is assymptotically stable.

3.1.1 Unwinding

No continuous vector field on SO(3) has a globally asymptotically stable equilibrium, due to the topology

of SO(3). This means that the attitude of a spacecraft cannot be globally stabilized by means of a

continuous feedback [44]. Consider the unit quaternion parameterization of SO(3) in which q̄ = −q̄.

This means that there are two quaternion representing each possible attitude which may lead to large

distances traveled to bring the state to a given value even if the initial and desired states are close

to each other. This is a well-known phenomenon called unwinding. A continuous feedback based on

the unit quaternion representation has two closed-loop equilibrium points. Therefore, global asymptotic

stability is not achievable. In the literature, the term almost global stability was coined to express this

situation.

3.2 Attitude Control

The attitude control of the spacecraft can be divided into three main algorithms. After its launch, the

detumbling algorithm is applied aiming at reducing the angular rate of the spacecraft by means of mag-

netic torques. This is the so called detumbling mode. The nominal mode corresponds to pointing the

spacecraft to the Nadir direction. Finally, the momentum dumping algorithm is applied simultaneously

with the pointing algorithm, allowing for continuous dumping of the accumulated angular moment by the

momentum wheels. The speed control of the wheels is achieved through a proportional-integral control

law and considered as an inner control loop.
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3.2.1 Proportional-Integral-Derivative Control

A Proportional-Integral-Derivative (PID) controller is applied for the speed control of the momentum

wheels. A PID controller takes the error e(t) = r(t) − y(t), where r(t) is the reference for the output y(t)

of the system, and computes the control input for the system:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
. (3.2)

The proportional term, Kpe(t) compensates for the current error, while the integral term,
∫ t

0
e(τ)dτ , takes

into account the past error and the differential term, Kd
de(t)
dt , antecipates the future error, based on its

current rate of change. The integral term is capable of compensating for steady-state errors [45].

Note that one may not need to include the 3 terms. Oftentimes, a P, PI or PD controller is enough to

attain the requirements of a controller. The design of the weights can be made manually or with more

systematic techniques, such as Ziegler–Nichols’s method [46].

3.2.2 Nominal Mode

The nominal model corresponds to Nadir Pointing, i.e. aligning the body and LVLH frames. For the Nadir

pointing momentum biased spacecraft model from section 2.4, this corresponds to regulating the state

[w,q]. A Linear Quadratic Regulator with Integral Action solution will be studied and compared against

the baseline LQR without Integral Action.

The Discrete-Time Linear Quadratic Regulator

Optimal control is one particular branch of modern control. The system that results of an optimal design

is not supposed merely to be stable, but is supposed to be the best possible system of a particular

type. In linear optimal control the plant that is controlled is assumed to be linear, and the controller is

constrained to be linear.

The Linear Quadratic Regulator (LQR) is an optimal controller that minimizes a quadratic perfor-

mance index.

Consider the discrete-time LTI system:

xk+1 = Axk + Buk

yk = Cxk,
(3.3)

where the subscript k identifies the sample at time kT, where T is the sampling period and k is an integer

number. The state is xk = [wk,qk]T and the matrices A and B are obtained applying the forward Euler

method to equation 2.34

wk+1

qk+1

 =

I3 + TJ−1A1 TJ−1A2

T
2 I3 I3

wk

qk

+

TJ−1

03

uk. (3.4)

The steady state LQR performance index can be formulated as follows
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V =
1

2

∞∑
k=0

(xTk QLxk + uTk RLuk). (3.5)

The minimization leads to the linear state feedback [47]

uk = −KLxk, (3.6)

with KL given by

KL = (RL + BTS B)−1BTS A, (3.7)

where S is the steady-state solution to the algebraic Ricatti equation:

S = AT (S− SBR−1
L BTS)A + QL. (3.8)

LQR Extension - Integral Action

When there are disturbances or the model to be controlled is different from the dynamical model consid-

ered when computing the LQR gains, there can be a steady-state error.This drawback can be overcome

by augmenting the state space with an extra state that corresponds to the integral of the attitude q.

The concept of integral feedback is described in detail in [48]. The regulation error can be defined as

zk = r− Cxk, where r is a constant reference. The reformulated dynamic model is given by

 zk+1

∆xk+1

 =

 I −CA

0 A

 zk

∆xk

+

−CB

B

∆uk, (3.9)

where ∆uk = uk − uk−1 and ∆xk = xk − xk−1. Applying the regulator problem, the constant gain

K = [Kz,Kx] is obtained and the control input is given by

uk =
∑

∆uk = Kz
∑

zk + Kxxk. (3.10)

This way, an LQR with integral action is obtained and, if a compensator that stabilizes the system is

found, a steady state null error for a step is attained.

3.2.3 Momentum Dumping

The main actuator of the proposed ADCS system is the momentum wheels’ system. When using a

Reaction/ Momentum Wheels’ system to counteract perturbations, a periodic torque typically results in

a cyclic variation of the wheel’s angular rate, whilst a constant torque results in a linear increase in

angular rate, so as to compensate for the excess angular momentum due to the external disturbance

sources. This is only possible up to the limits for the spin of rate of the wheel, resulting in a saturation

of the actuator. A desaturation process of the wheels must be carried out, generating external torques

resorting to an additional suite of actuators.
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Magnetic torquers are commonly used in low-Earth orbiting spacecraft for momentum dumping. The

torque generated by magnetic torquers is given by

T = m× Bm, (3.11)

where m [Am2] is the commanded magnetic dipole moment generated by the torquers and Bm [T] is the

local geomagnetic field expressed in body-frame coordinates.

An issue that affects the magnetic torquers is that their actuation is constrained to lie in a two-

dimensional plane orthogonal to the magnetic field. Nevertheless, full three-axis control is available

provided that the spacecraft’s orbital plane does not coincide with the geomagnetic equatorial plane and

does not contain the magnetic poles [19].

A common approach to design a magnetic torquer control law for momentum dumping is to command

a magnetic dipole moment [19]:

m =
kmd
|Bm|

∆hw × b, (3.12)

where ∆hw = hnw − hw is the momentum wheel system angular momentum tracking error, b =

Bm/|Bm| and kmd is a positive scalar gain.

The resulting torque is given by

Tmd =
kmd
|Bm|

∆hw × b× Bm = kmd(∆hw × b)× b = −kmd(I3 − bbT )∆hw. (3.13)

As referred before, the torque cannot be exerted when ∆hw is parallel to b, but, according to [19], this is

not a concern for practical reasons.

The use of this torque in addition to the momentum wheel’s torque that comes from the linear

quadratic regulator feedback, Tc, results in an excess of torque in the spacecraft. To counteract this,

a de-spin torque is imposed on each wheel:

Twmd = Tmd. (3.14)

The total control torque applied to the spacecraft is Tc−Twmd+Tmd = Tc. This way, the resulting torque

acting on the spacecraft due to the desaturation process is null and the momentum dumping controller

may be applied continuously without influencing the nominal control solution (LQR).

3.2.4 Detumbling Mode

After its launch, a spacecraft is characterized by large angular velocities. Thus, it is said to be tumbling.

Detumbling is hard to be accomplished with the momentum wheels alone, since the saturation limits

would be rapidly achieved.

The proposed controller for detumbling consists on commanding the following magnetic dipole mo-

ment:

25



m =
kdet
|Bm|

wI × b, (3.15)

where wI is the spacecraft’s angular rate, b = Bm/|Bm| and kdet is a positive scalar gain. The theory

behind this control law can be found on [49].

By analogy to 3.13, the control torque is given by

Tdet = −kdet(I3 − bbT )wI . (3.16)

Again, the control torque is perpendicular to b. Reference [49] provides an expression for kdet based on

analyzing the closed-loop dynamics of the component of wI perpendicular to the Bm:

kdet =
4π

p
(1 + sin(im))Jmin, (3.17)

where p is the orbit period, im is its inclination and Jmin is the minimum principal moment of inertia.

Stability of the Detumbling Control Law

Stability of the Detumbling Control Law can be proven when the body rate is relative to the inertial frame.

Considering the following Lyapunov function:

L =
1

2
wT
I JwI . (3.18)

If J is diagonal and recalling expression 2.22, the derivative of the Lyapunov function is

L̇ =
dL
dwI

dwI

dt
(3.19)

=
1

2
wT
I (J + JT )(−J−1wI × (JwI)− J−1wI × hw − J−1Tdet) (3.20)

= −wT
I JJ−1Tdet (3.21)

= −kdetwT
I (I3 − bbT )wI , (3.22)

which is negative semi-definite, since when w is parallel to b, then L̇ = 0, meaning that the control law

stabilizes the system, but asymptotic stability is not guaranteed. According to [49], this is not a concern

in practice, though.

Note that if no angular velocity information is available, one can find an approximation based on the

derivative of the magnetic field vector:

Ḃm = AbIḂmI
−wI × Bm. (3.23)

Assuming that ḂmI
<< Ḃm, then Ḃm ≈ w× Bm and expression 3.15 can be approximated by
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m = − kdet
|Bm|

Ḃm. (3.24)

This is an alternative version of the well-known B-dot control [19].

3.3 Attitude Determination

Regarding the rate gyroscope, the integration of its data makes the estimated angles drift from the real

value with time, highlighting the need of a high-pass filter. With a 3-axis accelerometer, an inclinometer

can be obtained, in which long time measurements are reliable. However, disturbances affect the mea-

surement and, furthermore, do not respond as fast as the gyroscope for fast maneuvers. As a result,

the use of a low-pass filter is common. The estimation of a so called complementary filter is the com-

bination of the low frequency component of the inclinometer and high frequency component of the rate

gyroscope integral.

Figure 3.1: Schematic of the structure of a complementary filter based on gyroscope and accelerometer
data. From [50].

3.3.1 Euler-Based Complementary Filter

The description of the filter presented in this section is based on the work of [51].

Let λ = [φ θ ψ]T be the vector containing the Euler angles roll, pitch and yaw respectively. The

kinematics is given by

λ̇ = Q(λ)w, (3.25)

where w = [wxwywz]
T and

Q(λ) =


1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)sec(θ) cos(φ)sec(θ)

 . (3.26)

The discrete-time equivalent is obtained applying the Euler method (also called forward Euler method):

λk+1 = λk + ∆tQ(λk)wk. (3.27)

The gyroscopes provide the angular velocity measurement subject to noise:
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wsk = wk + yk, (3.28)

where ωk represents the nominal angular velocity and yk is the output of the Allan variance rate gyros

noise model. For one axis, the noise model is given by

bwk+1 =

bw1

bw2


k+1

=

(1− 1
TBI

∆t
)

0

0 1

bw1

bw2


k

+

√σ2
b (1− e−2∆t/TBI )
√
K2∆t

 υk,
yk =

[
1 1

]bw1

bw2


k

+
[√

N2

∆t ζk

] , (3.29)

where υk and ζk are uncorrelated Gaussian zero-mean white noises; TBI is the correlation time of the

bias instability (BI) noise; σ2
b is the variance of the BI; K is the Allan variance rate random walk (RRW);

N is the angle random walk (ARW).

Incorporating the model in equation 3.29 into 3.27 yields


λ

bw1

bw2


k+1

=


I −∆tQ(λk) −∆tQ(λk)

0 I−∆tT−1
BI 0

0 0 I



λ

bw1

bw2


k

+


∆tQ(λk)

0

0

wsk +


−∆tQ(λk) 0 0

0 I 0

0 0 I




narw

nbi

nrrw

 ,
(3.30)

where bω1 and bω2 are the sensor bias vectors related to the angular velocity ω; narw, nbi and nrrw are

the white-noises from the gyro noise model; TBI is a diagonal matrix with the correlation times of the BI

noise.

The observer proposed in [51] is


λ̂

b̂w1

b̂w2


k+1

=


I −∆tQ(λk) −∆tQ(λk)

0 I−∆tT−1
BI 0

0 0 I



λ̂

b̂w1

b̂w2


k

+


∆tQ(λk)

0

0

wsk

+


Q(λk)(K1λ − I) + Q(λk−1)

K2λ

K3λ

 (yλk − ŷλk)

, (3.31)

where

ŷλk
= Q−1(λk−1)λ̂k

yλk = Q−1(λk−1)λk + Θk

, (3.32)

where yλk is the measured Euler angles transformedd to the space of the angular rate and corrupted

by zero-mean white Gaussian-noise Θ. The attitude observation λ̂ can be obtained by measuring the
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Earth’s gravitational and magnetic fields by an IMU.K1λ,K2λ,K3λ ∈M(3, 3) are observer gains equal

to the Kalman gain, K = [K1,K2,K3]T , from the auxiliary LTI system obtained replacing Q(λ) with I and

ωk = 0:


xλ

xbw1

xbw2


k+1

=


I −∆tI −∆tI

0 I−∆tT−1
BI 0

0 0 I



xλ

xbw1

xbw2


k

+


−∆tI 0 0

0 I 0

0 0 I




narw

nbi

nrrw



yxk =
[
I 0 0

]
xλ

bw1

bw2

+ Θk

. (3.33)

In [51], the asymptotic stability of the observer 3.31 is proved if the pitch is bounded |θ| < θmax <
π
2 .

3.3.2 Quaternion-Based Complementary Filter

This filter was inspired by the work of [52]. Firstly, the quaternion from Earth’s gravity and magnetic fields

observations is computed.

Prediction

In the prediction step, the angular velocity vector from the rate gyros is used to compute an estimation

of the orientation in quaternion form. Denoting the gyro measurements by w = [wx, wy, wz]
T and the

quaternion with the filter estimation by ˆ̄q = [q̂0, q̂1, q̂2, q̂3]T , the quaternion resulting from the prediction

step comes directly from applying the Euler method to equation 2.20, yielding

q0k+1 = q0k +
1

2
(−wxq1k − wyq2k − wzq3k)∆t

q1k+1 = q1k +
1

2
(wxq0k + wzq2k − wyq3k)∆t

q2k+1 = q2k +
1

2
(wyq0k − wzq1k + wxq3k)∆t

q3k+1 = q3k +
1

2
(wzq0k + wyq1k − wxq2k)∆t.

(3.34)

At the end of the prediction step, the quaternion is normalized. If the gyros’ output was the exact angular

velocity, no update step would be required. However, as depicted in section 3.3.1, the gyro is corrupted

by noise, including a bias component which would make this estimate drift with time preventing it from

being an adequate estimate.

Update

In this step, the Spherical Linear Interpolation (SLERP) technique (see [53]) is used to find an intermedi-

ate quaternion between the one from the prediction step and the one that comes from the Earth’s gravity

and magnetic fields observations.

Spherical Linear Interpolation (SLERP)

29



Given two quaternions q̄0 and q̄1, SLERP can be represented by a function q̄(t), t ∈ [0, 1] that linearly

interpolates from q̄(0) = q̄0 and q̄(1) = q̄1. As t evolves from 0 to 1, a body will continuously rotate from

q̄0 to q̄1 at a constant rate along a fixed axis. This function is given by

q̄(t) = q̄0 ⊗ (q̄∗0 ⊗ q̄1)t. (3.35)

An approach to compute q̄(t) comes from treating q̄0 and q̄1 as unit vectors in the unit sphere as depicted

in Fig. 3.2. q̄(t) is the unit vector that follows at a constant speed the shortest spherical path joining q̄0

and q̄1.

Figure 3.2: Quaternion interpolation in the unit sphere of R4 and a frontal view of the situation on the
rotation plane π of R4. From [53].

The angle between q̄0 and q̄1 is derived from the scalar product.

Remembering that according to 2.6 an unit quaternion is defined by its rotational axis and rotational

angle, the following methodology can be used to compute (q̄∗0 ⊗ q̄1)t = [cos(t∆θ),usin(t∆θ)]. The

rotational axis, u, is the same for ∆q̄ and (q̄∗0 ⊗ q̄1)t. Only the rotational angle changes proportionally to

t.

1. Compute the orientation increment: ∆q̄ = q̄∗0 ⊗ q̄1;

2. Normalize it ∆q̄ = ∆q̄
||∆q̄|| ;

3. Denote the orientation increment by ∆q̄ = [cos(∆θ),usin(∆θ)] ;

4. Compute ∆θ = cos−1(∆q̄0);

5. Compute sin(t∆θ) and cos(t∆θ);

6. Take only the vector part of ∆q̄, v = [0,usin(∆θ)];

7. Normalize it, yielding u′ = ~v
||v|| = [0,u];

8. Compute (q̄∗0 ⊗ q̄1)t = [cos(t∆θ),usin(t∆θ)].

This method can be used to interpolate between the predicted quaternion and the one computed from

the gravity and magnetic fields. Using SLERP has the advantage of reducing computational complexity

by avoiding matrix operations.
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3.3.3 Discrete Kalman Filter

The kalman filter is a current observer, meaning that for a given system

xk+1 = Axk + Buk

y(k) = Cxk,

the estimation is based on the following equation

x̂k+1 = Ax̂k + Buk−1 + K(yk − C(Ax̂k−1 + Buk−1)). (3.36)

In the Kalman filter, the gain K is determined such that it optimizes the signal to noise ratio. For

that, two terms are added to the state-space equations: the process noise, w; the sensor noise, v. Both

noises are modeled as incorrelated additive white-gaussian noises, with variances E[wT
k wk] = Q and

E[vTk vk] = R respectively (E denotes the expected value).

The Kalman filter estimator equation is often written as

x̂k|k = Ax̂k−1|k−1 + Buk−1 + K[yk − C(Ax̂k−1|k−1 + Buk−1], (3.37)

which is a recursive equation and can be rewritten as

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1, (3.38)

x̂k|k = x̂k|k−1 + K[yk − x̂k|k−1]. (3.39)

Equation 3.38 is the prediction and equation 3.39 is the update, correcting the prediction with the Kalman

gain multiplied by the difference between the observation and the predicted observation. The Kalman

filter gain is obtained minimizing the expected sum of the squares of the successive estimation errors:

Vk = E
[1

2

∞∑
k=0

||xk − x̂k||2
]
. (3.40)

Quaternion-Based Kalman Filter

The kinematics of the quaternion is given by equation 2.21 that can be rewritten, for simplification, as

q̇ = F(q)w. (3.41)

The discrete-time equivalent is once again obtained applying the Euler method:

qk+1 = qk + ∆tF(q)w. (3.42)

The angular velocity, measured by a rate gyro, is modeled as being affected by noise and rate

random-walk (RRW):
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wrk = wk + bwk + wwrk

bwk+1 = bwk + wbk

, (3.43)

where wwr
∼ N (0,Θw) is zero-mean white Gaussian-noise; bw is the rate gyro bias; wb ∼ N (0,Θb)

is the white Gaussian noise that affects the sensor bias.

Integrating the quaternion kinematics 3.42 and the gyro noise model in equation 3.43 into a state-

space model:

qk+1

bk+1

 =

 I −∆tF(q)

0 I

qk
bk

+

∆tF(q)

0

wrk +

−∆tF(q) 0

0 I

wwrk

wbk

 . (3.44)

If the noise model from 3.29 was to be considered, the state space model would be similar to the

one in equation 3.30, replacing λ by q and Q(λk) by F(q).

Linearizing the model 3.44 around q̄ = [1, 0, 0, 0]T and ω = [0, 0, 0]T yields

qk+1

bk+1

 =

 I −∆t
2 I

0 I

qk
bk

+

∆t
2 I

0

wrk +

−∆t
2 I 0

0 I

wwrk

wbk

 . (3.45)

The Kalman gains K1 and K2 for this LTI system can be obtained solving the Algebraic Ricatti Equa-

tion, resulting in the observer

q̂k+1

b̂k+1

 =

 I −∆t
2 I

0 I

q̂k
b̂k

+

∆t
2 I

0

wrk +

K1 0

0 K2

 (qk − q̂k). (3.46)
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Chapter 4

Prototype

The hardware involved in this thesis can be divided into two main groups. On the one side, the functional

satellite prototype. On the other side, the testbed and support components to attach the prototype to the

testbed. The satellite prototype is a 1U CubeSat, meaning that its dimensions are 100× 100× 113.5mm

and its maximum weight is 1.33Kg [9].

The testbed was designed so as to allow the testing of the Attitude Determination and Control System

(ADCS) of any 1U CubeSat. In this chapter the physics of the testbed are presented.

The satellite prototype is not intended to go to space. It is a 1U satellite functional prototype, with

actuators, sensors and a microcontroller with an educational purpose. Since it aims to be a low-cost

solution, all of its components are Commercial Off-The Shelf (COTS) components, except for the outer

structure and other components designed to fit the COTS components to the outer structure, which were

3D printed. These parts were designed using SolidWorks and printed in PLA using the Ultimaker 2 3D

printer. Ultimaker has its own slicing software: Ultimaker Cura. Cura is used to setup the part and

printing properties. 3D printing keeps production costs low and allows for rapid construction of different

designs, allowing for an iterative design process. The main disadvantage of 3D printing is that it is hard

to have exceptionally well polished surfaces.

Figure 4.1: Picture of the Ultimaker 2 3D printer. From [54].
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4.1 Satellite Prototype

The Raspberry Pi 4 Model B [55] is the microcontroller selected to be responsible for running the control

and attitude determination algorithms, communicating with the sensors and driving the actuators. The

Raspberry Pi is connected to a PiJuice Hat [56], a fully uninterruptible power supply, an LSM9DS1 IMU

[57], 3 hall-effect sensors [58] and 2 DRV8835 dual motor drivers [59]. Each motor driver is powered

by a 6V power source (set of 4 1.5V AA cells) and drives the momentum wheel according to the PWM

value and signal indicated by the Raspberry Pi.

The Raspberry Pi has 29 GPIO (general-purpose input/output) pins. GPIO pins can be used with a

variety of alternative functions, some are available on all pins, others on specific pins. These functions

are Pulse-Width Modulation (PWM), Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C) and

Serial. Table 4.1 has a list of the electronic components with its mass, quantity and GPIO’s used.

Component Unit Mass (g) Quantity Total Mass (g) GPIO and Voltage Pins used
Raspberry Pi 4 Model B 62 1 62 -
PiJuice 60 1 60 -
Motor Driver 22 2 44 4, 5, 6, 12, 19, 25, 3V3, GND
Battery 90 2 180 -
Motor 17 3 51 -
IMU 26 1 26 0, 1, 2, 3, 3V3, 5V, GND
Wheel encoder 4 3 12 10, 14, 15, 3V3

Table 4.1: List of electronic components.

The non-electronic components - beside nuts and screws - include the wheels, the supports from the

wheels to the CubeSat, the supports from the motors to the wheels, the CubeSat faces, and the corners

that connect the faces. The CAD’s of the designed parts can be found in [60]. A list of the non-electronic

components can be found on Tab. 4.5.

Component Unit Mass (g) Quantity Total Mass (g)
Motor Face 1 29.04 1 29.04
Motor Face 2 24.01 1 24.01
Battery Face 1 34.74 1 34.74
Battery Face 2 30.19 1 30.19
Bottom Face 35.9 1 35.9
Top Face 23.93 1 23.93
Wheel Suport 1 9.19 2 18.38
Wheel Suport 2 10.19 1 10.19
Motor to Wheel Connector 0.23 3 0.69
Corner 1.54 8 12.32
Wheel 25.21 3 75.63

Table 4.2: List of non electronic components.

An exploded view of the designed prototype is found on Fig. 4.2

The total mass of the cube, including wires, nuts, screws and other added weights is 797 grams. The

moments of inertia of the cube in the body frame was obtained from SolidWorks as
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Figure 4.2: Exploded view of the CubeSat prototype and its components.

J =


1.12 0.0298 0.0907

0.0298 1.16 −0.0359

0.0907 −0.0359 1.03

× 10−3Kg.m2. (4.1)

4.1.1 Actuators

As actuators, the satellite will be provided with 3 momentum wheels aligned with the 3 body axis, the

minimum amount to control the attitude in space [38]. Reaction wheels and momentum wheels are very

similar. They both have flywheels and are driven by electric motors. However, unlike a reaction wheel,

a momentum wheel is always spinning at a very high speed, which creates a momentum bias, making

it resistant to changing its attitude. The momentum wheel can be accelerated and decelerated near

the momentum biased high speed (instead of the zero speed), so as to create a torque and force the

spacecraft to rotate, allowing for attitude control.

If there were N wheels not aligned with the body axis, then, for each wheel, its angular momentum

expressed in the spacecraft body axes can be expressed as hn = ŵw
nhn = ŵw

n Inwn, where In is the

inertia of the n-th wheel along its rotation axis, ŵw
n is the spin axis of the n-th wheel resolved in the body

frame and wn is its spin rate. The distribution matrix is defined as

Ww =
[
ŵw

1 ŵw
2 ... ŵw

N

]
. (4.2)

The angular momentum generated by the momentum wheel’s system with respect to the center of

mass of the system and expressed in the body frame is given by

hw = Ww[h1 h2 ... hN ]T , (4.3)

hn = In(wn + (ŵw
n )Tws) , n = 1, 2, ..., N. (4.4)

The control torque of the momentum wheels’ system follows the relation
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u = −ḣw = −Ww[ḣ1 ḣ2 ... ḣN ]T , (4.5)

ḣn = In(ẇn + (ŵw
n )T ẇs) , n = 1, 2, ..., N. (4.6)

The term ẇs is generally small and does not significantly affect the evolution of the wheels’ speeds.

As a result, it is frequently omitted [61]:

u = −ḣw ≈ −Ww[I1w1 I2w2 ... IN ẇN ]T . (4.7)

In the present case, the three wheels are aligned with the body axis, meaning that Ww = I3.

Momentum Wheel Model

In this model, a flywheel attached to a DC brushed motor in a given axis is considered. When modeling a

DC motor, there are some constants that define the behaviour of the model, namely the torque coefficient

of the motor, the electrical resistance of the motor armature and the back EMF (electromotive force)

constant denoted by KM , RM and Kv, respectively.

The current at the motor is given by

iM =
1

RM
(v −Kv.wREL), (4.8)

where v is the input voltage to the electrical motor and wREL is the angular velocity of the rotating part

of the motor relative to the stator. Denoting the angular velocity of the stator (or satellite) by wS :

wREL = ww − wS . (4.9)

The torque produced by the electrical motor is

ḣw = KM .iM −B.wREL − f(wREL), (4.10)

where B is the viscosity damping coefficient sensed by the rotor. As denoted by equation 4.10, the

damping torque is proportional to the angular velocity of the rotor relative to the satellite body frame. The

function f(.) represents the coulomb and dry-friction which will be ignored in the subsequent analysis so

as to allow for a linear transfer function.

The wheel angular velocity is related to the wheel torque by

ẇw =
ḣw
Iw
, (4.11)

where Iw denotes the wheel moment of inertia.

According to the Euler’s equation of motion, in order to apply a torque on the body, a torque in the

opposite direction must be produced by the rotor of the DC motor:
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ḣS + ḣw = 0, (4.12)

where ḣS denotes the satellite’s torque, which is related to the satellite angular velocity by

ẇS =
ḣS
IS
, (4.13)

where IS denotes the satellite’s moment of inertia along the axis where the momentum exchange device

is mounted.

The momentum wheel model can be represented by the scheme in Fig. 4.3.

Figure 4.3: Momentum Wheel Model. Adapted from [38].

Once established the differential equations that rule the momentum wheel functioning, the goal is to

find a transfer function from the motor input voltage, v, to the satellite torque, ḣS .

By neglecting the Coulomb and dry friction, equation 4.10 simplifies to

ḣw = KM .iM −B.wREL.

Replacing equation 4.8 in the above expression and rearranging the terms:

ḣw =
kM
RM

(v −Kv.wREL)−BwREL

=
KM

RM
.v − (

KMKv

RM
+B)wREL

=
KM

RM
.v − (

KMKv

RM
+B)(ww − wS).

Applying the Laplace transform to equations 4.11 and 4.13 and replacing in the above expression one

obtains:

37



ḣw =
KM

RM
.v − (

KMKv

RM
+B)(

ḣw
Iws
− ḣS
ISs

)

=
KM

RM
.v − (

KMKv

RM
+B)(

ḣw
Iws

+
ḣw
ISs

)

=
KM

RM
.v − (

KMKv

RM
+B)(

1

Iw
+

1

IS
)
ḣw
s
.

At last, the transfer function from the motor input voltage to the wheel torque is

ḣw
v

=
Iwwws

v
=

KM

RM
s

s+ (KMkv
RM

+B)( 1
Iw

+ 1
IS

)
. (4.14)

By analyzing equation 4.15, it is obvious that a step in the motor voltage does not produce a pure angular

torque, because the system will have a time constant and has a derivative relating the input to the output.

The transfer function can be further simplified, if one assumes that the viscosity damping coefficient is

close to zero and the wheel moment of inertia is much smaller than the satellite’s:

ḣw
v

=
Iw
Kv
s

s RMIw
KMKv

+ 1
. (4.15)

Momentum Wheel Design

To achieve a given desired performance, a momentum wheel system must have certain technical fea-

tures, such as the maximum achievable torque and momentum storage capacity, low torque noise and

Coulomb friction torques [38].

The sizing of the momentum wheels was based on a simplified approach that considers time-optimal

control. Time-optimal control is achieved by delivering maximum angular accelerations and decelera-

tions to the flywheel.

As discussed in the previous subsection and depicted by equation 4.12 since there are no external

moments, the spacecraft’s variation in angular momentum is symmetric to the momentum wheels’.

Figure 4.4: Time-optimal Control of a reaction wheel.
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To obtain a positive rotation of the satellite, a negative momentum must be delivered (ḣw = −ḣS)

between a time frame [t1, t2]. The angular momentum of the satellite will increase by

hS(t2) = −ḣw(t2 − t1). (4.16)

The satellite will rotate to

θ(t2) = − ḣw
IS

(t2 − t1)2

2
. (4.17)

In a time-optimal strategy, there is no interval between the acceleration and deceleration of the momen-

tum wheel and the final angular rotation is simply

θf = 2θ(t2) = − ḣw(t2 − t1)2

IS
. (4.18)

By denoting the time in which one wants to achieve the final rotation by tf = 2(t2−t1), the above formula

can be used to compute the torque one needs to achieve in this maneuver:

ḣw =
4ISθf
t2f

. (4.19)

During acceleration, the wheel angular momentum increases to

hw =
tf
2
ḣw =

2ISθf
tf

, (4.20)

which is the amount of angular momentum the inertia wheel must be able to store.

The above formulas can be used to size the momentum wheel. As a design requirement, it is

assumed that one wants to be able to rotate the satellite by 1 rad in 5 seconds. Assuming that a motor

can put the flywheel into rotation up to 500 rad/s in a linear manner as depicted in Fig. 4.4. Assuming

also the inertia for a 1U satellite with mass 1.33Kg and designing the wheel for the axis with the biggest

inertia. At last, assume that the inertia wheel is an aluminum wheel with 1mm thickness except for an

outer rim that extends the wheel by 2mm and has 4mm of thickness.

The torque and momentum available can be compared to the torque and momentum required so as

to size the inner radius of the momentum wheel. The design point is depicted in Fig. 4.5. This analysis

yields a minimum inner radius of 2.1 cm.
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(a) Input (b) Angular Rate

Figure 4.5: Design Point for the Momentum Wheel.

The flywheel was not manufactured in-house due to time and resource constraints. As a result, its

inner radius is not 2.1cm but 3cm. The real flywheel was modeled in detail in SolidWorks (see Fig. 4.6),

so as to find its moment of inertia. The real momentum wheel moment of inertia is 1.658552×10−5Kg.m2,

which complies with the referred maneuver requirement.

Figure 4.6: SolidWorks capture of the 3D model of the flywheel.

From [41], a typical value for the maximum torque to be provided by the Reaction Wheel System is

4.24× 10−6N.m and typical values for the external torques acting on a 1U CubeSat are: 4.3× 10−8N.m

for the gravitational torques; 2.9× 10−7N.m for the atmosphere-induced torques; 8.2× 10−9N.m for the

solar radiation torques; 2.0 × 10−6N.m for the magnetic field-induced torques. Assuming a worst case

scenario, in which all the perturbations act on the same direction in which one wants to provide the

maximum torque, the maximum required torque is ḣwmax
= 6.64 × 10−6N.m. In the same work, the

maximum angular momentum storage capacity comes from integrating the maximum required torque

over a maneuver of 400s, yielding hwmax = 1.09×10−3N.m.s. Following a similar analysis as before, but
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using these new constraints, yields an inner radius of at least 2.7cm. Therefore, the previously chosen

momentum wheel is still a good fit. The designed momentum wheel is to be used in the ground testing

facility’s functional satellite prototype. However, in a real space application, the flywheel could be put

into rotation up to 2000 rad/s [41], which would allow for a much smaller momentum wheel system.

Pulse-Width Modulation (PWM)

The DC motors of the inertia wheel will be controlled resorting to a PWM signal (instead of a contin-

uous signal). A PWM signal is characterized by having only two possible values: on and off. This type

of modulation uses a rectangular pulse wave whose pulse width is modulated resulting in a variation of

the average value of the waveform [62].

Denoting the waveform by x(t), the period by T , the on value by xmax, the off value by xmin and the

duty cycle by D, the average value of the waveform is given by

x̄ =
1

T

∫ T

0

x(t)dt = D.xmax + (1−D).xmin. (4.21)

In the present case, xmin = 0, meaning that x̄ = D.xmax.

The proportion of on-time to the period is the duty cycle. A duty cycle of 0% corresponds to a 0

constant signal and a duty cycle of 100% corresponds to a constant signal equal to maximum value.

The use of pulse width modulation to control a small motor results in lower power loss in the switching

transistor because it is either fully on or fully off. Class D power amplifiers are used to implement PWM

signals and power efficiencies well over 90% are common. PWM is particularly suited for running inertial

loads such as motors, as they are not as easily affected by the discrete switching, since their inertia

causes them to react slowly. The PWM switching frequency has to be high enough not to affect the load.

4.1.2 Sensors

Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is an electrical unit generally consisting of a 3-axis accelerometer,

a 3-axis gyroscope and, in some cases, a 3-axis magnetometer. The selected IMU was the 9-axis

LSM9DS1 inertial module by STMicroelectronics which communicates with the Raspberry Pi via I2C

which is a synchronous, multi-master, multi-slave, packet switched, single-ended, serial communication

bus invented in 1982 by Philips Semiconductor.

The basic performance characteristics of the LSM9DS1 are presented in Tab. 4.3. The measure-

ment range of the accelerometer is expressed in units of g, the gravitational acceleration on Earth. The

gyroscope measurement range is expressed in degrees per second, dps. The sensitivity of the ac-

celerometer is 0.732 mg/LSB, meaning that the output is expressed in units of 0.000732 g. A similar

interpretation can be done for the sensitivity of the gyroscope and magnetometer.

The 3-axis prefix indicates that the acceleration, angular velocity and magnetic field are measured in

the 3-dimensional space.

To characterize the noise affecting the IMU, sample data corresponding to 1.5 hours was collected.

Since the platform was at rest, the measurements from the gyroscope correspond to noise. Regarding
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Accelerometer Gyroscope Magnetometer
Measurement Range ±2g −±16g ±245dps−±2000dps ±4Gauss−±16Gauss
Output Resolution 16 bits 16 bits 16 bits
Sensitivity 0.732 mg/LSB(±16g) 70 mDPS/LSB(±2000dps) 0.58 mGauss/LSB(±16Gauss)
Output Data Rate (max) 952 Hz 952 Hz 80 Hz

Table 4.3: Basic performance characteristics of the LSM9DS1 IMU.

the accelerometer, only the gravity acceleration is being read, and it is aligned with the z-axis. Subtract-

ing the gravity component, the measurement from the accelerometer also corresponds to noise. This

way, the average of the measurements from the acelerometer and gyroscope can be used to retrieve

the average bias. The noise covariance and bias are resumed in Tab. 4.4.

Accelerometer Gyroscope
Noise Bias [−0.11475, 0.10982,−0.044702]m/s2 [0.1096,−0.11303,−0.20123]o/s
Noise Variance [0.0029346; 0.0052722; 0.0013492](m/s2)2 [7.1815e− 05, 0.0001305, 0.0001102](o/s)2

Table 4.4: Noise bias an covariance identification for the LSM9DS1 IMU.

When it comes to the magnetometer, identifying its measurement model is not trivial and a specific

calibration procedure is described in subsection 5.3.1. The values to be used in the simulation envi-

ronment regarding the noise variance were obtained similarly as for the gyroscope and accelerometer:

[0.15055, 0.15971, 0.37153](µT )2.

Hall-Effect Sensor

A neodymium 8-pole magnets with rubber hubs is connected to each momentum wheel axis, thus rotat-

ing at the same angular speed as the momentum wheels themselves. An hall-effect sensor is put close

to the magnets, so that it can sense the change in magnetic polarization as the magnet rotates.

4.2 Test Bench for Nanosatellite Ground Testing

The test bench provides an inexpensive platform for ground-based testing while imitating the torque-free

conditions of a satellite in space. This simulator is composed of 2 main parts: a rotor and a stator. The

stator is composed of a small chamber and a plate with holes. The rotor is a hollow sphere made of

plastic that sits on top of the rotor.

A 3D computer model of the satellite prototype sitting on the rotor is depicted in Fig. 4.7. The rotor

was bought off-the-shelf. The 2 parts of the stator were manufactured by a CNC machining company

with a precision of 10 nm. The supports for the 1U CubeSat were 3D printed. The drawings can be

found on [60]. A list of the items can be found on Tab. 4.5.

An air compressor is connected to the small chamber, forcing air through the holes of the plate. This

keeps the rotor suspended on a cushion of air and allows the simulator to rotate 360º in roll, pitch and

yaw. The main advantage of this setup is the low friction between the plate and the sphere.

This setup reduces the friction between moving parts, allowing relative motion along the desired

directions. The load is supported by a thin layer of rapidly moving pressurized air between the surfaces.
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Component Unit Mass (g) Quantity Total Mass (g)
Rotor Half Sphere 152 2 304
Stator Bottom Part 369 1 369
Stator Upper Part 1394 1 1394
CubeSat Support 33 2 66

Table 4.5: List of components that compose the Test Bench.

As a result, this can also be called an air bearing.

(a) 3D Model (b) Picture

Figure 4.7: 3D model (Left) and Picture (Right) of the Satellite Prototype Sitting on the Developed Test
Bench.

As it is evident in Fig. 4.7, the CubeSat Prototypes does not rotate alone. The rotating parts also

include the rotor and the supports. From SolidWorks, the moment of inertia of the Cubesat with the

supports and the rotor in the body frame is

JTotal = JS + Jrotor + Jsupports =


3.58 −0.0297 0.0298

−0.0297 3.54 0.0122

0.0298 0.0122 3.35

× 10−3Kg.m2. (4.22)

The added moments of inertia act as parasitic moments of inertia. The moment exchange of the satellite

under tests is less effective. The factor that describes this loss of effectiveness can de computed by

k = JS/JTotal.

Furthermore, a slight miscenter between the center of rotation and center of mass of the prototype

induces a pendulum-like dynamics to the system. Replacing hw = u = 0 and adding a term to describe

this dynamics, equation 2.22 becomes

JẇI = −JwI ×wI +mgrcm × AbIez (4.23)
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where rcm is the vector from the origin of the body frame to the center of mass, m is the mass of the

rotating parts, g is the gravity acceleration, AbI is the rotation matrix from the inertial to the body frame

and ez = [0, 0, 1]T is a vector representing the gravity acceleration direction in the inertial frame. This

miscenter shall be compensated by means of a manual or automated balancing procedure. In this work,

the miscenter was partially compensated adding lead weights until rcm ≈ 0.

4.2.1 Physics of the Test Bench

The physics of the Test Bench are rather complex even for the case of a single hole in the center of the

stator’s plate. Even though the present chapter focuses on the case of a single hole in the center of

the stator, experience showed that adding holes around the center hole in a circular pattern results in a

better performance.

The levitation force produced by the air flow, Fup, must be enough to compensate the gravity force,

Fg, due to the rotor’s weight, mr. Denoting the gravitational field strength by g = 9.81m/s2, the gravity

force is given by:

Fg = mr.g. (4.24)

The levitation force is provided by the gauge pressure P (θ)−PAtm inside the fuid layer. The associated

force follows from

Fup =

∫ ∫
[P (θ)− PAtm] cos(θ)dA, (4.25)

where dA represents the submerged surface.

In order to proceed with the characterization of the test bench, one needs to know the gauge pressure

distribution inside the fluid layer.

Along with the pressure, the shear stress and the buoyant force contribute to the force on the cylinder.

However, according to [63], their contribution is much smaller than the pressure.

The pressure field follows from the mass and momentum balance within the fluid.

The mass balance is represented by the continuity equation:

∂ρ

∂t
+∇.(ρu) = 0, (4.26)

where ρ is the density of the air and u is the fluid velocity distribution.

The Mach number is defined as Ma = u/c, where u is the velocity of the flow and c the speed of

sound in air. Since c = 330 m/s, the Ma of the fluid film flow is much smaller than 1 and, as a result,

the compressibility of the air is negligible. For an incompressible fluid (ρ = constant), the mass balance

simplifies to ∇u = 0.

In spherical coordinates, the mass balance yelds

1

r2

∂(ρr2ur)

∂r
+

1

rsin(θ)

∂(ρuθsin(θ))

∂θ
+

1

rsin(θ)

1∂(ρuφ)

∂φ
= 0. (4.27)
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Consider the gap coordinates (x,y, φ) parallel and perpendicular to the curved surface and related to

the spherical coordinates (r, θ, φ) as x = Rθ, y = R+ h− r, where h is the width of the gap between the

rotor and the stator, as depicted in Fig. 4.8.

Figure 4.8: Sphere coordinates (r, θ, φ) and auxiliary gap coordinates (x, y, φ).

Assuming that there are no imperfections in the surfaces, the velocity in the φ direction is zero. Also,

after leaving the nozzle, the flow rapidly orients itself in the θ-direction, so the velocity in the r-direction

will also be zero. Thus in steady-state u = uθ(r, θ)eθ or u = u(y, θ)eθ The continuity equation then

reduces to

∂uθ
∂θ

sin(θ) + uθcos(θ) = 0. (4.28)

Creeping Flow Approximation

The momentum balance is expressed by the Navier-Stokes equation, which for fluids with constant

density ρ and viscosity µ is given by

ρ

[
∂u
∂t

+ (u.∇)u
]

= ρg−∇P + µ∇2u. (4.29)

The flow is radially outward from the inlet nozzle so that u = (ur, uθ, uφ) = uθ(r, θ)eθ. As the fluid is

being spread over a region of increasing area its speed must decrease with θ to ensure conservation of

mass.

This means that the term ρ(u.∇u) is not identically zero. However, for simplicity, one can neglect it in

the Navier-Stokes equation, since it is small in comparison with the terms ∇P and µ∇2u as long as the

inflow rate is sufficiently small [63].

Considering steady flow, the first term on the left side vanishes. The gravitational effect is also

negligible, considering that its only adds a hydrostatic component to the pressure. With ρ = 1.225Kg/m3

and with a film thickness of h = 0.15mm, the gravitational contribution to the fluid pressure is at most

ρgh ≈ 0.002Pa = 1×10−8atm, much smaller than the required gauge pressure at the inlet nozzle, which

is in the order of a tenth of an atmosphere.

The Navier-Stokes equation reduces to

45



0 = −∇P + µ∇2u, (4.30)

which is known as ”Stokes flow” or ”creeping flow”.

As the y and φ components of the velocity profile are zero, equation 4.30 implies that the pressure is

a function of x only. Since the fluid speed does not depend on φ, from equation 4.30 follows

dP

dx
= µ

d2ux
dx2

+ µ
d2ux
dy2

. (4.31)

Or, in spherical coordinates

1

r

∂P

∂θ
= µ

[
1

r2

∂

∂r

(
r2 ∂uθ

∂r

)
+

1

r2

∂

∂θ

(
1

sin(θ)

∂

∂θ
(uθsin(θ))

)]
. (4.32)

This equation can be solved inserting an auxiliary function K(θ):

dP

dx
=

1

R

dP

dθ
= −µK(θ). (4.33)

Replacing equation 4.33 in 4.32, a parabolic velocity profile across the fluid layer is obtained:

uθ(y, θ) =
1

2
K(θ)y(h− y). (4.34)

At an angle θ, the total flux per unit of time through the cross-section with circumference 2πRsin(θ) is

Q = 2πRsin(θ)

∫ h

0

uθ(y, θ)dy. (4.35)

Replacing equation 4.34 in 4.35 yields

Q =
1

6
πRsin(θ)K(θ)h3. (4.36)

Thus, K(θ) decreases with 1/sin(θ):

K(θ) =
6Q

πRh3sin(θ)
. (4.37)

Replacing the value of K(θ) from 4.37 in the equation for the pressure gradient 4.33 and noting that

P (θmax) = Patm, the gauge pressure can be computed

P (θ)− Patm =
6µQ

πh3
ln

[
(1− cos(θmax))sin(θ)

(1− cos(θ))sin(θmax)

]
. (4.38)

By replacing equation 4.38 in 4.25, the levitation force is obtained:

Fup =
6µQR2

h3
(1− cos(θmax)). (4.39)

Now, by equating the levitation force to the weight of the rotor 4.24, the thickness of the fluid layer is

obtained:
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h =
(6µQR2

mrg

)1/3(
1− cos(θmax)

)1/3
. (4.40)

The values for the developed test bench are: µ = 1.81 × 10−5Kg/(m.s), R = 0.1m, g = 9.81m/s2,

mr = 1.33Kg, Q = 0.00023m3/s, θmax = 0.6rad, ρ = 1.225Kg/m3, orifice radius of 1mm. These values

can be used to compute the thickness of the fluid layer, obtaining h = 0.15mm.

Inertial Effects: Bernoulli Suction

The inertia of the fluid is accounted in the Navier-Stokes equation 4.29 by the advection term ρ(u.∇)u,

which was neglected in the preceding analysis. However, the fact that the velocity decreases as 1
sin(θ)

means that the inertia of the fluid can become important if the contribution of the fluid deceleration to

the pressure field is not negligible.

The dimensional analysis method will be employed to verify if ρu∇u << µ∇2u, i.e. if the viscous

effects dominate the inertial. The order of magnitude estimates are ∂u
∂x ∼ U/R, ∂u∂y ∼ U/h, ∂

2u
∂x2 ∼ U/R2,

∂2u
∂y2 ∼ U/h

2, where U is a typical value for the fluid velocity. Then, the condition ρu∇u << µ∇2u can be

written as

ρux
∂ux
∂x

<< µ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
(4.41)

ρU

(
U

R

)
<< µ

(
U

R2
+
U

h2

)
, (4.42)

or, equivalently,

Re << 1 +
R2

h2
, (4.43)

where Re = ρUR/µ is the Reynolds number based on the sphere radius R.

Replacig the values for the present case (consider Q = 0.00023m3/s and an orifice with 1mm radius),

one obtains Re = 5× 105, and 1 + R2

h2 = 4.44× 105, meaning that inertial effects cannot be neglected.

The idealized case of inviscid flow ilustrates the effect of inertia in its purest form. This is the opposite

case of creeping Stokes flow. One now assumes that the inertia (or kinetic energy) dominates viscous

friction. If in addition the flow is steady and irrotational, the Navier-Stokes equation can be integrated to

obtain the Bernoulli’s law:

1

2
ρ|u|2 + P = constant, (4.44)

where the gravity was neglected. This equation expresses the conservation of energy for an inviscid flow

in which regions of high kinetic energy correspond to low pressure. For the present case, the velocity

decreases from the nozzle to the outlet region, meaning that if it were for the inertial effects alone, the

pressure would be below atmospheric in the submerged area, creating a downward force.
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A description that includes both viscous and inertial effects is addressed in [64], where the following

approximate expression is derived for the pressure field in the fluid layer:

P (r)− Patm =
6µQ

πh3
ln
(rmax

r

)
− 27ρQ2

140π2h2

(
1

r2
− 1

r2
max

)
, (4.45)

where r denotes the distance from the inlet nozzle.

The first term is very similar to the previously derived exact expression for the limiting case of Stokes

flow 4.38. So, it is recognizable that the second is the pressure contribution from inertia.

Note that the viscous pressure grows with Q but the inertial contribution grows with Q2. The domi-

nance shifts from the viscous to the inertial regime as Q increases. At large flow rates, the generated

lifting force will no longer be able to levitate the rotor.

In Fig. 4.9 the pressure distribution is plotted for the extreme case of creeping flow (solid curve)

given by equation 4.38. The dashed curve includes both inertial and vicous effects (equation 4.45). The

pressure is not plotted in the nozzle region (from θ = 0rad to θ = 0.05rad), where the actual pressure

will deviate from the previous analysis.

Figure 4.9: Pressure distribution P (θ)/Patm.

Damping of Rotations

Since there is no contact between the rotor and the stator, the friction is very low. In fact, the only source

of drag is the viscous drag that the fluid exerts on the sphere and this is the exact same principle on

which roller bearings work. This viscous drag causes the angular speed to slow down exponentially as

w(t) = w(0)e−t/trel , (4.46)

where trel is the relaxation time.

The computation of the relation time will be based on a scaling argument. First, it will be computed

for a cylinder with width L and the same radius R as the sphere.

When the cylinder is set into rotation with angular frequency w, the velocity at the cylinder surface
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Figure 4.10: Auxiliary geometry: cylinder.

becomes u = wR instead of u=0. This affects the velocity profile, that can now be seen as the superpo-

sition of the Poiseuille parabolic profile, uθ(y) and a simple linear Couette profile, uw(y):

u(y) = uθ(y) + uw(y), (4.47)

where the Couette profile is given by

uw(y) = wR
y

h
. (4.48)

Note that uw(y) has zero second derivative and, as a result, does not contribute to the momentum

balance in equation 4.31. Therefore, the pressure distribution is unaffected by the rotation.

The main contribution of the rotation is to break the left-right symmetry and hence it produces a

nonzero friction torque. The force that the fluid applies in the cylinder (as a result of the force the

cylinder applies in the fluid) is accomplished via the shear stress, τ :

τ = τθ + τw = µ
(duθ
dy

+
duw
dy

)
. (4.49)

By symmetry, the Poiseuille τθ does not contribute to the net torque, which comes entirely from the

Couette’s contribution τw = µRw/h. The torque on the cylinder is computed by integrating the force

moment dT = −RτwdA over the submerged area, yielding

T = −2θmaxµLR
3

h
w. (4.50)

The torque will slow down the rotation according to the equation

T = Icyl
dw

dt
, (4.51)

where the moment of inertia of the cylinder, Icyl, is given by

Icyl =
1

2
MR2 =

1

2
ρcylπLR

4, (4.52)
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where ρcyl is the mean density of the cylinder.

Replacing 4.52 in 4.51 and the resulting expression in 4.50, yelds

dw

dt
= − 4θmaxµ

πρcylRh
w = − 1

trel
w. (4.53)

The relaxation time for the auxiliary cylinder body is

trel =
π

4θmax

ρcylRh

µ
, (4.54)

which can be viewed as a characteristic time scale for the damping ρcylRh
µ multiplied by a dimensionless

geometric prefactor π
4θmax

.

The sphere is much more complex than the cylinder since the axis of rotation is no longer fixed. The

effectiveness of the viscous drag will be different if the sphere rotates arround the horizontal or vertical

axis.

However, the essential physics are the same. In analogy to the torque on the cylinder, given by 4.50,

the torque for the sphere must be, aside from a scaling prefactor that will depend on the mode of rotation:

T ∼ µR4w

h
, (4.55)

where the width of the cylinder was replaced by R.

The relaxation time can now be approximately found:

T = Irotor
dw

dt
⇒ µR4w

h
∼MR2 dw

dt
⇒ µR4w

h
∼ ρrotorR5 dw

dt
⇒ trel ∼

ρrotorRh

µ
. (4.56)

Replacing the values for the developed test bench, one obtains trel = 4.4 minutes.

Orifice Sizing

The orifice sizing is done based on the analogy between pneumatic and electrical systems presented

in [65]. In this text, the generalized system variables effort(e) and flow(f) are introduced. The energy

coupling of many systems can be represented by this variables, whose product is the instantaneous

power being transmitted through an energy port. The act of delivering energy is associated with one

intensive variable (e.g current, flow rate) giving the flux of energy flow and an extensive variable (e.g

voltage, pressure) giving the pitch of energy flow.

The general constitutive relation of an energy dissipator takes the form

e = Ψ(f). (4.57)

In the linear form this becomes

e = R.f, (4.58)

where R represents a resistance.
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In an electrical system, the effort variable is the voltage, v, and the flow variable is the current, i.

Electrical resistance is associated with electrical dissipation:

v = R.i, (4.59)

The total power dissipated is given by

P = R.i2 =
v2

R
. (4.60)

Consider the simple electric circuit composed by a voltage source, V, and a resistor, R. The voltage

source has itself an inner resistance, ri. Kirchoff’s voltage law implies

V = (ri +R)i⇔ i =
V

ri +R
. (4.61)

The total power dissipated by the resistor, R is then

P = R.i2 =
R

(ri +R)2
V 2. (4.62)

If one wants to choose R so as to maximize the power dissipation, one must force dP/dR = 0:

dP

dR
= 0⇔ ri = R. (4.63)

The value of R should be equal to the inner resistance of the voltage source. This is called impedance

matching. The orifice of the stator shall be sized so as to maximize the energy transfer to the rotor.

In a pneumatic system, the effort variable is the pressure, P, and the flow variable is the flow rate, Q.

Fluid dissipation may be the result of several effects, since there are many ways in which viscous effects

can cause the conversion of fluid kinetic energy to thermal energy and dissipate power.

Regarding the viscous forces between the fluid and the retaining surfaces, the fluid resistance will be

computed in a different manner whether in the presence of a porous medium or a capillary pipe where

the flow will be laminar. In the case of a laminar flow (small numbers of Reynolds), the fluid resistance

comes from the Haigen-Poiseuille’s law:

Rf =
P21

Q
=

128µl

πd4
, (4.64)

where P21 represents the pressure difference measured upstream and downstream of the power dissi-

pator, µ the fluid viscosity, l the capillary pipe length and d the capillary pipe diameter.

Regarding the viscous forces between fluid particles, note that in the case of the incompressible flow

through an orifice an approximate expression for the constitutive relation of an orifice dissipator is

P21 =
ρ

2C2
dA

2
0

Q|Q|, (4.65)

where ρ is the fluid density, Cd is the orifice coefficient of discharge and A0 is the orifice cross-sectional
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area.

Orifice means a sudden restriction or change in cross-sectional area over a short length. Fluid is

rapidly accelerated through the orifice with resultant turbulent flow downstream of the restriction.

The fluid resistance resulting from an orifice is then

Rf =
P21

Q
=

ρ

2C2
dA

2
0

|Q|. (4.66)

Assuming that a mechanical fluid pump is a pure pressure source, P21, and that one can measure

the flow rate at its outlet, Qi when the pump pipe is in contact with the atmospheric air, the internal fluid

resistance, ri is

ri =
P21

Qi
. (4.67)

By analogy to the simple electric circuit previously described, matching the impedances (Rf = ri)

yelds the orifice area that maximizes the power transfer:

A2
0 =

ρ|Q|Qi
2C2

dP21
. (4.68)

Figure 4.11: Orifice area as a function of the flow rate and pressure.

An orifice plate is considered, Cd = 0.61 [66]. For a given Qi the orifice area is directly proportional

to the flow rate, Q, and decreases with the pressure, P21, as depicted in Fig. 4.11. For the current test

bench, Qi = 0.0015m3/s. Experiments show that the pressure does not need to be too high in order to

generate the necessary lifting force. So, a pressure of P = 1.1bar is used. This means that the area is

ultimately chosen depending on the desired Q. The thickness of the fluid layer should not be too small.

Otherwise, small imperfections on the surfaces of the testbed could disturb the air flow. Too high a flow

rate and the generated lift force may not be able to levitate the rotor. Another reason so as to not to

choose the biggest possible value for Q is to augment the amount of time the air compressor can be

used without needing to refill its tank. A value of Q = 0.00023m3/s was chosen empirically, resulting in

an optimal orifice radius of approximately 1mm.
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Chapter 5

Implementation

In section 2.4, two different Spacecraft models were presented. The model to be used will depend on

the satellite’s mission objectives. For example, in the case of an Earth observation mission, the Nadir

Pointing Spacecraft Model is the most adequate. However, if the satellite’s mission is to study more

distant space bodies, like the Sun or other stars, then the Inertial Pointing Spacecraft Model shall be

used.

In the present work, the satellite’s attitude control with momentum wheels is considered. The system

to be controlled is depicted in Fig. 5.1 with a high level of abstraction.

Figure 5.1: Scheme of the system to be controlled.

The satellite is subject to control and disturbance torques, which will affect its attitude (denoted by q

and w). The spacecraft angular velocity, linear acceleration and the magnetic field around it are sensed

by an IMU. The data from IMU is filtered and the state estimation (q̂, ŵ) is used in the control algorithm

which provides the reference for the control torque, Tc. The reference control torque is used in the

actuators’ system to control the momentum wheels, so as to provide a torque as close as possible to

the reference. Ideally, the actuators’ system is able to provide instantaneously the reference torque:

Tc = −ḣw.
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5.1 Simulation Environment

The simulation environment aims at realistically describing the conditions the spacecraft will be subject

to in order to validate the developed attitude determination and control algorithms. The environment was

implemented in MATLAB and Simulink and is mainly composed of 8 parts.

The first is the ”orbit propagator”, which takes the spacecraft force perturbations and computes the

spacecraft’s position and velocity in the ECI frame according to equation 2.14.

The ”environment” block takes the spacecraft position and computes the Earth to Sun vector, Earth

to Moon vector, Solar Radiation Perturbation Acceleration, air density and magnetic field. This block

was adapted from the work of [67].

The ”orbit perturbations” block computes the following perturbation forces and torques:

• taking the spacecraft position, computes the Non-spherical Earth perturbation from equation 2.41;

• taking the spacecraft position and also the Earth to Sun and Earth to Moon vector, computes the

Third-body forces from equation 2.42;

• taking the spacecraft velocity, position and air density, computes the aerodynamic drag force from

equation 2.43;

• the Solar Radiation acceleration comes directly from the ”environment” block.

This block also outputs the torque perturbations:

• taking the Earth’s magnetic field and the spacecraft attitude relative to the ECI frame, the Magnetic

Field-Induced Torques are computed from equation 2.50;

• taking the spacecraft position and attitude relative to the ECI frame, the gravitational torque is

computed according to 2.32;

• given the Solar Radiation acceleration from the ”environment” block, the Solar Radiation torque

can be computed from equation 2.51;

• given the aerodynamic drag force, the Atmosphere-Induced Torque can be computed from equa-

tion 2.49.

The ”spacecraft model” block takes the momentum wheel angular momentum, disturbance and con-

trol torques, spacecraft position and velocity to implement equation 2.20 and 2.22 or 2.31 in continuous-

time.

The ”sensors model” block takes the spacecraft acceleration from the ”orbit propagator” block, the

magnetic field from the ”environment” block and the spacecraft angular velocity from the ”spacecraft

model” block, adds white Gaussian Noise and a bias according to the values that come from the iden-

tification process. For the gyroscope, a slow time-varying bias was considered. This phenomenon was

taken into account when designing the filters from sections 3.3.1 and 3.3.3.

The ”actuators model” block takes a torque command and outputs the wheels angular momentum

and the actual torque provided by the momentum wheel system. A model for the DC motors that includes
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the deadzone, saturation and discretization (finite number of possible PWM values) is included, along

with the control algorithms for the momentum wheels. More on this on section 5.2.1.

The ”attitude determination” block takes the data from the ”sensors model” block and filters it accord-

ing to the attitude determination algorithms from chapter 3.

Lastly, the ”control algorithms” block takes the estimated attitude from the ”attitude determination”

block and wheels angular momentum from the ”actuators model” block and applies the control algorithms

from chapter 3 to output the torque command that is the input to the ”actuators model” block.

5.2 Control Methods

5.2.1 Momentum Wheel Control

The Actuators’ System block holds the inner control logic that determines the momentum wheel input

voltage from the Torque Command. Two control strategies are considered.

Figure 5.2: First momentum wheel control strategy.

The first control strategy (fig 5.2) performs a discrete-time integration of the torque command to

compute a reference flywheel angular velocity, Rw. This value is used to invert the momentum wheel

model, H(Z), and find the input voltage, v, that produces Rw. The applied control torque, −ḣw, is

hard to compute in real-time, because it would require measuring and computing the derivative of the

flywheel angular velocity, ww. The main drawback of this strategy is that it relies on the accuracy of the

momentum wheel model.

Figure 5.3: Second momentum wheel control strategy.

The second control strategy (fig 5.2) is similar to the previous one in that the Torque Command is

used to compute a reference for the flywheel’s angular velocity, Rw. However, the wheel angular velocity

measured by the Hall Sensor is used in a feedback control loop to compute the input voltage of the

momentum wheel. The main disadvantage of this strategy is that it requires extra hardware and polling

it at a high rate.

PID control was described in section 3.2.1. The derivative term will not be used when controlling the

momentum wheel angular velocity. A feedback of the torque provided by the inertia wheel is difficult in
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practice as it would imply computing the derivative of the flywheel angular velocity computed from the

Hall sensor data. As an alternative, the control of the momentum wheel will be based on its angular

velocity:

ww
v

=
Kv

s RMIw
KMKv

+ 1
. (5.1)

The proportional and integral terms of the control law are found by converting the transfer function 5.1

to a state-space model with state ww and input v and augmenting the state with the integral of the error

velocity e = ww − Rw, where Rw is the reference for the angular velocity, discretizing it for a sampling

rate of 100Hz, and computing the LQ control law for this state-space model. The gains used to compute

the control law were 100 for the state cost corresponding to ww, 1 for the integral of ww and 1 for the

input cost. The sampling time of this loop is 10 times smaller, since this is an inner loop and the pointing

control law assumes Tc = −ḣw.

Some phenomena was neglected when computing the LQ control law so as to allow for a linear

relation between the input voltage and the wheel angular speed. In fact, there is a deadzone near the

zero angular velocity. In fact, the wheel rotates only down to an input voltage of 0.9 Volts. Also, the input

voltage is subject to saturation, with a maximum of 6 Volts.

The hall-effect sensor is sampled each thall = 0.0001s and a counter is incremented each time.

When there is a change in polarization, it means that the wheel rotated 2π/8rad = π/4rad, since each

rotation corresponds to 8 polarization changes. The estimated angular velocity is then given by

ŵw =
π

4× thall × counter
. (5.2)

And the maximum angular velocity that can be estimated is ŵwmax
= pi/(4 × 0.0001 × 1) = 7854rad/s,

which is high enough. Note however, that the accuracy of the estimates is lower for high angular veloc-

ities. For example, the second highest measurable angular velocity is pi/(4× 0.0001× 2) = 3927rad/s.

The third one is pi/(4 × 0.0001 × 3) = 2618rad/s and so on. So, one wants to choose thall so that the

accuracy in the range of angular speeds of the momentum wheel is acceptable. In the present case,

ww ∈ [100, 770]rad/s, the precision is on average 9 rad/s. There is a trade-off between the precision

of this measurement and the computational burden of polling the sensor. In fact, a precision of 9 rad/s

is not enough to use feedback control in the present context. As a result, the first control strategy is

used on the experimental setup, even though the second control strategy was used in simulation (with

thall = 1 × 10−6s), as it is a better solution. As an alternative, it is advisable the use of a brushless

DC motor with integrated speed controller. Another issue to be noticed is that the saturation limits of

the momentum wheel system are tighter on the experimental setup than on simulation. This is not a

concern in practice, since the experimental setup is used to test short time maneuvers.

Pulse-Width Modulation (PWM)

The input V in equation 5.1 is implemented in hardware by a PWM signal. The Raspberry Pi base

clock is 19,2 MHz. The PWM duty cycle should be high enough so that the wheel’s angular velocity is

not affected by applying a PWM signal instead of the actual desired voltage. So, one should use the
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minimum clock divisor in the Raspberry Pi: 2. Then, the PWM counter is incremented at a frequency

of 19.2/2 = 9.6MHz. The last parameter to choose is the range. A range of 4 means that the PWM

frequency is fPWM = 19.2/2/4 = 2.3MHz. However, there are only 5 possible duty cycle values :

0/4, 1/4, 2/4, 3/4 and 4/4. In this work, a range of 480 is used, meaning that the PWM frequency is

fPWM = 480KHz.

Anti-windup

If the control signal saturates, the integral part of the PI controlller keeps integrating. This effect

is known as integrator-windup or reset-windup. This effect is visible, for example, when the input to a

momentum wheel motor builds up to the maximum duty cycle value, 480. From then on, if the desired

control torque would require the wheel angular velocity to continue increasing, the saturation of the

actuator prevents this from happening, but the integrator keeps on integrating the error. If a desaturation

procedure is carried out, it would take too much time, because the integrator would require some time

to discharge.

To solve this issue, the integrator is only allowed to charge up to an upper and discharged down to a

lower values. The upper and lower saturation limits are uimax = umax−up and uimin = umin−up, where

umax = 480, umin = −480 and up is the proportional control term.

5.2.2 Pointing Algorithm - LQR

The linear state feedback that minimizes the performance index from equation 3.5 is obtained using

the MATLAB command dlqr. For the Nadir Pointing Spacecraft model, matrices A and B are given by

equation 2.34. The C and D matrices are I6 and 03 respectively. The matrices QL and RL were again

obtained by trial and error and fixed on QLw = 50I3, QLq = 0.5I3 and RL = 1×106.I3. Given the matrices

A,B,C,D,QL,RL and the sampling time, tc, the matlab code that allows to obtain the gain for the linear

state feedback in 3.6 is below.

sys = ss(A, B, C, D);

sysD = c2d(sys , tc);

K = dlqr(sysD.A, sysD.B, Q, R);

LQR Extension: Integral Action

Applying a simple LQR shows that in the presence of disturbance torques the attitude cannot be

regulated and the spacecraft is kept pointing to a point different from q = [1, 0, 0, 0]T . To overcome this

difficulty, the state space model is augmented with an extra state that corresponds to the integral of the

attitude q. Using the same A, B, C and D matrices described in the previous section, the linear state

feedback can be obtained in Matlab using the following set of commands.

A_aug = [A, zeros (6,3); zeros (3,3), eye(3), zeros (3,3)];

B_aug = [B;zeros (3,3)];

C_aug = [C,zeros (6,3)];

D_aug = D;
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sys = ss(A_aug ,B_aug ,C_aug ,D_aug);

sysD = c2d(sys , tc);

K = dlqr(sysD.A,sysD.B,[Q,zeros (6,3);zeros (3,6),QI],R);

Matrices QL and RL were maintained as in the previous section and the QI was obtained by trial and

error and fixed on QI = 1× 10−2.I3.

5.2.3 Detumbling Algorithm

After its launch, the spacecraft is said to be tumbling, since its angular rates are usually very large,

which cannot be effectively controlled by the Momentum Wheel System (MWS). The detumbling mode

employs either thrusters or magnetorquers. As referred in section 3.2.4, the commanded magnetic

dipole moment is given by 3.15. Resorting to equation 3.17, the value kdet = 1.35 × 10−5 is obtained.

The detumbling algorithm is applied at 10 Hz.

5.2.4 Momentum Dumping Algorithm

As referred in section 3.2.3, the commanded magnetic dipole for momentum dumping purposes is given

by equation 3.12. In order to avoid commanding any extra torque besides the one from the main con-

troller, an equal term is added to the commanded momentum wheels’ torque. This way, the total torque

affecting the spacecraft due to the momentum dumping algorithm is null and it can be used continuously.

By trial and error, a value of kmd = −1 was obtained. The momentum dumping algorithm is applied at

10 Hz.

5.3 Attitude Determination Methods

5.3.1 Magnetometer Calibration

Denoting the magnetometer measurement by By:

By = CsiBmB
+ nh + nm, (5.3)

where nm ∈ R3 is the measurement noise; ABI ∈ M(3, 3) is the rotation matrix from the inertial to the

body frame; BmB
= ABI BmI

∈ R3 is the Earth’s magnetic field expressed in the body frame; nh ∈ R3 is

the hard iron distortion; Csi ∈M(3, 3) is the soft iron distortion.

To retrieve an ideal measurement, absent any magnetic interference, Bc = ABI BmI
, one needs to

correct for the hard and soft iron effects:

Bc = C−1
si (By − nh). (5.4)
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The measurements of an ideal magnetometer would lie on an origin-centered sphere with radius equal

to the magnetic field strength.

Hard iron effects are stationary interfering magnetic noise sources, such as metallic objects on the

cirtuit board with the magnetometer, motors and currents, as well as other external magnetic fields.

These, deviate the origin of the sphere of measurements.

Soft iron effects arise from objects near the sensor which distort the surrounding magnetic field,

stretching and tilting the sphere of ideal measurements. The resulting measurements lie on an ellipsoid.

Csi and nh can be retrieved by the best-fitted ellipsoid, minimizing the following expression by value

decomposition such as in [68]:

min((By − nh)T (C−Tsi C−1
si )(By − nh)− 1). (5.5)

The results of a sample magnetometer calibration procedure are depicted in Fig. 5.4.

Figure 5.4: Sample magnetometer data, best-ftted ellipsoid and corrected data to fit the ideal sphere.

5.3.2 Quaternion from Earth’s Gravity and Magnetic Field Observations

In the experimental setup, the accelerometer can be used as an inclinometer to retrieve the spacecraft

pitch, θ, and roll, φ, angles. Even though this would not be possible in orbit, this is not a concern, since

this setup has an educational purpose. Firstly, bias and other accelerations should be subtracted from

the accelerometer readings to retrieve the gravity field estimation, ĝ, as in [51]. For φ = θ = 0, estimated

gravity field would be ĝ = [ĝx, ĝy, ĝz]
T = [0, 0, g]T , with g = 9.81ms−2. It is well known that the pitch and

roll angles can be retrieved as follows

φ = atan2(ĝy,−ĝz), (5.6)
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θ = −atan2(−ĝx,
√
ĝ2
y + ĝ2

z). (5.7)

The Euler representation (φ, θ, 0) can then be used in formula 2.10 to obtain the equivalent quater-

nion.

The magnetometer reading is first corrected for hard and soft iron distortions as in eq. 5.4. Then, it

is rotated by −θ and −φ, resulting in an intermediate vector B = [Bx, By, Bz]
T . The yaw angle related

to the NED frame is given by

ψNED = −atan2(By, Bx)− δ, (5.8)

where δ is the magnetic declination at the spacecraft’s position. Having the yaw related to the NED

frame, orbit data is needed to obtain the yaw related to the LVLH frame.

5.3.3 Euler-Based Complementary Filter

The Euler-based complementary filter runs at 10Hz, the same frequency at which the satellite is actu-

ated. The values for matrices Q and R were obtained by trial and error and set on

Q = diag(8, 8, 8, 0.005, 0.0016, 0.0016, 0.0005, 0.025, 0.025),

R = diag(10, 25, 5).

The filter gains were obtained resorting to the function kalman from MATLAB applied to the linearized

system 3.33 with the previous values for the gain matrices Q and R.

The parameters of the noise model were obtained by the Allan deviation plot. Data corresponding to

1.5 hours was collected and the plot was obtained resorting to the allanvar function from MATLAB. From

Fig. 5.5,

TBI = [153.6 256 153.6]T s.

5.3.4 Quaternion-Based Complementary Filter

The quaternion-based complementary filter was implemented as described in section 3.3.2. The ac-

celerometer and magnetometer readings are used to compute an observation quaternion. The gyro-

scope readings are used to find a predicted quaternion. In the update step, the SLERP technique is

used to find an intermediate quaternion between these two, that is the output of the filter.

The filter runs at 10Hz with a parameter t = 0.2, meaning that for the most part the output quaternion

is similar to the one that comes from the acccelerometer and magnetometer readings, but it is corrected

by a fraction of 1/5 by the output of the prediction step. This is important because the integration of the

gyroscope readings are crucial to have better results in rapid maneuvers, but need to be corrected to

prevent it from drifting due to the integration of sensor errors. Most of the maneuvers in the satellite are
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Figure 5.5: Allan Deviation Plot.

slow maneuvers, meaning that the relative importance of the gyroscope must be smaller.

5.3.5 Quaternion-Based Kalman Filter

The quaternion-based kalman filter runs at 10Hz, the same frequency at which the satellite is actuated.

The values for the matrices Q and R were obtained by trial and error and set on

Q = diag(10, 10, 10, 0.01, 0.01, 0.01),

R = diag(1, 1, 1).

The filter gains were obtained resorting to the function kalman from MATLAB with the previous values

for the gain matrices Q and R.

5.4 Code Deployment and Communication Protocols

MATLAB/Simulink has support for Target Hardware, namely, the Raspberry Pi. Simulink CoderTM (for-

merly known as Real-Time Workshop) generates and executes C and C++ code from Simulink models.

The generated code can be used for real-time applications, rapid prototyping and hardware-in-the-loop

testing.

Monitor and Tune (External Mode) can be used to tune parameters and monitor a Simulink model

running on the target hardware. The effects of different parameter values can be viewed in Simulation

Data Inspector. The Raspberry Pi 4 Model B comes with an on-board 802.11n Wireless LAN adapter,

meaning that a router can serve as the interface between the computer where the MATLAB/Simulink is

running and the Raspberry Pi, as long as they are both connected to the same router and the Raspberry

Pi IP address is known. The scheme on Fig. 5.6 illustrates the structure of this communication service.
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Figure 5.6: Signal Monitoring and Parameter Tuning.

The Simulink Support Package for Raspberry Pi Hardware includes a library of Simulink blocks for

configuring and accessing I/O peripherals and communication interfaces. This library is used to retrieve

data from the IMU, reading and writing on digital pins. As for the other blocks, the PWM block imple-

mentation is not available. This does not allow to configure the PWM frequency and number of possible

duty cycles. So, in a quest to have control of these parameters, custom Device Driver Blocks [69] were

created, making use of the WiringPi library [70].
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Chapter 6

Simulation Results

6.1 Problem Description

The considered spacecraft inertia matrix is given by equation 4.22.

In section 6.2, the results for the proposed estimation algorithms are presented. For that, the simu-

lation is initialized with the spacecraft body frame aligned with the LVLH frame and no angular velocity

between these two frames. No control is applied to regulate the spacecraft’s attitude. Throughout the

simulation, the spacecraft’s attitude evolves due to the movement of the satellite in orbit and modeled

perturbations. The simulation is left running for the time corresponding to one orbit period. The consid-

ered orbit is the same as the ISS. This is a quasi-circular LEO orbit. The considered orbit characteristics

are summarized in Tab. 6.1.

ISS orbit
Epoch 01 Jan 2019 00h:00min:00s
Semi-major axis 6781.16 Km
Eccentricity 0.000845
Initial Mean Anomaly 2.8298 rad
Inclination 0.90278 rad
Right ascension of ascending node: 1.966 rad
Argument of perigee: 1.396 rad

Table 6.1: Orbit parameters.

In section 6.3, to compare the several solutions proposed for the attitude control of a satellite, two

simulation cases are considered. To test the pointing capabilities, the Euler angle errors of the spacecraft

are set to 10 degrees in pitch, roll and yaw and there’s no initial body frame angular velocity relative to

the LVLH frame. To test the detumbling mode, the spacecraft angular attitude is set to q̄i = [1, 0, 0, 0]T

and the body frame rate to 30º/s in pitch, roll and yaw.

In section 6.4, the same simulation scenario from section 6.3 is considered, but the controllers are

fed with the output of each estimator, instead of the real state. This results in 6 simulation cases resumed

in Tab. 6.2.

The accelerometers were modeled as being affected by a constant bias. The rate gyros were mod-
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LQR LQRI
Euler-based complementary filter Case 1 Case 2
Quaternion-based complementary filter Case 3 Case 4
Quaternion-based kalman filter Case 5 Case 6

Table 6.2: Simulation cases in section 6.4.

eled as being affected by a slow time-varying bias. The magnetometer was modeled by equation 5.3.

The three sensors were modelled as being affected by additive white gaussian noise. The values used

in simulation correspond to the ones from the real IMU, LSM9DS1, obtained through recorded data, as

described in section 4.1.2. The covariance of the data is obtained. Then, the Power Spectral Density

(PSD) can be estimated by PSD = covariance× samplingfrequency.

6.2 Estimation

This section presents the results of the estimation algorithms for an entire orbit around the Earth. The

satellite is not actuated during this period, so that the satellite achieves unrestricted attitude values. The

momentum wheels rotate at their nominal rate. The filters parameters are resumed in the following table.

Parameters

Euler-Based Complementary Filter
ts=0.1s; TBI = diag([153.6, 256, 153.6]);
Q = diag([8, 8, 8, 0.005, 0.0016, 0.0016, 0.0005, 0.025, 0.025]);
R = diag([10, 25, 5]);

Quaternion-Based Complementary Filter ts=0.1s; t=0.2;

Quaternion-Based Kalman Filter ts=0.1s; Q = diag([8,8,8,2e-04,2e-04,2e-04]);
R = diag([10,25,5]);

Table 6.3: Filters parameters.

(a) Zoom on the vector part of the quaternion error. (b) Zoom on the bias estimation.

Figure 6.1: Bias estimation for the Euler-based complementary filter(Left) and Zoom (Right).
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Figure 6.2: Bias estimation for the quaternion-based kalman filter.

Figure 6.3: Estimation error.

6.2.1 Discussion

Regarding the Euler-based complementary filter (see Fig. 6.3), it is evident that the estimation is dis-

turbed by peaks in the estimation error (computed from the error quaternion). Naturally, these are

accompanied by disturbances in the rate gyros’ bias estimation (see Fig. 6.1(a)). In spite of being

converted to quaternion, the estimation is originally done based on the Euler angles formulation as de-

scribed in section 3.3.1. Being the Euler angles domain restricted, each time one of the limits is crossed

and there is a discontinuity on the estimation, the filter will deviate from the nominal estimation for some

time. Another drawback is that in [51], asymptotic stability of the filter is only proved for pitch angles no

bigger in absolute value than π/2 . For a satellite this is not sufficient. However, on the zoom of Fig.

6.3, it is evident that the normal performance of this filter is comparable to the quaternion-based com-

plementary filter, regarding the estimation error. Furthermore, the Euler-based complementary filter is
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able to estimate the gyroscope bias (see Fig. 6.1(b)). The quaternion-based kalman filter performance

is slightly better than the one from the other filters when the estimation error is taken into account. The

bias estimation, however, is more oscillating than the one from the Euler-based complementary filter.

This is explainable by the fact that the kalman filter was based on a linearization of the kinematics equa-

tion arround a zero pointing error and body frame rate. When no control is applied, the system deviates

significantly from the linearization point. When compared to the other two filters, the SLERP-based

filter has the disadvantage of not being able to estimate the gyroscope biases. The estimation error

remains below 5 degrees for the three filters. For the Quaternion-based Kalman filter, the estimation

error remains below 3.5 degrees.

6.3 Control

6.3.1 Nominal mode

Figures 6.4, 6.5 and 6.6 correspond to the recovery from a 10º error in pitch, roll and yaw. A simulation

time corresponding to one orbit is considered for demonstrating the pointing capability for a considerable

amount of time. The momentum dumping algorithm is continuously active. The control feedbacks are

fed with the real attitude and body rate, so that the results are free from errors induced by the estimation

algorithms. The parameters used to obtain the control linear feedback laws are resumed in Tab. 6.4.

To test the robustness of the designed controller, the LQR controller with integral action was applied

to the nonlinear spacecraft system described with a Monte Carlo perturbation model: in the inertia

matrix, the off diagonal elements are randomly selected between 0 and 1× 10−4Kg.m2; the initial Euler

angle errors are randomly selected between 0 and 90 degrees; the initial angular rates are randomly

selected between 0 and 1 deg/sec. 300 Monte Carlo Simulation runs are conducted and the results

shown in Fig. 6.7. A first order model of the Earth’s magnetic field was considered along with the

ideal case of Tc = −ḣw and only the magnetic and gravity gradient disturbance torques were taken into

account.

Parameters
Linear Quadratic Regulator tc = 0.1s; QLw

= 50I3; QLq
= 0.5I3; RL=1e06.I3

LQR with Integral Action tc = 0.1s; QLw
= 50I3; QLq

= 0.5I3; RL=1e06.I3; QI=0.01I3
Detumbling kdet = 1.35× 10−5

Momentum Dumping kmd = −1

Table 6.4: Control parameters.
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(a) Pointing error for the LQR. (b) Pointing error for the LQR with Integral Action.

Figure 6.4: Pointing error for the LQR (Left) and the LQR with Integral Action (Right).

(a) Angular rate for the LQR. (b) Angular rate for the LQR with Integral Action.

Figure 6.5: Angular rate for the LQR (Left) and the LQR with Integral Action (Right).

(a) Tracking error for the LQR. (b) Tracking error for the LQR with Integral Action.

Figure 6.6: Wheels’ angular momentum tracking error for the LQR (Left) and the LQR with Integral
Action (Right).
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Figure 6.7: Monte Carlo Simulation for the nominal mode of the spacecraft (Nadir Pointing).

6.3.2 Detumbling

Figure 6.8 corresponds to the spacecraft angular rate during the detumbling procedure from an initial

angular rate of [30, 30, 30] º/s. The detumbling law is fed with the raw gyroscope data. Two situations

are considered. In the first (Fig. 6.8(a)), the momentum wheels were not spinning, while in the second

(Fig. 6.8(b)), they were spinning at their nominal rate.

As referred in section 3.2.4, the selected detumbling controller is stable. To test this and also the con-

troller robustness to parameter uncertainty, it was applied to the nonlinear spacecraft system described

with a Monte Carlo perturbation model: in the inertia matrix, the off diagonal elements are randomly

selected between 0 and 1× 10−4Kg.m2; the initial Euler angle errors are randomly selected between 0

and 360 degrees; the initial angular rates are randomly selected between 0 and 30 deg/sec. The wheels

are not spinning. A first order model of the Earth’s magnetic field was considered and only the magnetic

and gravity gradient disturbance torques were taken into account. 300 Monte Carlo Simulation runs are

conducted and the results shown in Fig. 6.9.

(a) Wheels not spinning. (b) Wheels spinning at the nominal rate.

Figure 6.8: Angular rate of the satellite during the detumbling procedure when the wheels are not spin-
ning (Left) and spinning at the nominal rate (Right).
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Figure 6.9: Monte Carlo Simulation for the Detumbling Mode.

6.3.3 Discussion

Regarding the LQR (see Fig. 6.4(a), 6.5(a) and 6.6(a)), it is evident that the LQR controller is sufficient

to stabilize the system. The pointing error, however, is not regulated to zero, even though it remains

below 4 degrees. Regarding the adding of the integral action (see Fig. 6.4(b), 6.5(b) and 6.6(b)), the

pointing error is now regulated to zero. This controller uses a slightly smaller portion of the range of

actuation of the momentum wheels. Also to be noted is the undershoot in the attitude.

The momentum dumping algorithm successfully prevents the momentum wheels angular momen-

tum from drifting indefinitely from its nominal value. In Fig. 6.6(a) and 6.6(b) it is noticeable that the

tracking error is close to zero around t=5000s. Note that the dumping of the angular momentum is not

uniform around the orbit. This is due to the fact that magnetic torque is not available at all times in all

directions. However, it is available in all directions at different times, meaning that momentum dumping

using magnetorquers is possible.

The Monte Carlo simulation for the nominal mode of the spacecraft (Fig. 6.7) showed that, even

though the controller was designed based on a linearization around the reference attitude and zero

angular velocity, it is sufficient to bring the pointing error to zero even when the spacecraft is far from its

desired attitude.

Magnetic detumbling with the magnetic torques takes a long time to detumble the spacecraft. This is

due to the fact that magnetic momentum is not available in all directions all the time. The results depend

whether the momentum wheels are spinning or not, since they provide a resistance to the spacecraft

rotation. If the wheels are not rotating, the spacecraft is considered detumbled after three orbits. If

the wheels are rotating, it takes only one orbit to achieve that state. It is preferable to detumble the

spacecraft with the momentum wheels spinning at their nominal rate. Otherwise, the action of putting

them to rotation afterwards may induct a tumbling behavior to the spacecraft.

In Fig. 6.9, it is evident that the detumbling is effective for various initial angular rate and orientation.

Even though global stability could only be proven for a diagonal moment of inertia, the results from

the Monte Carlo simulation show that the controller is robust to parameter uncertainty in the spacecraft
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moment of inertia. Detumbling is possible even if the off-diagonal entries of the inertia matrix are not

zero. Also, stability was proven for a continuous control signal. However, the control law was applied at

10Hz, meaning that stability is not guaranteed. Nevertheless, the results from Fig. 6.9 show that this is

not a concern in practice.

6.4 Coupled Estimation and Control

In this section each coupled pointing and estimation algorithms are tested as depicted in Tab. 6.2. The

control and estimation parameters are the ones from tables 6.3 and 6.4 respectively. The simulation

scenario is the same described in section 6.3.

(a) Pointing error for the LQR. (b) Pointing error for the LQR with Integral Action.

Figure 6.10: Pointing error for the LQR (Left) and LQR with Integral Action (Right).

(a) Estimation error for the LQR. (b) Estimation error for the LQR with Integral Action.

Figure 6.11: Estimation error for the LQR (Left) and LQR with Integral Action (Left).
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(a) Case 1. (b) Case 2.

(c) Case 5. (d) Case 6.

Figure 6.12: Bias estimation for cases 1, 2, 5 and 6.

6.4.1 Discussion

Simulation cases 1, 3 and 5 regard the LQR controller. The pointing accuracy stays bellow 4.5 degrees

for cases 1 and 5. For case 3, a pointing accuracy of only roughly 7 degrees was attained (see Fig.

6.10(a)). Even though the estimation error is similar to the three estimators (see Fig. 6.11(a)), the

Quaternion-based complementary filter is not able to compensate for the gyroscope bias, resulting in a

poorer pointing accuracy.

Simulation cases 2, 4 and 6 regard the LQR with integrative action controller (Fig. 6.10(b)). In all 3

cases, the controller is able to align the body frame with the LVLH frame with a pointing accuracy of less

than 2.5 degrees. With this controller, the unavailability of bias estimation in case 4 is compensated,

resulting in a similar pointing accuracy.

Regarding the bias estimation (Fig. 6.12) both the Euler-based complementary filter and the Quaternion-

based Kalman filter are capable of providing an adequate estimation, as opposite to the results from

section 6.2. This is due to the fact that with the control action the system does not deviate significantly

from the linearization point of the Kalman filter. Regarding the estimation error (Fig. 6.11), it was below

2.5 degrees for all cases. The Euler-based complementary filter has the smallest convergence time.
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The bias estimation of the Quaternion-based Kalman filter is less noisy. The filters performance in the

nominal mode are, for the most part, comparable.
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Chapter 7

Experimental Results

The results from this section regard the control of the developed prototype in 1 direction. With that in

mind, the upper part of the rotor sphere was removed and a weight was added at the bottom of the

CubeSat, forming a pendulum, so that the pitch and roll errors were compensated by gravity. The inertia

on the z axis remains approximately the same and the satellite is not controlled on the x and y body axis.

This procedure aims at verifying the integration of the several subsystems, i.e., the momentum wheels

system, the Raspberry Pi, IMU and batteries.

The controller and estimator parameters are the same from chapter 6. The spacecraft model is

different because only the yaw momentum wheel is rotating. Several experiments are performed. In

section 7.1, the prototype is set to rotation and the angular velocity decay is measured so as to study the

damping of rotations. In section 7.2, the 6 simulation cases from chapter 6 are applied to the CubeSat

functional prototype.

Videos demonstrating the use of the platform can be found on [71].

7.1 Perturbation Torque Characterization

(a) Clockwise rotation decay. (b) Counter-clockwise rotation decay.

Figure 7.1: Angular velocity decay without actuation when the prototype is set to rotate clockwise (Left)
and counter-clockwise (Right).
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7.1.1 Discussion

As depicted in equation 4.46, the viscous drag causes the angular speed to slow down exponentially.

This is an important aspect to characterize, since it will cause the experiment results to deviate from

what would happen in space. This means that the external torque is proportional to the angular velocity

T = −kω. Denoting the differential equation of the angular velocity as ω̇ = −λω, the decay constant, λ,

is related to the external torque by the following relation λ = k/I, where I is the rotating part moment of

inertia.

Using the function fit from the Curve Fitting Toolbox of MATLAB, the angular velocity decay for the

clockwise rotation was best identified by the expression 5.506exp(−0.004196.t) + 0.687. The counter-

clockwise rotation was best identified by −6.891exp(−0.004301.t)+0.4926. This means that the rotations

decay more rapidly for counter-clockwise rotations. This goes along with observation, since it was

evident that the rotor had a deterministic tendency to rotate clockwise, settling at a given positive yaw

rate. So, it is not only the viscous drag that affects the testbed. This other external torque should be

eliminated so as to augment the reliability of the obtained test results.

The testbed was required to have disturbance torques at most of the same order of magnitude of

those present in space. Approximating the decay constant for the viscous drag by the average of the two

previous decay constants: 0.004285s−1. Note that λ ∼ 4 × 10−3s−1, I ∼ 3 × 10−3Kg.m2, meaning that

k ∼ 1.2× 10−5Kg.m2s−1. Taking into account that w ∼ 0.1rad/s, the external torque due to the viscous

drag T ∼ 10−6N.m. The disturbance torques present in space are of the order of 10−6N.m, meaning

that this requirement is attained. A lower disturbance torque is theoretically possible. Imperfections on

the surfaces of the testbed may be the source of these other friction torques. Also, a slight miscenter

or tilt angle of the orifice may induce a spontaneous rotation to the sphere, affecting the damping of

rotations.

7.2 Pointing

In this section, the 6 cases previously studied in chapter 6 are tested in the ground-testing facility, for

the yaw axis only. The results are plotted in a phase plane in Fig. 7.2. The original plots, as a function

of time, can be found on appendix C. The table with the definition of the 6 cases is reproduced for

convenience.

LQR LQRI
Euler-based complementary filter Case 1 Case 2
Quaternion-based complementary filter Case 3 Case 4
Quaternion-based kalman filter Case 5 Case 6

Table 7.1: Simulation cases in section 7.2.
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(a) LQR controller. (b) LQR with Integral Action controller.

Figure 7.2: Experimental results plotted in the Phase Plane.

7.2.1 Discussion

For the LQR controller (cases 1, 3 and 5), it is evident that the yaw angle is not regulated to zero (see

also Fig. C.1, C.3 and C.5). The use of the Euler-based complementary filter produces better pointing

accuracy, less than 6 degrees. The pointing accuracy of the Quaternion-based Kalman filter is twice

as large. The use of the Quaternion-based complementary filter results in a pointing accuracy of about

40 degrees. This was not predicted by the simulations results. In fact, the gyroscope biases used in

simulation were identified with the motors turned off. These values are more in hand with those that

would be present on a satellite in orbit. When the motors are turned on, the biases increase significantly.

Since this filter is not able to estimate the biases, its use produces the worst results. For the LQR

with integrative action, the steady state error is smaller (see also Fig. C.2, C.4 and C.6). The pointing

accuracies for cases 2, 4 and 6 are 5 degrees, 15 degrees and 6 degrees respectively. The pointing

accuracy required for the ISTsat-1 is 20 degrees, meaning that all estimators are able to attain this

requirement, when coupled with an LQR controller with integrative action.

In Fig. 7.3, the paths from simulation, with a constant disturbance of 1× 10−6N.m, are shown in the

Phase Plane. The results from the testbed are similar to the ones from these figures. This validates the

testbed ability to be used to test the ADCS system. Also, it validates the software simulation environment

previously described.
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(a) LQR controller. (b) LQR with Integral Action controller.

Figure 7.3: Ideal (Yaw, Yaw Rate) paths.

Note that the testbed was not equipped with a measurement system that could provide true attitude

measurements. So, as opposite to the simulation plots, the attitude and angular rate from the experi-

mental plots are not the true values, but the ones that come from the estimation algorithms.

As a final remark on the validity of the obtained results, note that the testbed is affected by an external

torque different from the viscous drag predicted on chapter 4. This is evident by the results from section

7.1 and the visual evidence that if not actuated, the testbed’s rotor has a tendency to start rotating.

The gravity torque due to the displacement between the center of mass and the center of rotation could

not be completely compensated and contributes to some wobbling of the platform. Other than that,

it is inevitable that de viscous drag would deviate the results from the ones on a perfectly drag-free

environment. The gravity gradient torque disturbance, introduced in section 2.5.2, is similarly felt on the

surface of the Earth but with a higher magnitude, since the gravity force is bigger on the surface of the

Earth than on orbit. The other disturbance torques felt by the spacecraft on orbit are not naturally present

on the testbed and additional hardware should be added if those conditions were to be simulated.
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Chapter 8

Conclusions and Future Work

The main aim of this thesis was to perform an exploratory study on the development of a low-cost

prototype for testing of the ADCS of nanosatellites. This prototype can be divided into 2 parts: a 1U

CubeSat functional prototype and an air-bearing based platform for simulation of the spacecraft motion.

Algorithms for the attitude control and determination with the simple suite of actuators and sensors were

to be selected and tested against a simulation environment in MATLAB/Simulink and later in the testbed

itself.

8.1 Conclusions

In this first iteration of the prototype, the only sensor to be used, besides the Hall sensors, is the

LSM9DS1 IMU, providing acceleration, angular rate and magnetic field measurements. The momentum-

wheel system was designed based on sample requirements for a typical 1U Cubesat. The air-bearing

testbed physics was studied so as to provide a good foundation on the sizing and construction of the

air-bearing based platform. Then, the satellite prototype and testbed were drawn in SolidWorks and

COTS components were incorporated. The satellite prototype structure was 3D-printed in PLA and the

testbed’s was built by a CNC machining company. The choice of the 3D-printing manufacture method

was due to the low-cost of this process and also to the possibility of rapid prototyping and testing of

different configurations.

Regarding the testbed, theory shows that it is possible to create a full 360 degrees pitch, roll and

yaw simulator, even though many other attempts to create such a simulator were unsuccessful. The

contribution of this work for the effort of creating such a platform is two-folded. Firstly, a review of

previous efforts and existent platforms is undertaken. The physics of air-bearing platforms is detailed,

after which a platforms was designed aiming at full 3 DOF testing. It was able to provide an environment

for 360 degrees yaw testing. A functional full 3 DOF testing platform requires further work. One needs

to overcome the aerodynamic torque that puts the platform into rotation. Other areas of improvement

include the gravity torque due to the displacement between the center of rotation and center of mass,

and the disturbance caused by the rib in the junction of the 2 rotor half-spheres.
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Regarding the Attitude Determination and Control System (ADCS) system, one momentum dumping

two detumbling, two pointing and three estimation algorithms were studied. Detumbling with magnetic

torques is achieved in less than one orbit period if the wheels are spinning at their nominal rate. Re-

garding the pointing capability, simulation shows that in nominal conditions a pointing accuracy of 2.5

degrees is achievable. Coupling of the LQR controller with integral action with the Quaternion-based

Kalman filter showed to be the best choice.

Taking the established requirements into consideration, regarding the ADCS, a pointing accuracy of

(much) less than 20º was achieved without reaching the limit of 5º/s. The satellite can be detumbled

from 30º/s (and even higher angular velocities). Regarding the air-bearing based spacecraft simulator, a

full 3 DOF concept was studied and built. Theoretical analysis of the physics behind it and the practical

challenges to its construction were explored. The platform was tested for full 1 DOF on the yaw axis.

Further work was identified to achieve 3 DOF.

8.2 Future Work

Due to the multidisciplinary nature of the present work, the suggestions for future work will be divided in

topics.

8.2.1 Displacement between the center of mass and the center of rotation

In order to provide a torque-free simulator, a testbed must be designed and constructed in such a way

that the center of gravity and the center of rotation are co-located.

A manual approach for this challenge, would be the adding of a simple system with counterweights.

A set of four rods can be used to manually select the position of counterweights and fix their position

with nuts.

Fine resolution, however, is only attained through the real time implementation of adaptive mass-

balancing onboard the simulator. An automatic mass balancing system consisting of three sliding

masses independently actuated by stepper motors along three orthogonal directions is proposed. In

the literature, the Least Squares Method (LSM) is the most common algorithm used to provide an esti-

mation to the location of the center of gravity and the values of the inertia tensor. The spherical design

may make it hard to accommodate the mass-balancing hardware. A tabletop, umbrella or dumbbell

system may be preferred.

8.2.2 Other disturbances

Acording to [72], anisoelastic deformation of the platform may lead to a non-negligible source of distur-

bance, in the same order of magnitude of the disturbance torques expected on orbit. To cancel out this

and other disturbance torques, the platform may be equipped with directional air nozzles that enable

external torque generation. In addition, these nozzles can be used to simulate disturbances from the

space environment.
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Finally, the mass distribution of the inertia wheels and its position should be precisely calibrated, so

as to avoid disturbance torques generated by the momentum wheel system.

When these disturbances are eliminated, only the viscous drag affects the platform. According to the

results from chapter 4, the relaxation time regarding the damping of rotations is very large, meaning that

the testbed can be used to conduct insightful testing of ADCS systems. More complexity can be added

to the platform to broaden the amount of algorithms it can be used to test.

8.2.3 ADCS

Only momentum wheels were integrated into the experimental setup, meaning that the momentum

wheels saturation problem could not be addressed. If an Helmholtz cage was built around the plat-

form and a magnetorquer included in the CubeSat prototype, magnetic torque based control laws could

also be tested.

Nonlinear control laws should be studied, so as to allow the system to recover from large errors in

attitude, that deviate the state from the linearization point. A sliding mode controller could be used to

circumvent the unwinding phenomenon. Also, a complementary filter similar to the Euler-based com-

plementary filter, but formulated in quaternion (see equation 3.44) could provide the same asymptotic

stability properties, without the disadvantage of the mathematic singularities of the Euler angles attitude

representation. Finally, when several testbeds are available, the testing of formation control techniques

is possible.

At last, it was not possible to apply the PID control in the physical system. A brushless DC motor

with integrated speed controller is preferable, since it avoids the overhead of polling the Hall sensor at

high rates. Also, an high quality DC motor should have a more linear behavior around the zero speed.

A different approach to the speed control of the momentum wheel would be the use of a tachometer

generator (tachogenerator). When attached to the momentum wheel’s motor, this device outputs a

voltage proportional to its rotation speed.

8.2.4 Ground Truth Vision System

Adding a vision system to track the attitude of the spacecraft and provide ground-truth values is a major

improvement to consider. This way, the estimation algorithms accuracy may also be tested experimen-

tally.

8.2.5 Attitude Sensors

Nanosatellites are often equipped with Sun sensors and Earth sensors. Testing the use of this sensors

can be included if Sun and Earth simulators are added to the platform. A Sun simulator aims at delivering

a collimated light-beam resembling the Sun light as in [72]. An hot aluminum plate can be used as an

Earth simulator as in [73].
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Appendix A

Quaternion and Its Properties

There are different conventions to the quaternion. The present analysis is based on and follows the

convention from [20].

Let the standard basis i, j and k for the IR3 satisfy

i2 = j2 = k2 = ijk = −1 (A.1)

A quaternion is defined as the sum of a scalar and a vector

q̄ = q0 + iq1 + jq2 + kq3 = q0 + q (A.2)

where q0 is called the scalar part of the quaternion and q is the vector part.

From A.1 one derives that

ij = k = −ji (A.3)

jk = i = −kj (A.4)

ki = j = −ik (A.5)

which means that the product of two quaternions in non-commutative.

The sum of two quaternion, q̄ = q0 + iq1 + jq2 + kq3 and p̄ = p0 + ip1 + jp2 + kp3 is given by the sum

of the scalar and vector parts

q̄ + p̄ = (q0 + p0) + (q1 + p1)i + (q2 + p2)j + (q3 + p3)k (A.6)

The multiplication of two quaternion is defined by

p̄⊗ q̄ = p0q0 − p.q + p0q + q0p + p× q (A.7)

This operation is distributive and associative, even though it is not commutative. The matrix form of
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the quaternion product is

r̄ = p̄⊗ q̄ =


p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0




q0

q1

q2

q3

 =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0




p0

p1

p2

p3

 (A.8)

The complex conjugate of a quaternion q̄ is denoted by q̄∗ and is given by

q̄∗ = q0 − q̄ (A.9)

Given two quaternions p̄ and q̄, the conjugate of the quaternion product follows the following relation

(p̄⊗ q̄)∗ = q̄∗ ⊗ p̄∗ (A.10)

The norm of a quaternion is defined by |q̄| =
√

q̄∗ ⊗ q̄ and verifies

|q̄| =
√
q2
0 + q2

1 + q2
2 + q2

3 (A.11)

The inverse of a quaternion is defined by q̄−1 ⊗ q̄ = q̄⊗ q̄−1 = 1 and verifies

q̄−1 =
q̄∗

|q̄|2
(A.12)

A vector is considered as a pure quaternion, which means that its scalar part is zero. The quaternion

operator rotates a vector, v, into another vector, or pure quaternion. The quaternion operator is defined

by

w = q̄⊗ v⊗ q̄∗ = (2q2
0 − 1)v + 2(q.v)q + 2q0(q× v) (A.13)

The quaternion operator can be expressed by a direction cosine matrix:
w1

w2

w3

 =


2q2

0 − 1 + 2q2
1 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q2
2 + 2q2

0 − 1 2q2q3 − 2q0q1

2q1q3 − 2q012 2q2q3 + 2q0q1 2q2
3 + 2q2

0 − 1



v1

v2

v3


The above equation defines a general rotational matrix as

A(q̄) = (q2
0 − qTq)I + 2qqT − 2q0S(q) (A.14)

where S(x) is a skew-symmetric matrix function of x = [x1, x2, x3]T defined by

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (A.15)
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The cross product of x× y can then be represented by a matrix multiplication S(x)y.

Successive rotations by p̄ followed by q̄ of a vector v can be expressed as

(q̄⊗ p̄)⊗ v⊗ (q̄⊗ p̄)∗ =

 0

A(q̄⊗ p̄)v

 =

 0

A(q̄)A(p̄)v

 (A.16)
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Appendix B

Electrical Connections

Figure B.1: CubeSat Prototype Electrical Connections.
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Appendix C

Plots from the Experimental Results

Case 1

(a) Yaw angle. (b) Yaw rate.

Figure C.1: Experimental results for case 1.

Case 2

(a) Yaw angle. (b) Yaw rate.

Figure C.2: Experimental results for case 2.

Case 2

(a) Yaw angle. (b) Yaw rate.

Figure C.3: Experimental results for case 3.
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Case 4

(a) Yaw angle. (b) Yaw rate.

Figure C.4: Experimental results for case 4.

Case 5

(a) Yaw angle. (b) Yaw rate.

Figure C.5: Experimental results for case 5.

Case 6

(a) Yaw angle. (b) Yaw rate.

Figure C.6: Experimental results for case 6.
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Appendix D

Prototype Iterations

The presented prototype on the main body of this dissertation is the culmination of an iterative design

process. There were 3 previous main designs.

D.1 Prototype 1

In this design, the components are mounted on a flat plate and suspended by ropes. Control is per-

formed on the yaw axis only.

Figure D.1: Picture of prototype 1.

D.2 Prototype 2

In this design the components are mounted on a flat plate which is attached to a semi-sphere that

levitated on the air cushion. The semi-sphere has a weight so as to provide a pendulum-like behavior

for the pitch and roll axis. Control is performed on the yaw axis only, even though this is the typical

example of a tabletop system, meaning that if the center of rotation and center of mass were co-located,
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restricted motion on the pitch and roll axis would also be possible.

Figure D.2: Picture of prototype 2.

D.3 Prototype 3

This is similar to the final iteration, previously described in chapter 4, but the testbed was also 3D-printed

in PLA.

Figure D.3: Picture of prototype 3.
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