
1

Validation of Industrial Processes Implemented on
PLCs based on Petri Nets

Hugo Conde Barroso, José Gaspar
Instituto Superior Técnico / UTL, Lisbon, Portugal

hugo.barroso@tecnico.ulisboa.pt, jag@isr.tecnico.ulisboa.pt

Abstract—Discrete Event Systems (DES) are commonly found
as supervisors in industrial applications which are, in general, im-
plemented by Programmable Logic Controllers (PLC). Designing
and implementing a DES in a PLC is a thorough process typically
requiring multiple verification stages and process validation.

Petri nets are a powerful modeling paradigm for a variety
of DES, mostly because of their clear and expressive, graphical
and mathematical, representations. By modeling the systems with
IOPT Petri Nets, a class of Petri nets extended with input and
output capabilities, in the case the nets are safe (or bounded),
one may translate those models directly to PLC programs. This
provides an effective way to create PLC programs by mediating
the complexity of representing DES.

Verification and validation are required to assess the conver-
sion (code production) process. The Petri nets representation
allows defining for each process the reachable set of states, which
can have infinite size. We approach the problem of infinite size
by building the coverability tree. We use the coverability tree to
consider just the cases of finite reachable sets. In those cases we
find operation cycles, avoiding therefore deadlock cases, and use
the sequences of transitions to assess whether the process code
effectively reaches all possible states.

Experiments have been carried with tools to create IOPT
Petri nets, then converting to PLC code and assessing the
implementations on a PLC based alarm system. Results indicate
the tools allow testing reachability of all possible states, testing
typical system usages and studying the effects of hardware
constraints.

I. INTRODUCTION

Industrial processes are procedures involving chemical,
physical, electrical or mechanical steps to aid in the manufac-
turing of an item. When each step or set of steps is thought of
as the state of the process and the inputs given by a user or
sensor as events defined at discrete time instants only, one can
describe every industrial process as a Discrete Event System
(DES). A DES is a method for the modelling of systems as
sequences of operations (events) - it is described as a discrete-
state and event-driven system. Reasons as to why discrete-
time systems might be a good approach include the fact that
any digital computer that might be used as a component of
a system is equipped with an internal discrete-time clock,
meaning variables or controls given are only evaluated at those
time instants.

Programmable Logic Controllers (PLC) are the most
common devices for integrating and controlling industrial
processes as Discrete Event System (DES). Despite the
widespread usage based on standard programming languages,
it is still time consuming their direct programming. One
convenient way to create PLC program is to use a higher level

programming language, such as IOPT Petri nets to model the
DES, followed by the translation to the PLC languages.

Features, properties and other information may be lost in
translation, causing the PLC implementation to be incorrect.
This can result in lost productivity and dangerous conditions.
Testing the project with simulation tools increases the level
of safety associated with equipment and can save costly
downtime during installation and commissioning of automated
control applications since many scenarios can be tested before
the system is activated, increasing its quality. A validation
process must be imposed to check that the software system
meets the specifications and fulfills its intended purpose.

Simulation tools also need to be verified and validated
to assure their correctness so it can best translate both the
DES Petri net model and its relation to inputs and out-
puts. Focusing on the Input-Output Place-Transition Petri net
(IOPT) subclass, we validate the simulation processes of a
DES to PLC conversion toolchain . We propose an automatic
generation of event sequences that helps us simulate the Petri
net. Through manual comparison, since we know the expected
evolution of the DES given a test sequence, we can test and
analyse multiple critical cases to ensure the toolchain behaves
correctly.

II. BACKGROUND

A. Verification vs Validation
Quality control is essential to building a successful busi-

ness that delivers products that meet or exceed customers’
expectations. It also forms the basis of an efficient business
that minimizes waste and operates at high levels of produc-
tivity. Verification and Validation (V&V) are two of the most
important terms in the industry when it comes to creating a
process or product as they are mandatory steps for the quality
management process.

In software project management, engineering and testing,
the terms Verification and Validation consist of checking
whether or not a software system meets specifications and
fulfills its desired purpose. SVV for control systems can be
simply addressed considering formal approaches or simulation.
On the one hand, formal techniques are less used due to the
complexity of formalisms and languages to be approached by
the industrial user. Usually, implemented algorithms for PLCs
use languages proposed in the standard IEC 61131-3 [16].

Even though the standard has harmonized how PLCs are
programmed, the standardized languages do not force pro-
grammers to implement their algorithms in a formal way. Thus



2

the definition of the control system formal model is not as
simple and intuitive as to build a simulation model. On the
other hand, simulation is a widely recognized and adopted
technique for validation of industrial automation systems. The
main open problem of this approach is the definition of test
cases to analyse the model in a complete and exhaustive
manner.

While in formal verification are used formal methods of
mathematics to prove or disprove the correctness of intended
algorithms, we consider software tools associated to DES and
Petri nets to confirm the specifications are met.

B. Petri Nets

A Petri net is weighted bipartite graph constituted by Places
(circles), which are related to specific states of the system and
are linked to Transitions (bars) which identify changes in the
system. Arcs connect places to transitions (and vice-versa)
which cannot directly be connected. Tokens inside places
describe the Petri net Marking and specific conditions to the
current active state.

From [2], a Marked Petri net, C is formally defined as a
five-tuple

C = (P, T,A,w, µ0) (1)

where P is the finite set of places defined as P =
(p1, p2, ..., pn), n ∈ N, T is the finite set of transitions defined
as T = (t1, t2, ..., tm),m ∈ N, (A,w) represent the arcs
and µ0 is the initial state of the Petri net given by the
markings of all the places. A Petri net state is defined as
µ = [µ(p1), µ(p2), ..., µ(pn)] ∈ Nn. About the arcs, (A,w),
A denote the finite set of arcs from places to transitions
and from transitions to places in the graph defined as A ⊆
(PxT ) ∪ (TxP ), and w is the weight function on the arcs
defined as A → 1, 2, 3, ...; one assigned weight for each
arc in A. The matrix comprised of all w(tj , pi) values is
called the postconditions matrix D+ and the matrix comprised
of all w(pi, tj) is defined as preconditions matrix D−, with
D+, D− ∈ Rnxm.

For simplicity, a marked Petri net shall henceforth be
referred to as just a Petri net. The Petri net algebraic repre-
sentation is done in matrix form by the Incidence Matrix D ∈
Rnxm, which in turn is obtained from the weight function
w as Dij = w(tj , pi) − w(pi, tj), where i = 1, ..., n and
j = 1, ...,m.

The dynamic of Petri nets is based on two concepts, Enabled
Transition and Firing Rule.

a) Enabled Transition: For a given marking, a transition
tj is said to be enabled if all input places of tj contains
at least the number of tokens equal to the weight of the
directed arc connecting each input place to tj , i.e., µ(pi) ≥
w(pi, tj),∀(pi, tj) ∈ w.

b) Firing Rule: Only enabled transitions may fire. The
firing on an enabled transition tj removes from each input
place of tj the number of tokens equal to the weight of the
directed arc connecting each input place to tj . It also deposits
in each output place of tj the number of tokens equal to the
weight of the directed arc connecting tj to each output place
of tj .

The Petri net dynamics, also known as state transition
mechanism, is based on the equation µ′ = µ+D · q(j) where
q is the firing vector and q(j) a vector representing the firing
of transition tj .

C. IOPT Petri Nets

Petri nets capture the structural information of a system.
Given we want to verify a tool that converts a DES to a PLC
program, to be uploaded to a PLC allowing the DES to interact
with real systems, we want to be able to test how the proposed
DES responds to external inputs and acts on external outputs.
We consider a class of Petri net that complements our common
Petri net with input-output interactions.

IOPT Petri nets [26] are based on Place-Transition nets and
well-known concepts from Interpreted Petri nets and allow
the specification of models with input and output signals and
events. It allows the association of input events to transitions
and output events to places, simulating the readings of sensors
and manipulation of actuators. The input and output signals
guide the controller through each execution step by defining
the system current state while the input or output events are
associated to changes in input or output signals.

The IOPT Petri dynamics are very similar to the Petri net
dynamics. Regarding transition firing, now a transition has to
be both enabled and ready to be firable. A transition is ready
when the associated input event happen. After a transition fires,
the marking changes according to the Petri net dynamics. If
the marked places are associated with an output event, these
events will be triggered and the corresponding output signal
value will change.

D. Reachability

The set of all states reachable by a Petri net from the initial
state µ is called reachable set R. The graphic representation
of a Petri net reachable set is called a reachability tree.

Depending on whether the Petri net is bounded or un-
bounded, the reachability tree can be finite or infinite, cor-
respondingly. When the reachable set is finite it may be
represented by the finite reachability tree. When the reachable
set is infinite the reachable tree becomes infinite. There exists
a way of representing an infinite reachability tree in a finite
form by introducing the infinity symbol ω, which is presented
in section II-E1.

The advantage of getting a finite representation is accom-
panied with loss of information regarding the reachability
property. It is often possible, for instance, to determine that
some state is not reachable, while being unable to check if
some other state is reachable. Such instances give way to the
reachability problem.

The reachability problem is a decision problem. For Petri
nets it consists of deciding, given a Petri net C with initial
marking µ0 and a possible marking µ of C, if µ can be
reached from µ0. This problem was first proposed by Karp
and Miller [17] within the scope of Vector Addiction Systems,
but left unsolved.



3

Hack [15] and Keller [18] observed that many other prob-
lems were recursively equivalent or reducible to the reacha-
bility problem turning it into on of the most studied decision
problems in computer science theory.

Esparza’s research on decidability issues for Petri nets [7]
states that, after an incomplete proof by Sacerdote and Ten-
ney [30], decidability of the problem was established by Mayr
in his seminal STOC 1981 work [23]. The algorithm uses
a structure called regular constraint graphs and is based on
conditions given by Presburger’s Arithmetic.

The proof was then simplified by Kosaraju [19] by disposing
of the complicated tree constructions used by Sacerdote and
Tenney, and Mayr, introducing a "more general model o
VASS’s" known as Generalized Vector Addiction Systems
with States (GVASS). Further refinements were made by
Lambert [20], where he completely suppressed the use of
Presburger’s Arithmetic.

1) Lambert’s proof outline: Lambert introduced the concept
of Marked Graph-Transition Sequences (MGTS), which are
the result of the decomposition of the precovering graphs
implicit in Mayr’s and Kosaraju’s proofs.

Lambert’s algorithm finds a MGTS having some properties
which allow the computation of a sequence belonging to
its language. The language L of a MGTS is the set of the
sequences firable in the Petri net R which are made of paths in
the initiated precovering graph (IPG) of the graph-transition
sequences (GTS) and respect the initial and the final markings
of each IPG.

He states that if a MGTS on a Petri net R, with Ax = b
as its characteristic equation, is perfect then it is possible to
find any element of L. A MGTS is perfect if it contains a
covering for both the initial and final marking, and if there
exists a solution to the characteristic equation respecting the
proper conditions.

Lambert proceeds to show how to compute the finite (pos-
sible empty) set Γ of perfect MGTS by decomposition of a
MGTS U0, with marking ϕ0 as the pair (µi, µf ), on a Petri
net R and initial an final markings µi and µf , respectively.
This decomposition means

L(R,µi, µf ) = L(U0, ϕ0) (2)

which is read as, for a Petri net R, the language of the
sequences firable at µi for which the resulting marking is
µf ∈ NP (NP =markings of Petri net R) is equal to the
language of the MGTS U0 on R, with marking ϕ0 as the pair
(µi, µf ).

In other words, we can compute a finite (possible empty)
set Γ of perfect MGTS having µi and µf as input and output
marking such that

L(R,µi, µf ) =
⋃

(U ,ϕ)∈Γ

L(U , ϕ) . (3)

He states that reachability is decidable if the algorithm can
compute for a Petri net R and two markings µi and µf a finite
(possibly empty) set Γ of perfect MGTS. The algorithm is
shown to converge as a consequence of the well-foundedness
of multiset ordering [6] thus confirming decidability.

In the computer science community, the decomposition tech-
nique that lies at the heart of the proofs is called the Kosaraju-
Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

2) Complexity: Regarding the complexity of the prob-
lem, Lipton showed in 1976 that the reachability problem
lower bound is EXPSPACE-hard [22]. In 2019, Leroux and
Schmitz [21] published a new upper bound to be non-primitive
recursive Ackermannian. Later in the same year, Czerwin-
ski [3] established a non-elementary lower bound, i.e. that the
reachability problem needs a tower of exponentials of time
and space.

E. Coverability Tree

In 1969, R. M. Karp and R. E. Miller [17] introduced the
rooted tree T (W ), for any vector addition system W , and
the infinity symbol ω terminology to help represent an infinite
reachability set R(W ) in a finite form, in order to discuss
effective tests of schemata properties.

Later in 1981, J. L. Peterson [27] used ω to represent "a
number of tokens which can be made arbitrarily large", that
can be thought of as infinity, and described an algorithm to
reduce the infinite reachability tree to a finite representation.
Peterson chose to name both the finite and the infinite reach-
ability tree as reachability tree.

Finally, 1993, C. G. Cassandras and S. Lafortune [2] in-
troduced the notation of node dominance, which the previous
authors also used but did not label, to present the technique of
the coverability tree. The authors named coverability tree as
the finite representation of the infinite reachability tree, which
contains the infinity symbol ω.

In this work, the latter terminology is chosen since the
implemented algorithm is based on theirs. Note that seeking
the finite version is always possible, meaning the algorithm
always terminates, as proven in [27] who based the proof
on [14] and [17].

Generating a coverability tree allows us to discard Petri net
with an associated tree that contains the infinity symbol, which
translates into an unbounded Petri net. Being presented with
a bounded Petri net with a corresponding coverability tree
containing no ω one can obtain all possible sequences leading
to all reachable states. Access to this information makes the
creation of test sequences possible. We first introduce some
notation to better comprehend the algorithm presented in [2]
and then we explain the general steps.

1) Notation: Before describing the algorithm, some nota-
tion regarding the components used to build a tree must be
introduced as to better understand the technique.

a) Node. Represent a reachable state of the Petri net.
• Root node. Corresponds to the initial state of the Petri

net. Has no parent.
• Terminal node. Leaf node. Corresponds to a state with

no enabled transitions (e.g., deadlock). Has no child
nodes.

• Duplicate node. Corresponds to a state that is identical
to a state already present in the tree. A node is consid-
ered duplicate when the already existing identical node
is in the path from the root node to the node under



4

consideration. No successors of a duplicate node need
to be considered.

b) Infinity symbol ω. Represents a number of tokens that can
be made arbitrarily large. For any constant a

ω ± a = ω

a < ω

ω ≤ ω

In the created coverability tree, the symbol ω will appear
as a marking of any unbounded place of a state that
dominates another.

c) Node dominance. Let any state µ =
[µ(p1), µ(p2), ..., µ(pn)]. Consider states µ and µ′

belonging to the coverability tree and n the total number
of places in the Petri net. If there is a node µ′ on the
path from the root node to µ such that

(i) µ(pi) ≥ µ′(pi),∀i = 1, ..., n (state µ covers state µ′)
(ii) ∃i : µ(pi) > µ′(pi), i=1,...,n (there exists at least one

place of µ that has more tokens than the corresponding
place of µ′)

then µ >d µ
′, i.e., "µ dominates µ′".

Allied with the infinity symbol, node dominance is the
concept that allows the representation of the coverability
tree.

2) Algorithm Steps Outline: The algorithm builds a cov-
erability tree for a given Petri net preconditions matrix, post-
conditions matrix and initial state. With both matrices one can
obtain the incidence matrix needed for the state evolution.

The tree starts out with the initial state, which is the first
"new state", and checks for all enabled transitions.

For each new state, if there are no enabled transitions then
the state is branded "terminal", since it cannot be expanded,
otherwise the algorithm computes the next state for each one
of the enabled transitions. One can think of each enabled
transition as a branch on the tree.

Mark each new state according to the Petri net dynamics
equation and considering the ω properties. Correct the marking
if node dominance is verified. The last step on each new node
is to check if there already exists a state in the tree identical
to this new node. If so, brand the new node as "duplicate".
Else it stays branded "new node".

Repeat for all new nodes until all nodes have been branded
as either "duplicate" or "terminal".

III. IMPLEMENTATION OF INDUSTRIAL PROCESSES ON
PLCS USING PETRI NETS

A PLC program implemented by a Petri net with I/O
interacts with a system, i.e. supervises a system. A Petri net
typically has inputs at the transitions and outputs at the places.
To run a Petri net it is required a simulator of the supervised
system that can handle the inputs and the outputs that make
the interaction possible.

A. DES To PLC Conversion Toolchain

We make usage of a DES to PLC conversion toolchain that
provides a simulation environment. This technique was first

presented and studied by H. Gonçalves [12]. It is based on
the tools [10] and [11] presented in the Industrial Processes
Automation course taught at Instituto Superior Técnico. In
the years that followed, this technique was improved by J.
Meleiro [25], R. Rei [28] and R. Reis [29]. This tool main
objective is to convert a Discrete Event System modeled by a
Petri net into a PLC Structured Text program, granting access
to a controlled simulation environment.

We assume that the modeling of the DES is the user’s
responsibility and is done with IOPT Tools [13].

The general steps of the toolchain are: IOPT Petri net model
parsing, coverability tree and event sequence computation,
model simulation, ST compiler and test run on PLC.

We are only interested in bounded Petri nets. Unbounded
Petri nets allow infinite length non-cyclic transition firing
sequences; it would be impossible to test an DES modeled
by an unbounded Petri net to its full extent. By creating a
coverability tree, we can automatically discard Petri nets that
originate a tree containing the ω symbol, which means the
Petri net is unbounded.

Another reason to focus solely on bounded Petri nets is
their direct translation to the PLC programming language
Sequential Function Charts (SFC) (also known as Grafcet or
IEC 60848), which in turn is equivalent and easily mapped to
all other PLC programming languages [5], assuming that the
ambiguities of the standard are first resolved [1].

B. Case Study - Alarm System

In order to design a Petri net with I/O that supervises the
alarm, we need to provide the alarm with the means to drive
the Petri net and to be driven by it in return. Three actuators
are considered in the alarm to provide input to the Petri net: a
presence switch, an alarm switch and a door switch. Regarding
the outputs of the Petri net, four signals are observed by the
alarm to turn ON or OFF a corresponding red LED, yellow
LED, green LED or buzzer.

In addition to an OFF mode, the alarm system has two
operating modes, (i) presence detection, where the alarm just
informs a door has be open by a person entering the room,
and (ii) intrusion detection, where whenever a door is open, or
other supposed to be resting sensors become active, the alarm
must be sound.

C. Proposed IOPT Petri net model

To model the alarm system, we created an IOPT Petri net,
shown on Figure 1, based on the work of R. Rei [28].

The marking of each place is given by an integer inside
each place, if there is no integer then the marking is 0.
There are 10 places represented by yellow circles and 20
transitions by blue squares. There are 10 input signals depicted
as blue rectangles (3 switches in ON position + 3 counterpart
switches in OFF position + 4 timed inputs), 10 input events
corresponding to each input signal drawn as blue triangles,
4 output signal represented as green rectangles (3 LEDs +
1 Buzzer) and 4 output events corresponding to each output
signal presented as green triangles. For each proposed signal



5

Figure 1. Petri net edited with IOPT Tools [13] to control the alarm.

Figure 2. Coverability Tree for the proposed Alarm Petri net (Duplicate states
are marked "dup" on the top left corner).

there is a corresponding event. Signals are used by the places
to indicate changes to be applied to the outputs whereas events
are used to enable transitions by providing changes on the
corresponding signal.

In the proposed Petri net, each state is represented by the
corresponding marked place. Since only 1 token is necessary
to mark a place, at each state, all arcs have the same weight
equal to 1 so no new tokens are created.

D. Properties Study

The coverability tree in Figure 2 is obtained by the cov-
erability tree algorithm previously proposed. We can observe
that there are no ω infinite symbols in the tree and thus it is
a coverability tree representing a finite reachability set with
10 possible states.

The proposed Petri net is safe since all places can only
be marked either with 1 or 0. This means that it is also 1-
bounded. We can see that for every marking the number of
tokens remains the same, therefore the Petri net is strictly
conservative. Regarding transition liveness, we conclude all
transitions are level-4 live and the Petri net is free of both
deadlock and livelock. No state covers another state and
so the Petri net does not present the coverability property.
The Petri net is time-invariant since for any reachable marking
there exists at least one transition sequence to go from that
same marking to itself, thus allowing a software reset.

IV. VALIDATION OF INDUSTRIAL PROCESSES BASED ON
PETRI NETS

A. Coverability Tree Adapted for Validation Testing

The tree data structure is a good choice to graphically
represent the reachable states of a Petri net since one can
easily see the path from the initial state to any other as well
as checking for cycles or deadlocks in a visual way.

States are represented by the nodes and transitions by
the edges, therefore when one wants to obtain the input
sequence needed to transition from the initial state to any other
node all that is needed is to get the sequence of transitions
that lead to the desired node. Such advantage is used to
automatically generate the event sequence for DES validation
testing. Although an algorithm is presented in [2], no original
code was found, and with such advantage in mind a slightly
modified algorithm is proposed in Table I and implemented
in MATLAB. The two modifications made to Cassandras and
Lafortune’s algorithm take place in step 2.2 and its substeps.

B. Coverability Tree Construction

The implementation of the coverability tree algorithm is
based on two variables. The first variable, R is a matrix
of reachable states. Each column vector of R represents the
marking of a state. The second variable, MP is formed by
two parts, P and S.
P is a matrix where each entry is a path (n-tuple of

transitions) to reach a reachable state from the initial state.
Reachable states with more than one path (i.e. with rows with
more than one non-empty value) means that state has duplicate
nodes in the tree.
S is a matrix where each entry is a path along the states

(n-tuple of state indexes) listing the states passed-through to
reach a reachable state from the initial state. Reachable states
with more than one path, i.e. with rows with more than one
non-empty value, means that state has duplicate nodes in the
tree.

The implementation of the algorithm is summarized as
pseudo-code in tables I and II.

C. Generation of Event Sequences

The testing event sequence is generated by extracting all
transition sequences that drive the Petri net from its initial state
back to itself. These sequences are found on the first row of
the P cell matrix in MP . They are concatenated orderly as
found from left to right. Then all alternative paths that are not
included in the transition sequences found on the first row that
lead to other states are completed with the transition sequences
that make the Petri net evolve from these nodes back to the
initial node. These sequences can be extracted either from the
Petri net to be supervised or from a Petri net that tells a story,
called a storyboard.

Any event sequence extracted is then converted into a table
that orders the events in a time line. For such a table we
use the notation Table Ut. Each transition in the sequence



6

Coverability Tree Algorithm - Implementation
Input: Preconditions matrix D−, post-conditions matrix D+ and initial marking µ0.

Output: Reachable markings R, Structure MP .

Step 1 - Initialize R = {µ0}, P = ∅, S = ∅, M = ∅.
Step 2 - Let R = {µ0, µ1, ..., µN}, N be total number of reachable states found so far, i = 1, ..., N

and D−t represent column vector t of D−.
For each state µi ∈ R generate vector of enabled transitions as

x : (µi ≥ D−t → 1) ∧ (¬(µi ≥ D−t )→ 0).
Step 2.1 - If x(t) = 0,∀t, then µi is terminal node.

Step 2.2 - Else for each t : x(t) 6= 0 create a new node µ′ mapped by transition function f defined
in Table II.
Let pn be the set of sequences of transitions to µn and pnj

be the sequence j. Let sn be set of sequences
of states indexes in R to µn and snj

be the sequence j. All sequences are initially empty.
Step 2.2.1 - If ∃µn ∈ R : µn = µ′, then µ′ is duplicate node. Do:
pn ← pi1 ∪ {t},
sn ← si1 ∪ {i},
M ←M ∪ {(µi, t, µn, ”duplicate”)}.

Step 2.2.2 - Else µ′ is new node. Do:
µN+1 = µ′,
pN+1 ← pi1 ∪ {t} and P ← P ∪ {pN+1},
sN+1 ← si1 ∪ {i} and S ← S ∪ {sN+1},
M ←M ∪ {(µi, t, µN+1, , ”new”)},
R← R ∪ {µN+1},

Step 3 - If all new nodes have been marked as either terminal or duplicate nodes, then stop.

Table I
COVERABILITY TREE ALGORITHM IMPLEMENTATION

Transition Function Algorithm - Implementation
Input: Reachable markings R, index i of node under evaluation, incidence matrix D, enabled transition
k under evaluation, cell matrix S.

Output: Next reachable state µ′ from state µi by firing transition k.

Step 1 Initialize µ′ = µi +D · qk, where qk is a unit vector (qk = (0, ...0, 1, 0, ...0)T , kth entry is 1).
To be noted that all infinite symbols ω in µi propagate to the same places in µ′ obeying to the operation
rules applied to the infinity symbol as presented in Notation II-E1 in section II-E (MATLAB solves the
ω operations on its own, else an additional step would be needed to correct the propagation).
Step 2 Let si be the set of sequences of states indexes of µi and sij be the sequence j.

For each sij , check state dominance as presented in Notation II-E1 in section II-E by doing:
Step 2.1 - For each state index p = sij (m):
µy = R(p),
If µ′ >d µy , then ∀a : µ′(a) > µy(a) set µ′(a) = ω.

Step 3 Otherwise, µ′ is as obtained in Step 1 .

Table II
TRANSITION FUNCTION IMPLEMENTATION

generates a row in the table. Each row is comprised by a
timestamp followed by integers representing the values for
each existing input at the given timestamp. This means the
table contains as many rows as transitions in the complete
sequence, plus two extra rows, a first row that sets up the
initial values of the inputs and a last row that turns OFF all
inputs.

Due to the way the IOPT Petri net is built and parsed there
exists 2 parts for the same input: one ON part and one OFF
part. Both are represented on the table. The creation of the
table is done so that whenever the input is ON then the ON
part takes the value 1 and the OFF part takes the value 0
on the same instant. The inverse happens when the input is
turned OFF. So, the table contains as many columns as the
number of available inputs and their ON/OFF parts of the
Petri net, plus one for the timestamp. Unless stated otherwise,
all input events associated to a transition are set to occur right
after inputs associated with the previous transition of after the
corresponding timer times out.

D. Extension of Petri net model to include Time

Considering the objective of simulating real systems en-
compassing timeouts, it is necessary an extension to Petri net
models with the intent to introduce the notion of timing in the

DES to PLC conversion toolchain . Following along the lines
of Timed Petri Nets [31], which are well known extensions of
Petri net, the extension consists of adding timed transitions,
i.e. transitions controlled by timers.

In implementation terms, the extension is made by ex-
panding the data structure, that stores an IOPT Petri net, to
include time related parameters on the input signals fields.
One information is to include a timer representation associated
to each transition. It represents the timestamp at which the
associated timer finishes. These parameters are updated within
the simulation and are compared with the current time in each
iteration to check which timers are finished, which allows
deciding which timed transitions are ready.

To be noted that within the simulation a timer is started
when its corresponding transition is enabled and it is stopped
when the transition no longer verifies its preconditions. The
activation of a timer is done by setting the transition’s time
value to current time t + associated timer value. Consider the
quick example of a timed transition t1 with a 5 second timer
associated as its only input. If t1 is enabled at time t = 1
seconds then the transition’s time value is set to 1 + 5 = 6
seconds. If at time instant t = 6 seconds t1 is still enabled
(and by this we mean its preconditions did not change within
the time interval [1, 6] seconds), since the timer is finished
and the transition is enabled then for that iteration t1 can be
fired.

V. EXPERIMENTS

In this section are combined the tools for creating DES
supervisors running on PLCs with the tools for validating the
created DES supervisors. The main objective of the exper-
iments is the assessment of the validation tools applied to
identifying design or implementation problems, and testing the
created DES supervisors.

Three use cases are considered based on the discrete event
system that models the alarm system. The alarm system
is based on a PLC reading alarm inputs and sensors and
generating alarm outputs. Each use case involves one or more
experiments.

A. Use Case 1 - Reach All Possible States

The considered toolchain allows converting a high level
DES design (PN) to an implementation running on a PLC
or just as a simulation. In this use case we are assessing
whether the conversion toolchain performed well, or not, the
conversion.

We use the event sequence automatic generation tool to
generate all possible cyclic event sequences that make the
alarm controller reach all of its states. We perform the test in
simulation by forcing the input values at given time instants
according to the generated sequence of events. In other words,
we test if each state of the reachable set can be reached.
If anything is different than expected it is solely due to
the toolchain. Otherwise, we can validate the success of the
conversion.

Figure 3 illustrates the test we are performing, we feed
the simulated inputs to the IOPT Petri net and evaluate



7

Figure 3. Illustration of use case 1 testing. The IOPT Petri net reacts only
to the given input sequences.

the resulting state y. All interactions with the system to be
controlled are ignored.

General considerations on the creation of input sequence:
• all timed transitions are converted to untimed transitions;
• inputs are reset to their starting values once the supervisor

returns to its initial state, creating a soft reset.
The alarm supervisor IOPT Petri net produces the coverabil-

ity tree shown in Figure 2. We observe that the Petri net has
no terminal nodes, therefore the Petri net has no deadlocks.

The sequence of operation cycles we consider to visit the
complete reachable set is derived from the tree by taking
each sequence of fired transitions from the root node to each
duplicated root node. We confirm that the IOPT Petri net
evolution is correctly simulated and all reachable states are
reached.

We conclude that the DES to PLC conversion toolchain
under validation properly extracts the input sequence that
drives a given IOPT Petri net through all its reachable states.
The toolchain correctly simulates the IOPT Petri net state
evolution and represents the matching output values at all
reachable states.

B. Use Case 2 - PLC-DES interaction with World-DES

Before describing the experiment, we introduce two terms:
PLC-DES and World-DES. The former refers to the DES
implemented on the PLC, i.e. the controller/supervisor. The
latter names the DES modelling a real system, i.e. the system
to be controlled/supervised. Consider the alarm supervisor
IOPT Petri net as the PLC-DES and the alarm system as the
World-DES.

In the second experiment, the PLC-DES is run together
with a World-DES. In particular are simulated timings of the
real world. Are considered Petri nets extended with timed
transitions, both for modelling the supervisors and the real
world systems.

Validating the PLC-DES while including the to/from world
interaction may not be feasible: it may require much human
intervention or the World-DES may introduce functional dead-
locks or even induce unexpected behaviour in the PLC-DES.
In this vein, one may consider focusing on specific tests, one
may use storyboards, representing the World-DES, to cover
the expected usages.

1) Closed Loop Simulation, PLC and World Interaction:
Two ways can be considered to create a storyboard. The first
possibility is to create an IOPT Petri net that tells a story
from which the sequence of events is extracted. The second

possibility is to directly provide a sequence of events in the
form a table Ut.

The first way shows the flow of events by following the laid
out path of the storyboard. Consider the storyboard to be the
typical correct functioning of the alarm in Alarm mode.

The story starts with a shop owner inside the shop monitored
by the alarm. After an initial wait of 5 seconds, the owner
turns the alarm switch to the ON position immediately exits
the room. The alarm takes 30 seconds to be fully activated
and thus the storyboard is designed to consider enough time
for the activation of the alarm to be complete. We decide on
a 40 second wait, after which a thief opens the door (turning
ON the door switch). It takes the thief 2 seconds to close
the door (door switch is turned OFF). Assuming the alarm is
functioning properly, it starts a 5 second countdown from the
moment the thief opened the door, since it took him 2 seconds
to close it that means there are only 3 seconds left for the alarm
to go off. To conclude the story, the owner returns to the shop
after 5 seconds to catch the thief red handed and turns OFF
the alarm.

The extraction of the test sequence from the storyboard
follows the general steps of finding the associated coverability
tree and converting the sequence of transitions into a table Ut.
We use timed transitions that also require an input change and
then generate the corresponding table Ut entries by defining
the input change to happen at the timer timeout. In this
use case, transition sb_tr_23 in the considered storyboard
indicates that the input SWITCH_DOOR will be set to 1 (ON)
at the timeout instant of the corresponding 40 seconds timer.

Simulating the PLC-DES with the World-DES storyboard
we obtain the results as presented in Figure 4. The toolchain
correctly generates the input events at the desired time instants
and the PLC program state evolution matches our expectations,
showing a typical correct functioning of the alarm in Alarm
mode.

In conclusion, the DES to PLC conversion toolchain func-
tions as expected, properly deriving the event sequence from
the storyboard and using it to guide a simulation of the alarm
controller.

The second method allows a quicker change or fine-tuning
to the sequence of events, but requires a higher knowledge of
both DESs and the generation of a table Ut. We can create a
specific sequence of events directly through a table Ut. This
allows us to be more precise with the timings of the events,
makes it easier to add or remove events and to create specific
tests. Table Ut (4) tells the exact same story as the storyboard,
except now we can clearly see the exact timings of each event
change.

Ut =



0 1 0 1 0 1 0
5.0010 0 1 1 0 1 0
5.0030 0 1 1 0 1 0
45.003 0 1 1 0 0 1
45.005 0 1 1 0 0 1
47.005 0 1 1 0 1 0
47.007 0 1 1 0 1 0
50.007 0 1 1 0 1 0
50.009 0 1 1 0 1 0
55.009 1 0 1 0 1 0


(4)



8

Figure 4. Alarm PLC program (Figure 1) driven by a storyboard showing
the typical correct functioning of the alarm in Alarm mode.

C. Validation using the PLC Development Tools

The myterminal5 interface, made available for the Indus-
trial Processes Automation course taught at Instituto Superior
Técnico [9], recreates our use case alarm system and makes
possible the connection to Unity Pro, a Schneider Electric
software. This software allows both programming a real PLC
and emulate a PLC, which enables the testing of an application
without a physical connection to the PLC and other devices.

Schneider Unity Pro can simulate the PLC with a MOD-
BUS server and run the I/O digital interfaces, such as
myterminal5, as a MODBUS client. In doing so we estab-
lish a communication system that allows sending information
from the interface to the PLC and back. This means we
can implement the PLC-DES without having to connect to
a real PLC and have it communicate with the World-DES.
Furthermore, this alarm terminal application can read a table
of events and replay it, i.e. allows injection of inputs to the
Unity Pro PLC simulator given a table Ut.

We run the DES to PLC conversion toolchain ST compiler
to convert the alarm supervisor IOPT Petri net to Structured
Text code, which is placed in a Unity section. Then, we
connect the PLC in simulation mode, transfer the project to
PLC and run. Finally, we load table Ut (4) to myterminal5
application and start the injection of inputs protocol to the
Unity Pro PLC simulator.

Firstly, we observe a correct injection of inputs and coil
writing, following the desired storyboard. Secondly, we can
observe a matching behaviour of the PLC-DES to the one
observed in Figure 4. The output evolution corresponds to
the Alarm mode state evolution. This means the PLC-DES
simulated on a PLC shows a correct typical functioning of

Figure 5. Alarm setup. Bouncing happens on the switches, but exists mostly
in the push-buttons.

the alarm in Alarm mode, hence we validate the correct IOPT
Petri net to ST code.

D. Use Case 3 - Effects of Hardware Constraints on PN
Designs

Hardware limitations arise when moving from simulation to
hardware implementations. In many cases the software devel-
oper is not aware of hardware specific constraints and therefore
does not take the limitations into account. Consequently, the
implementations can fail validation tests.

A typical example in the PLC programs, which are in
essence based on scan cycles, is the existence of inputs
appearing as short pulses. Those fast inputs may not be
recognized, depending on their duration and the state of the
PLC scan cycle. On an opposite case, spikes associated to
input bouncing, may be input by the PLCs if the spikes are
long enough for being accepted.

In another time scale, fast changes in the system states
may lead to critical races. Other hardware problems such as
transients and overvoltage may disrupt the DES behaviour.

In this section we consider bouncing. The problem of
bouncing may disrupt the correct functioning of the alarm
supervisor implemented as the PLC-DES. The World-DES
alarm interface includes input switches and push-buttons,
therefore when modelling and simulating the alarm we should
take into consideration the bouncing problem that may happen
on said switches (Figure 5).

A method to look for cases where bouncing may result in
unexpected behaviour is to search for a sequence of transitions
containing the ON and OFF events of the same signal. For
example, consider the Petri net in state PM_FINAL, after the
door was kept open for more than 5 seconds (the amount of
time needed to finish detecting a presence), and the door open
switch turns OFF. The Petri net should transition from state
PM_FINAL to ENTERING_PM by firing the enabled transition
tr_5. However, this signal is controlled by a mechanical
switch and bouncing may occur. The door open switch may
be turned ON, enabling transition tr_2, and making the Petri



9

Figure 6. Behaviour of Petri net given table Ut (5) simulating bouncing for
the example stated in this use case 2.

net transition into state PM_door_y_b right after. This is an
undesirable behaviour, the user expects the alarm to be on
stand-by for the door open switch to be activated, but the
alarm is already working up to signal a detected presence. In
other words, the alarm incorrectly detects a person entering
the shop when the door is closed due to bouncing.

We propose table Ut (5) simulating the bouncing effect
on the door switch signal. This signal OFF and ON part
correspond to the last 2 columns, respectively.

Ut =



0 1 0 0 1 0 1
0.1 1 0 0 1 0 1

0.1001 1 0 0 1 1 0
0.1002 1 0 0 1 0 1
0.1004 1 0 0 1 1 0
0.1005 1 0 0 1 0 1
0.1006 1 0 0 1 1 0
0.1007 1 0 0 1 0 1
0.1008 1 0 0 1 1 0


(5)

In Figure 6, the first bounce of the signal is incorrectly
accepted as an input, reflecting in an undesired change of state.
It was meant for the Petri net to transition solely from PM_
FINAL to ENTERING_PM, but it actually reaches the state
PM_door_y_b, representing an undesirable functioning.

We propose a solution for debouncing directly in the IOPT
Petri net. Debouncing can be done by connecting sequen-
tially first place of the troublesome sequence to a transition
tr_dbnc_1, connected to a place debouncer, connected
to a transition tr_dbnc_2, connected back to the first place.
The event associated with transition tr_dbnc_1 must be the
same as the entry transition to the troublesome place. The
event associated with transition tr_dbnc_2 must be the same
as the exit transition to the troublesome place. Finally, a timer
must be added to the exit transition of the first place that
leads to the second place in the troublesome sequence. In
our case 2ms are enough to filter the bouncing effect on the
switch. Note that this solution intends for the mark to bounce
around between this debouncer place and the troublesome
one for the bouncing duration. This way it should reset the
timer every time it exits and reenters the troublesome place,
which is connected to the now timed transition.

In the case of our alarm, the troublesome situation happens
when transitioning into state ENTERING_PM with bouncing
on input signal of the door switch. We implement our solution

Figure 7. Petri net debouncing implementation for place PM_FINAL and
input signal SWITCH_DOOR.

Figure 8. Behaviour of Petri net’s region of Figure 7 given table Ut (5).

as seen in Figure 7. This way, the Petri net only transitions
to state ENTERING_PM when the door switch signal is stable
at the OFF position. Note that with this solution, initially the
mark is at place Debounce_door when door switch signal
stabilizes at the ON position.

Observing Figure 8, we can see the debouncing mechanism
added to the Petri net model successfully handles the bouncing
effect. Only after input signal given by the door switch
stabilizes at the OFF position for 2ms does the Petri net evolve
to state ENTERING_PM and stays there.

VI. CONCLUSION AND FUTURE WORK

The work described in this thesis is focused on the produc-
tion of industrial process supervisors implemented in PLCs.
In particular approaches the aspect of assessing the produced
PLC code. More in detail, a PLC code production toolchain is
used and further developed, and are proposed tools that check
whether or not IOPT Petri nets are correctly translated to PLC
Structured Text programs.

One challenge of doing validation by reachability analysis
is the so called state space explosion. Our verification and
validation work starts by selecting bounded Petri nets based on
the construction and analysis of the coverability tree. Given the



10

objective of confirming if the Petri net generates the behaviour
on the PLC as desired by the designer, an automatic generation
of event sequences was proposed for driving the Petri net
through all reachable states, using the toolchain simulation
tool. In addition, the notion of time was introduced in the
toolchain for making PLC/DES supervisor code. This allows
creating specific tests covering expected PLC/DES uses.

The IOPT tools toolchain, created in Universidade Nova de
Lisboa to develop embedded system controllers, was the basis
used in this thesis to design Petri nets. The designed Petri
nets were then used as the input of the PLC/DES controller
maker toolchain, created in Instituto Superior Técnico for
teaching automation, to obtain PLC code. Given the PLC
code production toolchain, we applied tools based on the
coverability tree to verify and validate the PLC code, together
with anticipating the detection of design issues and studying
the effects of hardware constraints. Use cases were considered
to test and demonstrate the use of the proposed tools.

An alarm system based on a PLC was used as a case
study along the thesis. This alarm communicates with a PLC
emulator tool, provided by the PLC manufacturer, which is
used as the entry point for testing PLC implementations 1.
This framework allowed the validation testing both of the
DES to PLC conversion toolchain simulation environment and
the IOPT Petri net to PLC code conversion. Furthermore,
it was addressed the problem of bouncing that arises from
the connection of digital systems to noisy, transient-prone,
"bouncing" inputs. A method to test the toolchain robustness
to bouncing is proposed, as well as a debouncing solution to
be implemented directly on the IOPT Petri net.

Future work may build on studying state explosion by using
symbolic model checking [8], [24], opening the way for the
verification and validation tools to accept also unbounded Petri
nets. Using the Cone of Influence [4] to identify which part
of the model is relevant for the evaluation of the given re-
quirement, the unnecessary parts of the model can be removed
without affecting the result, an unbounded Petri net may be
reduced to a bounded one, thus easily implemented on a PLC.

REFERENCES

[1] Nanette Bauer, Ralf Huuck, Ben Lukoschus, and Sebastian Engell. A
unifying semantics for sequential function charts. In Integration of
software specification techniques for applications in engineering, pages
400–418. Springer, 2004.

[2] Christos G Cassandras and Stephane Lafortune. Introduction to discrete
event systems. Springer Science & Business Media, 2008.

[3] Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux,
and Filip Mazowiecki. The reachability problem for petri nets is not
elementary. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 24–33, 2019.

[4] Dániel Darvas, Borja Fernández Adiego, András Vörös, Tamás Bartha,
Enrique Blanco Vinuela, and Víctor M González Suárez. Formal
verification of complex properties on plc programs. In International
Conference on Formal Techniques for Distributed Objects, Components,
and Systems, pages 284–299. Springer, 2014.

[5] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Generic
representation of plc programming languages for formal verification. In
Proc. of the 23rd PhD Mini-Symposium, pages 6–9, 2016.

1The Covid19 pandemic prevented experiments with the real PLCs. Despite
using the same development environment, provided by the PLC manufacturer,
some more experiments may be required after the pandemic situation to assess
whether the PLC emulation may have significant differences.

[6] Nachum Dershowitz and Zohar Manna. Proving termination with
multiset orderings. Communications of the ACM, 22(8):465–476, 1979.

[7] Javier Esparza and Mogens Nielsen. Decidability issues for petri nets.
Petri nets newsletter, 94:5–23, 1994.

[8] Georg Frey and Florian Wagner. A toolbox for the development of
logic controllers using petri nets. In 2006 8th International Workshop
on Discrete Event Systems, pages 473–474. IEEE, 2006.

[9] José Gaspar. Industrial processes automation (course ist/meec). http:
//users.isr.ist.utl.pt/~jag/courses/api19b/api1920.html. Accessed: 2020-
01-30.

[10] José Gaspar. Petri net to plc converting. http://users.isr.ist.utl.pt/~jag/
course_utils/pn_to_plc/pn_to_plc.html. Accessed: 2020-01-30.

[11] José Gaspar. Petri nets simulation. http://users.isr.ist.utl.pt/~jag/course_
utils/pn_sim/PN_sim.html. Accessed: 2020-01-30.

[12] Henrique Gonçalves and José Gaspar. Monitoring programmable logic
controllers. Master’s thesis, Departamento de Engenharia Eletrotécnica
e de Computadores, Instituto Superior Técnico, 2015.

[13] GRES Research Group. Iopt tools. http://gres.uninova.pt/IOPT-Tools/
login.php. Accessed: 2020-03-01.

[14] Michel Henri Théodore Hack. Decision problems for petri nets and
vector addition systems. MIT Project MAC, MAC-TM 59, Cambridge,
MA, 1975.

[15] Michel Henri Théodore Hack. Decidability questions for Petri Nets.
PhD thesis, Massachusetts Institute of Technology, 1976.

[16] International Standard 61131 IEC. Programmable logic controllers, part
3: Languages. 3rd Edition, Feb. 2013.

[17] Richard M Karp and Raymond E Miller. Parallel program schemata.
Journal of Computer and system Sciences, 3(2):147–195, 1969.

[18] Robert M Keller. A fundamental theorem of asynchronous parallel
computation. In Sagamore Computer Conference, pages 102–112.
Springer, 1974.

[19] S. Rao Kosaraju. Decidability of reachability in vector addition systems
(preliminary version). In Proceedings of the fourteenth annual ACM
symposium on Theory of computing, pages 267–281, 1982.

[20] Jean-Luc Lambert. A structure to decide reachability in petri nets.
Theoretical Computer Science, 99(1):79–104, 1992.

[21] Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition
systems is primitive-recursive in fixed dimension. In 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–13. IEEE, 2019.

[22] Richard Lipton. The reachability problem requires exponential space.
Department of Computer Science. Yale University, 62, 1976.

[23] Ernst W Mayr. An algorithm for the general petri net reachability
problem. In Proceedings of the thirteenth annual ACM symposium on
Theory of computing, pages 238–246. ACM, 1981.

[24] Mauro Mazzolini, Alessandro Brusaferri, and Emanuele Carpanzano.
Model-checking based verification approach for advanced industrial
automation solutions. In 2010 IEEE 15th Conference on Emerging
Technologies & Factory Automation (ETFA 2010), pages 1–8. IEEE,
2010.

[25] José Meleiro and José Gaspar. Synthesis and identification of industrial
processes. Master’s thesis, Departamento de Engenharia Eletrotécnica e
de Computadores, Instituto Superior Técnico, 2018.

[26] R. Pais, S. P. Barros, and L. Gomes. A tool for tailored code
generation from petri net models. In 2005 IEEE Conference on Emerging
Technologies and Factory Automation, volume 1, pages 8 pp.–864, 2005.

[27] James Lyle Peterson. Petri net theory and the modeling of systems.
Prentice Hall PTR, 1981.

[28] Rafael Rei and José Gaspar. Local and remote human machine interfaces
for programmable logic controllers. Master’s thesis, Departamento de
Engenharia Eletrotécnica e de Computadores, Instituto Superior Técnico,
2019.

[29] Ricardo Reis and José Gaspar. Plc programming based on applied
games. Master’s thesis, Departamento de Engenharia Eletrotécnica e
de Computadores, Instituto Superior Técnico, 2019.

[30] George S Sacerdote and Richard L Tenney. The decidability of the
reachability problem for vector addition systems (preliminary version).
In Proceedings of the ninth annual ACM symposium on Theory of
computing, pages 61–76, 1977.

[31] Jiacun Wang. Timed Petri nets: Theory and application, volume 9.
Springer Science & Business Media, 2012.

http://users.isr.ist.utl.pt/~jag/courses/api19b/api1920.html
http://users.isr.ist.utl.pt/~jag/courses/api19b/api1920.html
http://users.isr.ist.utl.pt/~jag/course_utils/pn_to_plc/pn_to_plc.html
http://users.isr.ist.utl.pt/~jag/course_utils/pn_to_plc/pn_to_plc.html
http://users.isr.ist.utl.pt/~jag/course_utils/pn_sim/PN_sim.html
http://users.isr.ist.utl.pt/~jag/course_utils/pn_sim/PN_sim.html
http://gres.uninova.pt/IOPT-Tools/login.php
http://gres.uninova.pt/IOPT-Tools/login.php

	Introduction
	Background
	Verification vs Validation
	Petri Nets
	IOPT Petri Nets
	Reachability
	Lambert's proof outline
	Complexity

	Coverability Tree
	Notation
	Algorithm Steps Outline


	Implementation of Industrial Processes on PLCs using Petri Nets
	DES to PLC conversion toolchain 
	Case Study - Alarm System
	Proposed IOPT Petri net model
	Properties Study

	Validation of Industrial Processes based on Petri Nets
	Coverability Tree Adapted for Validation Testing
	Coverability Tree Construction
	Generation of Event Sequences
	Extension of Petri net model to include Time

	 Experiments 
	Use Case 1 - Reach All Possible States
	Use Case 2 - PLC-DES interaction with World-DES
	Closed Loop Simulation, PLC and World Interaction

	Validation using the PLC Development Tools
	Use Case 3 - Effects of Hardware Constraints on PN Designs

	Conclusion and Future Work
	References

