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Abstract

Soft robotics is a thriving branch of robotics which takes inspiration from nature and uses affordable

flexible materials to design adaptable non-rigid robots. However, their flexible behaviour makes these

robots hard to model, which is essential for a precise actuation and for optimal control. The problem

of modelling a robotic soft hand is analogous to the processes of sensorimotor self-discovery and

limb control that occurs in early stages of human life.

Moreover, when trying to model a system, its structured nature is not often accounted for, as there

is not always an easy representation. Nonetheless, learning a system’s connectivity is a valuable

asset to understanding its kinematics and even predicting future dynamics. This issue has been

addressed with Graph Neural Networks, which take advantage of system compositionality and order-

invariance to combine artificial neural networks with graph-based representations.

With the goal of finding a modelling strategy for soft systems in robotics, and inspired by sensor-

imotor learning and recent work on Graph Neural Networks, we propose a self-calibration mechanism

that learns the action-conditioned relational forward model of the non-rigid kinematic chain of a ro-

botic soft gripper. We denote our model as the "Sensorimotor Graph" and we benchmark it against

non-structured baselines to asses the model performance and robustness to increasingly adverse

conditions.

We demonstrate that our model outperforms the studied baselines in basic scenarios while not

being significantly affected by configurational variations, tracking errors or node failures, extending

the state-of-the-art in directions that are key to perfecting soft robotics modelling and actuation.
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Resumo

A robótica soft é um ramo fluorescente da robótica, inspirado na natureza e que utiliza materiais

acessíveis para conceber robôs não-rígidos versáteis. Contudo, o comportamento flexível destes

robôs torna-os difíceis de modelar - essencial para serem atuados com precisão e para um controlo

ótimo. O problema de modelar uma mão robótica mole é análogo no reino animal aos processos de

auto-descoberta sensorimotora que ocorrem nas primeiras fases da vida humana.

Na modelação de um sistema, a sua natureza estrutural não é frequentemente contabilizada, já

que nem sempre tem uma representação fácil, mas constitutui uma vantagem valiosa na compre-

ensão da sua cinemática e na previsão de dinâmicas futuras. Esta questão foi abordada com as

Redes Neuronais em Grafo (RNGs), que tiram partido da composicionalidade do sistema e da per-

mutabilidade na ordem dos elementos para combinar redes neuronais artificiais com representações

baseadas em grafos.

Para encontrar uma estratégia de modelação de sistemas robóticos não-rígidos e inspirados pela

aprendizagem sensorimotora e pelo recente trabalho em RNGs, propomos um mecanismo de auto-

calibração que aprende o modelo dinâmico, relacional e condicionado-por-ações, da cadeia cinemá-

tica não-rígida de uma garra robótica flexível. Denominamos o nosso modelo como ’Grafo Sensori-

motor’ e comparamos este modelo com modelos-de-base para avaliar o seu desempenho e robustez

em condições crescentemente adversas.

Mostramos que a nossa solução supera os modelos-de-base estudados em cenários básicos

e não é significativamente afetada por variações configuracionais, erros de seguimento ou falhas

pontuais, estendendo o estado-da-arte em direções fundamentais para aperfeiçoar a modelação e

actuação da robótica soft.

Palavras Chave

Robótica Mole, Modelo Dinâmico Relacional, Redes Neuronais em Grafo, Aprendizagem Senso-

rimotora
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1.1 Motivation

Following the trend of recent years, it is expected that we will continue to see a growing number

of autonomous systems in the decades to come [1]. With an increasing coexistence of humans and

sophisticated robots, soft robotics will play a major role: they are simple, affordable and adaptable [2].

Soft grippers, for instance, are hand-inspired end-effectors made of soft materials that promote

smooth continuous movements, tight contact and shape adaptability. They have outperformed their

rigid counterparts for many applications [3] and will continue to achieve breakthroughs in sectors

as industry, agriculture and healthcare. However, they can be hard to model, and hence to control

precisely.

In this thesis, we develop a simple bio-inspired self-calibration process for a soft robotic gripper

that captures the relational dynamics inherent in the system of inter-connected parts. We propose a

self-supervised framework that, by actuating on its flexible fingers (action-conditioned) and observing

their trajectory response (using robot vision) is able to learn the kinematics of the hand and predict

future dynamics. The self-supervised nature of such framework allows this to be applicable to any

robotic soft system without the need for specific configurations or external supervision. We firmly

believe that improving our modelling of the relational dynamics of robotic soft systems is the first step

towards a better deployment and control of these end-effectors, and hence the normalization of their

benefits: in autonomous locomotion, in industrial assembly lines, in bionic prosthetics and in medical

surgeries.

1.2 Literature overview

This thesis uses graph-based networks and bio-inspired sensorimotor babbling to address the

problem of learning an action-conditioned relational forward model of the non-rigid kinematics of a

robotic soft hand. In order to reach a complete formulation of our problem statement and the strategy

used to tackle it, we first need to understand its key concepts.

In this section, we provide a concise overview of the topics that constitute the background literature

to this work and that we are going to expand throughout this thesis.

1.2.1 Sensorimotor learning

The father of developmental psychology, Jean Piaget, has dedicated his life to the study of cognit-

ive development in children and provided many answers to the human learning process[4].

The day we are born (and even before), we start learning. One of the first things we learn, the

simplest of all, is the control of our own body. And we master it before even knowing what physics or

anatomy are. The period of building implicit body models in our brain that allow us to move our limbs

in a controlled way and interact with the environment was baptized as Sensorimotor Stage [5]. The

process occurs through the association of motor actuations and sensorial inputs.

For instance, in order to learn how to move his pointing finger, a baby repeatedly performs "ran-

dom" short movements with the hand muscles to observe its effects and disentangle the complex
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anatomy [6]. If we have knee surgery and spend a few months without walking, we may need to use

similar strategies to "refresh" the subconscious sensorimotor models that allow us to efficiently use

our legs.

Being a simple yet effective strategy learning process to understand complex interactions without

any idea of the explicit equations that rule the system, this biological process can serve as an inspir-

ation to learn the actuation for other intricate structures.

1.2.2 Soft Robotics

The word robot (robota - Czech for ’servant’ or ’forced labour’) was first mentioned in a fiction novel

by Karel Čapek [7] and, since then, much science fiction has come true. The greatest contribution of

robots has probably been to the manufacturing industry with a complete revolution of the secondary

sector [3]. However, in the present day, robots are deployed in many more applications - from agri-

culture to health care, from defense to domestic assistance - and the trend seems to be growing for

years to come [1].

Soft robotics is a sub-field of robotics which uses inexpensive soft materials to design robots that

can safely interact with and adapt to their immediate environment better than the robots made of

hard components. These robots take inspiration from biological soft systems to boost flexibility and

adaptability. While rigid actuators brought speed and accuracy to automated processes, in order to

manipulate delicate or irregular-shaped objects (like fresh fruit or a glass), a soft gripper would be the

ideal choice.

In this thesis, we consider the non-rigid kinematic chain of a robotic soft gripper: it contributes

to many tasks (manipulation, locomotion, etc) in numerous fields and it is complex and structured

enough to be representative of soft systems.

1.2.3 Forward Models and Artificial Neural Networks

A model is a representation of a system - its behaviour or structure. Modelling is an essential step

towards understanding a given system and it is necessary for most (model-based) control strategies

[8].

One classical way of describing a system’s forward model is to write the equations that rule that

system. For example, to model a box being pushed, we know the applied force relates proportionally

with the mass and the desired acceleration. However, as systems get more and more complex,

explicit modelling becomes challenging or even unfeasible. Soft robots, making use of flexible elastic

materials with infinite degrees of freedom, are an example of such systems.

Artificial Neural Networks have been used in machine learning to reverse this process: instead of

explicitly describing a system and use those rules for modelling, they observe the system behaviour

to extract inherent rules. This brings a promising solution to the limitations of classical approaches

[9]. In this work, we propose one such framework.
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1.2.4 Structured representations and graph neural networks

All systems, from simple geometries to living organisms, have an inherent structure [10]. If sys-

tems are interactions of different elements, the way these elements are organized is called the struc-

ture and it deeply affects their relations and behaviours.

When trying to model a given robotic system - to learn its kinematics or dynamics - the relations

between the parts are often diminished or even ignored as there is no easy representation. However,

since structure is a key part of any system, including relational knowledge in the learning process

could help to achieve better modelling of our robot [11].

Graph theory [12] provides a robust representation for many types of structures - like grids, hier-

archies, or meshes, - so the search for combining graphs with artificial neural networks has been a

long-lasting quest.

More recently, with the debut of Graph Neural Networks [13–15], graph-structured representations

were combined with neural networks with promising results in many fields. This constitutes the last

building block to our claim: learning the relational forward model of the non-rigid kinematic chain of a

robotic soft hand using Graph Neural Networks and inspired in human sensorimotor learning.

1.3 Objectives

With the purpose of learning a graph-based action-conditioned relational forward model of a ro-

botic soft hand, we propose a novel self-supervised framework, the Sensorimotor Graph (SMG). In

order to implement this strategy, we extend previous work on Graph Neural Networks for neural rela-

tional inference and adapt it to our framework.

The choice in this thesis to address the non-rigid kinematic chain of a soft gripper had three main

reasons:

• Soft robotics is a prominent field with emerging applications and a lot of potential.

• Soft systems are a particularly relevant domain given the importance of understanding the com-

plexity of their structure and dynamics for control;

• New developments in Graph Neural Networks let us explore its relational nature.

1.3.1 Original contributions

In this thesis, we propose the SMG model for learning the action-conditioned relational dynamics

of a robotic soft gripper. Moreover, we seek to find if this graph-based framework increases the

performance and robustness of the system modelling when compared to different non-structured

models. In this respect, the main contributions of this thesis can be compacted as:

1. Extend existing graph-based relational inference networks to integrate external actions in the

dynamics model;
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2. Applying the action-conditioned graph-based forward model to the domain of a non-rigid robotic

soft hand kinematic chain with varying configurations;

3. Benchmarking the proposed structure-based model against different non-structured baselines

to compare performance and robustness to conditions with increasing adversity.

1.3.2 Thesis structure

This dissertation includes five chapters, organized in three main parts.

1. Motivation

Chapter 2: Sensorimotor Learning - introduces the theory of cognitive development, soft

robotics and forward models.

Chapter 3: Relational Systems - presents the concept of structured system representa-

tions (with particular focus on Graph Theory) and Graph Neural Networks

2. Proposed solution

Chapter 4: Sensorimotor Graph - describes our proposed framework and the implement-

ation it takes inspiration from, the NRI model

3. Experiments

Chapter 5: Experimental Setup - details how the data was generated, collected and

organized, the structured models that constitute our baseline and the different experiments

Chapter 6: Results - introduces the performance metrics used and expands on the per-

formance and robustness of the SMG and the baselines in the different experimental tests

The first part focuses on providing the reader with a broad perspective and motivation concerning

the different topics that are related to our work. Chapters 2 and 3 introduce the problem statement,

the strategies that have been used in the past to solve it and the necessary building blocks to a new

solution. The bottom-up structure of this part is depicted in Figure 1.1.

Figure 1.1: Motivational background as building blocks of the proposed solution

The second part focuses on the solution proposed in this thesis to tackle the challenge motivated

in Part 1. After reading Chapter 4, one should have a comprehensive understanding of our proposed

solution.
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Finally, the last part consists of testing the proposed solution. In Chapters 5 and 6, we establish the

experimental procedure, define the metrics and show the results that qualify and quantify the success

of our solution across various dimensions. Moreover, in this part, we make some considerations and

draw conclusions in light of the results.
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We are what we learn. Like eternal apprentices, we constantly absorb knowledge, experiences

and values that define us as conscious actors. As a central aspect of intelligent behaviour, learning

has been in the spotlight for many years now: first in psychology [4], then in artificial intelligence

and robotics [16]. Out of the many open questions that build up the debate of ’How do we learn?’, a

particularly significant topic that is extensible to robotics concerns cognitive development: how do we

learn to understand the physical world?

In this work, we propose a framework to independently learn the structure of a soft robot end-

effector, inspired in how newborns acquire sophisticated motor skills. In the same way as an infant

learns to use his limbs by observation and experimentation and without any explicit knowledge of

world physics or human anatomy, a sensorimotor-learning-based self-calibrating process could be

applied in robotics to easily empower these with a latent understanding of their structure and dynam-

ics. A robotic system that, by observing its own hand and without the need for external supervision,

creates the appropriate mapping between actions and fingers and the appropriate model of the flexible

elastic fingers’ dynamics.

Self-calibration is important in the field of robotics, particularly for soft robots. To begin with, robotic

systems, just like humans, are required to "have" a good understanding of their inherent kinematics

to act on the exterior world. Robots are equipped with sensors and motors which can contribute

to sensorimotor learning. Although soft robotics has not yet received as much attention as its rigid

counterpart, a sophisticated self-calibration dynamics-learning strategy is certainly much necessary

in soft systems, for three main reasons: 1) the flexible and elastic nature of the soft materials leads

to a more unconstrained motion of the kinematic chain, which is more difficult to model; 2) the elastic

contact of soft gippers with the manipulated objects alters their shape and kinematics over time; 3)

inherent imperfections that some manufacturing techniques carry and the mechanical and abrasive

wear of the rubbery materials call for self-calibration [17, 18].

The subject of our bio-inspired structure learning framework will be a non-rigid robotic soft hand

kinematic chain. Soft grippers constitute relevant ubiquitous end-effectors and are representative

systems of soft robotics.

This chapter is organized into three sections. We will start by our inspiration: understanding how

newborns learn to control their body parts and what such strategies have been replicated in robotics.

Then, we will focus on the domain of soft robotics (with its recent achievements and challenges), and

the particular case of soft grippers. Finally, we shall look at the different modelling strategies that have

been applied to robotic system dynamics.

2.1 Cognitive Robotics

From the moment we are born, we never stop collecting lessons, data and experience. We start

by learning about ourselves - our body, our senses, our consciousness, - we learn about the world

around us, we learn communication, we learn values, we learn social interactions and, by the age

we start school, we are extremely complex knowledgeable beings. Of course, we don’t learn from
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scratch. We are born ready to learn. Millions of years of evolution climaxed in brain structures pre-

disposed for cognitive development [19]. The importance of our innate ability to learn versus the

relevancy of a stimulating environment is an age-old philosophical debate.

The way humans collect knowledge about the world and themselves is a much-studied open ques-

tion, whose answers start to cast light onto many relevant applications in psychology, medicine and

engineering. In the case of artificial learning algorithms and robotics, looking for inspiration in human

biology and cognition seems a promising path for replicating these processes [20].

In this section, we will introduce some relevant topics that served as inspiration for this thesis. We

will start by presenting Piaget’s theory of cognitive development, in particular the sensorimotor stage.

Next, we will introduce a much-used form of sensorimotor learning in infants: motor babbling. Finally,

we will discuss how sensorimotor learning, and particularly motor babbling, can and has been used

in different engineering applications.

2.1.1 Sensorimotor Stage of Cognitive Development

The Swiss psychologist Jean Piaget dedicated most of his life to understanding the nature and

development of human knowledge. In his theoretical work on cognitive development, he expands his

belief that children continuously alternate between building their perception of the environment and

adjusting that construction to the discrepancies that they find through senses. [5]

In his books (e.g. [21–23]), which became a reference in psychology and neurosciences, Piaget

proposed that humans progress through four developmental stages from birth to adolescence [4].

These four stages are described in Table 2.1.

Cognitive development four stages
Stage Description
Sensorimotor
(birth - 2yo)

Where infants develop a permanent sense of self and objects. Includes six
stages that involve the use of reflexive behaviours, habits, hand-eye coordin-
ation, intentionality and curiosity.

Pre-operational
(2yo - 7yo)

Includes language development, magical thinking and the use of symbols.
Still lacks concrete logic, perspective and some mental operations. Includes
a symbolic function sub-stage (when children are able to understand, repres-
ent and remember objects in their minds) and the intuitive thought sub-stage
(when children want to understand everything and ask many questions).

Concrete opera-
tional (7yo-12yo)

Characterized by the acquisition of logical thinking to solve problems. Children
are capable of inductive reasoning but deduction is still troublesome. They
start understanding ethics and social matters, being able to view things from
other’s perspectives in concrete events. They still struggle with abstract reas-
oning or hypothetical situations.

Formal oper-
ational (from
12yo)

Intelligence is demonstrated through the logical use of symbols related to ab-
stract concepts. The individual is capable of hypothetical and deductive reas-
oning, as well as metacognition.

Table 2.1: Four stages of cognitive development according to Piaget

Particularly relevant to our case is the first stage of cognitive development: the sensorimotor

stage. It lasts approximately 2 years and is a period of rapid cognitive growth where infants develop

an understanding of the world and themselves through trial and error. It is called sensorimotor stage
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since it is through his innate senses - sight, hearing, smell, taste and touch - combined with the

motor abilities developed - touching, grasping, biting - that infants gain a basic self-awareness and an

understanding of the world around them.

In a first sub-stage of the sensorimotor phase, the learning process is based on reflex acts. It is

"the coordination of sensation and action through reflexive behaviours" [24], such as sucking objects

touching the mouth, grasping objects that contact the hand palm, blinking, smiling or following moving

objects with the eyes. It is the most preliminary phase of learning, a primary understanding of one’s

own body, how it perceives and acts on the world. Moreover, it is an essential phase for what follows:

a controlled intentional action of the body parts and the adequate processing of the information that it

captures.

2.1.2 Motor babbling

As we have seen before, the primary stage of learning is sensorimotor acquisition and its simplest

form involves reflexive actions. This includes both unintended responses to external stimuli, like

blinking or smiling, and exploratory actuations on the unknown environment, such as motor babbling

[5, 25].

Definition: Motor babbling

The process of repeatedly performing an "arbitrary" motor command for a short duration

to observe its effect on an unknown system.

Motor babbling is of paramount relevance for newborns in the context of cognition development

during the period of acquiring their own body models as sensorimotor relationships. For the more

experienced reader, this is analogous to, in signal processing, using the impulse response of a linear

system for system identification. Although it might sometimes not be efficient (or even sufficient) to

model high dimensional systems, it disentangles complex interactions and fits many applications.

In order to illustrate what motor babbling would feel like for the reader, let us imagine the absurd

situation of being bitten by a supernatural cat and waking up the next day with a long flexible tail [26].

During the first hours or days, being a totally unknown body part to us, we would not know how to

control it and would clumsily drop several objects around us to our passage. With only a few new

muscles to control an elongated flexible sequence of caudal vertebrae, we could try motor babbling to

help us understand its functioning: the quick contraction of muscle A would curl the tail, a relaxation

of muscle B wold make this new appendage lower horizontally, and so on. Performing random short

motor commands on single muscles would help us understand its effect on the tail, disentangle the

overlap of multiple muscle actions and help to progress towards a controlled usage of the tail.

The use of this caricatured situation is intended to capture the reader’s interest but should not

suggest that motor babbling is something distant or unnatural. Not only have we all been newborns,

adapting to our unknown complex body, but it can also apply in later ages [27] in the case of physi-

atry, stroke recovery, spinal cord injury rehabilitation, and many other situations where a childlike

exploration is needed to reteach the brain how to command movement.

10



2.1.3 Artificial learning

Sensorimotor learning is a fundamental phase for our brain to create the necessary models of

our body and its relation to the physical world. This is mostly done in the first months of our exist-

ence but continues happening throughout life: as our bodies change, our sensorimotor models need

adjustment; when we spend a lot of time without using a certain limb, these internal models need

"refreshment" during recovery. But the human brain might need this sensorimotor phase in another

circumstance: to adapt to artificial biomechatronic body parts.

With the advances in medicine and engineering, we are assisting to a cyborgization of the human

body [28] - the inclusion (or combination) of mechanical or electronic devices in organic systems.

Whether to enhance human abilities or to replace missing body functions, the embodiment of bio-

mechatronic parts is increasingly widespread. While some of these are technologies the human body

adjusts quickly to (like pacemakers), some others might involve longer adaptation periods. It is the

case of prosthesis, for which, as controllable limbs, some sensorimotor adaptation phase is required.

Just like before, an exploratory phase is necessary for the brain to sculpt the physics of the new body

part. Another example is cochlear implants on deaf individuals [29] who will go through prelexical

(instead of motor) babbling to learn how to speak.

Moreover, as we seek to teach artificial systems to learn, we often seek inspiration in our own

cognitive experiences. It is the case of robot learning, where motor babbling carries promising results

in varied real-life applications [30]. With the deployment of this bio-inspired technique, robotic systems

can autonomously develop an internal model of its body and environment, as in [6, 31, 32]. For

instance, for learning sensorimotor control for robotic eye saccades or hand-eye coordination, motor

babbling might constitute the first stage, followed by planned movements [33]. A recent study [34]

showed exciting results at teaching a legged robot to walk by using only a few minutes of motor

babbling to create an initial inverse map and using it for the task of locomotion.

In particular, bio-inspired motor babbling has been addressed for robotic grasping applications.

The model introduced by Demiris [35] learns multiple forward models without any prior information

by means of motor babbling and a Bayesian belief network. Oztop et al’s motor babbling based

models [36, 37] are capable of grasping without visual feedback (only sensory stimuli) using Hebbian

learning and inverse kinematics. Takahashi [38] studies tool-body assimilation using motor babbling

with robots grasping tools in different ways to learn its body schema and tool functions for each

grasping position.

2.2 Soft Robotics

Although automata have a millennial history [39], electronic autonomous robots came into exist-

ence in the second half of the twentieth century as an intersection of computer science and engin-

eering. Robots have been mainly designed to cooperate with humans - side by side or with remote

control - or to replace them - in monotonous or dangerous tasks. Nowadays, robots are indispensable

in industry or agriculture and show superhuman results in healthcare or defense (see Figure 2.1).
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(a) humanoid ro-
bot (source:
VisLab ISR)

(b) automated assembly
line (source: Expense
Reduction Analysts)

(c) unmanned aerial vehicle
(source: Military.com)

(d) automated surgery
(source: [40])

Figure 2.1: Traditional hard robotics in different fields

Robotics combines mechanical and electrical engineering to create the components responsible

for sensing, actuation, locomotion or manipulation that constitute the cybernetic agent. Quite recently,

there has been a trend of moving towards more adaptable robots, bio-inspired shapes and flexible

materials. This led to the birth of what has was baptized as Soft Robotics (SR).

Definition: Soft robotics

A sub-field of robotics focused on endowing robots with soft materials and bio-inspired motor

capabilities that allow adaptive, flexible interactions with unpredictable environments.

After an overview of cognitive learning and its recent promising deployments in growing fields, in

this chapter we will focus on describing the concrete application domain of our work. In the following

sections, we shall understand: 1) what motivated this new wave of robotics; 2) its main applications;

and 3) the limitations or challenges for the future.

2.2.1 Seeking adaptability

For many decades, manufacturing robots have been designed to be stiff so that they can perform

fast, precise and repetitive position control tasks in assembly lines. For this purpose, common ac-

tuators are composed of rigid electromagnetic components or metallic internal combustion engines

[41].

However, we notice that in the natural living world, soft materials prevail. Most animals are soft-

bodied (like worms or cephalopods) and many others live part of their lives as such before developing

exoskeletons. In total, invertebrates may constitute more than ninety-five per cent of all life forms [42].

Even the animals with vertebral column and endoskeletons, like ourselves, are mainly constituted of

soft tissue and liquids. In fact, of our different task-specific body systems, all but the skeletal system

are purely soft-composed.

This trend is no accident in evolution. This soft structure helps animals adapt to complex ever-

changing environments and provides numerous advantages. First, they can conform to different sur-

faces, distribute stress over large areas, increase contact time and lower impact force. It is the case of

the soft palms of mammalian runners that damp the force of impact when their legs strike the ground
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- Figure 2.2(a) - or the soft finger pads of arboreal mammals that contribute to climbing adhesion.

Second, their flexible deformable bodies enable them to fit small apertures and different shapes. It is

the case of many sea species when they need to find shelter or hide - Figure 2.2(b). Finally, a soft

structure provides adherence and fluidity in body movements that help in locomotion or grasping. For

example, a snake’s elongated flexible body not only helps it moving easily in different surfaces and

inclinations but also allows this suborder to trap and hunt large mammals - Figure 2.2(c).

(a) tiger cub paw
(Source: Pixabay
[43])

(b) octopus hiding (Source: Pixabay
[43])

(c) resting snake (Source: Pixabay
[43])

Figure 2.2: Advantage of soft stuctures in the animal kingdom

Also in every day robotic applications there are many situations that require similar attributes -

adaptability, flexibility, adherence, efficient contact - and that require similar tasks - locomotion, ma-

nipulation. For this reason, the robotics scientific community has recently started seeking inspiration

in the valuable lessons that invertebrate life may offer.

Although the history of soft robots can be traced back more than half a century, it was only in

the last fifteen years that this field started drawing attention. Initially referring to rigid robots with

compliant joints and variable stiffness, SR is now a multidisciplinary growing field [2] involving soft

material-based structures with multiple horizons for applications.

2.2.2 Grasping new horizons

In recent years, SR has established itself as one of the fastest-growing topics in the robotic com-

munity [44], with the potential to revolutionize the role of robotics in society [1, 45]. Just like 3D printing

has done for industry, the ubiquity and lower cost of soft robots raw materials (silicone or rubber in-

stead of metallic alloys) may easily be a step forward in bringing robotics to every household. While

that may be too soon to tell, the fact is that its adaptability and organicity is already bringing promising

improvements to many fields - Figure 2.3.

In industry and agriculture, larger hard machinery is not always the best choice. For some jobs

in manufacturing that involve more uncertainty or additional care, SR can be more thorough than

bulkier rigid actuators [3]. Also, SR can include more durable materials and withstand heat, heavier

objects and water, that electrical equipment could not resist [50]. Since food items are often one type

13



(a) surgery system [46] (b) hand rehab [47] (c) robotic caterpiller [48] (d) robotic fish [49]

Figure 2.3: Soft robots in different fields

of products that requires careful handling, the agricultural sector has increasingly been using SR to

manage crops from cultivation to harvest [51, 52].

In healthcare, soft robots have been assigned to diverse tasks. From the surgical perspective,

minimally invasive surgery (MIS) has been prone to adopt SR techniques given their compliance with

natural tissues [53–56]. Regarding wearable robots for rehabilitation, biocompatibility is vital and the

use of elastic soft materials with similar mechanical properties to living organisms has a strong claim

over conventional rigid cybersystems. This includes soft exoskeletons for limbs [57–59], posture [60],

oral intervention [61] and even for animal rehabilitation [62]. Moreover, SR techniques have been

valuable in robotic prosthetics to provide delicateness, precision and organic feeling to the artificial

body parts.

New forms of robotic locomotion bring interesting potentials in fields like construction, exploration

or defense. One of the most known examples is GoQBot [48], a robot that mimics caterpillar rolling for

locomotion. Worm-inspired robots may use abdominal contraction [63] or peristaltic movements [64]

for locomotion and reveal external shock absorption. A pneumatic untethered mobile soft robot is pro-

posed in [65], which is capable of carrying heavy payloads and endure different adverse conditions.

Crawling and jumping over rough terrains is also addressed in [65–67]. There have been also many

approaches for water locomotion: propelling elastic shell-based models [68]; shape variating oscil-

lators for aquatic propulsion [69]; hydraulically powered fish-like soft robots with three-dimensional

swimming [49, 70]; octopus-inspired robots that travel through small apertures and unstructured sur-

faces [71, 72].

It is worth emphasizing a relevant application both to the field of SR and to this thesis: grasp

- Figure 2.4. Above, we have mentioned some applications that involved soft grippers (dangerous

procedures in manufacturing, manipulating food items in agriculture, hand exoskeletons or prosthet-

ics). However, gripping technologies no longer work just as end effectors but as enablers of other

key functions of autonomous robots like locomotion or body shape control [73]. Indeed, many SR de-

velopments are grasping-oriented, leading to even more applications that involve gripping and object

manipulation. For instance, fast mobility or climbing [74, 75] (where soft grippers facilitate adher-

ence); human-robot interaction (HRI) [76] (where the organic feel is more natural and compliant);

remote tasks [77] (where SR allow much more sensitivity when being remotely controlled).

We have addressed the advantages of SR, including its flexibility, adaptability, adherence and
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(a) vacuum gripper [41] (b) cephalopod limb [41] (c) two-finger gripper [78]

Figure 2.4: Different soft gripping applications

efficiency. But invertebrate robots, in particular soft grippers and soft limbs, bring us another major

advantage, simplicity. If we think about a rigid robotic hand, there may be as many control signals

as finger joints, or even more. Similarly, if we imagine a human-like leg, for proper locomotion we

may need to actuate on the leg-hip connection, on the knee, on the ankle rotation and maybe on the

foot position. This makes actuation unnecessarily complex for many applications. Most soft limbs

- whether they are fingers in soft grippers or an octopus arm in a squid-like vehicle - may only use

one actuation signal. As these limbs can only contract or distend, it usually takes only one value to

characterize the limbs desired state. This can be imposed by a wire, air pressure, an electric field,

light or temperature and it is more than enough to make the soft gripper delicately grab an object, or

for an egg-sized ’cheetah’ to achieve 2.5 BL/s [79].

2.2.3 Challenges

The fresh field of SR has caught many attentions and outperformed its rigid counterpart for specific

applications. Its simplicity and adaptability, alongside the cheaper production materials, put SR on the

verge of success. However, there are also some limitations of these robots and challenges for the

next decades.

One limitation of soft robots concerns elasticity fatigue. Depending on the characteristics of the

flexible materials and the usage near its ultimate strain, elastic materials may lose some properties or

become irreversibly damaged [17], which motivates the need for self-calibrating mechanisms. Elast-

omers have been a polymer of choice given the wide range of commercially available formulations,

low stiffness and high strain at rupture [73]. However, the use of elastomers has generally meant a

lack of lifelong robustness, though effective solutions have been demonstrated and commercialized

[78, 80].

Moreover, some types of soft end-effectors seem to be conditioned on the gripping method and

its properties. Since there are various techniques of grabbing objects with soft grippers - vacuum,

adhesion, electroadhesion, dry adhesion, etc - and each process is task- and environment-specific,

a soft gripper designed for certain applications might turn unusable if some conditions change. For

instance, electroadhesion and dry adhesion work well in a vacuum but are not effective in liquid
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environments. Actuators relying on temperature can have different time constants if placed in liquids

or in air. Pneumatic systems are particularly adaptable to different external pressures and cable-

actuation - which will be used in this work - is even more robust.

Soft robots carry one challenge that is particularly relevant to our work. Hard robotics kinematics

are based on joints and rigid components, providing a discrete topology with finite degrees of freedom.

In SR, we notice the opposite: its soft, flexible, stretchable materials contribute to the continuum

topology with infinite degrees of freedom; but the user only has very few actuation dimensions. The

reason why it is possible for the control to be more constrained but the end movement being more

flexible is because most of the extra dimensionality comes from the soft nature of the materials. But

with the positive behavioural versatility of soft robots, comes the not so positive unpredictability of

their movements.

(a) Soft rope dipped in water (b) Rigid claw

Figure 2.5: Grabbing a target: discrete and continuous topologies with finite and infinite degrees of freedom,
respectively

We can think of this problem - the one of actuating an elongated soft limb, like the octopus arm in

Figure 2.4(b) - as holding an elastic rope by its top extremity in a swimming pool - Figure 2.5(a). We

can only slide the tip of the dipped rope left or right (one degree of freedom) and we want the rope to

grab a suspended object by wrapping around this target. The flexibility and stretchability of the rope,

alongside the friction of the environment (in this case water) and our single dimension actuation, will

make the task non-trivial. If we compare this to operating a multiple-command fully functioning claw

machine to grab a specific target - Figure 2.5(b), - we can understand that dealing with soft materials

and infinite degrees of freedom makes learning much more difficult.

The general problem of modelling the underlying dynamics of such complex soft systems is essen-

tial to actuate the soft robot properly. A fair model of a soft gripper dynamics will lead to significantly

more precise manipulation. The problem has been addressed in many ways, some of which we

will see in the next section. Moreover, manufacturing inherent imperfections and elasticity fatigue

call for constant update of this models. The elastic contact with the manipulated object might in-
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volve a change in kinematics that should be accounted for. By this time, we hope it is clear: 1)

the non-trivial problem of modelling a soft system dynamics; 2) the relevance of a self-calibrating

dynamics-modelling framework in an effective use of soft robots.

Soft Robotics Traditional Hard Robotics
Adaptive and tolerant Limited adaptability to operate in un-

known environments
High level of behavioral diversity Low level of behavioral diversity
Organically inspired and compatible Low level of bio-inspiration
Abundant inexpensive materials High production costs
Continuum topology with infinite degrees
of freedom

Discrete topology with finite degrees
of freedom

Strenuous accuracy and lower speed High accuracy and speed

Table 2.2: Characteristics of soft and hard robotics

In order to summarize the benefits and drawbacks of SR, compared to traditional rigid robotic

parts, the most relevant differences are compiled in Table 2.2, similar to [17].

2.3 Forward Models

Now that we have seen our motivation problem in section 2.1 and our field of application in section

2.2, the challenge addressed in this thesis of learning to model, actuate and control unknown struc-

tured systems like robotic soft actuators should be more clear. But before wrapping up our problem

statement, we ought to understand what actuation and control strategies exist and their benefits and

limitations.

Pure model-free techniques have demonstrated state-of-the-art results in many applications by

directly mapping observations to actions. Despite that, model-free methods (like model-free rein-

forcement learning) have many drawbacks and limitations, including a lack of interpretability, poor

generalization, and a high sample complexity [81]. Alternatively, model-based approaches rely on

learning a forward model directly from interactions with the real system and then incorporating the

learned model into the control policy.

A forward model is an essential part of control theory [8]. It describes a system and is used to

make predictions: ’Given a certain state and input, where is this system going in the next time steps?’

which can also turn into ’If I contract a muscle of my new superhuman tail, how is it going to react?’

or even ’If I act on a flexible quite-non-linear robotic soft gripper, how will it behave?’. Forward models

describe a system as close to reality as possible to produce the best predictions. Sadly, the more

intricate the system, the harder the task.

In the most basic scenario, with a forward model we can already engage in open-loop control,

meaning that our actuation does not depend on the system output and therefore any disturbances can

neither be detected nor corrected. It is the case of a heater controlled by a timer. This process can be

improved with feedback control, where the output from the forward model (predicted body position) is

compared to the output from the plant (body position) and this error is used by the controller to adjust

the next actuations in order to smoothly converge to the desired input reference. There are many
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(a) Open-loop control: no feedback

(b) Closed-loop control: input is updated by forward model’s prediction feedback

Figure 2.6: Open- and closed-loop control

distinct ways to implement this simple strategy with different levels of complexity, depending on the

controlled system and application.

Although the control of our system is out of the scope of this thesis, it felt not only relevant but also

necessary to include this section with a short overview of forward models and control frameworks.

This thesis proposes a model that learns the dynamics of a robotic soft hand by sensorimotor bab-

bling. As the end goal of this thesis is to couple this model with a control framework to provide a

smooth actuation of soft end-effectors, the reasons to include here a discussion of this second part

were two:

• Contextualizing and justifying some strategic or operational choices in this thesis;

• Motivating some future work by explaining the natural next step for the contribution in this thesis.

This section will be divided into three parts: we shall start by briefly inspecting different types of

forward models, from simple strategies to adaptive control and learning-based approaches; then, we

will detail why do we use action-conditioned forward model learning; and finally move on to looking at

distinct state-based representations, as well as their (dis)advantages.

2.3.1 Classical and learning-based approaches

In classical hand-designed approaches, the system model and parameters are assumed to be

known in advance, and the controller design makes use of this information [82]. If the system kin-

ematics can be accurately described and if they are constant in time, they can be used to model the

system. However, there are several limitations to this. When the complexity of the system increases,

it becomes very difficult to explicitly write precise and detailed model equations, thus hampering the

model-based control system design. An example of a simple but highly non-linear system is a pair of
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wheels moving in the snow. Moreover, it assumes the future parameters will be much like the present,

which does not always apply: the control action ruling an aircraft is dependant on its weight but this

changes as fuel is consumed.

Adaptive control emerged as a partial solution to this problem [83]. By updating the controller, it

allows parameters of the model to be estimated - like friction or the weight of objects, - adapting to

some levels of uncertainty. However, this approach is limited to a fixed structure of the model, which

can limit its application to complex systems.

Figure 2.7: Adaptative control representation: an adjustment mechanism updates the controller

This limitation has lead the community to consider learning-based approaches to tackle the effects

of under-modeling [84, 85]. Reinforcement learning [86] is one such method which learns to model

and control a system by learning to map a system state to a control signal, trained by optimizing a

reward signal. The system learns to control implicit system dynamics. Compared to adaptive control,

this trial and error approach resembles more how humans learn some movement strategies. It is the

case of a learning agent interacting with an environment, executing actions and transitioning between

states in order to maximize its reward. This can be the situation of a computer game player trying to

explore and win a game or a dog learning to ’sit’ or ’roll over’ and getting a cookie every time the trick

is performed right.

Notwithstanding, reinforcement learning assumes the availability of interaction samples and a re-

ward signal, which can be costly to collect. Besides the curse of dimensionality, reinforcement learn-

ing in (soft) robotics suffers from the curse of real-world samples [86]: expensive materials call for

safe exploration; the change in the soft robot dynamics and external factors might make the learning

process to never fully converge; slow convergence and high variance improves the risk of material

damage and elasticity fatigue; time discretization might generate undesirable artefacts.

Model-based control methods, on the other hand, decouple learning of the system dynamics and

control of the system, reducing the need for costly interaction samples. They use information about

the dynamics of the system’s structure and its behaviour in time to obtain a better control result

regarding the stability and performance of the controlled system. Optimal control formulations based

on differential system dynamic model [81, 87] optimize a cost function conditioned on the system

dynamics, reference state and actuation signals. Model Predictive Control (MPC), for instance, solves,
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for each time step, the optimization problem:

argmin
x1:t∈X ,u1:T∈U

T∑
t=1

Ct(xt, ut) subject to xt+1 = f(xt, ut), x1 = xinit (2.1)

where xt, ut are, respectively, the system state and control at time t, xinit is the initial state, X and U

are, respectively, constraints on valid states and controls, Ct : X x U → R is a (possibly time-varying)

cost function and f : X x U → X is a dynamics model. A differentiable model is a necessary condition

to be coupled with the MPC cost function and to then run optimization algorithms. Although a convex

model is ideal, in practice modern optimization algorithms handle non-convex formulations, as in [81].

2.3.2 Action-conditioned learning

In model-based control approaches, the system dynamics learning and the system control are

separate tasks, but they are not independent. In order to apply control to a system (using control

actions to stabilize a system or reach a desired target state), a comprehensive understanding of the

dynamics of such system is much valuable [88].

For this first part, the task of learning the dynamics of our robotic soft hand, in the form of forward

models, we not only have vision-based data (showing how the several hand parts are moving in time

when responding to muscle/wire contractions) but we also know a priori the quantified values of those

input contractions. As we want to create a framework that capacitates a robot to learn the dynamics of

his hand by sensorimotor babbling and observation, it is logical that the robot should have access to

the actuation signals being fed to the end-effectors. The problem of learning a forward model without

action-conditioning information would be less trivial and correspond to an infant who learns to use his

own hands only by observing other infants hand movements.

In this thesis, we use the model-based control overview to propose learning the model of the

dynamic soft hand. The natural following step - the control of the hand - is out of the scope of this

thesis but its discussion here was justified for reasons that were mentioned in the introduction of this

section and could be achieved using an MPC framework, as briefly described and as used in previous

work on soft robots [89, 90]. For model learning, we adopt a self-supervised setting, where the own

data provides supervision for the task, without the need for rewards or labels.

2.3.3 State-based representations

When trying to learn the kinematics of a robotic system using computer vision, learning-based

approaches are generally based on two kinds of representations: structure-based, (e.g. two- or

three-dimensional coordinates), or directly on the image space.

Image space representations take as input a sequence of images to predict future frames, model-

ling the dynamics of the environment in pixel space. This kind of model acts either by encoding the

sequence into a compressed representation of the information contained in the frames - the so-called

latent space [85] - and then learning dynamics over this space or directly warping past pixels into the
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future. However, this type of representation is not invariant to distribution shifts such as lighting or

camera pose changes.

Methods based on explicit structured representations on the other hand are lighting and cam-

era pose invariant. These approaches are based on either manually annotating the data, including

additional instrumentation in the form of markers, or learning to extract and identify key-point rep-

resentations in an unsupervised manner [87, 91, 92]. More structured representations have gained

attention with the recent growing adoption of Graph Neural Networks, which enable learning-based

methods to exploit the structure inherent in the problem domain [87, 93] (see next chapter).

In this thesis, we focus on the question of how to best model a non-rigid kinematic chain, that is,

a dynamical system of interconnected parts. We will assume explicit three-dimensional point position

representations, which allow us to limit the scope of this work to the problem of modelling the non-rigid

kinematic chain of a robotic soft hand. Additionally, this representation is invariant to lighting geometry

and specularity and camera pose changes [94]. In a real system, the points can be obtained either

by placing markers on the different fingers or by learning to segment an RGB-D camera stream into

different finger segments.

2.4 Conclusion

In this chapter, we have laid the foundations to support our problem statement with three intercon-

nected topics in three complementary sections. We motivated our problem in:

• Section 2.1: when we described the challenge of cognitive development in the early stages of

human life and how bio-inspired learning approaches seem to be promising in artificial systems.

• Section 2.2: when we motivated our chosen domain - the promising field of soft robotics -

and how soft-structured systems are difficult to model and have such thrive for self-calibration

strategies.

• Section 2.3: when we reviewed some most relevant control strategies and confirmed the need

for a self-supervised action-conditioned strategy with no rewards or labels and a distribution-

shift-invariant representation.

The concepts defined in this chapter and their relations are illustrated in Figure 2.8 for a better

understanding.

Figure 2.8: Chapter 2: A schematic representation of its main concepts

21



In this sense, we are now ready to reformulate our problem domain, in the light of what we learned

about cognitive robotics, soft robotics and forward models:

Domain

In this work, we propose to learn a structured differentiable action-conditioned dynamics

model of a non-rigid robotic (soft) hand inspired by how newborns acquire controlled motor

capabilities.
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Aristotle wrote in his Metaphysics that "the whole is something besides the parts". The Iliad is

not just the sum of the thousands of letters in it and a soup tastes different from the ingredients all

together. This was used to justify emergence but it motivates probably the first definition ever of a

system.

Two thousand years later, Bertalanffi [10] proposed a simple yet muscular definition of a system

as "a complex of interacting elements". This (too) broad formulation - that includes atoms, galaxies,

a rock or a cell - reveals the ubiquity of system theory. In an action-centered perspective, Perez [95]

characterized a system as a set of congruent actions, which are combined to obtain a pre-established

result and which are generated through a complex of five indispensable parts: energy, components,

organization, structure and process. Systems may vary in their nature, application or relation with its

surroundings, creating different types of classifications, some of which are presented in Table 3.1.

Table 3.1: Types of systems according to different criteria

Criteria System types Definition Examples

semantics
[96]

conceptual basic units of the system
are words or symbols

a book or
a mathematical model

concrete
basic units are nonrandom

accumulation of objects
in physical space-time

object-centric systems

abstracted basic units of analysis
are relations

social or biological systems
with roles and associations

nature
natural systems we find in nature biological, cosmological

or organic systems

technological systems created by
human innovation

mechanical, electrical or
information systems

socioeconomic
systems that concern

society and intelligent-agent
mechanisms

social, economic or
cultural systems

boundary bounded system that is fully containable
in a bounded time and space

a cell or the United
States highway system

unbounded system with no bound,
that can expand indefinitely social network or Wikipedia

For all types of systems and definitions, we notice a common idea: it is not the sum of independ-

ent components but a set of elements that relate, that interact, that share actions, that have common

processes or contribute to a common result. In the previous chapter, we have focused on dynam-

ical systems. We have talked, often implicitly, about systems that evolve in time, their properties,

some examples and how to model them. However, ignoring their relational nature is neglecting a

fundamental part of their behaviours. Acknowledging a system’s structure and relational bias - the

assumptions that impose constraints on relationships and interactions among entities - will be a major

part of understanding and modelling that system.

In this chapter, we shall focus on the relational nature of systems. In the first section, we will

expand on structured systems, their ubiquity and representations. We will briefly talk about graph

theory and the triumph of some structure-based methods over non-structured approaches. Next, we
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shall introduce the Graph Neural Network, a recent class of neural networks that combines graph

representations by using message passage mechanisms between nodes and edges and reach new

application horizons. Similarly to what has been done before, we will describe for different fields how

some approaches that use Graph Neural Networks have outperformed strategies that neglect the

relational essence of the system or that use less powerful representations.

3.1 Structure Representations

Structure is a key part of any system. If a system is a group of interrelated entities, the relation and

organization between the elements are called the structure. Just like in system theory, structure can

be found everywhere (Figure 3.1): in geometry (3.1(a)), in a protein (3.1(b)), in a bridge (3.1(c)), in a

company (3.1(d)). Maybe in the form of a hierarchy, a network or a lattice, structure is the embodiment

of any system.

(a) Cube (b) Porcine Odorant
Binding Protein
[97]

(c) Long span cable-
stayed bridge [98]

(d) Organizational chart of
Doosan Babcock Energy
Ltd. [99]

Figure 3.1: The ubiquity of structure in everyday systems

Structure defines the relations and actions between the several components and therefore defines

the system itself: a cube is only a cube while it keeps its three-dimensional isometric structure; a pro-

tein will stop working and a bridge will fall if their structure is broken down; changing the organizational

structure of a company will change its essence and methods completely.

The fact that structured systems can be found everywhere is not just relevant per se, but it be-

comes particularly interesting when we notice structure is the driver of generalization [100, 101]. Ob-

ject relations are the enablers of the learned knowledge transfer across peripheral dissimilarities: the

predator-prey relation between a cheetah and a gazelle is similarly useful knowledge when applied to

a golden eagle and a rabbit, even if their characteristics are substantially distinct.

Relational reasoning is also a central part of intelligent behaviour [11]: when we search for the

shortest path on a map, pairwise distances between different crossroads must be inferred. Human

ability (from a young age) to find unknown underlying structures is still unpaired for most systems.

In robotic systems, structure is fundamental and it often takes the form of kinematic chains: an

assembly of rigid bodies connected by joints to provide constrained motion.

In this section, we shall focus on the importance of structure representations. We will start by a
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general insight into structured systems and how this structure can be capitalized to achieve a better

understanding of such system; then, we will introduce one of the most robust system representation

fields, Graph Theory; after that, we will take a close look at the case of robotics, how structure is

usually expressed and how it can be combined with graphs; and finally how graph representations

have been used in artificial neural networks.

3.1.1 Capitalizing on structure

If we believe structure is an important part of a system, then we ought to use it to our advantage.

From everyday tasks to complex applications, when one seeks to understand a system (identify it,

use it effectively, predict its future) it may help capitalize on its structure.

As we said before, relational behaviour is the driver of generalization. If we are exceptional at

dealing with unfamiliar elements of the physical world is because our brain models - the ones we

developed in the early stage of cognitive development - exploit physical structures to deal with uncer-

tainty and generalization better. When we arrive at a new restaurant and sit at the table to eat, we

are able to dexterously interact in a complicated environment with dozens of different-sized objects

even though we never laid eye on any of them before. We recognize some of them, we know what a

dish is, that it is rigid and weighs around 250 grams. But then we complement our prior knowledge

with observation, relational inference and generalization. When someone passes us an opaque jar of

water, we mentally break down the system into a rigid container with an unknown amount of fluid that

we can guess by observing how it is lifted and moved. If a weird-looking dessert arrives, we can infer

its different parts and their consistencies just by observing the plate being passed around.

This unintentional disentanglement of reality for prediction purposes does not happen only for

objects. When we are walking in crowded environments and want to predict the movement of the

mass of people in front of us, understanding its structure - which individuals are connected in groups,

which groups are walking towards each other, etc - helps significantly. But the process of exploiting a

system’s structure (its different components and their relations) to better understand its behaviour and

properties is not just something we do unintentionally. It can also be a more or less planned strategy

to tackle different problems.

Let us imagine for one moment we select and open a book by chance, read a random paragraph

and do the exercise of trying to guess the author. At first, we might look for hints on specific words:

names of characters, places or dates. However, that is not enough. Hence, we turn to the structure

to obtain more information about our system - the paragraph read. This would be the way words

are connected, how sentences are punctuated, the literary style, the meaning of the written text.

Although we would still need some talent and luck to correctly guess the author after this, I believe

the reader can agree that this is a winning strategy compared to plain word search. In fact, this is a

similar approach to what some text processing systems use, like author identification [102], plagiarism

detectors [103] and novel clustering [104].

There are many other fields where the use of structure-based approaches have outperformed non-

structured baselines. It is the case of chemistry, pharmacy and biology where biochemical information
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in living systems or compounds is often standardly organized and which has been used for example

in drug design [105, 106] or phylogenetic classification [107]. In pedagogy or psychology, a strongly

structured essence can be found in many theories or techniques. In computer science, concepts

like structural programming or structure-based testing reveal the importance of organized analysis.

Relational behaviour is further found being used in algebra, market analysis or geography.

3.1.2 Graph Theory

As we have seen in the introduction of this section, there are many representations for structure

(Figure 3.2): chemistry uses a very particular convention to represent molecular compounds (3.2(a));

in engineering, mechanical and electrical circuits have their own representation (3.2(b)); linguistics fol-

low grammatical rules to create meaningful structures (3.2(c)); in computer science, data usually take

the form of arrays of numbers (3.2(d)). Structure can even be represented through charts, through

meaningful elements, through realistic renderings, etc. However, some representations gained par-

ticular attention and relevance given their robustness and generality.

(a) Chemical struc-
ture of caffeine
molecule [108]

(b) Electrical circuit
[109]

(c) Grammatical struc-
ture of famous quote
[110]

(d) 3D matrix of RGB image
[111]

Figure 3.2: The ubiquity of structure in everyday systems

Graph Theory (GT) [12] is a field of discrete mathematics that focuses its study on graphs and its

properties. A graph is a mathematical structure used to model pairwise relations between objects.

Being applicable to a myriad of real-world systems, a graph is very close to a universal discrete

modeller. GT can be traced back to the eighteenth century and it has helped to solve problems in

different domains and to create ground-breaking axioms and dozens of present-day open problems.

The key to the success of this field resides in the simplicity of its basic units and formulation, which

makes it applicable to almost any system and scalable to increasing complexity. One of the most

known theorems of GT that represents well its uncomplicated and universal nature is the four colour

theorem and it remained an open problem for more than a century (until its computer-aided proof):

"Given any map, the different regions can be coloured using at most four colours so that no two

adjacent regions have the same colour" [112].
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Definition: Graph

A graph is a network representation in the form of vertices (also called nodes or points)

connected by edges (also called links or lines) which may have different weights.

Different graph representations can be used depending on the underlying system. For example,

graphs can be divided into directed or undirected graphs, depending on whether the edges have an

orientation - from node A to node B - or are a mutual link - between A and B. For instance, a molecule

- Figure 3.3(c) - is an undirected graph, while a piece of text - Figure 3.3(d) - could be directed as

certain words must be followed by others. They could also be classified as sparse or dense graphs,

depending on the number (actually, the density) of edges. Graphs can be cyclic or acyclic whether it is

or not possible to move along the graph from node A to itself. Another relevant distinction is between

weighted and unweighted graphs, the first type having distinct edge weights that represent a cost of

moving along that edge (Figure 3.3(a)).

(a) Weighted graph (b) Acyclic undirected graph (tree)

(c) Graph representation of
ethanol molecule

(d) Graph representation of the
tongue twister ’Can you can a
can as a canner can can a can?’

Figure 3.3: Graph representations

A connected acyclic graph is also called a tree and can be used to represent genetic heredity,

for example (Figure 3.3(b)). In this case, some relevant concepts emerge: parent-child relationship

between sequential nodes in the hierarchy; leaves for the final nodes; root for the orphan nodes;

siblings for same-level nodes. Table 3.2 summarizes the most important graph classifications.

More formally, we can formulate a simple undirected graph as an ordered pair z = (v, e) where v

is the set of vertices and e ⊆ {{i, j} | i, j ∈ v and i 6= j} the set of edges, which are unordered pairs

of vertices. Similar formulations could be elaborated for directed or weighted graphs.

A graph encodes a problem we are interested in. GT is a formal metalanguage to transcribe and

operate discrete structured systems. It was a stepping stone in structure-based approaches and was
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Table 3.2: Examples of graphs according to different criteria

Criteria Graph Types Examples

edge
directions

directed Instagram; Wikipedia

undirected Facebook; subway system

edge
density

dense European capital city airports flight connections

sparse Worldwide airports flight connections

loops cyclic Lisbon subway system; the internet

acyclic genealogical tree; corporate hierarchical structure

edge
weight

unweighted American highway system if time is not an issue

weighted American highway system if time is an issue

accountable for advances in countless fields. In our domain, graphs can be used to discretize soft

robotic systems and to express their non-rigid kinematics.

3.1.3 Robot kinematics

After an overall perspective of the importance of structure in characterizing a system and the

robustness of graph theory in representing them, we will now turn to our domain - robotics - to under-

stand how is connectivity usually expressed. Robot kinematics is a crucial concept for this thesis (and

one we have mentioned a few times before) whose meaning and importance should be clarified.

Kinematics studies the geometric properties of the motion of a set of points [113]. In robotics, a

kinematic model is a mathematical description of the robot structure, its functional dimensions and

degrees of freedom. If a set of points has the property that the distances between any two of them

is constant, it is called a rigid body. A chain is constructed by connecting rigid bodies together with

joints that constrain their relative movement and it is the structural essence of most robotic arms, legs

or hand fingers in manufacturing or outside of industry [113].

(a) Hand kinematics
[114]

(b) Soft ro-
bot kin-
ematics

(c) Soft gripper kinematic
chain

(d) Soft gripper kinematic
graph

Figure 3.4: Kinematic chains

In one of its forms, one end of the kinematic chain is attached to a rigid base, and it is called an

open chain. It is the case of our fingers, where each one represents a three-rigid-phalanges chain

attached to the hand palm - Figure 3.4(a). It is also the case of most robotic hand-inspired grippers.
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In the case of soft robots, many soft limbs also work in a similar way, although instead of rigid

body chains, each segment is flexible and elastic - Figure 3.4(b). It is the case of the non-rigid robotic

systems in Figures 2.3(a)-2.3(c) or the soft grippers in Figures 2.4(b) and 2.4(c). In this thesis, as

stated before, we ought to learn the forward model of a non-rigid kinematic chain. Being a soft hand-

inspired end-effector, for gripping and manipulation purposes, this kinematic chain will also include

multiple fingers, each one with three connected soft "phalanges" and with the base of each finger

attached to the same rigid plane, as in Figure 3.4(c).

Also here we can use graph representations to express our system: each non-rigid segment of

the chain is a graph node and their sequence is represented by links (or vertices), as in Figure 3.4(d).

Since, throughout this thesis, some different (sometimes similar) concepts will be used when talk-

ing about a soft system kinematics, Table 3.3 helps clarifying the definition of each.

Nomenclature
Concept Definition Example

connectivity the (physical) link between
different elements of a system

points A and B are connected,
C is not

structure
the connectivity and spatial

arrangement of different elements
of a system

points A and B are connected,
C is equidistant to A and B

kinematics
description of the motions in all

possible configurations of a system,
subject to constraints

points A and B are connected and
still; C moves freely along the

plane that is perpendicular to AB

dynamics
time varying phenomena that

involves motion of points under
the action of forces

points A and B are still;
point C is pushed away from the

others with decreasing speed

Table 3.3: Definition of kinematics and other related nomenclature

3.1.4 Graph representations in artificial neural networks

Artificial Neural Networks (ANNs) are computing systems from the second half of the twentieth

century, vaguely inspired by the biological neural networks that constitute human brains [9, 115].

Using learning processes, they are trained to extract meaningful patterns from large amounts of data.

Over the last decades, many architectural variations have been proposed and applied to tasks like

classification, prediction or clustering in fields as computer vision, finance or robotics.

Definition: Artificial neural network

Biologically inspired computational network of simple processing units which learn to

acquire knowledge from data and store this knowledge in its connections.

By the start of this millennium, Convolutional Neural Networks (CNNs) had been making signific-

ant advances in computer vision as simple yet powerful deep learning architectures but their scope,

although wide, was limited. By that time, Recurrent Neural Networks (RNNs) were also achieving

ground-breaking results in natural language processing with their ability to use internal memory to

process variable-length sequences of input. However, in both cases, as in most relevant ANN archi-

tectures, the implicit data structures were relatively regular, with images being represented by pixels
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in a grid and sentences following a sequential structure of limited characters. None of these methods

would effectively operate on non-Euclidean data structures, like meshes or networks (see Figure 3.5).

(a) Euclidean structured data in the form of a mat-
rix of image pixels fits desired input of ANN
architectures

(b) Non-euclidean graph representation needs
some adaptation to fit desired input of ANN ar-
chitectures

Figure 3.5: Data structure as input for neural network architectures

As we have seen before, graphs are powerful representations for a myriad of relational systems.

They can capture both simple Euclidean relations and more complex ones. So, by this time, it was

relevant to adapt existing methods to combine graph representations with ANN architectures.

A first strategy from standard machine learning approaches was to map graphs into simpler rep-

resentations, like vectors or sequences of real numbers in a preliminary pre-processing phase. How-

ever, this procedure was quite problem-dependent, time-consuming, order-variant and could involve

(topological) information losses. More recently, several approaches [116, 117] have tried to preserve

the graph-structured nature of the data for as long as required before the pre-processing phase [13].

Recursive neural networks [116, 118] and Markov chains [117, 119, 120] are main examples of this

set of techniques and have been applied both to graph- and node-focused scenarios.

Recursive Neural Networks (RvNNs) operate on graphs by estimating the parameters of a map-

ping function (from a graph to a vector of reals) and have been applied to various fields [121]: logical

term classification [122], chemical compound classification [123], logo recognition [124, 125], web

page scoring [126], and face localization [127]. However, some limitations of RvNNs usually include

being limited to acyclic graphs and the state of each node depending only on its children instead of

its neighbours. Also, for node-focused applications [127] (as well as for certain cyclic graphs [128])

the input graph must undergo a specific pre-processing phase. RvNNs are also related to Support

Vector Machines (SVMs) [129–131], which can adopt special kernels to operate on graph-structured

data. They both automatically encode the input graph into an internal representation but this internal

encoding is learned from examples in RvNNs, while in SVMs it is hand-designed by the user [132].

Graphs are also the representation par excellence for Markov Chain (MC) models [133]. The MC

is a stochastic model that sequences a series of events in which an event’s (or edge’s) probability

(weight) depends only on the state (node) attained from the previous event. In this sense, MC models

can emulate processes where the causal connections among events are represented by graphs and

be extensive to different scenarios in many fields. For instance, random walk theory (a particular

class of MC models) has been successfully applied to the realization of web page ranking algorithms
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in [134, 135]. Nonetheless, we must remember that the Markov assumption (or memorylessness

property) is sometimes restrictive as not all processes can be modelled as markovian. More gener-

ally, several other statistical methods assume that the data set consists of patterns and relationships

between patterns: random fields [136], Bayesian networks [137], statistical relational learning [138],

transductive learning [139], and semi-supervised approaches for graph processing [140].

At this point, the need for a framework that combined neural networks with non-Euclidean order-

invariant graph representations was not fully satisfied. More recently, a new architecture was pro-

posed to tackle this exact issue: Graph Neural Networks.

3.2 Graph Neural Networks

Graph Neural Networks (GNNs) [13] were proposed in 2009 as an extension of "existing neural

network methods for processing the data represented in graph domain" and, since its publication,

many improvements derived from it and for countless applications [141].

Definition: Graph Neural Network

Recent class of neural networks that uses local message passing to operate directly on

graph-structured data.

The key motivations for this framework were two:

1. graph representation power: analyzing graphs with machine learning has been receiving more

and more attention as graphs allow non-Euclidean representations, graph embeddings and can

be used to characterize a large number of systems across various areas.

2. order invariance: standard neural networks like CNNs and RNNs struggle handling (order-

invariant) graph input properly as they stack the feature of nodes in a specific sequence.

In this section, we will concentrate on providing an overview of this framework. We will start by

formulating and describing this architecture and how it works, followed by the applicability of GNNs in

varied fields for the past decade and finally a summary of their variations and deployments.

3.2.1 Formulation and description

The GNN can be summarized as a sequence of node-to-edge and edge-to-node message passing.

Each node is a representation of a variable with a set of features. It can represent an image, a word,

an embedding, etc. Edges also include a set of features, for instance the type of relation between

nodes. Similarly to the notation in [15], for a given graph z = (v, e) with node features xi, i ∈ v, and

edge features eij ∈ e, one single node-to-node message passing can be defined as:

v → e : ht(i,j) = f te(h
t
i, h

t
j , eij) (3.1)

e→ v : ht+1
i = f tv(

∑
j∈Ni

hti,j , h
t
i) (3.2)
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where the hidden states hti,j and hti of the edge (i, j) ∈ e and node i, respectively, are updated. Ni
denotes the set of indices of the neighbouring nodes of i. The update functions f te and f tv are node-

and edge-specific neural networks, respectively.

On a first step, each edge will carry a message, which is computed taking into account both nodes

and the type of edge. This will happen for all edges connected to node i. Then, all the neighbouring

messages to i are aggregated to update the state of this node it+1. To fully understand this two-step

mechanism we must keep in mind that this is not happening just for i but for all nodes at the same time.

The two equations - (3.1) and (3.2) - repeat for as many rounds as how far we want the messages to

propagate. In the beginning, each node knows only about itself; after one round, each node knows

about its 1-neighbourhood; after k rounds of message passing, each node includes knowledge about

its k-neighbouring nodes. Figure 3.6 shows the message passing phase for two steps, where the

node states and message passing are represented by different shades of grey.

Figure 3.6: Message passing mechanism: two rounds of node-to-edge and edge-to-node updates

Although G is assumed to be an undirected graph, it is trivial to extend the formalism to directed

graphs by explicitly assigning two directed edges in opposite directions for each undirected edge.

Even in directed graphs, creating (fake) backwards relations is also possible and sometimes needed

for centrifugal nodes that need to learn how they belong in the graph.

Figure 3.7: Graph neural networks structure

At this point, we reached a new set of nodes whose updated features include knowledge about the

graph, with direct applications in node selection or classification, for example. From this point, GNNs

can also be used for graph classification tasks, by including a readout phase, where a feature vector

for the whole graph is computed using a (learned differentiable) readout function R, according to:

ŷ = R({hTi |i ∈ v}) (3.3)

where R operates on the set of node states and must be invariant to permutations of this set in order

for the GNN to be invariant to graph isomorphism. This means that the order of the nodes in the input
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graph is redundant for the calculation of the final node and graph feature vectors. Figure 3.7 shows a

representation of the structure of the GNN mechanism described before.

Dozens of different variations to the GNN structure have been proposed [141]. Some of the

most prominent baselines combine CNNs, LSTMs or attention mechanisms. In the next section,

we describe some of its applications to different domains.

3.2.2 GNNs are everywhere

After describing the general framework that is common to all GNN baselines, we now include a

compact literature review for some of the most relevant applications of GNN architectures in different

fields and tasks. This should represent a general yet compact state-of-the-art review; for further

understanding of any of the undermentioned applications, please refer to the cited documentation.

The GNN architecture came to unify graph representations with neural networks with promising

possibilities in many applications. For instance, variants of GNNs have been shown to outdistance

non-structured approaches in relational reasoning tasks [142, 143] or modelling interacting or multi-

agent systems [14, 144, 145]. Furthermore, GNNs have proven to be highly effective at graph [146–

148] or node [149, 150] classification for large graphs. Node importance estimation has been studied

by Amazon in [151], applied to knowledge graphs, so important in item recommendation and resource

allocation. GNNs were also the subject of more theoretical studies in [152–154].

Due to the ubiquitous nature of structure and to the simplicity and generality of graph representa-

tions, GNN-based models have been applied in varied fields where relational links between elements

are meaningful. From chemistry [155, 156] to cosmology [157, 158], from crowd analysis [159, 160] to

combinatorial optimization [161], combining neural networks with graph-based approaches has dis-

played more-than-decent performance increase over non-structured based techniques. Other scen-

arios include: pharmacological studies [162] of polypharmacy side effects (drug interactions); financial

stock market [163] where knowledge graph datasets and relational representations of the market are

useful in making stock predictions across different markets and longer time horizons; social recom-

mendations [164] where GNNs improve user and item representations; and many others.

In computer vision, Lee et al. [165] also used structured knowledge graphs, this time for visual

reasoning, showing state-of-the-art results in multi-label classification and ML-ZSL tasks. A similar

work by Marino et al. [166] takes inspiration from the way humans learn about the relational visual

world and uses knowledge graphs for image multi-label classification. GNNs were also used to learn

interactions between humans and objects from images and videos in [167].

Furthermore, GNNs have been widely used to model physical systems [14, 168] - such as springs,

rope or n-body-systems - allegedly inspired in how the human brain reasons about these entities and

the outer physical world, in general. Some approaches have tackled the similar issue of inferring

structure and dynamics but using raw visual data [169, 170]. Also, some recent work [87, 93] on

particle-based physics simulators use GNN-based approaches to achieve state-of-the-art realism with

fluids, deformable objects and granular materials.

Little work on GNNs has been targetted at robotics end-effectors sensorimotor skills. The Tact-
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ileGCN [171] used tactile sensors and a known graph structure to predict grasping stability while

TactileSGNet [172] combined GNNs with spiking neural networks for event-based tactile object re-

cognition. There has been even fewer GNN-related research in the case of soft robotics.

For a deeper understanding of GNN strategies in different fields, recent literature surveys about

their methods and applications can be found in [141] and [173].

3.2.3 GNN variations

We have described the structure and functioning of GNNs and mentioned some of the different

architectural adaptations. In the previous segment, we talked about the ubiquity of GNNs and how

they are used in many scientific fields and machine learning tasks. We shall now display a compact

review of distinct GNN-based models, algorithms and applications.

Table 3.4: GNN-based models in different fields

Field Application Algorithm Deep Learning Model References

Text

Text classification GCN Graph Convolutional Network [147, 149, 150]

Relational reasoning RRN Recurrent Neural Netowrk [143]

IN Graph Neural Network [14]

Image Image classification GGNN Gated Graph Neural Network [165]

GSNN Gated Graph Neural Network [166]

Interaction detection GPNN Graph Neural Network [167]

Science

Molecular Fingerprints NGF Graph Convolutional Network [155]

GCN Graph Convolutional Network [156]

Physics Systems IN Graph Neural Network [14]

VIN Graph Neural Network [169]

Cosmological patterns GCN Graph Convolutional Network [158]

Polypharmacy effects Decagon Graph Convolutional Network [162]

Finance Stock Prediction GCN Graph Convolutional Network [163]

Crowd
Prediction Group interaction AG-GCN Graph Convolutional Network [159]

Knowledge
Graph

Node importance
estimation GENI Graph Attention Networks [151]

Combinatorial Optimization GCN Graph Convolutional Network [161]

We have seen that the GNN is a recent class of neural networks that uses node-to-edge and

edge-to-node message passing to operate directly on non-Euclidean order-invariant graphs. Different

variations in architecture were proposed since then, some of the most influential being:

• Gated GNNs [174]: use Gated Recurrent Units [175], unrolling the recurrence for a fixed number

of steps and using backpropagation through time in order to compute gradients.

• Graph Convolutional Networks [149]: result from the application of convolutional neural net-

works on graphs. Stack multiple graph convolutional layers to extract high-level representations.
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• Graph Attention Networks [176]: Adopt attention mechanisms to learn the relative weights

between two connected nodes.

Moreover, there were also some relevant algorithms that inspired further work such as Interaction

Networks [14] or Relation Networks [142]. In this work, our focus will not be comparing different GNN

strategies but to compare structured and non-structured approaches; ergo, we will not concentrate

on further expanding the many variations.

Table 3.4 depicts a summary of different GNN applications, the algorithms used and the respective

deep learning model, similarly to what has been done in [141].

3.3 Conclusion

In this chapter, we were introduced to structure representations: from the importance of structure

in relational systems and the prominent Theory of Graphs; to the challenges of combining neural

networks with graph representations and the recent solution of GNNs.

We started by looking at the ubiquity of structure in everyday systems and how this connectivity

can be capitalized to better learn complex systems. After that, we introduced the graph as a simple

yet powerful form of expressing a system as a network of points and links. We concentrated on our

domain of (soft) robotics to describe how kinematic chains are structural units of robotic end-effectors

and how they can be expressed by graphs. We moved on to showing how neural networks are often

unprepared to deal with graph representations and the urgency for such a combination. Finally, we

introduced GNNs as the ultimate neural network framework to operate on such robust structures and

we described its operation and applications.

A schematics representation of the concepts in Chapters 2 and 3 is depicted in Figure 3.8. It can

be seen as a rearrangement of the chart in Figure 1.1.

Figure 3.8: Chapter 3: A summary of the concepts so far and their relation

These new concepts clarified the need to combine the modelling power of artificial neural networks

with graph-based representations and allow us to formulate our problem statement as:

Problem statement

In this work, we propose to learn a structured differentiable action-conditioned dynamics

model of the non-rigid robotic (soft) hand kinematic chain inspired by how newborns acquire

controlled motor capabilities and using Graph-based Neural Networks.
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Over the past two chapters, a thorough literature review has shedded light on some challenges

in modern soft robotics as well as on different strategies that have been used to model relational

systems. In concrete, we can summarize the main conclusions drawn in Chapters 2 and 3 as follows:

1. Accurate modelling and control of complex systems is essential for planning regulated agile

interactions with the environment, particularly in the field of robotics.

2. Soft robotics is a recent flourishing branch of robotics that uses flexible organic materials to

increase adaptability and efficiency. However, these soft materials promote more degrees of

freedom in the non-rigid kinematic chain that are much harder to model and control.

3. In the first months of life, humans rely on sensorimotor mechanisms to develop brain models

of their body parts and the physical world that allows them controlled action of their limbs. A

similar self-calibration strategy could be used in soft robotics.

4. In order to create these relational models, we shall use the modelling power of artificial neural

networks - specifically deep learning.

5. A robust representation for the non-rigid robotic hand is using graphs as they can efficiently

express non-Euclidean networks

6. Recently proposed Graph Neural Networks combine the modelling power of neural networks

with graph-based representations. As robust order-invariant networks, they have been used to

learn the dynamical model of many relational systems and could be ideal to model our robotic

soft kinematic chain.

After portraying the challenge addressed in this thesis - how it is motivated, how it is composed,

what strategies have been tried, their limitations and what elements are necessary to tackle this

problem, - this chapter will be introducing our proposed strategy, the Sensorimotor Graph model.

4.1 Sensorimotor Graph Model

The Sensorimotor Graph (SMG) takes its name from the sensorimotor stage of cognitive learning,

where infants develop an understanding of the world through trial and error and using their senses

and motor actions. This model is a graph-based approach that picks up on recent work on Graph

Neural Networks and applies it to soft robotic limbs.

In this section, we describe this proposed model. We will start by revisiting the context to this

approach and how it is inspired by biological mechanisms. Then, a brief motivation will be provided.

Finally, we detail how the model is formulated.

4.1.1 Context and Inspiration

At a very early age, newborns learn by themselves how to control and work their limbs. Without

any knowledge of the physical equations that rule the world, infants learn the required force to push
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against rigid or soft surfaces, to grab objects of different shapes and weights, and later to crawl, to

stand, to walk, to run. As grown adults, even without an exact understanding of Newton laws of

motion or gravitational constants, we manage to adapt to unseen circumstances, from manipulating

Oobleck [177] to walking on low gravitation scenarios [178]. This is accomplished by a subconscious

motor self-calibration faculty we acquire during the sensorimotor stage of cognitive development [4]. It

includes motor babbling - repeatedly performing simple motor commands for a short duration, - during

a period in life of rapid cognitive growth and where we develop an understanding of the world through

sensorimotor trial and error.

Inspired by sensorimotor development in newborns, just like expanded in Section 2.1, it is the

same sort of self-calibration process that this work soughts to mimic. Applied to a robotic soft hand’s

non-rigid kinematic chain, we propose to learn a structured differentiable action-conditioned dynamics

model, based on an explicit joint connectivity graph, the SensoriMotor Graph-based model, or SMG

model.

This bio-inspired calibration process is described and applied for hand kinematics but it is general

and transfers to arms, legs, face and all other sensorimuscular parts of the body. Sensorimotor

babbling is not only essential for understanding the body dynamics, but also a required step for the

controlled use of the muscles.

4.1.2 Motivation

The importance of modelling and control in robotics, combined with the added complexity of soft

systems leads to the necessity of an effortless self-calibration mechanism. A way of learning both

dynamics and connectivity without the need to write arduous equations, rewards or labels. Moreover,

a framework that learns the relational behaviour of the system in an unsupervised way.

On the one hand, the non-rigid nature of soft materials originates complex dynamics that are

hard to capture by forward models. On the other hand, adaptive control is capable of learning the

model parameters but is alien to the connectivity of the kinematic chain. In this section, we intro-

duce the SMG, which addresses the aforementioned shortcomings in two steps: first, it infers the

underlying system connectivity by observing sequences of joint positions and actuation signals and

then, to model the system dynamics, conditions its prediction model on the explicit connectivity graph

structure.

Previously, we mentioned how sensorimotor learning is crucial for the understanding of body dy-

namics and for a controlled use of the muscles. Similarly, with soft robotics getting more and more

attention, may it be with cables or air compression acting as muscles, the dexterous efficient use

of limbs that consequences from the SMG model may be paramount for tasks in locomotion and

manipulation, among others.

4.1.3 Model Formulation

A simplified design of the SMG model is depicted in Figure 4.1. On a first stage, the past states

xTΓ , TΓ being a temporal context, are fed to the connectivity inference module Γ(xTΓ) that observes
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that sequence and infers the explicit connectivity graph z. We formalize our input as trajectories of N

objects. We denote by xti the feature vector (with position and finger constraint) of object i, at time t.

With this notation, xt = xt1, ..., x
t
N is the set of features of all N objects at time t, and xi = (x1

i , ..., x
T
i )

the trajectory of object i, for the total context of TΓ time steps. These input states include the past

trajectories pti for each element (or node) n ∈ N , as well as the past actuation signals ati that are used

to actuate on those nodes, such that x = (p,a) being (:, :) a concatenation. Furthermore, we assume

that the dynamics can be modelled by a GNN given an unknown graph z where zij represents the

discrete edge between objects i and j, that can be directed or not.

Figure 4.1: Simplified representation of the SMG model sequential components

In the example of motor babbling, if the infant flexes the index finger tendon and notices that

this finger contracts, the first module Γ(x) will correspond to learning that this particular tendon is

connected to the index finger and that all points along the finger are connected and move together in

a 3-joint fixed-base structure.

Then, the past states xT∆ and the connectivity graph z will be used by the dynamics inference

module ∆(xT∆ , z,aTw), together with the future actuation signals aTw , to predict the future traject-

ories. Here, Tw is the prediction window (Tw = {0, ..., tw}) and T∆ is the new temporal context

(T∆ = {−t′c, ..., 0}), where we only use the current state (in our case T∆ = {t0}). The input actuation

signals and the output predicted trajectories are for Tw future time steps. For our infant motor babbler

parallel, this second part corresponds to, now understanding the hand structure, the toddler moving

some finger tendons and learning to predict how each finger is going to react.

For the purpose of learning the structured differentiable action-conditioned dynamics model of a

soft hand gripper, we need an algorithm that uses order-invariant GNNs to infer explicit connectivity

in an unsupervised manner. For this task, we chose the Neural Relational Inference Model [91], a

recent unsupervised approach, in the form of a variational autoencoder. The next section describes

this model in detail and its relation to the SMG.
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4.2 Neural Relational Inference Model

In the previous section, we have seen our proposed framework for modelling a structured robotic

non-rigid kinematic chain, the Sensorimotor Graph. This architecture allows for the self-calibration

of soft robotic end-effectors through a process similar to motor babbling, inspired by the learning

process. This graph-based architecture makes use of the structure of the soft parts for a better

understanding of their dynamics, shaping more efficient and robust learning when compared to non-

structure-based approaches. Since graph-based neural networks have led to significant improve-

ments in modelling such different interacting systems using varied architectures, we now seek to find

the most adequate model to adapt to our context of soft robotics end-effectors.

Inspired by previous work on GNNs, Kipf et al have proposed a new model for inferring an explicit

interaction structure while simultaneously learning the dynamics of the interacting system, the Neural

Relational Inference model, or NRI [149]. The NRI takes the form of a variational autoencoder to, in

an unsupervised way, infer an explicit interaction structure while simultaneously learning the system

dynamical model. This architecture further allows us to incorporate prior beliefs about the graph

structure, such as different types of edges, in a principled manner.

We can highlight three different reasons for which the NRI was chosen to test our SMG:

1. Its explicit connectivity: the NRI model infers an explicit structure, allowing us to use a GNN-

based approach.

2. Its unsupervised training: the NRI model learns connectivity and dynamics jointly, in an unsu-

pervised manner.

3. Its results: the NRI model could accurately recover ground-truth connectivity and predict com-

plex dynamics in different environments with different types of interactions.

The proposed motivational example formulation mentions a basketball match (Figure 4.2). If we

were to watch the movement of the ten isolated points, corresponding to the ten players on the field

(five of each team), we would notice that the movements were not random nor independent. Maybe

after a while, we would recognize some implicit constraints, like certain frequent disposition corres-

ponding to the offense tactics or some pairwise links corresponding to defender-defended relations.

These constraints would help us infer underlying relations between the ten elements and this rela-

tional bias would help us understand their dynamics. After watching a few minutes of this ten-player

"dance", we would suddenly close our eyes and ask ourselves how that offense would go from then

on. And, at that time, maybe the movement we would picture in our head would not be so different

from the one happening in front of our shut eyes.

The challenge of inferring the inherent structure of an observed system, is a universal problem

statement, applicable to a basketball court, the Solar system or a silicon soft gripper. NRI solves this

problem by learning the dynamics (future states) and explicit connectivity (graph structure) at the same

time and without the need for any labels. This is done by training two parts jointly: an encoder that

predicts the interactions given the trajectories (corresponding to the connectivity inference module in
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Figure 4.2: Relational system: basketball players don’t move independently

Figure 4.1) and a decoder that learns the dynamical model given the interaction graph (the dynamics

inference module in Figure 4.1).

Similarly to what is described in Section 4.1, Kipf et al. formalize the feature vector (input) of

object i ∈ N , at time t ∈ T and the edge vector as zij between nodes i and j. The NRI model is

then formalized as a Variational Autoencoder (VAE) ([179, 180]) that maximizes the Evidence Lower

Bound (ELBO):

L = Eqφ(z|x)[log(pθ(x|z))]−KL[qφ(z|x) ‖ pθ(z)] (4.1)

In the above equation, we can see two distinct terms, the first one representing an expected value

(Eα(x)(X) =
∫
x
x · α(x) · dx) and the latter the Kullback-Leibler divergence ( KL(A ‖ B) between

probability distribution A and B, simply put, measures how different the distributions are). We can

rewrite Eq. (4.1) as

L =

∫
z

log(pθ(x|z)) · qφ(x|z) · dz −KL[qφ(z|x) ‖ N(z)] (4.2)

The expected value can be represented by an integral, as in Eq. (4.2), and expresses an average

of each sequence of states for the respective graph, weighted by the probability of that graph structure.

In other words, it is trying to maximize the probability of a trajectory given a certain structure (weighted

by the probability of that structure, given the dynamics). This will correspond to the dynamics inference

module, or the decoder. The KL divergence can be seen as being minimized to approximate the

encoder to a normal distribution.

4.2.1 Encoder

The encoder is the first of two components of the NRI model and its goal is to infer pairwise

interactions zij between object i and j, given observed trajectories (x1, ...,xT ). Since we do not know

the underlying graph, we can use an order invariant GNN on the fully-connected graph to predict the

latent graph structure. This corresponds to the connectivity inference module in Figure 4.1.

More formally, the encoder is modeled as qφ(zi,j |x) = softmax(fenc,φ(x)ij,1:K), where fenc,φ(x)

is a GNN acting on the fully-connected graph (with no self-loops). The encoder computes iterative
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node-to-edge and edge-to-node message passing operations to simulate node interactions and then

calculates the edge type. Given input trajectories x1, ...,xK , the sequential node and edge updates

follow:

h1
j = femb(xj) (4.3)

v → e : h1
(i,j) = f1

e ([h1
i ,h

1
j ]) (4.4)

...

e→ v : hnj = fn−1
v (

∑
i 6=j

hn−1
(i,j)) (4.5)

v → e : hn(i,j) = fne ([hni ,h
n
j ]) (4.6)

The use of multi-step effect message passing enables the propagation of signals beyond pairwise

interactions and the entanglement of multiple interactions. More specifically, in the first pass - Equa-

tions (4.3) and (4.4) - the node-to-edge messages are computed using an edge-specific embedding

function fe. Embedded node values from nodes i and j are then used to update the edge eij between

them. After updating the edge state, another embedding function, fv, takes the edge values of all

edges connected to node i, uses each one to compute an edge-to-node message and aggregates

them all - Equation (4.5). Then, a final node-to-edge message passing operation infers the final edge

value - Equation (4.6) from which the edge existence probability is calculated. These last two steps

use information from the whole graph and are repeated for n passes (n ∈ N).

Given the distribution, it is possible to either train the model in a supervised setting, by providing

ground truth labels for the edges, or training the model end-to-end by sampling edges from the inferred

distribution and using these as graph structure for the subsequent trajectory prediction step. The

functions fv and fe are neural networks that map between the node and edge representations. For

this purpose, the NRI model uses two distinct possible implementations: fully-connected MLPs or one-

dimensional CNNs with attentive pooling, similar to [181]. We generally adopt the first implementation

unless otherwise mentioned.

After sampling from qφ(zi,j |x), since the latent variables are discrete and therefore the repara-

metrization trick cannot be used to backpropagate through the sampling, the NRI model bypasses

this difficulty by sampling from a continuous approximation of the discrete distribution and then using

the reparametrization trick to get the (biased) gradients. The samples were drawn from the concrete

distribution [182]:

zij = softmax((h2
(i,j) + g)/τ) (4.7)

where g ∈ RK is a vector of i.i.d. samples drawn from a Gumbel(0, 1) distribution and τ is the softmax

temperature parameter that controls the ’smoothness’ of the samples (distribution converges to one-

hot samples as τ → 0).
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4.2.2 Decoder

After the encoder producing a connectivity graph z, the goal of the decoder pθ(x|z) =∏T
t=1 pθ(x

t+1|xt, ..., x1, z) is to predict the future sequence of the interacting system’s dynamics us-

ing a GNN. The prior pθ(z) =
∏
i 6=j pθ(zij) is a factorized uniform distribution over edges types. This

corresponds to the dynamics inference module in Figure 4.1.

For physics simulations, the dynamics follow the memorylessness Markov property [183], meaning

that to predict future states only the present state is needed, or pθ(xt+1|xt, ...,x1, z) = pθ(x
t+1|xt, z).

With this in mind, Kipf et al [91] use a GNN similar to interaction networks [14], although employing

a separate neural network for each edge type. Just like for the encoder, the trajectory predictions are

based on a sequence of node and edge message passing which formally transcribes as:

v → e : h̃t(i,j) =
∑

zij f̃e([x
t
i,x

t
j ]) (4.8)

e→ v : µt+1
j = xtj + f̃v

(∑
i6=j

h̃t(i,j)

)
(4.9)

p(xt+1
j |x

t, z) = N (µt+1
j , σ2I) (4.10)

where σ2 is a fixed variance. An initial accumulation function updates the edge value by weighting

adjacent nodes by the edge existence probability - Equation (4.8). Subsequently, in Equation (4.9),

edges are aggregated in the nodes through an order invariant summation and transformed by an

embedding function, f̃v. Since the current node state xtj is added to the weighted sum, the model

only learns the change in state, ∆xtj . The next state xt+1
j is sampled from the normal distribution

- Equation (4.10) - with mean value of the new position, µt+1
j . The neural networks used for the

embedding functions are, by default, MLPs.

Looking at the ELBO formulation in Equation (4.1), we notice that the reconstruction loss term

has the form
∑T
t=1 log[p(xt|xt−1, z)] which involves only single step predictions. When optimizing this

objective, one issue that might arise is that the connectivity and interactions ought to have a small

effect on short-term dynamics. In other words, the dynamics of a physical system moving for a short

period of time can be fairly modelled by a simple approximation, for example a linear model, and will

lead to a sub-optimal decoder that ignores the latent edges completely and achieves only a marginally

worse reconstruction loss. On the original NRI work, this issue is addressed in two ways:

• The prediction window should be large enough to promote non-linearities in the motion and

highlight the insufficiency of the "degenerate" model.

• The inclusion of different types of edges should make the dependency on the edge type more

explicit and harder to be ignored by the model.

The first strategy - multiple step prediction - is implemented by iteratively feeding the predicted

mean µt for P steps (P=10 in the original experiments) to new state calculation in Equation 4.9. Since

the errors accumulate for the P steps, the degenerate decoder will be highly suboptimal. The solution

to the second obstacle consists of having separate MLPs for each edge type, with Equation 4.8 being
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the sum of the d (types) products instead,
∑
d zij,df̃

d
e ([xti,x

t
j ]), where zij,d denotes the d-th edge type

of the vector zij .

Since, in many applications, the Markovian assumption does not hold, a recurrent decoder that

can model pθ(xt+1|xt, ...,x1, z) is used. In particular, this recurrent decoder (RNN), adds a GRU [175]

unit to the GNN message passing operation in 4.9. In this case, since an internal state initialization

is required and multi-step prediction must be handled with care, instead of alternating between se-

quences of P predicted steps and ground truth values, a burn-in phase is applied where the correct

input is provided for the first Mburnin time steps and the predicted mean is used only for the last

T −Mburnin steps (Figure 4.3).

Figure 4.3: Difference between multi-step prediction of MLP and burn-in intialization of RNN

4.2.3 Extensions to the NRI model

After describing the general structure of the NRI model and its variants, we now explain the

changes introduced in the original model. The two main architectural differences to our framework and

the main adaptations regarded the inclusion of action inputs in the system state and the fluctuation in

the number of nodes, as described below:

• Whereas the original NRI system state included a two-dimensional position and a two-

dimensional velocity, our application required three-dimensional positions and the input (finger

constraint) actions. Since each point state is described by its unique position in space (px, py, pz)

and also by all the actions being fed to the soft hand (a1, ..., aF ), F being the number of fingers,

each state is not 4- but (3+F)-dimensional. The F values (the same for all points in the same

hand configuration at the same time) are not predicted like the trajectories, but their real values

are included (concatenated) in the prediction. This simulates the real-life application, where

finger movement orders are being given to the robotic hand in real-time and it is the final con-

figuration (positions only) we want to control. However, each finger actuation is not explicitly

associated with the respective finger; instead, the (3+F)-dimensional input is fed to the model

which should map these links between action and effect.
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• Unlike the NRI experiments, using constant-number-of-nodes systems, we want to test the

model’s robustness to configurational changes in hand kinematics and to tracking errors or node

failures. This corresponds to having different number of fingers or different number of points per

finger, which involves having a varying number of discretized hand points at the end of the day.

In this work, we tackle this issue by zero-padding (filling with zeros) the states that are not ne-

cessary for each configuration. We have this simplification in mind when further analysing the

results for the different modelling strategies.

Besides these architectural changes, further additions were made to the code:

• metrics: different metrics were relevant to this new model and were included in the code. For

example, the calculation of the travelled distance, displacement, MSE normalized to travelled

distance and displacement and the number of parameters of the neural network.

• training: regarding training procedures, we implemented early stopping and included burn-in

phases or teacher forcing when needed, to balance opposing modelling strategies.

• hyperparameters: many hyperparameters were fine-tuned for the new conditions, such as

the number of epochs, batch size, learning rate, learning rate decay, number of hidden layers,

prediction step and patience. Some of the most relevant hyperparameters are further described

in Section 4.3.

4.3 Hyperparameters

As we have seen before in Section 3.1.4, machine learning is an application of artificial intelli-

gence where a model is trained to fit some observed data and improve from experience in order to

make predictions or generalizations without being explicitly programmed to do so. The Sensorimotor

Graph uses machine learning and artificial neural networks to infer a system’s relational dynamics by

"observation", similar to how we develop our brain models as curious infants.

In machine learning algorithms, there are usually two types of configurations, the model paramet-

ers and the model hyperparameters. The first are the configuration variables that are internal to the

model and whose values it tries to learn from historical training data. They are key to a machine

learning algorithm as they are its subject of estimation. In this section, we will focus on the latter.

A model hyperparameters are external configurations, whose values cannot be estimated or

changed from data. They help estimate model parameters and are usually specified (and fine-tuned)

by the practitioner. They might relate to the dimension of the network or the duration of the training,

for example, and, in most cases, they aim to produce a good data fit.

4.3.1 Fitting the data

When trying to model data via machine learning algorithms, we usually use two distinct data sets:

the training data set, for our model to use as examples when fine-tuning its internal parameters;
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and the validation set, with new examples to see if the resulting model is actually satisfactory and

generalizes well to unseen samples. We say that the model fits the data well if it fits both the training

data and the validation data.

In order to understand if a model is "fitting the data well" - meaning it approximates a target function

that rules the data distribution - a performance metric is necessary. The function used to evaluate a

candidate solution (that is, a set of model internal weights) is referred to as the objective function. As

we seek to minimize the error of our solution, the objective function is usually called the cost function

or the loss function. The loss function for the NRI model is depicted in Equation 4.1.

We say that the model fits the data well if both the validation loss and the training loss are small

and comparable, as this means the error of our approximate function is low for the data it learned from

and for new data. However, this is not always the case. As such, it becomes relevant to track the loss

function in both data sets, as the relation between the two might indicate under or overfit.

• Underfit: refers to a model that is not suitable or capable of fitting the data. This will be evident

in a poor fit of both the training and the validation data.

• Overfit: refers to a model that fits the training data too well. Overfitting happens when the level

of detail that the model learns from the training data starts negatively impacting its fit on new

data. This will result in high training loss and low validation loss.

(a) Underfitting model (b) Good fitting model (c) Overfitting model

(d) Underfitting loss curves (e) Good fitting loss curves (f) Overfitting loss curves

Figure 4.4: Data fit

These two concepts become particularly meaningful when visually depicted. In Figures 4.4(a) to

4.4(c) we can see the harmful effect of under and over modelling: the first one will be too simplistic to

capture the model’s essence while the latter is too sensitive to noise or unimportant details. The
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consequence of these limitations on the loss curves is also noticeable - Figures 4.4(d) to 4.4(f).

Underfitted loss plots might take different aspects, whether with training and validation curves being

stabilized at high values or still decreasing (meaning that the model hasn’t stopped fine-tuning yet).

A good model fit means the too curves stabilize at low values, close together or with a certain margin

difference, the generalization gap. Overfit modelling will usually be similar to the ideal case until

a point where the parameters keep fitting the training data (training loss decreases) harming their

performance on the validation set.

As we will see next, the ability of a model to be more or less expressive - meaning to represent

simpler or more complex patterns in data - is deeply linked with the size of the artificial neural network.

4.3.2 Network

When trying to fit some data, a model will fine-tune the many weights that constitute the networks

hidden layers (Figure 4.5(a)). Given a certain input, it is the variation of those weights, through

backpropagation, that will converge to the desired output.

(a) Fully connected artificial neural network (b) Artificial neural network with dropout layers

Figure 4.5: Dropout regularization

If a model expressiveness power can be reduced to the number of weights and how they are

structured, then the size of the network positively affects its modelling potential. Similarly to how

human brains can process more intricate relations than other species with fewer neurons, a linear

regression will never be able to accurately model a quadratic data distribution - Figure 4.4(a).

In this sense, when designing a neural network, it is relevant to account for the number of para-

meters of the network, meaning the size of the network or the number of adjustable weights. For

all contrasting modelling strategies that may come (in this work as in general), it is often pertinent to

insure that the opposing candidates have similar magnitude order in their number of parameters, as

a necessary condition for a fair comparison.

One of the hyperparameters that contributes to the size of the network and that is adjustable in our

implementation is the number of neurons per hidden layer: large hidden layers are greatly express-

ive being prone to overfit and the opposite goes for small-sized hidden layers. Another technique to

avoid overfit is to include drop-out layers to the network. This process consists of ignoring each node
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of the layer with a probability p during training, resulting in a sparser network (Figure 4.5). This makes

the model more robust as it holds the active nodes more accountable and less prone to be making

mistakes that are masked by following layers [184]. Moreover, dropout encourages the network to

actually learn a sparse representation.

4.3.3 Training

After adjusting our neural network, the training (and validation) procedure also includes important

decisions. The number of epochs, for example, can make the difference between a good fit and a

poor one. Each epoch represents one full cycle where the learning model goes over the entire training

set. As one epoch is (usually) not enough for the model to optimize its randomly initialized internal

weights, multiple iterations follow with consecutive parameter update. As the training loss (usually)

keeps going down, the same doesn’t happen for the validation curve and the training should stop

while there is small error - Figure 4.4(e) - and before it overfits - Figure 4.4(f).

Early-stopping is a strategy that can help fine-tuning the training period as it can be programmed

to stop when the validation loss curve starts going up, instead of making the model train for a fixed

pre-set number of epochs. With the necessary data for good generalization increasing, there is often a

trade-off between data fitting (training for a few hundred epochs) and training time (each epoch might

take some minutes). Batch size regulation helps in such scenarios: batch size defines the number

of samples to work through before updating the internal model parameters. Larger batch sizes allow

computational speedups but too large of a batch size may lead to poor generalization [185].

Finally, the learning rate is a training hyperparameter of utmost importance and it should be

adjusted in accordance with the other settings (for instance, some optimization literature has shown

that increasing the learning rate can compensate for larger batch sizes [186]). It plays an essential

role in backpropagation as it defines the pace of the weights update and therefore the speed of the

learning process. Too large learning rates can lead to instability or cause the model to converge too

quickly to a suboptimal solution, whereas a learning rate that is too small can cause the process to

get stuck in local minima [187].

4.3.4 Prediction

We define prediction hyperparameters as those that directly affect the connectivity or dynamics

inference process and they are probably the most relevant parameters for the experiments that follow.

Regarding connectivity prediction, we recall that this module uses a sequence of states to infer

a connectivity graph in an unsupervised manner. Nonetheless, the NRI model can also work as a

supervised framework: in this variation, the NRI decoder ignores the output graph of the encoder and

replaces its weights by the ground truth edges. This supervision selection will be further addressed.

Also, in order to infer the structure graph, the number of edge types must be decided. Since graphs

can represent diverse structures, it might be meaningful in some representations to have different

types of edges (different relations). For instance, in order to characterize the connectivity of the

discretized point structure of a snail, at least two types of relationships would be required: one for the
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elastic (gooey) soft body and another for the rigid body structure of the shell. In the case of a robotic

soft gripper, the relational topology seems common to all connections but can also be divided into two

types, one for each orientation of the directed graph.

There are other relevant hyperparameters regarding dynamics inference. As we have seen before

in 4.2.2, some implementations of the NRI model will use multi-step prediction while others should use

a single prediction preceded by a burn-in phase. In both cases, the prediction step - meaning the

time window of the requested prediction - is of paramount interest. Since we are trying to understand

how well structure-based models predict ahead in time, it is certainly relevant to decide how many

time steps do we want it to predict. The end-goal of the prediction is also relevant: in this case, the

dynamics predictor temporal step might be useful and appropriate for online control. Moreover, this

parameter becomes particularly critical when comparing different approaches: some models might

be better for short-time predictions while others may have worse initial forecasts but be more resilient

to deterioration. For the models that need an internal state initialization, like the RNN, the burn-in

phase will determine the time context window that the model has access to before the prediction: it

should be large enough not to compromise the model internal state and its performance but should not

provide the model with too much context as this will be advantageous for the following predictions.

4.4 Conclusion

In this chapter, we introduced the Sensorimotor Graph (see Figure 4.6). After setting the back-

ground in Chapters 2 and 3, we were able to define a framework that combines Graph Neural Net-

works and Sensorimotor Learning to model the action-conditioned dynamics of a robotics soft gripper.

We described our framework as divided into two sequential modules - one for connectivity in-

ference and the other for dynamics inference - that together constitute a meaningful modeller of

relational dynamics and explicit structure. To implement this architecture, we selected the Neural

Relational Inference model, which learns explicit connectivity and infers future dynamics jointly and

in an unsupervised manner, with results in multiple relational systems. After describing this strategy

and the adaptations required to our context, we concluded this chapter by expanding on the different

hyperparameters that regulate the learning process, their impact and significance.

Figure 4.6: Chapter 4: main concepts and their relation
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Experimentation plays an integral part in the scientific method. It can be divided into three stages

[188]: we put forth conjectures and hypotheses based on the current state of knowledge, then we

experiment on collected data to address unknown aspects of the problem and finally, we analyse

the experimental results which may lead to one hypothesis being favoured over others or to new

questions and investigations, so that the process is repeated, with the accumulation of additional

knowledge about the scientific process under investigation. In the scientific method, an experiment

is an empirical procedure that arbitrates competing models or hypotheses [189]. It is a rigorous

procedure covering natural sciences, engineering or social sciences.

Even on a daily basis, we do experimentation constantly and without realizing: when we are

cooking, when we try on new clothes, when we seek to find the fastest route to get somewhere. Even

as little kids, we learn to socialize by analysing the response of our parents and friends to different

stimuli because we learn from an early age that one good way to learn from everyday systems is to

disturb them and then observe them.

Although early civilizations like the ancient Egyptians, Babylonians or classical Greeks have laid

the foundations to what may be considered the scientific methodology, it was later, with the Islamic

cultures - mainly Arab and Persian - that the inductive experimental method emerged. Experiment-

ation and quantification began in the medieval Islamic world (personified by the Arab physicist Ibn

al-Haytham [190]) since there was a greater emphasis on combining theory with practice and it was

common for those studying natural sciences to be artisans as well - which would be considered an

aberration in the classical world.

The process of scientific experimentation can be broken down into two basic components: data

and method. ’Data’ (pl. Datum - latin for "given") is the information, in the form of numbers, documents,

images, etc, that can be used to analyse, measure, interpret and extract meaningful conclusions

while the ’Method’ (Methodos - greek for "pursuit of path/knowledge") refers to the algorithms used

to process that data and extract the valuable information. In the particular case of computer science,

these methods are powerful learning algorithms and the data plays a particularly important role as the

success of these algorithms relies deeply on the quantity and quality of the data. This is guaranteed

by meticulous processes of data generation and preparation before using the final data sets.

Figure 5.1: The two elements of scientific experimentation: data and method

In this chapter, we describe the experimental methodology used in this work. We start by describ-

ing the simplest and most important aspect of experimentation: the data used. We will describe its
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structure, how we collected it and how we organized the data. Then, we will move on to describe the

baselines we will use for our evaluation. In specific, we will describe the four distinct baseline models

that will be compared to our hypothesis - the SMG. Finally, we shall specify the different experiments

we will perform to test our proposed model against the baselines. We shall thoroughly describe the

different experiments so that they can be replicated and for a better interpretation of the results.

5.1 Data Preparation

As we have discussed in the introduction of this section, data is a key part of scientific experi-

mentation, as data can be seen as raw information and information can be seen as raw knowledge.

In deep learning, data is the essential fuel of all algorithms. It is often collected as raw (numerical)

symbols that must be prepared and organized before being valuable to learning models.

In this section, we will focus on the description of our data. We will start by our model domain, an

abstract description of our subject system. Then, we will relax some assumptions to transit from the

abstract system to a physics simulator and outline how the data is collected. At last, we will describe

how the data is finally organized to be fuelled to the experiments.

5.1.1 Domain

We have described in detail the Sensorimotor Graph, its biological inspiration and the motivation

for its application in soft robotics. As one of the most common deployments of soft materials in robotics

still is for manipulating tasks, we decided to focus our experiments around a simple yet representative

end-effector: the soft gripper.

Robotic grippers are (usually) hand-inspired impactive end-effectors that use force closure mech-

anisms to grab objects. The differences to soft grippers are two: the non-rigid materials that build the

fingers and whose flexibility widens gripping applications; and the simplified actuation (single or few

constraints).

The domain of our experiments will then be a robotic three-joint soft gripper. In order to include

some variance in the configuration and parameters of the subject of our work, we shall allow variations

in the number of fingers (three or four), the configuration of the fingers in the hand (they might be next

to each other, equidistant, etc) and the elasticity of the soft material. The possible number of fingers

were selected given the widespread usage of three- and four-finger grippers and being the minimum

number of fingers for a precise control of the orientation of the handled object and for a precise

manipulation of spherical objects [191, 192].

Furthermore, it is important to stress the goal of this experiment, the input and desired output. The

purpose of this experiment is to learn the dynamics of the soft gripper by "observation": we know the

control actions being applied to this hand and we can see how these actions are affecting the motion

of the fingers; we use this knowledge to infer a explicit connectivity, the kinematic chain of our robotic

system; finally, we use the actions, trajectories and the connectivity to model the dynamics.

Now we must move from the abstract domain of our experiment subject and end-goal to the prac-
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tical procedure to represent it and carry it out. To do this, we wish to represent the dynamics of this

hand in a simple but accurate manner, hence we use a physics simulator to create our soft end-

effector and to act on it. When deploying this framework in real end-effectors, the observational data

coming from the simulator should be obtained, online, whether by placing markers on different fingers

or by learning to extract and identify key-point representations in an unsupervised manner [87, 92].

When representing our soft hand in the simulator, we can discretize this gripper and extract only

a few spatial points (one per joint is sufficient). The practical procedure to represent and collect this

data is explained next. From the physics simulator, we can extract the three-dimensional position of

our discretized hand, but we can also actuate this hand using finger-contraction orders. When infering

the kinematic and dynamical model, this input actions (one for each finger) are not associated with the

finger they are intended to actuate and this association must be learned by our model. This simulates

real-life applications, where we often have easy access to what control actions are being fed to the

system, but specifying which order concerns each motor might be challenging, or tedious.

5.1.2 Data Collection

In order to collect diverse data from a soft hand gripper in motion, the Simulation Open Framework

Architecture (SOFA) [193] was used, alongside with the Soft Robotics Toolkit [194]. This Toolkit

includes many shared resources to support the design, fabrication, modelling, characterization, and

control of soft robotic devices.

The soft hand configuration is based on one of the cable-actuated hands in the showcase of

Soft Robotics Toolkit, where three-joint fingers are actuated by a non-extensible pulling cable - Figure

5.2(a). The finger base is fixed and the variation in the cable pull actuation signal (δa(x) ∈ [δmin, δmax])

allows the soft finger to experience a wide range of motions.

(a) 3D mesh of finger and
actuation cable with three
sampled points

(b) SOFA environment
with 12 overlapped
finger positions -
only three or four are
usually active

(c) Nineteen circular combinations of 3 po-
sitions out of 12.

Figure 5.2: Data generation on the SOFA simulator environment

Variability is added to the scene by different sources. First, structural diversity is created by in-
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cluding fingers in different number and configurations around a dodecagon - Figure 5.2(b). Since

the relevance of the different configurations is the variation in their relative position, the number of

possible configurations for n fingers is limited to the number of circular combinations. Circular com-

binations can be obtained by Polya Enumeration Theorem (a detailed explanation of the following

steps can be found in [195]). For our case of 12 elements x1:12, we obtain the polynomial known as

the cycle index:

PC12
(x1, x2, ..., x12) =

x12
1

12
+
x6

2

12
+
x4

3

6
+
x3

4

6
+
x2

6

6
+
x12

3
(5.1)

Since we try to find the number of configurations using 2 colours (dark/light blue; finger/void), it

would make sense to substitute xi = di + li. However, since the 2 colours are dependant and one

can be deducted from the other, we write xi = di + 1 and get the generating function

PC12
(1 + d, 1 + d2, ..., 1 + d12) = d12 + d11 + 6d10 + 19d9 + 43d8

+ 66d7 + 80d6 + 66d5 + 43d4 + 19d3 + 6d2 + d+ 1 (5.2)

from which we can obtain the number of configurations with k nodes from the coefficient on bk. Figure

5.2(c) shows the 19 possible configurations for three-finger grippers. Also, the actuation signal for

each sample is one of a set of predefined waves that were built from trigonometric and random

functions. For each sample, the movement between fingers varies only in amplitude, frequency and

phase. Finally, the gripper material elasticity is adjusted through the variation of the Young modulus

E and the Poisson ratio ν, obeying

constrained modulus = E
1− ν

(1 + ν)(1− 2ν)
(5.3)

Each run in the SOFA environment creates a sequence of 100 sampled time steps. Generat-

ing hundreds of distinct configurations might take several hours. For each finger, three points are

sampled, one for (the center) of each joint, as in Figure 5.2(a). The data we generated is available for

future use (see Section 7.2).

5.1.3 Data Sets

A total of six different data sets are extracted from the soft gripper simulation. The training set

for all tests includes only four fingers in a total of thirty different configurations (relative positions) and

with four different values of elasticity. We shall reference this set as Trainset. For each sample, the

type of motion applied to the cable pull actuation signal for every finger is the same, although the

characteristics of the motion - amplitude, frequency and phase - are different and randomized. Three

different types of motion are used, all resulting from operations between trigonometric functions -

Figure 5.3(a). Our first set, Testset 0, includes novel configurations, some combinations of motion

and elasticity unseen at training time, as well as a different cable pull actuation signal. We will use

Testset 0 for a (first) baseline test. Then, we created four sets to test the model in different validation

sets with varying conditions. The validation sets are set up to understand:
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• Testset 1 - How well the model generalizes to previously unseen motions.

• Testset 2 - Effect of system configuration (relative position of joints) deviating from the training

configurations, either due to sensor measurement errors or due to versatility in the end-effector

kinematics.

• Testset 3 - Adaptation to changes in the number of points, either due to mechanical failure of

one of the fingers or sensor measurements failing to provide the position for any of the points.

• Testset 4 - Robustness to changes in the order of the joint measurements, either due to tracking

errors or wrong correspondences between detected parts.

More specifically, the four validation sets are used to test the model generalization to motion,

relative position, number of fingers and order of the points, respectively. The first test set, Testset 1,

uses three different motions and includes random noise - Figure 5.3(b). The second test set, Testset 2,

uses the same motions and elasticities as the training set but for thirteen unseen configurations. The

third test set, Testset 3, uses only three-finger configurations with the same motions and elasticities

whereas the fourth, Testset 4, and last validation set, shuffles the order of the twelve points for each

sample.

(a) Training (b) Validation

Figure 5.3: Plot of different types of motions in Testset 1

Ablation Study
Test sets Description
tri+tri A1 ∗ [asin(sin(t/f1 + p1) + asin(sin(t/f2 + p1))]
sincoscube A2 ∗ [sin(t/f3 + p2) + cos(t/f3 + p2)]3

cos+tri A3 ∗ cos(t/f4 + p3) + 0.4 ∗ asin(sin(t/f5 + p3))
tri+sincos A4 ∗ [asin(sin(t/f6 + p4) + 2 ∗ sin(cos(t/f7 + p4))
tri+random A5 ∗ asin(sin(t/f8 + p5) + 0.15 ∗ rand[−1, 1]
sin+sin+sin A6∗[sin(t/f9+p6)+sin(t/f10+p7)+sin(t/f0+p8)

Table 5.1: Motions description in Testset 1
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5.2 Baseline Models

In order to prove our claim that structure is key to model a robotic soft hand’s non-rigid kinematic

chain and that our Sensorimotor Graph model should rely on GNN-based strategies, we must find

other baseline approaches to compare with. In particular, we must compare the performance and

robustness of our selected NRI model, qualitative and quantitatively, in tasks of dynamics prediction,

with opposing non-structural approaches.

For this purpose, four different baseline models were selected to assess, by comparison, different

aspects of the unsupervised NRI model. A brief explanation of each model, its characteristics and

relevance for this work is provided below.

5.2.1 LINEAR

The linear model is (one of) the simplest models and yet a powerful tool with still many applications.

This method goes back to the beginning of the XIXth century when Legendre and Gauss used least

squares linear regression to predict planetary movement [196], being the first type of regression

analysis to be studied rigorously and to be used extensively in practical applications [197].

As the name indicates, it is an ideal model for variables that behave linearly or in a similar way, for

example, the relation between Celsius and Farenheit or the price of a house in central Lisbon and its

floor area. In Figure 5.4 we can see an example of this type of regression for these two examples.

(a) Price of square meter in central Lisbon (b) Conversion between Celsius and Farenheit

Figure 5.4: Linearly dependant variable

The general (multivariate) linear regression model can be compactly written as in 5.4, where Y

is a matrix with series of multivariate measurements, X is a matrix of observations of independent

variables that might be a design matrix, B is a matrix containing parameters to be estimated and

U is a matrix containing errors (noise). The errors are usually assumed to be uncorrelated across

measurements, and follow a multivariate normal distribution.

Y = XB + U (5.4)

One of the most common approaches to solving linear regressions is the least squares method,

which finds the optimal parameter values by minimizing the sum of squared residuals, S =
∑n
i=1(yi−
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f(xi, β))2, where the model function f(xi, β) uses the vector β with m adjustable parameters.

Let us now imagine a body moving from point A to point B in a short time. In this case, a fixed

velocity assumption may result in a fair approximation for its movement. The linear model simplicity

makes it computationally inexpensive but also prone to underfit - Figure 4.4(a). It is, however, a

relevant baseline for our case since, just like for the previous example, constant velocity assumptions

are good approximations in physics simulations for short time periods. It is, therefore, an important

sanity test to check if our soft hand kinematics are sufficiently non-linear as we suspect and to assure

that our prediction window is large enough, as warned before in 4.2.2.

5.2.2 MLP

By interleaving linear with non-linear layers, the Multi-Layer Perceptron (MLP) exponentiates its

representational power. MLPs are popular robust universal approximators and have been used for a

different number of applications including classification, regression and time series prediction. These

feed-forward neural networks are also the base unit for the NRI encoder and decoder.

Also called feed forward neural networks, the MLP is based on a simpler unit, the perceptron

[198] - Figure 5.5(a). The perceptron consists of a weighted sum (z) of inputs (x1, x2, ... , xn)

whose signal (positive or negative) determines the sign of the unitary output φ(z). When there is a

mismatch between the true and predicted labels, its weight is updated with w = w + yx. This update

rule is enough to empower the perceptron with the ability to find the best N-plane division in a N+1

dimensional space - Figure 5.5(c).

The MLP is a set of perceptrons that are stacked in several layers to solve more complex problems.

In specific, single perceptrons can only learn linear separations of space while MLPs are capable of

non-linear regression - Figure 5.5(d). This is achieved by the internal (hidden) layers that can be as

many as the complexity of our problem aks for. Also, the activation function that maps the weighted

sum of all neurons to the output has a major impact in the model’s convergence and efficiency. In

Figure 5.5(b) we can see a fully connected 2-layer MLP where the parameters of each unit are inde-

pendent of the rest of the units in the layer, meaning each unit possesses a unique set of weights.

Our MLP implementation is of a fully connected network with 2 (non-linear) ReLu hidden layers.

Just like the linear model, it receives a context window and predicts the next position - which will be

incorporated in the context window for the following prediction - for ps > 0 prediction steps.

5.2.3 LSTM

The third baseline model and last non-structure based approach is the Long Short-Term Memory

(LSTM). This is a type of RNN, able to learn order dependency in sequence prediction problems.

Unlike feed forward neural networks, the Long Short-Term Memory has feedback connections and

is able to process entire sequences of data, being applicable to speech or image recognition, for

example.

The LSTM keeps an internal state that can represent context information about past inputs for

an amount of time that is not fixed a priori but rather depends on its weights and on the input data
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(a) Perceptron (b) MLP

(c) Perceptron classifier (source:
Tensorflow playground [199])

(d) MLP classifier (source: Tensor-
flow playground [199])

Figure 5.5: Perceptron and MLP

[200]. This constitutes an addition in complexity that brings the promise of new behaviours that the

traditional methods cannot achieve.

The LSTM model was created to answer the gradient vanishing and exploding problems. Although

the RNNs already have internal memory and can process larger sequences of input, they still struggle

with long-term dependencies. This issue relates to the back-propagation of gradients all the way from

deeper to the initial layer. As these gradients (smaller or greater than 1) go through continuous matrix

multiplications, they will shrink or grow exponentially, making the learning infeasible. In Figure 5.6(a)

we can see how an RNN can be equivalent to an unrolled sequence of copies of the neural network

and how long-term dependencies (red) can be more difficult to learn than short-term dependencies

(blue). In Figure 5.6(a), xt and ot are the input vector and the output at time t; U, V and W are the

weights of the hidden layer, the output layer and the hidden state, respectively.

The LSTM network is a modified version of the RNN, which tries to make it easier to remember past

data in memory - Figure 5.6(b). In short, this architecture usually includes a cell state (the memory of

the LSTM unit, keeping track of the dependencies between the elements in the input sequence) and

three gates which regulate the flow of information inside the LSTM unit: an input gate (controlling the

extent to which a new value flows into the cell), a forget gate (controlling the extent to which a value
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(a) Recurrent Neural Network

(b) Long Short-Term Memory

Figure 5.6: Artificial recurrent neural network architectures

remains in the cell) and an output gate (controlling the extent to which the value in the cell is used to

compute the output activation of the LSTM unit). In Figure 5.6(b), Ct is the cell state, ht the hidden

state, xt is the input vector and σ and tanh are activation functions.

The implementation used was the same as the proposed baseline in [91]: a two-layer LSTM

with shared parameters and 256 hidden units that models each trajectory individually, preceded and

followed by a two-layer MLP (256 hidden units and ReLU activations). The implementation included

the adaptations mentioned in 4.2.3 and a burn-in phase of 50 (fifty) time steps to initialize its internal

state.

5.2.4 Supervised NRI

Although this already constitutes a version of the GNN-based NRI model, we include its supervised

version here for it also sets a comparative baseline to its unsupervised implementation.

We saw in section 4.2 that the NRI model takes the form of a variational autoencoder to jointly infer

an explicit connectivity graph and the system dynamics. This includes an encoder, that learns con-

nectivity, followed by a decoder that uses this graph to predict motion forward in time. As mentioned

before, in 4.3.4, in this supervised baseline, the decoder will ignore the output graph of the encoder

and replaces its weights by the ground truth edges, as we can see represented in Figure 5.7.

Since this version uses supervised training on the encoder and focuses on evaluating the perform-

ance of the dynamics inference module for a given (accurate) connectivity graph, this baseline is ideal

to test the importance of the right structure in dynamics inference.
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Figure 5.7: Supervised NRI baseline: the output of the encoder is replaced by ground truth graph connectivity

5.3 Experiments

At this time, we resume our explanation at the beginning of this chapter - Figure 5.1 - about the

two key aspects of experimentation: data and method. They work very closely together - and often

interdependently - to produce a valuable experiment and are both necessary (and sufficient?) to

draw meaningful conclusions. The importance of method is about the importance of asking the right

questions. Data is about asking them to the right subject.

In Section 5.1 we focused on how the data was collected and organized. This already answered

some of the questions regarding the data preparation methodology. After that, in section 5.2 we took a

step back to understand what are the targets of our experimentation; what our proposed model SMG

will be tested against; what different approaches will go through this experimental process. Now, in

this next section, we will look at the second major aspect of experimentation: the method(ology). In

specific, we shall systematically write down the design of the different experiments to assure reliable

and replicable results.

5.3.1 Baseline Prediction

In the first experiment, we shall assess a model’s ability to generalize to relatively new scenarios

and, for this reason, we shall refer to this experiment as the Baseline Prediction.

During training, a model will look at different sequences of a four-finger robotic soft hand move-

ment. The observed trajectory of this gripper will be different every time since there shall be different

configurations (relative position of different fingers), motions (function and parameters) and finger

elasticities, in a total of 300 combined variations. For each sample, the type of motion applied to the

cable pull actuation signal is the same for every finger, although the characteristics of the motion -

amplitude, frequency and phase - are different and randomized. Three different types of motion are

used, depicted in Figure 5.3(a), all resulting from operations between trigonometric functions.

In the Baseline Prediction, the trained model will then face some changes at test time. The valida-

tion set for this experiment includes novel configurations, some combinations of motion and elasticity

unseen at training time, as well as a different cable pull actuation signal.

In order to assess the alleged robustness of the SMG model, we will test the NRI and all four

baseline models. With this experiment, we want to evaluate the error of each model predicting unseen
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scenarios for 10 steps ahead in time and obtain a qualitative and quantitative hierarchy of the different

model predictions.

This task and the variety of modelling architectures (linear, MLP, LSTM and NRI with four variants)

had two practical challenges that are worth mentioning: 1) adjusting the hyperparameters of each

network to optimize data fit and reduce under or overfitting; 2) high computational time (and also

space), particularly with some NRI variants and the LSTM.

5.3.2 Ablation Study

After a broad approach to this generalization problem, with the test set including mixed small

variations to similar scenarios, we now want to disentangle the multiple sources of variability. With

this purpose, an ablation study is carried out, where all aspects are kept the same as in training time,

except for a single varying ingredient.

When using the SOFA framework to simulate soft hand movements, different parameters can be

adjusted from sample to sample. For this ablation study, we select four of these parameters we

consider the most relevant. Each of them uses one of the Testsets 1 to 4, described in 5.1.3 and the

training set for all four experiments is the same as before, Trainset. A summary of the ablation study

data sets and the issues they address can be found in 5.2.

Ablation Study
Test sets Description
Testset 1 Generalization to unseen motions
Testset 2 Generalization to unseen configurations
Testset 3 Generalization to different number of points
Testset 4 Generalization to different order of points

Table 5.2: Four experiments in the ablation study

Most often, a robotic soft body does not change its characteristics but is required to perform a

plethora of limb contractions or extensions (to grab an object, to move in the water, etc). Sometimes,

it might even find some external or internal disturbances that make this soft body limbs perform a

sudden unexpected movement. For all these reasons, the model we use to predict and control its

limbs trajectories will never see every type of motion sequence at training time and will have to deal

with new accelerations or new shifts. The first experiment of the ablation study uses three different

motions - Figure 5.3(b) - at test time and includes random noise in a total of 300 different samples.

Also, the effect of the system configuration (relative position of joints or limbs) might deviate from

the training configurations. This can be either due to sensor measurement errors or due to changes

in the end-effector. In the second condition of our ablation study, Testset 2 uses the same motions

and elasticities as the training set but for thirteen unseen configurations.

Furthermore, we consider the situation where there is an unexpected number of discretized system

points (nodes). Either due to mechanical failure of one of the limbs or to sensor measurements failing

to provide the position for any of the joints, it may happen some nodes of the soft body provide no

value (or retrieve an absurd one). We assess this situation by zero padding three sequential joints,
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simulating moving from a four-finger to a three-finger hand system. Testset 3 uses only three-finger

configurations with the same motions and elasticities as before.

Finally, we want to assess the model robustness to changes in the order of the joint measurements.

An altered order in the desired sequence of points (nodes) might happen either due to tracking errors

or wrong correspondences between detected parts. Moreover, it might happen that, for a certain

system, it is desirable to have a mutable order of points for simplicity or flexibility. For all this, we

create a fourth and final ablation experiment where we keep the exact same data as in Trainset but

we shuffle the order of the (twelve) points.

For this experiment, we still use a prediction step of 10. We expect the resulting hierarchy from the

baseline prediction already allows us to select the best performing NRI model and the best performing

baselines to further study in this ablation work.

5.3.3 Connectivity

After qualitatively assessing the dynamics inference module (Figure 4.1) of our structure-based

architecture, we shall now look inside this process to evaluate the output graph of the connectivity

module and how this unit works under different conditions.

In this section, we shall look at the NRI model only, since it is the only approach that estimates

structure. When training the full model (encoder+decoder) in the supervised approach, the graph that

outputs the encoder is switched by its ground truth (g.t.) weights - Figure 5.7. We can do this since

we know that the encoder can be trained separately, in a supervised fashion, and with almost perfect

accuracy. Here, we train the supervised encoder to see if it can in fact recover g.t. connectivity and

compare it to the structure graph in the unsupervised approach. It is relevant to see how distinct the

two are to understand what justifies the difference in the predictions of both strategies. In the super-

vised approach, we will include dropout rate of 0.5 and early stopping but keep the same parameters

as before: encoder hidden layers with 256 units, learning rate of 5x10−4 and batch size 32.

Next, we will test the effect of one hyperparameter mentioned in Section 4.3.4. The number of

edge types affects how many different relations must be considered and weighted in the node-edge

message passing mechanism. As explained in Section 4.2.2, literature [149] suggests increasing the

number of edge types should make the dependency on the edge type more explicit and harder to be

ignored, leading to a greater responsibility of the encoder in the process and therefore better results.

Although one may claim that it does not make much sense in our system to have different edge types,

we believe our soft gripper can be considered to have two edge types (connectivity between two

adjacent joints or no connectivity) or three (one relation type when there is no connectivity at all and

one for each orientation of the directed graph). Although only two relation types are considered for

the other experiments (and not three), here we shall compare both strategies. With that purpose, the

training should be similar to before, although this time we increase the size of the hidden layers of the

encoder from 256 to 400 and reduce early-stopping patience to avoid overfitting.

Here we consider the same conditions as in the first experiment - Trainset and Testset 0 for a

prediction window of 10 time steps.
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5.3.4 Prediction Step

At last, we want to see how another relevant hyperparameter affects the results of our structure-

based model, the prediction step. This variable defines how many time steps the model will learn to

predict and also on how many steps its accuracy will be tested.

The prediction step (ps) is of utmost practical importance. On the previous experiments, we used

ps = 10 as it seemed a reasonable time window for control applications and as it already allowed

for some variation in the data. However, for some applications, different prediction windows could be

required and it is relevant to test if the increase and decrease of the number of predicted steps leads

to under or overfit, respectively.

In this experiment, we shall vary the prediction window (with ps = 5, 10, 15, 20, 25) of the NRI and,

for all values, plot the evolution of the prediction error for 25 time steps. The parameters of the model

shall not be changed (same network dimension) and the training is going to last 200 epochs, although

with varying patience to allow early stopping. For this experiment, we can use only the best performing

variant of the unsupervised NRI.

5.4 Conclusion

In this chapter, we moved from the abstract plane of inspiration and motivation that governed

Chapters 2 and 3 and from the general perspective of our framework in Chapter 4 to dive in the most

material chapter so far where many concepts aforementioned take practical shape to create a picture

of how experimentation is going to be - Figure 5.8.

We started by learning our practical domain, the non-rigid gripper kinematic chain and its repres-

entation for data collection purposes. Next, we focused on data organization and how the different

sets vary among them. We moved on to briefly detail the baseline models as they will serve as

non-structure-based or supervised references to compare with our structure-based SMG. Finally, we

dived into the experiments themselves, listing the different answers we want to find and why they are

relevant to our study.

Figure 5.8: Chapter 5: data and method creating meaningful results
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For the reader who has been following us from the start, it has been a long (and hopefully re-

warding) journey. We now reach what is probably the most relevant chapter of all, the outcome of the

narrative we have been telling so far, where all of the previous chapters climax.

As mentioned in the introduction, if we were to divide the work in this thesis into three parts, the

first would be the motivational background contained in Chapters 2 and 3, the second would focus

on our proposed solution (Chapter 4) and the last part would concentrate on testing this solution, in

Chapters 5 and 6. Being the second half of this last part, after describing how is the experimentation

going to happen, this chapter will focus on the results of such experimentation.

Lord Kelvin once wrote (what would be contracted as) ’To measure is to know’ [201]. I would

go further and add that ’To measure is to know, if we know how to measure.’. The first part of this

chapter will focus on the performance metrics used, since knowing how to measure our results is key

to generating valid conclusions. Then, we will go through the results of the experiments described in

5.3, using the performance metrics, reviewing the experimental results and interpreting them.

6.1 Performance Metrics

We start by describing the evaluation metrics we shall use for this chapter. Metrics are a set of

measurements that help one evaluate his results. These are used to measure the quality of a process,

in this case, a deep learning model.

Many systemic divisions could be created when characterizing different types of measurements of

which we highlight only one: the difference between quantitative and qualitative measuring:

• quantitative measurement - performance is measured by numeric metrics or statistics.

• qualitative measurement - performance is evaluated by intangible non-numerical information.

The importance of metrics is indisputable in scientific research and has been the subject of many

studies [202, 203]. The metrics we use will shape the information we retrieve from the experiment.

Moreover, the way we choose to evaluate the performance of alternative methods in an experiment

defines the conclusions we draw. With this in mind, our metrics should be complete, relevant and

meaningful.

For evaluating a deep learning model, different metrics are commonly used. In this section, we

describe three metrics we will be using, why is each one relevant and why they together form a

complete qualitative and quantitative assessment of our experiments.

6.1.1 Cumulative Mean Squared Error

Mean Square Error (MSE) of an estimator measures the average of the square of the errors.

The error is the difference between a prediction and a real value. Squaring the errors is important to

remove negative values and to give more weight to larger differences. More formally, if Xi is a vector

of n observed values, we have that:
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MSE =
1

n

n∑
i=1

(Xi,real −Xi,model)
2 (6.1)

Figure 6.1 shows a representation of this metric for the prediction of the motion of a point, repres-

ented by a blue circle, in a similar system to ours.. As we can see, for each position prediction (in

red), there is an associated error. For a certain trajectory - Figure 6.1(a), - MSE is calculated as we

have seen before, using the average of the squared difference between ground truth and predicted

values. As the calculation involves a multi-node system - Figure 6.1(b) - and then several variants of

this system - Figure 6.1(c), - the same process applies.

(a) MSE over single
point trajectory

(b) MSE over multiple points trajectories (c) MSE over multiple configur-
ations

Figure 6.1: MSE calculation for compositional systems

The cumulative MSE at time t is the sum of the errors from time 0 to t. This is a non-decreasing

function, often convex since the predictions tend to deviate (with the error tending to grow). In the

case of a soft gripper, since the movement is bounded (and sometimes periodic), the convexity may

not hold. As an integration of the normal MSE, the cumulative error may offer a distinct view on the

evolution of the prediction inaccuracy.

6.1.2 Mean Squared Error normalized to travelled distance

One of the problems with MSE is that it often does not translate into an intuitive result. If the fact

that it results from several operations (average, sum and exponentiation) already makes it difficult

to keep track of the original meaning, sometimes the original meaning is not so clear either. For

example if, when predicting a trajectory, the resulting MSE is 1.5, would the reader find this a good or

poor result? What about if it were 0.2?

The fact is that the error becomes more meaningful when compared with something else, for

instance in the form of a percentage or ratio. Another metric we use besides the regular MSE is a

normalized version, adjusted to the travelled distance.

The MSE normalized to the travelled distance or MSEdist can be interpreted as the average

squared error of the prediction of the movement of an object compared to the travelled distance of

that object. More formally,

MSEdist =
MSE∑n

i=2(Xi,real −Xi−1,real)
(6.2)
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With this metric, we hope to have a better intuition of the quality of the results: MSEdist=1 means

the average squared error of the prediction is as large as the travelled distance, and therefore the

prediction has deviated considerably. In our implementation, an MSE normalized to displacement

was also included, although for periodic movements this result must be interpreted with caution and

will not be included in the shown results.

6.1.3 F1 Score

We have seen how MSE metrics can be used to assess the performance of the model in terms of

predicting three-dimensional trajectories. However, we are still missing some metric to evaluate the

model in terms of connectivity prediction.

The problem of finding the structure of a system is translated into finding the edges of a directed

graph. For this issue, each edge can only exist or not exist and the model will probabilistically classify

them into these two groups. Hence, when evaluating its classification performance, a few metrics

come to mind.

Figure 6.2: Representation of performance metrics regarding true and false positives and negatives

Accuracy measures the fraction of correctly classified elements and it is a good baseline for

evaluating a classification method. However, accuracy suffers from class imbalance sensitivity. Let’s

imagine a model predicting the love relations in a ten people office. In reality, Sarah and Jack are in

love with each other (they are happily married with two kids and three dogs) and Sebastian is in love

with Courtney (with no success), making a total of three (directed) love relations out of ninety possible

passions. If a model were to predict these relations (positive edges in a fully connected circular graph)

and concluded there was no one in love at all, it would score more than 96% of accuracy. However,

this model was probably being affected by the sparsity of the graph to always favour false negatives

and would perform much worse in an American dating reality show.

F1-score solves this issue by weighting precision and recall (Fig. 6.2). It uses a harmonic mean

to penalize larger deviations and can be written as

F1 = 2∗ 1
1

precision + 1
recall

= 2∗
(

1
TruePostives

TruePositives+FalsePositives

+
1

TruePostives
TruePositives+FalseNegatives

)−1

(6.3)
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Since, like for the office relationship example above, our connectivity graph is sparse (two positives

out of each thirty-three edges), accuracy should be complemented with the F1-score and we shall use

both.

6.2 Performance and robustness

In this work, we want to find if structure-based models - that explicitly infer system connectivity to

help them predict future dynamics - perform and generalize better when applied to a robotic limb’s

non-rigid kinematic chain. Our proposed graph-based approach is the Sensorimotor Graph model

and uses an adaptation of the unsupervised Neural Relational Inference model.

Following the experimental procedures detailed in Chapter 5 and using some of the metrics de-

scribed in Section 6.1 the next subsections will focus on answering, respectively:

1. Do structure-based models outperform non-structure-based approaches for soft robotics dy-

namics prediction?

2. Are structure-based approaches more robust to generalization than non-structure-based ap-

proaches for this application?

3. While modelling the soft system dynamics, do structure-based models accurately recover

ground-truth connectivity of the robotic non-rigid kinematic chain?

6.2.1 Dynamics modelling

In order to answer the first question in Section 6.2, each model was trained to observe sequences

of a soft gripper motion and asked to predict further in time.

For this first experiment, the structure-based approach (NRI) is compared to four different

baselines: Linear, MLP, LSTM and supervised NRI. The NRI model has two model variations on

the decoder part of the model as it can either be based on a MLP (NRI-mlp) or an RNN structure

(NRI-rnn). In this experiment, we consider both variants for both the unsupervised and the super-

vised approach. The supervised encoder receives ground truth edges for the connections between

the finger nodes whereas the unsupervised learns the connections in an end-to-end manner while

learning to predict future trajectories.

Table 6.1: Mean Squared Error for the NRI model and baselines, with Testset 0

MODEL MSE 5 MSE 10 MSEdist 10

baselines

non-strucutured
LINEAR 7.987x10−4 1.268x10−3 1.839x10−2

MLP 7.878x10−4 1.117x10−3 1.698x10−2

LSTM 6.157x10−4 1.354x10−3 1.964x10−2

supervised NRI-mlp 4.753x10−4 1.281x10−3 1.846x10−2

NRI-rnn 2.108x10−4 7.457x10−4 1.063x10−2

SMG unsupervised NRI-mlp 4.962x10−4 1.336x10−3 1.926x10−2

NRI-rnn 2.200x10−4 8.013x10−4 1.142x10−2
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In this experiment, all models are trained for 10 prediction steps. In the variations of the NRI with

no ground truth edge information, a non-overlapping set of 50 time steps is provided to the encoder

to estimate the connectivity graph. For all the baselines and for the NRI-rnn, there is an initialization

or burn-in phase where the models have access to the 5 time steps before the sequence that is

considered for the evaluation. The LSTM burn-in phase, similarly to the NRI, has 50 steps before the

10 step prediction window. This allows the LSTM to initialize its internal state.

Table 6.1 shows that the proposed model outperforms the different baseline models in the first

test set, Testset 0, which has a diverse set of motions, configurations and elasticities. The values of

the MSEdist show all baselines reach the 10th step with a prediction deviation that is, on average,

smaller than 2% of the travelled distance, which gives some confidence about the performance of

every strategy. However, we can see that the proposed model (NRI) achieves lower average error

compared to the baseline models in Testset 0 and when the prediction step equals the training step.

Within the two variations of the NRI model, we find that the best combination is the unsupervised NRI-

decoder variant (NRI-rnn) only (slightly) outperformed by the supervised implementation (supervised

NRI-rnn). In the case of the NRI-mlp, this architectural variation seems to outperform non-structured

baselines for the first time steps, but it quickly degenerates and reaches the 10th step with similar

performance. We will look more closely at how this unsupervised NRI-rnn model performs under

different conditions in a subsequent experiment.

Figure 6.3: Cumulative mean squared error (MSE) over 10 time steps for different models

Figure 6.3 shows how the models compare when predicting for 10 steps ahead, the same number

they were trained on. This validation set includes small variations in motion, elasticity and config-

urations. We can see that the NRI model using an RNN decoder outperforms the other variations

considerably. When compared to the NRI-mlp poor performance, this difference may be due to: 1)

differences in training: in this case, the absent burn-in phase in the NRI-mlp places this model at a

disadvantage 2) structural differences between the two models in which the one with a Markovian

assumption behaves worse. We notice that while the NRI-rnn has better performance for the first

steps, particularly relevant in planning, the accumulated error starts deteriorating fast as we predict
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beyond the training distribution, further into the future. We will look at this more closely in the following

experiments.

6.2.2 Generalization

After evaluating how well the different approaches model the non-rigid kinematic chain and predict

future dynamics, we now wish to disentangle the multiple sources of variability and establish how the

model generalizes for different input distribution shifts. Moreover, with this ablation study, we propose

to answer the second question in Section 6.2 of whether graph-based approaches are more robust to

generalization than the non-structured baselines.

In order to test the models under a diverse set of conditions, we shall consider Testset 0 under

a prediction step of 25 to test how well the model reacts to auto-regressively predicting more steps

ahead than it was trained on and the four Testsets introduced in the experimental setup (refer to Table

5.2 for an overview of the different Testsets). This enables us to study the effects of the different

sources of prediction error separately. For this ablation study, we will consider the best performing

NRI model and two relevant baselines, LSTM and MLP.

Figure 6.4: Mean squared error (MSE) after the 25 time steps for different models and validation sets

From the four ablation studies (Figure 6.4), different conclusions can be drawn but the robustness

of the NRI model becomes evident. The first validation set shows that the NRI performs worse than the

baseline models when generalizing to the distribution shift introduced by predicting longer sequences.

In Testset 0 and Testset 1 , the MLP seems to be capable of predicting longer sequences with a lower

mean error and proves to have good generalization to new motions, respectively. This advantage of

the MLP compared to the structure-based approaches can be justified with the fact that it is able to

exploit the relations between the nodes in adjacent positions of the input vector. The NRI, due to its

order invariant graph-based structure, only has access to the nodes without explicit order - like in a

vector-based representation of the nodes.
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This, however, makes the MLP quite fragile to changes or disturbances in the data, as we see from

Testsets 2-4. Testing the same model in a situation with new relative positions of the fingers, the MLP’s

prediction error increases considerably while the NRI model outperforms the baseline models. When

changing the number of fingers, the MLP cannot deal with the zero-padding, is not able to generalize

and has a significantly higher error than the other models, hence it is not considered in this validation

set. Once more, we can see the NRI outperforming the baseline models in this condition. The last

Testset considers the situation where points are shuffled and the points at validation are in a different

order than the configurations it was trained on. This models a tracking or re-identification error. Here,

once again, we notice that, due to its order invariance properties, the NRI model outperforms the

baseline models.

6.2.3 Connectivity Inference

Finally, we answer the third and last question of this section: while modelling the soft system

dynamics, do structure-based models accurately recover ground truth (g.t.) connectivity of the robotic

non-rigid kinematic chain? In order to do this, we now focus on the performance of our proposed

model at inferring the connectivity graph. Since this structure will be used by the decoder to predict

the dynamical behaviour, we expect it to have great impact on the model’s overall performance we

have seen before.

In order to evaluate the connectivity inference process, we select the best performing NRI strategy,

the NRI-rnn and compare its supervised and unsupervised strategies in terms of their F1-score at pre-

dicting the system relational graph. We use the same setup as in our baseline experiment: Testset0 at

test time and prediction step of 10. The accuracy, F1-score and MSE for both situations are depicted

in Table 6.2 as well as three examples of the three-dimensional space connectivity graph for those

approaches at training time - Figure 6.5.

Table 6.2: Connectivity inference performance

NRI-rnn
training MSE10 accuracy F1score

supervised 7.499x10−4 0.998 0.991
unsupervised 8.062x10−4 0.486 0.176

Simply put, we can immediately state that: 1) connectivity inference contributes positively to the

dynamics prediction; 2) supervised training of the encoder allows to recover g.t. connectivity; 3) un-

supervised training does not seem to recover g.t. connectivity. The predicted graph helps to increase

the performance of the NRI model, with the encoder trying to optimize the graph structure to help the

decoder predicting future dynamics. Table 6.2 shows that, by looking at the dynamics prediction error,

the unsupervised encoder effort to achieve an expressive connectivity graph is not as effective as

the supervised approach. Moreover, the supervised encoder can in fact recover g.t. connectivity with

almost perfect accuracy and F1-score. We notice that the same does not happen in the unsupervised

approach, where the accuracy is usually around 50% and the F1score is even lower. These differ-

ences in the results of supervised and unsupervised training can be explained by two phenomena.
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(a) Ground truth configuration of
the 4 fingers

(b) Supervised training (ground
truth connectivity)

(c) Unsupervised training (case 1) (d) Unsupervised training (case 2)

Figure 6.5: Connectivity graph (12 nodes with positive (red) or null (yellow) links) for supervised and unsuper-
vised training

A first interesting aspect shown in Figure 6.5 is that the unsupervised approach does not see any

labels for the edge types and might arrive at a similar, but opposite, correspondence. In Figure 6.5(b)

we can see binary edge types: red for an existing connection and yellow for a non-existing physical

connection. In Figure 6.5(c) we can see the opposite: most of the edges are marked as red (positive),

while a few edges near the four fingers are yellow (null). Although the accuracy and F1-score of such

prediction will yield very poor results - in this case, the unsupervised encoder is actually retrieving

very "similar" results to the supervised approach.

The second interesting aspect is that the graph connectivity that the model arrives to is often sur-

prisingly different from the supervised g.t. structure (see Figure 6.5(d) compared to 6.5(c)). In fact,

for other experiments with different parameters, it was even the case of similar apparently-arbitrary

structures leading to better performances than the supervised version. Although finger-to-finger con-

nections may sound counter-intuitive and difer from the "natural" physical structure, this phenomenon
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was already pointed out in [149] and it is comparable to the results found in leading approaches for

modelling motion capture data that also include hand-to-hand interactions [204].

In conclusion, this model’s end-goal is to learn the dynamics of a system and predict its near-future

evolution for control applications which, by the results in Sections 6.2.1 and 6.2.2, it accomplishes

successfully. For this, it creates an internal connectivity representation to help inferring the kinematics

of such system and hence inferring its dynamics. Even though this connectivity may vary from the true

physical structure, this does not affect its performance at mapping actions to trajectories and would

not harm the inversion of this map for control application. If, for a certain deployment, it is necessary

that the model infers g.t. connectivity, some additional relational bias must be provided to the network

or it can be trained in a supervised way. However, since we usually only care about an accurate

dynamics prediction, we optimize the inferred connectivity to help reaching this goal - whether it is

"equal but opposite" or it includes finger-to-finger links.

6.3 Hyperparameters

Finally, we shall test the effect of some hyperparameters (described in Section 4.3) in the perform-

ance our model. In particular, the effect of the prediction step (ps) and of the number of edge types

(d) in the dynamics and connectivity inference, respectively.

6.3.1 Prediction step

One of the parameters with the greatest meaning and influence in the model is the prediction

window. We have seen in Section 6.2 that the NRI model, when trained to predict 10 time steps, had

its performance outracing the other baselines for the first time steps but suffered quick deterioration

after transgressing the training prediction window.

Since, depending on the deployment, shorter or longer time windows can be required, we now test

the winning unsupervised structured approach, the NRI-rnn, to see how its performance is affected

when training for by a different prediction step. The conditions are kept the same, with the model

being trained on Trainset for different prediction steps (ps=5,10,15,25), as described in 6.3.1, and

tested on Testset 0. The results for the variation of this hyperparameter can be seen in Figure 6.6.

As expected, training the model for larger time sequences leads to a better performance predicting

those. After 25 time steps, the model that was trained with ps=25 has the smallest accumulated

error and the one that was trained with ps=5 has the highest. Furthermore, it is also noticeable that

increasing the prediction step does not compromise initially accurate results: larger windows benefit

predictions right from the start.

However, some considerations should be added when talking about training the model for larger

prediction steps. Not only is this more time- and computationally-consuming, it should require more

epochs and network hidden layers to properly capture the increasingly more complex dynamics and

not to underfit. Moreover, for a short prediction window, the advantage of large-prediction-step over

short-prediction-step-training should be insignificant for most applications and might not pay off the
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(a) Cumulative MSE for different prediction steps (b) Variation of prediction step compared to the
baseline value of 10

Figure 6.6: Effect of the prediction step in the performance of the NRI-rnn model

trouble. It is the case, for example, of optimal control applications - which usually don’t require too

large prediction windows.

6.3.2 Types of Edges

Finally, we try varying the number of edge types d in the encoder connectivity inference to see

its effect on the dynamics prediction. As explained in 5.3.3, in the previous experiments we have as-

sumed binary relations between nodes - positive if the nodes were connected and adjacent, negative

if not. However, we could assume more types of edges, different ways in which the different nodes

relate with each other. In this case, we compare the outputs of the encoder and decoder, for d=2 and

d=3. Table 6.3 depicts the results.

Table 6.3: Effect of varying the number of types of edges in the performance of the decoder

NRI-rnn
d training MSE10

2 supervised 8.045x10−4

unsupervised 8.206x10−4

3 supervised 7.588x10−4

unsupervised 8.083x10−4

We explained in 4.2.2 and 5.3.3 how increasing the number of edges (each type with a separate

MLP) should lead to a more explicit dependency on the edge type. Moreover, this should enrich the

model ability to encode valuable relational information in the connectivity graph that is used by the

decoder to infer future dynamics. For these reasons, it was expected that increasing edge diversity

would, in theory, improve the consequent dynamics prediction results.

By these results, we notice that increasing the number of edge types d from 2 to 3, is enough

to have a positive effect in the unsupervised prediction, with the MSE of the first 10 steps (same as

training prediction step) with d=3 being slightly smaller (around 1.5%) than with d=2. Although this

difference is not much significant, we can see that this gap widens for supervised approaches. When

providing the decoder with the g.t. connectivity graph, we notice that, for d=3, the MSE is also smaller

(around 5.7%) than for d=2.
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(a) Supervised training (b) Unsupervised training

Figure 6.7: Connectivity graph for d=3

For both values of d, the supervised variant outperforms the unsupervised. In Figure 6.7 we

can see the contrast between the supervised and the unsupervised version for d=3: in supervised

training, the encoder output is forced to the g.t. connectivity (red for adjacent descending joints, yellow

for adjacent ascending joints, green for non-adjacent nodes), while in the unsupervised variant, the

connectivity graph includes green, red and yellow finger-to-finger connections.

6.4 Conclusion

In this chapter, we focused on detailing and interpreting the results of the experiments formerly

described. Our research questions and respective conclusions can be divided into five moments:

• Structure-based models do outperform non-structure-based approaches for soft robotics dy-

namics modelling and for predicting time windows of pre-defined length.

• Moreover, structure-based approaches proved more robust to generalization than non-structure-

based approaches regarding configurational variations or tracking errors.

• Structure-based models can be trained in both supervised (with ground truth connectivity) and

unsupervised (without ground truth connectivity) fashions. With unsupervised training, the in-

ferred internal connectivity graph might vary from the ground-truth kinematic chain but still

achieves similar dynamics prediction results.

• Training the structure-based model for longer (reasonable) predictions improves its prediction

performance for all time in that interval

• Increasing the number of expected edge types in the connectivity graph from 2 to 3 improves

the graph expressiveness and therefore the prediction results
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In this work, we proposed to learn the graph-based action-conditioned relational forward model

of the non-rigid kinematic chain of a robotic soft gripper. More specifically: we proposed to adapt

a graph-based relational inference network (NRI) to integrate constraint actions; we generated a

simulation environment to generate data regarding the robotic soft hand with varying configurations;

and we benchmarked the proposed structure-based model against different implementations of non-

structured baselines to compare performance and robustness.

As the work in this thesis lies in the intersection of different topics, we started by providing an

overview of the necessary pieces to formulate the problem statement and our solution. We peeked

into the psychological perspective of cognitive development and sensorimotor learning, after which

we dived into the specific domain of soft robotics and the end goal of optimal control integration. Next,

we emerged on the exciting potentials of graph representations in relational systems and the recent

breakthroughs of Graph Neural Networks.

After outlining the challenge that motivates this work, we proposed the Sensorimotor Graph model

to tackle these issues. It was introduced as a sensorimotor-based framework which inferred relational

knowledge of the system (in the form of GNNs) to achieve better results at modelling and predicting

dynamics. We adapted recent work on graph-based relational inference [149] to build our model and

prepared different non-structured baseline models to assess our claim.

Finally, after generating simulation motions of a robotic soft gripper with varying configurations, we

trained our unsupervised model and compared it with the different baselines to assess performance

and robustness to increasing adversity.

We showed that the Sensorimotor Graph, even if detecting unusual latent connectivity, not only

outperform non-structured strategies when predicting future dynamics of our non-rigid kinematic chain

but also reveal significant robustness to configurational variations, tracking errors or node failures.

In other words, we showed that Graph Neural Networks, more specifically the Neural Relational

Inference model, can be used to robustly model a system of interacting soft material parts in the form

of a differentiable dynamics model, which opens up promising avenues for combining the learnt model

with a non-convex optimal control framework, using the differentiable dynamics model as systems

constraints.

Our approach extends the state-of-the-art in directions that are key to improving soft robotics

modelling and actuation, and hence to contributing to soft robotics universalization.

7.1 Future Work

We believe that this work showed encouraging results and generalization capabilities of our pro-

posed Sensorimotor Graph model, paving the way to the ability to acquire the structure and dynamics

of complex systems, such as soft robotic limbs and will be of utmost importance in future work:

1. adapting the model to always recover ground-truth connectivity with unsupervised training. This

can be done by including relational biases like a sparsity prior, or by including motor synergies

during sensorimotor learning to progressively unlock degrees of freedom;
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2. combining the learnt model with a non-convex optimal control framework, using the differentiable

dynamics model as systems;

3. deployment in complex, non-rigid kinematic chains and articulated end-effectors such as soft

hands for advanced manipulation and online control, using additional instrumentation in the

form of markers, or learning to extract and identify key-point representations in an unsupervised

manner;

4. extend this model to handle contact with external objects. Apart from the observation data

and the actuation signal, the external forces coming from contact or pressure sensors could be

included in the model input to help modelling not only the end-effector body schema but also its

relation with the object being manipulated.

7.2 Material Contributions

The work in this thesis has expanded the understanding of GNNs by applying them to soft robotics

(kinematics chains), making different important contributions in both fields. We highlight two key

material contributions that have sprung from the development of this research thesis:

• ICRA submission: A research paper with the summarized work of this thesis was submitted

to the International Conference on Robotics and Automation 2020 under the name "SENSOR-

IMOTOR GRAPH: Action-Conditioned Relational Forward Model Learning of Robotic Soft Hand

Dynamics"

• code repository: The necessary code for this work is available in [205] for future use. This

includes the data extraction from SOFA, the data preparation file, the modified NRI model (ad-

apted from [206]) and all four baseline models.
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