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Resumo

O aumento do número de pequenos sistemas aéreos não tripulados (sUAS) tem criado preocupações

perante organizações governamentais e militares, dado que estas podem comprometer infraestruturas

e ameaçar aeronaves tripuladas. Detetar e seguir aeronaves não cooperativas é essencial para con-

struir uma solução anti-sUAS eficaz. Sensores de bordo tipicamente envolvem câmaras eletro-óticas

(EO), podendo ser leves e capturar informação de alta resolução. No entanto, a procura de alvos neste

contexto é computacionalmente dispendiosa e suscetı́vel à captura de falsos positivos. Além disso,

estes sensores não conseguem medir distâncias diretamente, algo que um sensor LiDAR é capaz, pro-

duzindo nuvens de pontos com uma frequência até 20Hz e um alcance superior a 100m. Contudo, dada

a sua dispersão, estas nuvens não conseguem reconhecer pequenos alvos. Esta tese desenvolve um

YOLO-based tracker para detetar e seguir visualmente sUAS e estuda a capacidade de um LiDAR para

detetar sUAS a bordo de um multi-rotor. Adicionalmente, demonstra um procedimento de calibração

extrı́nseco capaz de projetar pontos 3D do LiDAR para uma imagem de forma exata. A fusão sensorial

proposta tem como objetivo criar regiões de interesse (ROI), obtidas através de deteções projetadas

pelo LiDAR, para limitar a janela de procura do YOLO-based tracker. Finalmente, foram realizadas ex-

periências com múltiplos alvos a bordo de uma aeronave, demonstrando que a fusão sensorial melhora

a precisão do YOLO-based tracker de 17.0% para 91.2%, assim como a velocidade de processamento

de 24Hz para 57Hz, mantendo valores de sensibilidade semelhantes, 41.9% comparado a 48.4%.

Palavras-chave: YOLO-based tracker, regiões de interesse, calibração extrı́nseca, sistemas

aéreos, sUAS
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Abstract

The recent growth in numbers of small unmanned aerial systems (sUAS) has raised concerns among

civilian and military organizations, as they can jeopardize critical infrastructure and threaten manned

aircraft. Detecting and tracking intrusive drones is essential to construct reliable counter sUAS (C-

sUAS) solutions. Onboard payload sensors typically include electro-optical (EO) cameras, which can

be lightweight and provide high-resolution information of the surrounding scene. However, continually

searching for targets across high-resolution images is computationally expensive and susceptible to

an increase in false positives. Furthermore, EO cameras cannot measure distances directly, which

light detection and ranging (LiDAR) sensors can, generating point clouds at a frequency up to 20Hz

with ranges over 100m. However, these are usually sparse and cannot recognize small targets. The

present thesis studies each sensor’s capabilities and develops a sensor fusion solution. It develops a

YOLO-based tracker for visual detection and tracking and studies the ability of a LiDAR to detect sUAS

onboard an aircraft. Additionally, it demonstrates an extrinsic calibration procedure to project 3D LiDAR

points into the camera frame accurately. The proposed sensor fusion solution aims to create regions

of interest (ROI) from these LiDAR projections to narrow the YOLO-based tracker’s search window.

Finally, experiments with multiple flying targets were performed onboard an aircraft, demonstrating that

the sensor fusion solution improves the YOLO-based tracker baseline results, increasing precision from

17.0% to 91.2%, and framerate, from 24Hz to 57Hz, keeping a similar recall of 41.9%, compared to

48.4%.

Keywords: YOLO-based tracker, regions of interest, extrinsic calibration, aerial systems, sUAS
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Chapter 1

Introduction

It has become easier than ever to acquire and operate Unmanned Aerial Systems (UAS) in the

present world. Able to serve broad application purposes, they are becoming a key technology in many

research and industry frontiers. The International Civil Aviation Organization (ICAO) defines a UAS as

”an aircraft and its associated elements which are operated with no pilot on board” [1]. These associated

elements include the communication link and the components that control the unmanned aircraft. In the

scope of this work, the term UAS will only refer to the vehicle itself.

The absence of onboard human pilots provides them with a set of unique advantages. Not requiring

an onboard pilot enables access to challenging and complex scenarios with minimal requirements be-

fore take-off, becoming a robust solution for many industries. Modern surveying and mapping industries

rely on UAS for their ability to carry sensing devices to inaccessible areas. Their capability to deliver

high temporal and spatial resolution information enables a rapid response in critical situations where

immediate access to 3D mapping information is crucial [2]. Critical infrastructures need regular inspec-

tions to guarantee their integrity. Inspection examples include: bridges and dams, for structural defects

and cracks; gas and oil pipelines, for leak detection and equipment corrosion; and electric power grids,

for the identification of equipment wear and vegetation encroachment. UAS have become prevalent in

such delicate duties as they can reduce costs and minimize human risk by not requiring a hoisted or

suspended person while inspecting. Additionally, UAS can sense defects remotely, requiring minimal

interaction with the inspected structure [3] [4]. Precision agriculture is a vital sector that currently relies

on UAS-based remote sensing systems. More efficient than ground systems, as they can cover a larger

field in a short amount of time and in a non-destructive way. UAS can identify which crop areas need to

be managed, helping farmers increase productivity and lower costs. [4]. Urban Air Mobility has seen an

increasing research interest by companies, academia, and governments. It defines an efficient and safe

air traffic operation inside a metropolitan area for UAS. Capable of vertical take-off and landing (VTOL),

they present the ideal mobility for urban scenario constraints. Flight operations would include passenger

and cargo transport, medical evacuations and traffic management, improving quality of life [5].

Despite all commercial applications, the great majority of UAS belong to the recreational sector. An

Aerospace Forecast published by the United States Federal Aviation Administration (FAA) in 2019 [6],
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has stated that consumer-grade UAS dominate the commercial sector with a 94% share due to falling

equipment prices, improved technologies and built-in sensors, and relatively easy manoeuvring. At the

end of 2019, there were 1.32 million small UAS (sUAS) in the United States. The FAA projects their

number to rise to over 1.50 million by 2024.

1.1 Motivation

The proliferation of low-price UAS operations constitutes a security and safety threat for both civilian

and military organizations. In January 2015, a small quadcopter crash-landed on the White House’s

south lawn, raising many questions concerning the risk drones pose to public safety [7]. The apparent

careless operation highlighted the vulnerabilities of even the most secure infrastructures to an UAS.

Nowadays, a sUAS can jeopardize critical infrastructure and interfere with manned aircraft. Between

19-21 December 2018, Gatwick Airport in London halted its operations due to a drone attack. Authorities

claim to be a planned attack from someone with inside knowledge of the airport’s operating procedures.

The 3-day attack resulted in 140,000 affected passengers and airport losses of around £1.4M [8]. A

report from the UK Airprox Board indicates that incidents caused by a sUAS happen regularly in airports

around the UK, as seen in Figure 1.1. Even though the current coronavirus pandemic may have reduced

the number of reported incidents this year, they may well pick-up again once authorities ease travel

restrictions.

Figure 1.1: UK Airprox Board report on the number of sUAS incidents in UK airports [9].

On the other hand, the pandemic state has increased stealth drones’ use to deliver contraband into

prison grounds. In Australia, after a ban on face-to-face visits cut common supply routes, 97 incidents

related to sUAS smuggling over prison walls have been reported between March and November of 2020

[10].

In civilian airspaces, authorities do not yet require drones to carry transponders, so they cannot be

detected and tracked by existing air traffic control systems. sUAS regulations are still under development
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in several countries around the world. In Canada, for example, pilots are required to be certified to

operate remotely piloted aircraft (RPA) over 250g [11]. In Portugal, regulation requires the registration of

RPA over 250g and a liability insurance for systems over 900g.

It is possible to modify ’off-the-shelf’ UAS into rudimentary guided missiles or other possible airborne

attack systems with relative simplicity. Thus, becoming an appealing tool for terrorists and criminals

with nefarious intentions. In August 2018, President Nicholas Maduro was attacked by two commercial

drones while giving a speech in Caracas, Venezuela, where each RPA contained one kilogram of C-4

explosives [12].

1.2 C-UAS Problem

The development of counter UAS (C-UAS) technologies is related to the recent rise of drone prolif-

eration. Its main objective is to detect, track and sometimes intercept UAS. According to three recent

studies from NATO industrial advisory group (NIAG), there is an urgent need to improve existing C-UAS

solutions [13–15].

In Table 1.1, NIAG categorizes low, slow and small (LSS) UAS according to their weight, operating

altitude, mission range, and payload capacity. Class I vehicles include every UAS with a mass under

150 kg, while Class II extends to larger vehicles between 150kg to 200kg, generally restricted to military

aircraft.

The present work will mainly focus on the micro, and mini UAS class, as the top-selling commercially

available UAS can be placed in this category [16]. FAA defines sUAS as all unmanned aircraft over 0.55

pounds (250g) and less than 55 pounds (25kg) [6]. In this thesis, the term sUAS will refer to the micro

and mini UAS categories presented by NIAG.

Table 1.1: NATO definitions of LSS UAS categories [13].

Class Category Operating Altitude (GL) Mission Radius Payload
Class I (< 150KG) Micro (< 2kg) To 90 m (300 ft) 5 km 0.2-0.5 kg
Class I (< 150KG) Mini (2− 20kg) To 900 m (3000 ft) 25 km 0.5-10 kg
Class I (< 150KG) Small (< 150kg) To 1500 m (5000 ft) 50-100 km 5-50 kg

Class II (150− 600kg) Tactical To 3000 m (10000 ft) 200 km 25-200 kg

A C-UAS system is only as effective as its capability to detect possible threats. The first line of

defence against a threatening sUAS is its early detection and identification. The small size and minimal

detection structures of the particular sUAS class makes them hard to detect. The C-sUAS problem is

an elaborate multi-stage operation that requires coordination between systems and human operators. It

can be divided into four main stages [17]:

1. Detect, identify, locate, and track: It defines the task of acquiring all the information needed to

understand the threat the target might pose. This information is necessary to make an educated

decision on how to respond. Non-cooperative sensors capable of providing this information are

described in Section 1.3.

3



2. Decision: It defines the human operator’s decision on how to respond to a threat based on sensor

information. A human agent needs to evaluate the situation as target mitigation is often a last

resort measure.

3. Mitigation: It defines the denial of a target’s mission, which might include its destruction. Ap-

proaches like radio frequency (RF) jamming or GNSS spoofing present a way to intercept a drone

by restricting its access to outside signals. Other techniques include the neutralization of a vehicle

using nets, collision drones or projectiles.

4. Retrieval: It defines the retrieval of a sUAS once the threat has been mitigated. If armed with

weapons or explosives, the vehicle may need to be isolated and handled with care. Personal may

conduct forensics to examine the danger further.

A study presented in Figure 1.2 estimates that the C-UAS market could value up to 6.6 billion USD

by 2024.

Figure 1.2: Droneii C-UAS market size and forecast 2019-2024, with a compound annual growth rate
(CAGR) of 41.1% [18].

1.3 Non-cooperative Sensors

Surveillance methods which do not require the target to transmit information about its position (e.g.

transponders) are classified as non-cooperative. Similarly, UAS which lack total or partial broadcast of

its position, and which will not actively cooperate to resolve a conflict are classified as non-cooperative.

Non-cooperative sensors are essential for C-UAS applications. They can either be classified as

passive or active sensors, depending on whether they transmit the energy needed for object detection.

Passive solutions include:
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• Acoustic: It presents a traditional way to acquire the presence and location of a flying vehicle. Pro-

pellers and motors are its main sound sources. Microphone arrays have additional benefits over a

single device. Through beamforming, arrays can detect the elevation and azimuth of the arriving

sound wave. Beamforming also increases signal-to-noise ratio (SNR), generating more precise

detections. All in all, acoustic detection and tracking can be completely passive and relatively inex-

pensive. However, the range and quality of detections are dependent on environmental conditions,

like background noise. Additionally, engineers must consider a special installation strategy for an

airborne solution to minimize the aircraft’s disturbances.

• EO/IR Cameras: The basic principles of electro-optical (EO) and infrared (IR) cameras are the

same. They differ on the wavelength of the radiation each captures. While EO cameras perform

detections based on the target’s visual appearance, IR sensors distinguish the target based on

its heat signature. When combined, they can provide situational awareness, both day and night.

EO/IR sensors are lightweight and can provide a high-resolution perception of the environment.

IR sensors depend on the heat signature of the object to perform a successful detection. Electric

powered sUAS produce fewer heat signals than fuel combustion-powered aircraft, the first being

the preferred power method for sUAS [19]. The primary heat source for electric-powered sUAS is

its batteries, as their large size makes them easier to detect. [20]. However, external factors such

as weather conditions for EO cameras, or background temperatures for IR cameras, influence their

detection capabilities.

• Radio Frequency (RF) Sensor: It can detect, locate, and identify nearby targets by scanning the

radio frequencies on which most sUAS operate. RF sensors are relatively inexpensive, and most

commercial sUAS emit easily detectable signals. However, they cannot act on a non-transmitting

threat.

Furthermore, active sensing solutions adopted for C-UAS applications include:

• Radar: It identifies a target based on its radar signature, generated when the aircraft encoun-

ters RF pulses emitted by the detection element. Radars can operate day and night. However,

they present problems detecting small targets, which have low radar cross-sections (RCS) and

fly at lower altitudes and speeds than larger aircraft. Solutions to capture small targets include

millimetric-wave (mmWave) radars. They enable a precise analysis of the captured sUAS, which

might include its classification, the ability to understand if the sUAS is carrying any payload and

distinguishing it from other flying objects or animals [21].

• LiDAR: It identifies a target similarly to radar, except that the emitted pulse wavelength is in the vis-

ible or infrared spectrum. LiDAR provides a 3D representation of the environment and can achieve

high update-rates (5 − 20Hz). These sensors also can detect vehicles against a complex back-

ground and achieve ranges over 100m. However, this technology is heavy and can not accurately

identify small targets due to the created sparse point cloud.

A NATO report [13] on LSS UAS engagement concluded that there is no single sensor type capable
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of providing a tracking and identification solution for reliable and effective defence against this threat. So,

having the right mixture of sensing technologies is crucial. In [22], the term sensor fusion, also known

as multisensor data fusion, is defined as ”the technology concerned with the combination of how to

combine data from multiple (and possible diverse) sensors in order to make inferences about a physical

event, activity, or situation”. The present work shares the same definition.

A market study on available C-UAS solutions is presented in Figure 1.3, evaluating the popularity

of operations and sensor types among them. Regarding operational platforms, the vast majority of C-

UAS solutions available are ground-based, with 375 systems, while UAS-based platforms only present

34 systems. Additionally, sensing devices such as RF, radar and EO, IR cameras are evenly distributed,

with the exception of acoustics, which presents the lowest popularity amongst C-UAS systems. The

study also reveals that the LiDAR sensor has not yet breached into the commercial sector, showing

there is much to develop in that regard.

(a) Solutions distributed across operational platforms. (b) Solutions distributed across sensing devices.

Figure 1.3: Market study on available C-UAS solutions [23].

1.4 Related Works

Sensor fusion between a LiDAR and a camera can be seen as an intuitive solution since they both

can complement each other’s limitations. Most notably, their application for C-sUAS purposes was

researched by Hammer et al. [24]. A sensor fusion solution between several LiDAR sensors and a pan-

tilt camera was demonstrated on a ground-based vehicle. Initial research [25] showed the capability

of multiple high-resolution LiDAR sensors to reliably detect sUAS, presenting a recall of 70% for ranges

below 35 m. In [24], the objective was for a pan-tilt camera to align itself towards a flying object previously

detected by the LiDAR and use the Faster R-CNN algorithm [26] for its classification. However, the

presented solution is based on heavy sensor equipment (i.e. multiple LiDAR sensors and a large pan-tilt

unit), unfeasible for an aerial detection solution, which this research aims to achieve.

In the present work, LiDAR detections create search windows inside the image frame. A similar

concept is proposed by Opromolla et al. [27] to visually detect and track UAS while airborne. It created a

search window by knowing the GNSS position of a cooperative UAS and projecting its predicted location

into the image frame. However, large uncertainties in the process led to the formation of an extensive
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search region to compensate, as seen in Figure 1.4. Similar to the presented work, search regions

are analyzed by a YOLOv2 detector, and tracking by detection solution is adopted. Nevertheless, the

cooperative assumption made in [27] is not suitable for a C-UAS solution.

Figure 1.4: Example of the search window, divided into five regions, to be processed by the YOLOv2
detector. The target UAS is represented by a black bounding box and its prediction on the black dot [27].

A single-camera approach to UAS detection and tracking is proposed by Li et al. [28] [29]. It applied

background subtraction and optical flow methods onboard an aircraft. Moving objects with respect to the

global motion were identified, and salient points in the regions were clustered together. Additionally, a

deep learning classifier was applied on patches around each cluster to distinguish between true moving

objects from false alarms. The authors recognize that the image subtraction approach can be compu-

tationally expensive when applied to high-resolution images. However, no comment was made on the

solution’s processing speed, so its real-time capabilities are unknown.

Localization of non-cooperative sUAS onboard an aircraft has been attempted by Vrba et al. [30][31]

using a combination of a stereo camera and a YOLO-based detection method. The proposed approach

reports reliable object tracking up to 32 m, showing that combining both methods improves overall re-

sults. Nevertheless, these techniques are not able to directly measure target distances.

Other approaches have researched the usage of onboard active sensors for sUAS detection. No-

tably, Dogru and Marques [21] demonstrated that an airborne millimetre wave RADAR could measure a

drone’s bearing and range up to 25 meters. de Haag et al. [32] performed a study on the capabilities of

an airborne LiDAR to detect drones weighing less than 250 g, reporting a high detection probability for

ranges smaller than 15 m, but leaving heavier vehicles still out of its scope. The main limitation of both

these approaches is the inability to identify the flying vehicle.

This thesis aims to fill the literature gap for an aerial sensor system that employs a LiDAR and an EO

sensor to achieve real-time detection and tracking of non-cooperative sUAS.
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1.5 Objectives

This thesis aims to develop a sensor system capable of detecting and tracking sUAS. The system

should make use of non-cooperative sensor, as to be compatible with a C-sUAS solution.

The objective is to develop a sensor fusion solution between a LiDAR and a camera to visually detect

and track multiple sUAS in real-time. The sensor fusion methodologies should be compared to single

sensor techniques to evaluate the overall benefits. The algorithm should have real-time capabilities.

The proposed approach aims to use LiDAR point clouds to acquire target locations and then to use a

visual system to detect and track each vehicle. The LiDAR should alleviate the visual detector’s search

task by providing it with regions of interest (ROI) around each target. Once acquired, the visual system

should be able to track the vehicle on its own.

Experiments should be performed with a sensor system onboard an aircraft while capturing multiple

sUAS targets. The goal is to use the collected data to evaluate the proposed methodologies.

1.6 Contributions

With this work, the following contributions are made:

• Development of a multi-sensor methodology for sUAS detection and tracking;

• Demonstration of an extrinsic calibration procedure between a LiDAR and an EO camera;

• Construction and evaluation of a sensor system onboard an aircraft;

• Creation of a labelled dataset for drone detection.

The research’s preliminary findings were presented in a paper titled ”LiDAR and camera sensor

fusion for air-to-air detection and tracking of airborne intruders”, submitted to the Unmanned Systems

Canada conference on November 3rd 2020, being distinguished as one of the finalists in the ”Student

Paper Competition” [33].

1.7 Thesis Outline

This thesis is structured as follows: Chapter 2 provides background knowledge for the present work.

Chapter 3 explains the methods related to the sensor fusion solution and the calibration applied to the

LiDAR and camera sensors. Chapter 4 describes the assembly of the payload system and the flight

test experiments conducted. Chapter 5 presents and discusses the results obtained. Lastly, Chapter 6

summarizes the overall findings of this thesis and outlines possible steps for future work.
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Chapter 2

Background

This chapter discusses the background related to the presented work. Initially, it approaches the

visual detection and tracking tasks (Sections 2.1 and 2.2). It then makes an overview on the LiDAR

working principles (Section 2.3), followed by the theory behind intrinsic and extrinsic camera calibration

(Section 2.4).

2.1 Visual Object Detection

The goal of visual detection is to enclose an object within a bounding box and determine what object

it is. This section provides a historical overview of object detection (Section 2.1.1) followed by an expla-

nation of the YOLO working principles (Section 2.1.2) and subsequent improvements (Section 2.1.3).

2.1.1 Historical Overview

Real-time detection of human faces was achieved for the first time by P. Viola, and M. Jones [34]

in 2001. The algorithm, known as the Viola-Jones detector, used the most straight forward way for

object detection: sliding windows, i.e. go through all possible locations and scales in an image to see if

any window contains a human face. Although a simple process, the necessary calculations surpassed

the computational power of its time. Nevertheless, the Viola-Jones detector was able to achieve a

drastic increase in speed performance due to three crucial techniques. The first introduced a new

image representation called ’Integral Image’, allowing the object’s features to be computed exceptionally

fast. The second is a learning algorithm based on AdaBoost, which selects a small number of critical

information from visual features efficiently. The last component increasingly combined more complex

classifiers in a ’cascade’, quickly removing background regions of the image while spending more time

on essential areas, such as human faces.

Histogram of Oriented Gradients (HOG) feature descriptor, initially proposed by N. Dalal and B. Triggs

[35] in 2005, is considered an important milestone in the scale-invariant feature transforms of its time.

The HOG descriptor focuses on analyzing the object’s structure or shape by extracting the direction of

image pixels gradients. Gradients with large magnitudes (regions of abrupt intensity changes) typically
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indicate edges and corners, some of the most relevant features in an object. An image is split into

different regions to be analyzed separately. Finally, the HOG descriptor creates a histogram for each

region using the pixel values’ gradients and orientation. Mainly suited for human detection, HOG has

been an important foundation for many object detectors.

Figure 2.1: Visualization of the HOG features representative of an image of the astronaut Eileen Collins
[36].

The Deformable Part-based Model (DPM), proposed by Felzenszwalb et al. [37] in 2008, is consid-

ered the peak of traditional object detection methods. Based on the HOG detector, the DPM is motivated

by the lack of ability to handle geometric deformations. Follows the detection philosophy of ”divide and

conquer” by teaching the training task how to decompose an object correctly. For example, the task

of detecting a car can be decomposed into detecting its wheels, windows, and body. A latent support-

vector machine (SVM) learns how to identify the object based on relationships between HOG features

extracted from its components.

In 2012, Krizhevsky et al. won the ImageNet competition with AlexNet [38]. The concept was not

entirely new, as the first multi-layered CNN named convNET has already been proposed by Y. LeCun et

al. in 1989 [39], rooted in Fukushima’s Neocognition [40]. However, it demonstrated the ability of deep

architectures to improve the representative capacity of a CNN. Thus, it marked the beginning of the deep

learning era, where object detection started to evolve at an unprecedented speed. Now, approaches to

object detection generally fit into two main categories: two-stage and single-stage detectors.

Two-stage methods perform the detection task by first generating regions of proposal, instead of

sliding windows, followed by their classification. Generally, two-stage object detectors are accurate but

computationally expensive. Examples remote back to 2014 when R. Girshick proposed Regions with

CNN features (R-CNN) for object detection [41]. In its essence, the algorithm begins by creating regions

proposals via a selective search [42]. From there, features are extracted via a CNN and classified by a

SVM. A subsequent improvement is proposed in Fast R-CNN [43], which uses a CNN for both feature

extraction and classification. Finally, Faster R-CNN [26] introduces a novel Region Proposal Network

(RPN), excluding the selective search. This way, the algorithm applied a CNN end-to-end.

Single-stage methods perform both the localization and classification of the object in a single step.

They present fast processing speeds with moderate detection accuracy. A popular single-stage solution

has been the YOLO detection algorithm [44]. The following section explains its basic operating principles.
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2.1.2 YOLO Overview

The detection process of the YOLO algorithm is represented in Figure 2.2. Given an image, YOLO

begins by splitting it into an S×S grid. Each cell is responsible for predictingB bounding boxes consisting

of five variables: x, y, w, h and confidence. The coordinates (x, y) represent the box centre, (w, h)

the width and height of the box, and the confidence score predicts the intersection over union (IOU)

between boxes B and any ground truth. Each bounding box is ranked based on its confidence score.

However, this step does not yet determine the object, just the confidence of any object present in that

region. Each cell predicts C conditional class probabilities, and regardless of the number of boxes B

associated with that cell, only one class per cell is selected. Being a conditional probability, it does not, for

example, directly state the probability of a bicycle, but rather the probability of it being a bicycle knowing

there is an object. Each B bounding box’s confidence score is multiplied by the single conditional class

probability specific to that cell, giving a class-specific confidence score. The final prediction results in a

S × S × (B × 5 + C) tensor.

Figure 2.2: Detection process of the YOLO algorithm. The left image represents the S × S grid cells.
The top image shows the B bounding boxes. The bottom image, representing the conditional class
probability for each cell. Finally, the right picture presents the final predictions [44].

As many bounding boxes have low prediction scores, the algorithm will keep only the highest ones

by imposing a confidence threshold. Additionally, as multiple bounding boxes can be related to the same

object, a non-maximum-suppression algorithm is applied. It relies on a confidence and IoU threshold to

remove overlapping boxes, keeping the ones with the highest prediction score. By predicting all objects

in the image simultaneously, the YOLO algorithm can incorporate global context in the detection process,

requiring only one network evaluation. Hence its name of ”You Only Look Once”.
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2.1.3 YOLO Improvements

Various improvements to the algorithm are made in its second version, called YOLOv2 [45]. Batch

normalization is added to the training process, making the learning process much faster. Additionally,

dimension clusters are included in the algorithm. Like Faster R-CNN, it employs anchor boxes, but

instead of using predefined and fixed dimensions, the algorithm tunes anchor boxes based on the ground

truth targets. Thus, it can detect a greater variety of objects with fewer detection boxes, resulting in a

faster and more accurate solution. Finally, the algorithm introduces multi-scale training, where images in

the training dataset are scaled to resolutions multiple of 32 during the training process. This technique

forces the same network to predict correctly across different dimensions. This second version improved

the mean average precision (mAP) of the original algorithm, although achieving a lower framerate, as

seen in Table 2.1.

Table 2.1: Results obtained on PASCAL VOC 2012 dataset [46].

Method mAP Runtime
YOLO [44] 57.9 45 Hz

YOLOv2 [45] 78.2 40 Hz

In its third version, YOLOv3 [47] introduced new improvements on top of the previous algorithm. In it,

the ability to deal with small targets was drastically increased. Its feature extraction is inspired by feature

pyramid networks [48], predicting object locations across three different scales. The concept uses back-

ward connections in the convolutional network to merge information between later and earlier layers. It

helps predict detections at higher resolutions, as later layers in the network have strong semantic infor-

mation and earlier layers provide high-resolution features. Compared to the previous version, YOLOv3

achieved higher mAP, at the cost of a lower processing speed, as shown in Table 2.2.

Table 2.2: Results obtained on COCO2017 dataset [49].

Method mAP Runtime
YOLOv2 [45] 48.1 40 Hz
YOLOv3 [47] 55.3 35 Hz

2.2 Visual Tracking

2.2.1 Overview of Tracking Task

Tracking is the problem of generating an inference about an object’s motion, given a sequence of

images. A moving object must have a state to be tracked, that being its position, velocity, or appearance.

Each measurement is called an observation. In many problems, observations are functions of the state,

with some added noise. For example, the state might be the position and velocity, and only the position

is observed. In tracking problems, there is a model for how the state changes with time, referred to as

the object’s dynamics. Tracking involves exploiting both observations and dynamics to infer the object

state. The most critical visual tracking property is that observations are usually hidden in a great deal
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of irrelevant information. There are two main methods to identify which observations are likely to be

helpful: tracking by detection and tracking by matching.

In tracking by matching, there is a model for how the object moves and appears, and given a domain

in the nth frame in which the object is located, the model is used to search for a domain in the n + 1th

frame that matches it. It works well when the target has not abruptly changed its appearance or the

scenario too complicated. The object’s appearance model is generated on previous frames, and objects

in the current frame with the closest distance to the samples are selected.

In tracking by detection, there is a strong model of the object to identify it in each frame. By linking

each detection, it is possible to construct a track. The tracking by detection technique is quite general

and extremely effective. However, the association step’s main issue is the cost model, which will change

depending on the application. For slow-moving objects, the cost can be the image distance between the

detection on the current frame and the previous. For objects with a slowly changing appearance, the

cost can be an appearance distance. The association problem can be formulated as a bipartite matching

problem and solved with the Hungarian algorithm [50].

2.2.2 DeepSORT Algorithm

Simple Online and Real-time Tracking (SORT) was published by A. Bewley et al. [51] in 2016. It is a

simple and pragmatic tracking algorithm based on the tracking by detection formula. The cost function

of the bipartite matching problem consists of an intersection over union (IOU) metric, thresholded to

reject non-ideal detections. This association metric helps to deal with occlusions by giving preference

to bounding boxes of similar ratio and size when two targets pass in front of each other. The problem is

solved optimally using the Hungarian algorithm.

SORT with a deep associative metric (DeepSORT) was published by N. Wojke et al. [52] in 2017,

and presents an extension to the SORT tracking solution. It assumes the camera is uncalibrated and

there is no ego-information available. For the tracking task, it models the object state x as

x = [u, v, γ, L, ẋ, ẏ, γ̇, L̇]T (2.1)

where (u, v) is the bounding box centre, γ is the aspect ratio, L is the height, followed by the respective

velocities. State observations correspond to bounding boxes that provide [u, v, γ, L].

Each time a target i has an observation assigned, its state xi is updated, with the velocity compo-

nents being solved by a Kalman filter. In frames where no target observations are associated with a

given target i, xi is updated using a linear velocity model.

The bipartite matching problem is constructed with a cost function comprised of a weighted sum of

two different metrics: distance-based and appearance-based.

For the distance metric, it computes the Mahalanobis distance between predicted Kalman states and

newly arrived observations. It takes into account how many standard deviations the measurement is

away from the mean track location. The Mahalanobis distance has a threshold tM at a 95% confidence

interval, computed from the X 2 distribution. For a four dimentional measurement space this value is
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tM = 9.4877.

The appearance metric is computed via a cosine distance between feature descriptors. First, a CNN

extracts appearance descriptors from the obtained bounding box. It then computes the smallest cosine

distance between it and a list of previously associated descriptors.

If an observation is not associated with any of the tracks, a second matching cascade problem is

constructed with the IOU metric from the original SORT algorithm.

2.3 LiDAR Fundamentals

Light detection and ranging (LiDAR) sensors work equivalently to radars, but rather than microwave

energy emitted by an antenna, they exploit the light emitted by a laser beam. A laser is an optical device

that, when activated by an external energy source, produces and emits a beam or pulse of radiation with

the following attributes:

• Coherent: all photos emitted at the same time, have the same phase.

• Monochromatic: all photons have almost the same wavelength or frequency.

• Collimated: photons emitted move on parallel rays, rather than on large beams, as happens on

radars.

Operating laser systems in human environments can be dangerous, as laser irradiation on the eye

may cause damage to the cornea lens or retina. Standards distinguish laser with classes depending on

their potential to cause harm. Class-1 laser systems are considered to be incapable of producing dam-

aging radiation levels. The combination of low power, rapid laser rotation and careful laser wavelength

placement (usually, λ = 905nm) guarantees the LiDAR sensor is not harmful to human eyes.

LiDAR measurements are a function of both sensor and target characteristics. This relationship is

described by the standard LiDAR equation [53], derived from the traditional radar equation, which relates

the power of transmitted (Pt) and received (Pr) signals:

Pr(t) =
D2

4πλ2

∫ H

0

ηsysηatm
R4

Pt

(
t− 2R

vg

)
σ(R)dR (2.2)

where t is time, D the aperture diameter of the receiver optics, λ the laser wavelength, H the distance

travelled by the laser, R the distance from the system to the target, ηsys and ηatm are respectively the

system and atmospheric transmission factors, vg the group velocity of the laser pulse and σ(R)dR the

apparent effective differential cross-section. The term ”apparent” is used since an object reflecting the

signal at a given distance can occlude an object further away. The received power Pt(t) can be seen as

a contribution of N targets, and written as:

Pr(t) =

N∑
i=1

Pr,i(t) · ηsys(t) · ηatm(t) =

N∑
i=1

D2

4πλ2R4
i

Pt(t) · ηsys(t) · ηatm(t) · σ
′

i(t) (2.3)
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where σ
′

i(t) is the apparent cross section of illuminated areas within each range interval, Pt(t) · ηsys(t)

the component from the system contribution and ηatm(t) · σ′i(t) is the environmental contribution.

Although not unique, LiDAR sensors usually compute distances by measuring the time of flight (TOF)

of a very short but intense pulse of laser radiation. This simple calculation can be represented as

R =
c · (tr − tt)

2
(2.4)

where R is the distance between the ranging unit and the object surface, c is the speed of electromag-

netic radiation, and tr and tt are respectively the received and transmitted time measurements. Range

measurement R can be transformed into the sensor’s frame of reference with


X

Y

Z

 = R


cos(α) · cos(ω)

cos(α) · sin(ω)

sin(α)

 (2.5)

where α is the elevation, and ω the azimuth angle of the emitted laser beam [54].

2.4 Projective Geometry

This section starts by presenting the intrinsic camera parameters: the camera calibration matrix, and

the distortion coefficients caused by the camera lens (Section 2.4.1). It then describes the camera pose

estimation problem (Section 2.4.2).

2.4.1 Intrinsic Camera Parameters

The pinhole perspective camera model (also known as the central perspective) considers that all the

light from a scene that reaches the optical sensor must pass through an ideal pinhole O. Thus, exactly

one light ray would pass through each point in the image plane.

Figure 2.3: Representation of the collinearity between point P, its image p and the pinhole O [50].

Let P denote a scene point with coordinates (X,Y, Z), and p its image coordinate (xc, yc, d). From
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Figure 3.4, it follows that the three points P, O and p are collinear, meaning that for some number λ,
~Op = λ ~OP , so:


x = λX

y = λY

d = λZ

⇔ λ =
x

X
=

y

Y
=
d

Z
(2.6)

therefore,

x = dX
Z

y = dY
Z

(2.7)

In the camera model, points are projected onto the image plane by dividing them by their z compo-

nent. This implies that it is not possible to recover distances from the image plane, which makes sense

for a 2D projection.

Assuming the camera is focused on infinity, it means the plane distance is equal to the focal length

d = f . Let the point p̂ = (x̂, ŷ, 1)T be the vector of homogeneous coordinates of p when transformed into

the normalized image plane, located at an unit distance d = 1 from the pinhole O. Then,

p̂ =
1

Z

[
Id 0

]
P̂ (2.8)

where P̂ is the vector of homogeneous coordinates of P . However, the real camera plane may not

actually coincide with the normalized image plane, having a distance d 6= 1. Additionally, its pixel

coordinates may have a different centre c = (cx, cy), and its pixels rectangular instead of square. The

conversion from point p̂ into point p is obtained through the camera calibration matrix K:


x

y

1

 = Kp̂ =


fx s cx

0 fy cy

0 0 1



x̂

ŷ

1

 (2.9)

where fx and fy are the focal lengths expressed in pixels, s represents any skew between sensor axes

due non-rectangular pixels, and (x̂, ŷ) the optical centre expressed in pixel coordinates [50] .

Until this point, the camera model discussed assumes a linear projection. This means straight lines

in the 3D world are preserved inside the image. However, many camera lenses have noticeable radial

distortions, which manifest as projected curved lines that otherwise would be straight. Compensating

for this effect is not difficult. Let us assume (x̂, ŷ) is the pixel coordinates obtained after the central

perspective projection but before the scaling and shifting effects of the K matrix. The radian distortion

model states that image pixels are displaced either towards or away from the image center as a function

of their distance to the image centre. Thus, radial distortions can be modelled as a polynomial function:
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x̂r = x̂(1 + k1r
2 + k2r

4 + k3r
6 + ...)

ŷr = ŷ(1 + k1r
2 + k2r

4 + k3r
6 + ...)

(2.10)

where (x̂r, ŷr) are the coordinates of the point affected by radial distortion, r2 = x̂2 + ŷ2 and k1, k2, k3

are the radial distortion parameters.

Tangential distortion occurs when the image plane and the camera lens are not parallel with each

other. It can me modelled as:

x̂t = x̂+ (2 · p1 · x̂ · ŷ + p2 · (r2 + 2x̂2))

ŷt = ŷ + (p1 · (r2 + 2ŷ2) + 2 · p1 · x̂ · ŷ)
(2.11)

where (x̂t, ŷt) are the coordinates of the point affected by tangential distortion, and p1, p2 are the tan-

gential distortion parameters [55].

2.4.2 Camera Pose Estimation

To project 3D points from the world frame of reference into the camera plane, one must know the

camera pose relative to it. This projection may be modelled as

p =MP̂ (2.12)

were p = (x, y, 1)T are the image points in homogeneous coordinates, P̂ = (X,Y, Z, 1)T are the world

points, andM is the 3× 4 camera projection matrix. The matrixM can be decomposed as

M = K
[

R | t
]

(2.13)

where K is the calibration matrix explained in Section 2.4.1, and the rotation R and translation t matrices

represent the Euclidean transformation between the camera and the world coordinate system, i.e. the

camera pose. In total, the camera pose has six degrees-of-freedom, three in the translation matrix t and

three on the rotation R.

The problem of finding the camera pose given its calibration matrix K and a set of N 3D-2D point

correspondences is known as perspective-n-point (PnP). One solution to the PnP problem is the Efficient

PnP (EPnP) algorithm, proposed by V. Lepetit et al. [56], which solves the problem in O(n) time. It

assumes the input points are non-collinear and outliner-free. However, this is not the case for most

applications, as the set of point correspondences provided to EPnP have associated errors. Thus,

EPnP usually serves as an initial estimation that is then optimized by an iterative method, such as the

random sample consensus (RANSAC) [57], leading to a more robust solution.

2.5 Performance Metrics

This section presents the performance metrics used to evaluate the approach taken in this thesis.
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2.5.1 Detection Metrics

This subsection presents the performance metrics related to object detection. They are as follows:

•Intersection Over Union:

In the visual detection task, the algorithm is expected to localize an object in the image. To evaluate

if the predicted bounding boxes are well adjusted to the objects the algorithm measures the intersection

over union, IOU :

IOU =
Area(BP ∩BGT )

Area(BP ∪BGT )
(2.14)

where BP is the predicted bounding box and BGT is the ground truth bounding box. Figure 2.4 presents

a visual representation of this metric. If no overlap is presented between bounding boxes, IOU = 0%.

In contrast, if both bounding boxes overlap entirely, IOU = 100%. Two bounding boxes match if IOU ≥

50%, as set in the PASCAL VOC competition [58].

Figure 2.4: Visual representation of the intersection over union (IOU) metric.

•Precision:

Intuitively, the precision, P , is the ability of an algorithm to perform correct predictions. It is defined

as

P =
TP

TP + FP
=

TP

total detections
(2.15)

where TP is the number of true positive and FP is the number of false positive. A detection is counted

as a TP if IOU ≥ 50%. Otherwise, it is viewed as a FP . The precision values, in percentage, range be-

tween [0, 100], where P = 100% corresponds to an algorithm which does not present any false positives,

assuming (TP + FP 6= 0).

•Recall:
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Intuitively, the recall, R, is the ability of an algorithm to find all the available ground truths. It is defined

as

R =
TP

TP + FN
=

TP

total objects
(2.16)

where FN is the number of false negatives in the set and it represents a ground truth label that is not

detected. The recall values, in percentage, range between [0, 100], where R = 100% corresponds to an

algorithm able to correctly predict every available object, assuming (TP + FN 6= 0).

The LiDAR recall, R, is computed using the same formula. For a LiDAR point cloud, there is no IOU

metric. In this scenario, the number of TP and FN are obtained by inspecting if each point’s coordinates

are coherent with the actual target location.

•F1-score:

The F1 score, F1score, is defined as the harmonic mean of precision, P and recall, R, and is given

as

F1score =
2 · P ·R
P +R

(2.17)

•Precision-Recall Curve:

Predictions made by a visual detector have an associated confidence score, cscore, on which they

decide ether to discard or to keep it, based on a predefined threshold, cthres. The prediction is kept if

cscore ≥ cthres.

Each cthres value provides the visual detector with a different set of P and R metrics. By going

through all cthres value possibilities, a precision-recall (P-R) curve can be constructed, as seen in Figure

2.5. For a high cthres, only predictions with the highest confidence scores are kept, providing the detector

with high precision but low recall values. Inversely, low cthres values means more predictions are kept,

increasing target recall.

Figure 2.5: Example of a precision-recall curve.
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•Average Precision and Mean Average Precision:

The average precision, AP , compares the performance of object detectors by calculating the area

under the P-R curve. For a P-R curve, AP is defined as

AP =
∑
n

(Rn+1 −Rn)Pinterp(Rn+1) (2.18)

where Rn is the recall value of point n and Pinterp(Rn+1) is the maximum precision for any recall value

R̃ bigger than Rn+1, meaning:

Pinterp(Rn+1) = max
R̃:R̃≥Rn+1

P (R̃) (2.19)

The mean average precision, mAP , is simply the average AP across different classes, given by

mAP =
1

N

N∑
j=1

APj (2.20)

where N is the total number of classes and APj is the average precision of the jth class.

2.5.2 Tracking Metrics

This section presents the metrics used to evaluate the algorithm for multiple object tracking (MOT),

and their definitions are based on [59]. They are as follows:

•Fragments:

The number of fragments, FM , counts how many times a ground truth trajectory is interrupted. It is

increased each time a trajectory changes its status from tracked to untracked, and the tracking of the

same trajectory is resumed at a later point.

•Identity Switches:

A mismatch, or equivalently, an identity switch, IDSW , is counted if a ground truth target i is matched

to track j and the last known assignment was i 6= j.

•Track Quality Measures:

Each ground truth trajectory can be classified as mostly tracked, MT , partially tracked, PT , and

mostly lost, ML, based on how much of the track is recovered by the tracking algorithm. A track is MT if

at least 80% of its length is recovered. If the recovered track is less than 20% of its length, it is classified

as ML. In all other cases, the track is classified as PT .

•Multiple Object Tracking Precision :

The multiple object tracking precision, MOTP , computes the average dissimilarity between all true
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positives and their corresponding ground truth targets. It is given by

MOTP =

∑
t,l dt,l∑
t ct

(2.21)

where dt,l is the IOU value of target l with its assigned ground truth object in frame t and ct is the total

number of matches in frame t, and ranges, in percentage, between [50, 100].

•Multiple Object Tracking Accuracy:

The multiple object tracking accuracy, MOTA, a metric used to evaluate the tracker’s performance.

It combines three sources of errors and is defined as

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
tGTt

(2.22)

where t is the frame index, and GT is the number of ground truth objects. The MOTA may be represented

as a percentage, with a possible range between [−∞, 100]. Negative cases happen when the number of

errors made by the tracker exceeds the number of all objects in the scene.
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Chapter 3

Methodology

This chapter presents the methods of the proposed approach. It starts by giving an overview of the

sensor fusion solution created (Section 3.1), followed by a summary of the visual detection and tracking

algorithm developed, i.e. YOLO-based tracker (Section 3.2). It then describes the LiDAR pre-processing

steps (Section 3.3) and the calibration procedures (Section 3.4). This chapter finishes by explaining the

region of interest (ROI) creation (Section 3.5).

3.1 Sensor Fusion Methodology

As previously mentioned, electro-optical (EO) cameras can capture the environment in high-resolution.

Based on such rich information, it is possible to identify and classify targets based on extracted features.

When looking for aerial vehicles, targets are most often only small objects within a larger context. For

example, a target measuring 45cm× 45cm, captured by an EO camera at 50 m, only occupies a 20× 8

pixel area inside a 1280 × 720 image. Actively searching in the entire image is not only computationally

expensive but can also lead to the acquisition of a substantial amount of false positives. Thus, refining

the area of search would prove extremely valuable.

LiDAR sensors can provide direct target measurements. The point clouds generated are fast to

create (i.e. up to 20Hz) and to process. Furthermore, if employed in an aerial scenario, only a portion

of the laser beams emitted will generate returns, as most will point towards the sky. So, there is a

substantial likelihood that the observed returns correspond to an aerial target.

Nevertheless, point clouds usually contain non-desired points, which must be filtered. Additionally,

since multiple points can represent a single target, a clustering method is also important to identify

objects of interest among the cloud.

A sensor fusion methodology between a LiDAR and an EO camera is created to outperform single

sensing solutions. Developing a 3D-2D point projection method is fundamental to correlate information

between both sensors. This calibration enables LiDAR acquisitions to be projected into the camera

frame for further inspection. Also, creating regions of interest (ROI) around projected clusters provides

the visual detection algorithm with a refined search area to process.
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The use of a visual tracker can establish temporal consistency between visual observations. Ad-

ditionally, by using an internal estimator, such as a Kalman filter, the visual tracker can predict future

target locations and feed that information back into the ROI creation. This enables the creation of a

closed tracking loop.

On the approach taken, the YOLOv3 is chosen as the visual detector, complemented by a modified

DeepSORT tracker. The combination of both solutions creates the visual detection and tracking system

nicknamed YOLO-based tracker.

Figure 3.1 presents a simplified diagram of the sensor fusion solution, aiming to detect and track

sUAS. The following sections describe each element in the sensor fusion solution in further detail.

Figure 3.1: Diagram of the sensor fusion algorithm. The dashed line represents a link between consec-
utive iterations.

3.2 YOLO-Based Tracker

This section approaches the YOLO-based tracker’s implementation. It is considered to be the back-

bone of the sensor fusion algorithm. It consists of a YOLOv3 detector and a modified DeepSORT tracker.

3.2.1 YOLOv3 Detector

The visual detection algorithm was chosen based on two factors: accuracy and processing speed.

The latter is essential to create a real-time solution. The YOLOv3 algorithm was chosen by presenting a

good compromise between both factors.

It was adopted a Pytorch implementation of YOLOv31, which provides the source code to train and

use the algorithm in a simple way. It also gives a file with pre-trained weights on the MS COCO dataset,

1https://github.com/ultralytics/yolov3
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on a total of 80 classes, presenting a great starting point to train the neural network on a customized

dataset. Even if the dataset contains only a few thousand images, the training process can show great

results. This is due to a process known as transfer learning: the idea of using knowledge already

acquired in a previous task to solve a similar problem.

The necessity of using a custom dataset comes from the lack of ability from the original MS COCO

dataset to accurately detect sUAS. YOLOv3 is trained on a dataset made available by Svanström [60],

which is comprised of IR, EO and acoustic data capturing various object classes, like airplanes, drones,

birds and helicopters. As this work is focused on sUAS, only the relevant sections of the dataset are

extracted and used in the training process. In particular, the portion of the dataset corresponding to EO

camera data capturing drones, which includes 114 videos with a 640 × 512 resolution, totalling 15, 133

labelled image frames. Figure 3.2 presents some image samples from this dataset. The videos were ran-

domly divided into training and validation sets in an 80/20 proportion. Once the detection performance

on the validation set started to degrade, the training procedure was stopped to prevent over-fitting. The

training process finished after 20 epochs with AP = 87.3% and F1score = 83.1%.

Figure 3.2: Sample images from the drone dataset used to train the YOLOv3 algorithm [60].

3.2.2 Modified DeepSORT Tracker

The proposed tracking solution is based on the DeepSORT algorithm explained in Section 2.2.2. The

DeepSORT algorithm was initially designed to track pedestrians, which have large and distinct features.

It was also intended to be used in high-density scenarios where occlusions are problematic for the

distance metric.

Some key modifications are made to adapt DeepSORT for sUAS tracking. Specifically, the CNN

appearance descriptors are discarded, as they are not particularly useful when dealing with sUAS. Their

small features against complex backgrounds are very difficult to compare. Additionally, the proposed

scenario deals with a small number of sparce flying targets, making the distance metric ideal for the

assignment problem.

The state machine for a given track is presented in Figure 3.3. For each new and non-assigned ob-

servation, a new track is created and placed into a ’tentative’ state. After three consecutive associations,

the track will transition into an ’active’ state (a1). If it fails to associate a single one, it transitions into

an ’inactive’ state (a2) to be removed. This requirement for temporal consistency protects the algorithm

from sporadic false positives.
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The track will remain in an ’active’ state until no observation is assigned to it (a3). If no associations

are made, the track transitions into a ’lost’ state (a4). While in this state, the Kalman filter inside the

DeepSORT tracker will continue to predict the target position based on previous observations (a5). If

successful in associating with an observation, the track will transition back to an ’active’ state (a6);

however, if no association is made for N iterations, the track transitions into the ’inactive’ state (a7).

Figure 3.3: State machine for each track in the modified DeepSORT tracking algorithm.

3.3 Point Cloud Pre-Processing Methods

This section presents the two pre-processing steps applied to the point cloud to obtain objects of

interest from the LiDAR: filtering and clustering.

3.3.1 Point Cloud Filtering

The filtering step on the point cloud is critical to obtain good LiDAR detection results. The objective

is to remove points not of interest for the target detection task. Such points could be ground returns or

environment clutter (e.g. trees, buildings). The pseudo-code for the filtering methods is presented in

Algorithm 1.

The algorithm assumes that airspace boundaries representing the clutter-free environment are given

relative to the sensor’s X and Y position. Any point found inside this region corresponds to a possible

target, and each point outside it is removed. The algorithm also assumes the sensor system’s orientation

and altitude variables are provided.

LiDAR point clouds are obtained on the body’s frame of reference. Due to the aerial vehicle’s free-

moving nature, the points need to be corrected for its angular movement (i.e. yaw, pitch and roll) to

correctly access if the point is inside of the boundaries provided. This transformation consists of applying
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a 3D rotation matrix to each point, and is represented as function inertical transform, in line 2 of

Algorithm 1.

In the flight test scenario, the boundaries to eliminate non-desired detections are relatively straight-

forward and are composed of only two restrictions. The first restriction discards every point that is

further away than a 70m radius from the sensor system. Since the target flew on an open field, most

of the environment clutter was located outside this operational radius. The second restriction aims to

remove ground returns. Knowing both the ground hground and sensor’s altitude hsensor, a world point

X = (x, y, z) is removed if

z ≤ hsensor − (hground + δh) (3.1)

where δh is an altitude safety margin. As flight tests happened in a nearly flat farming field, δh was

relatively small.

Algorithm 1 Pseudo-code for filtering the LiDAR’s point cloud.
Input: LiDAR points, point cloud, sensors orientation and altitude, inertial data, sensor altitude and

environment boundaries boundaries.

Result: List with filtered LiDAR points, filtered cloud.

1 filtered cloud= {};

2 corrected cloud = inertical transform(point cloud, inertial data);

3 for point in corrected cloud do

4 if inside boundaries(point, sensor altitude, boundaries) then

5 insert point into filtered cloud;

6 end

7 end

8 return filtered cloud

3.3.2 Point Cloud Clustering

Since a single object can be responsible for multiple LiDAR returns, it is essential to create clus-

ters around neighbouring points to discriminate between different targets. This task is performed by a

density-based clustering solution called DBSCAN (Density Based Spatial Clustering of Applications with

Noise) [61]. The algorithm requires two parameters: the maximum distance between two points for one

to be considered in the neighbourhood of the other, and the minimum number of points to form a cluster.

The first parameter is set to the largest dimension between flying targets, which from Table 4.4 is 0.5m.

The minimum number of points is set to one, which assumes the filtering step removes every point not

of interest to the algorithm.
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3.4 Calibration Procedure

This section goes over the methods used to find the intrinsic parameters of the camera (Section

3.4.1), as well as the steps taken to obtain the 3D-2D point correspondences to solve the PnP problem

(Section 3.4.2).

3.4.1 Camera Intrinsic Calibration

The intrinsic camera parameters, mentioned in Section 2.4.1, need to be estimated as the solution

for the PnP problem depends on it. A technique to estimate these parameters involves capturing sample

images containing a well-defined pattern. A popular pattern used for intrinsic calibration is an 8 ×

8 chequerboard pattern. The calibration procedure assumes each square’s dimensions on the grid

are given. It then obtains calibration points by extracting features related to square intersections. For

accurate results, images must capture the calibration pattern at different distances and locations. The

Matlab simple camera calibrator app [62] is used for this procedure, seen in Figure 3.4.

After the parameters are estimated, the algorithm projects the chequerboard points from world coor-

dinates, obtained from the chequerboard pattern, into image coordinates. It then compares the repro-

jections to the corresponding detected points. The overall mean reprojection error obtained was 0.07

pixels, reflecting an accurate calibration.

As a side note, the chequerboard pattern was only captured at close range (i.e. 3m to 4m) since it

was too small to be captured at further distances. It is acknowledged that the calibration would present

higher accuracy if the camera captured a larger pattern are longer distances.

Figure 3.4: Sample of the Matlab simple camera calibrator app [62].
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3.4.2 LiDAR-Camera Pose Estimation

The pose between the camera and the LiDAR must be estimated before LiDAR points can be pro-

jected into a camera frame. As mentioned in Section 2.4.2, this estimation problem is solved with the

EPnP algorithm.

To find a solution, the EPnP algorithm requires the intrinsic camera matrixK, the radial and tangential

distortion coefficients (k1, k2, k3, p1, p2), and several 3D-2D point correspondences.

Some literature approaches have used a calibration board’s outer edges to obtain these correspon-

dences [63]. The approach of this thesis follows a similar method by estimating the position of the

calibration board’s corners and using them as calibration points. If the rectangular board stays horizon-

tal, the LiDAR scans are not able to accurately identify its height. However, by rotating the shape 45◦ , as

seen in Figure 3.5, LiDAR horizontal scans can intersect its four edges. Although simple in the camera

frame, the LiDAR point cloud can not directly provide the location of its corners. So, their 3D coordinates

have to be estimated.

First, 3D points have to be projected into a common plane, since LiDAR range measurements have

deviations between them. A plane segmentation tool from Open3D [64] is applied to estimate the plane

equation containing the calibration board. Every point is then projected into this common plane. Then,

the algorithm achieves an estimate of the corner point’s coordinates by computing the point cloud’s

convex hull and obtaining the minimum bounding box able to enclose it, as seen in Figure 3.5. However,

this approach applied to a single board does not offer much depth distinction between corner points. So,

to diversify calibration point locations, a total of four different board positions are captured, as seen in

Figure 3.6. In total, the procedure extracted 16 pairs of 3D-2D point correspondences. The calibration

board was captured at a maximum range of 9m since the point clouds were too sparse to detect the

board in its entirety at further distances. More details regarding the LiDAR sensor used are given in

Section 4.1.1.

(a) Repreentation of the LiDAR points, in blue, af-
ter the common plane projection, and its convex hull
points in green.

(b) Repreentation of the minimum bounding box in
red, and the estimated corner points in yellow.

Figure 3.5: Representation of the approach taken to estimate the 3D location of the calibration board
corners.

Additional calibration points are obtained at further distances using a different approach. From the
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flight test data, 3D-2D point correspondences are extracted by visual inspection, as presented in Figure

3.7. After a preliminary calibration procedure obtained from the previous method, LiDAR points were

visually examined for where they were supposed to hit the target in the pixel context. In total, 22 point-

pairs were extracted, ranging between 10m and 50m.

Figure 3.6: Reprojection of the point cloud into the calibration board at four different locations. The
distance of each location is: 1 - 4m; 2 - 9m; 3 / 4 - 7m.

Figure 3.7: Example of the visual inspection method used to extract calibration points at further dis-
tances. A LiDAR point P = (Xi;Yi;Zi) is visually associated with the pixel point p = (xi; yi) for the ith

point correspondence.

3.5 ROI Creation

The goal of the region on interest (ROI) is to narrow the search area processed by the YOLOv3

detection algorithm. An overview of the ROI creation process is presented in Algorithm 2.

Each ROI has fixed dimensions to simplify its creation process. They are chosen based on the

maximum pixel size that the target presents during the flight tests. The primary target measures 45cm×

45cm, as seen in Section 4.2.1. When captured by the camera at 10m, it occupies an 80× 50 pixel area
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inside a 1280×720 image. Since the YOLOv3 detector requires an input size multiple of 32, the ROI size

is set to 128× 128 pixels. This restriction is related with its convolutional network architecture.

Approximate target locations come from two sources: LiDAR detections and Kalman filter predictions

from the tracking algorithm. After the LiDAR point cloud is transformed into 2D clusters, a bounding box

enclosing every point is created based on two values: the cluster centre and the maximum distance be-

tween two points. This bounding box is supposed to be representative of the captured target. However,

LiDAR clusters may only capture a small portion of the target, leading to uncertainty regarding its outer

limits. On the other hand, bounding boxes from Kalman filter predictions contain information on the tar-

get’s pixel size, allowing a more informed decision on ROI placement. The function cluster analysis, line

8 of Algorithm 2, evaluates if the cluster centre is positioned inside one of the Kalman filter predictions.

If so, it means the target is already being visually tracked, so the object is not added again to the objects

of interest list. Although LiDAR clusters do not consistently provide target detections, they are a crucial

mechanism for target acquisition.

After every object of interest is gathered, a ROI is created around each one. However, if an object

is entirely enclosed by an existing ROI, this process is skipped. This simple solution presents similar

problems to the regions proposals of the R-CNN algorithm (Section 2.1.1). This is because one object

in the borderline of another ROI will create its own search region, leading to redundant computations.

Additionally, overlapping ROI can cause the same target to be detected multiple times. As a solution,

a non-maximum-suppression algorithm is applied to remove duplicate YOLOv3 detections. Given the

present sUAS scenario with low vehicle density, the problem of overlapping ROI is not substantial.

Figure 3.8: Example of a frame processed by the sensor fusion algorithm. The LiDAR detections are
the red dots, the ROI is the yellow bounding box, the ground truth is the light blue bounding box and the
YOLOv3 detection is the dark blue bounding box.

In order to prepare the algorithm for the next frame, old objects of interest are discarded, and new

ones are taken from the Kalman filter predictions. This step is represented between lines 20 and 24 of

in Algorithm 2.
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With the methods developed, the LiDAR acquires the presence of aerial targets, and the YOLO-

based tracker detects and tracks their location in the image. Figure 3.8 represents a frame processed

by the sensor fusion algorithm using the described approach. A LiDAR detection, the red dots, create

the ROI, yellow bounding box, which is processed by the YOLOv3 detector, obtaining the target’s visual

detection, in dark blue.
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Algorithm 2 Pseudo-code of the sensor fusion’s main function .
Input: Sensor data from Camera, LiDAR , IMU and altimeter, sensor data, and environment boundaries

for filter, boundaries.

Result: List of target trajectories, trajectories.

1 trajectories = {};

2 tracker = deepsort(); // Initialize tracker.

3 for image, point cloud, attitude, altitude in sensor data do

4 filtered cloud = filtering(point cloud, attitude, altitude, boundaries);

5 if length(filtered clod) > 0 then

6 cluster list = DBSCAN cluster(filtered cloud);

7 cluster image coordinates = 2d projection(cluster list);

8 objects of interest = cluster analysis(cluster image coordinates, objects of interest);

9 end

10 regions list = roi creation(objects of interest);

11 yolo detections = {};

12 for region in regions list do

13 roi image = crop frame(image, region);

14 detections = run yolo(roi image);

15 insert detections into yolo detections;

16 end

17 yolo detections = non max suppression(yolo detections);

18 update tracker with yolo detections;

19 insert tracker.tracks into trajectories;

20 objects of interest = {};

21 predict tracker; // Predict tracks for future frame.

22 for track in tracker.tracks do

23 insert track into objects of interest;

24 end

25 end

26 return trajectories
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Chapter 4

Experiments

This chapter presents the experiments performed. It starts by explaining the sensor system design

and contruction (Section 4.1). It then describes the flight tests experiments (Section 4.2) and finishes by

detailing how the flight operations were conducted and what data was collected (Sections 4.3).

This chapter will use the term remotely piloted aircraft (RPA) to refer to the aircraft flown during the

flight tests. These RPA are considered to be sUAS. The RPA designation is mainly employed to make a

distinction between autonomous aircraft.

4.1 System Assembly

This section details the payload design and construction. It gives an overview on the system compo-

nents, architecture and final assembly.

4.1.1 M8 LiDAR Sensor

The LiDAR sensor used in the present work is the M8 LiDAR from Quanergy, shown in Figure 4.1a.

The primary sensor attributes are presented in Table 4.1. The sensor weighs 940g and has a maximum

range of over 100m at 80% reflectivity. While it’s spinning, it can capture the environment at a rate

between 5 − 20Hz. The sensor presents eight vertical channels spread in a 21◦ FOV. The beams

present an offset 3◦ upwards and 18◦ downwards, as presented in Figure 4.1b. The LiDAR sensor has

a horizontal angular resolution between 0.03◦ − 0.13◦ , depending on the framerate the sensor operates

in.

Other works have used the M8 LiDAR showing it is well suited for 3D object detection despite having

an inferior number of vertical channels compared to other LiDAR sensors, which can present 16 to 64

channels. Wei et al. [66] have employed the M8 LiDAR and a camera to detect beacons utilized to

identify restricted areas.

In this work, the LiDAR sensor is turned upside-down to invert the direction of laser projection to

+18◦ /− 3◦ . This orientation is more suitable for aerial vehicle detection by avoiding to aim most of the

laser beams downwards.
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Table 4.1: Specification sheet of the M8 LiDAR sensor [65].

Parameter Specification
Wavelength 905nm

Nominal Weight 940g
Maximum Range > 100m (80% reflectivity)

Range Accuracy (1σ at 50m) < 3cm
Frame Rate 5− 20Hz
Vertical FOV 21◦ (+3◦ /− 18◦ )

Horizontal FOV 360◦

Vertical Channels 8
Angular Resolution 0.03◦ − 0.13◦ (dependent on frame rate)

Output Rate 420,000 points per second

(a) Image of the M8 LiDAR from Quanergy. (b) M8 LiDAR vertical beam angles.

Figure 4.1: Visualization of the M8 LiDAR appearance and vertical laser beam angles [65].

4.1.2 Onboard Computer Optimization

It is a challenge to guarantee a constant framerate for all sensors while recording, mainly caused by

the onboard computer’s limitation. The main constrain is the high-volume sensor data captured, which

quickly overwhelms CPU resources. Additionally, writing data in memory is limited as the computer

cannot manage large data bandwidths.

Firstly, to increase available computational resources, the latest Raspberry Pi 4 was chosen as the

onboard computer. Also, while experimenting with several camera alternatives, the Pi camera module

was seen as the option to optimize data capture better. In contrast with other USB webcams, it uses

the graphics processing capabilities of the Broadcom CPU. The Pi camera can process image data at

higher framerates, saving CPU resources for other concurrent tasks.

Furthermore, to lower data bandwidth and spare storage capacity, camera frames are saved as a

compressed JPEG file format instead of the raw sensor data, reducing the bandwidth from 83.13Mb/s

to 1.80Mb/s for images with 1280× 720 resolution. Similarly, knowing the sensor fusion methods would

only need LiDAR points inside the FOV of the camera, settings were adjusted on the M8 LiDAR as to

only output points inside an 80◦ FOV, instead of the standard 360◦ . This procedure decreased LiDAR

data bandwidth from 13.90Mb/s to 3.05Mb/s.
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4.1.3 ROS Environment

Synchronization between every sensor is essential to correlate observations reliably, even if they

operate at different framerates. The onboard computer uses the Robotic Operative System (ROS) [67]

to provide an environment for hardware abstraction capable of sensor unification.

Every process inside ROS is called a node, and nodes can communicate with each other through

topics. Topics are named buses, and messages are exchanged by subscribing or publishing to a specific

topic. Each topic message has an associated ROS timestamp, necessary for synchronizing sensor data

on post-processing.

Additionally, ROS provides a tool called ROSBAG, which can reliably record topic messages to be

post-processed on the ground. It preserves vital information by avoiding the deserialization and reseri-

alization of messages. Thus, while playing back recorded data, message timestamps are maintained.

A diagram of how the developed ROS architecture handles sensor data is represented in Figure 4.2.

The data from each sensor is received by a ROS node, which processes and publishes it into a ROS

topic. Those topics are then recorded into a ROSBAG.

Figure 4.2: Diagram of the developed ROS architecture. The sensors are represented on the left, while
the ROS environment is represented on the right, which shows the various ROS nodes that process
sensor data and the ROSBAG that records the ROS topics.

In an ideal scenario, every sensor would be recorded in an identical framerate (20Hz), with corre-

sponding sensor frames presenting the same timestamp. However, this is not a trivial task to accomplish.

The presence of jitter on sensor data streams allied with difficult timing cues to begin the recording pro-

cesses between every sensor makes it almost impossible for them to be in sync at the same framerate.

The approach taken opted to maximize the camera and IMU sensors’ framerate while maintaining the

LiDAR at 20Hz. Then, on post-processing, extra frames would be trimmed to present a consistent out-

put of 20Hz on all sensors. The trimming process chooses sensor frames with the smallest timestamp

deviations from LiDAR messages.

This approach is not ideal, as a target might move between corresponding frames. For example, the

camera is recorded at 30Hz, presenting a 33ms gap between frames. The worst-case scenario is when

a LiDAR frame is precisely between two camera frames, meaning the largest time deviation between

a LiDAR and camera frame is 16.7ms. Similarly, the IMU is recorded at 40Hz, making this maximum
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difference between it and LiDAR frames of 12.5ms.

4.1.4 Communications

The ground station needs to have a communication link with the sensor system while flying. Remote

tasks include memory management and operating the sensors and the actuators. A connection through

a Secure Shell (SSH) protocol provides access to the onboard computer’s Linux environment. However,

while it might easily work in the lab, there is no available network to allow this connection on the flight

test field. Thus, a digital data link (DDL) over radio between the ground station and the sensor system is

created, guaranteed by a wireless connection between two pMDDL900 radio devices in a master/slave

configuration. They are able to provide the IP abstraction needed for a SSH connection. Figure 4.3

represents the pMDDL900 radio device flown on the payload.

When connecting both radio devices, care must be taken to ensure the path loss (the reduction of

signal strength from the transmitter to the receiver) between equipments does not exceed the commu-

nication system’s gain. The module belonging to the ground station was positioned in the test van’s top

section to maximize the signal strength.

4.1.5 Power System

The sensor system is mounted onboard a DJI Matrice 600. While airborne, the sensor system’s

power supply must be independent of the aircraft, as not to compromise its safety.

Figure 4.3 presents a layout of the sensor system components. Each payload component has its

own constraints on what input voltage it requires, as presented in Table 4.2. Devices like the servo, Pi

Camera and IMU can be powered directly through the Raspberry Pi, only requiring it to be powered with

a 5V input voltage. The pMDDL900 radio can work at a wide range of input voltage. On the sensor

system, the biggest constrain is the M8 LiDAR power supply, which requires an input voltage of 24V with

a tolerance of ±1V .

Table 4.2: Payload components input voltage and power consumption while recording sensor data.

Device Input Voltage [V] Power Consumption [W]
M8 LiDAR 24 ± 1 17

Raspberry Pi + Peripherals 5 ± 0.25 5.2
pMDDL900 19 ± 11 3

The energy solution is composed of two LiPo 6S 1200 mAh batteries connected in parallel to double

battery capacity to 2400 mAh, while maintaining the same voltage. Being a 6S battery, it has an output

voltage of 25.2V when fully charged, dropping to 23.1V at 50% capacity. Thus, the battery pack can

directly power the LiDAR and the DDL radio. Additionally, a DC-DC converter is used to power the

Raspberry Pi, lowering the supplied voltage to 5V. It is estimated that the battery pack can support the

sensor system for up to 38 minutes while recording, which is more than the DJI Matrice’s battery life,

which will carry the payload. In experiments where the payload is not flying, the system is externally

powered by a 10,000 mAh 6S battery to spare the onboard battery life.
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Figure 4.3: Sensor system components layout: 1. Pi Camera; 2-VN-200 IMU; 3 - M8 LiDAR; 4 - Servo;
5 - Raspberry Pi 4; 6 - pMDDL900 radio; 7 - DC-DC converter; 8 - Battery pack.

4.1.6 Mechanical Assembly

The mechanical assembly aims to attach the sensor system safely to the DJI Matrice 600. The

payload should not compromise the aircraft’s safety or stability. The payload CAD model and the fully

assembled structure onboard the DJI Matrice 600 is shown in Figure 4.4.

(a) CAD model of the payload. (b) Payload assembled onto the DJI Matrice 600.

Figure 4.4: Sensor system payload design and assembly.

The sensor system attaches to a carbon fibre base plate and is protected by a 3D printed case,

which encloses the system. The case presents two openings on the top section for the radio antennas.

Additionally, it has one in the front for the camera and another in the back for the power cables.

The payload attaches to the RPA through two arm structures, also 3D printed. These structures

connect to the LiDAR heat shield plate via two steel shoulder screws, which create an axis of rotation.
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The servo is mounted into the right arm structure and controls the pitch motion via a mechanical link

to the case to perform the pitch angle experiments explained in Section 4.2.3. The payload’s centre of

gravity (CG) needs to be under the rotation axis to minimize torque on the servo created by the payload

weight.

Overall, the payload weights 2.97 kg. Its distribution across the components is presented in Table

4.3. A close inspection unveils that 45% of the total weight is attributed to the LiDAR sensor and its heat

shield. The heat shield provides important heat absorption to the LiDAR sensor. Experiments showed

that the LiDAR would quickly overheat without this metal plate. Despite the added weight, the payload

is under the 5.5 kg payload limit of the DJI Matrice 600.

Table 4.3: Weight distribution of the payload components.

Component Weight [g]
M8 LiDAR 932

Structure and Cables 675
LiDAR Heat Shield 400

2 x 1200mAh Batteries 400
pMDDL900 240
VN-200 IMU 164

Raspberry Pi 4 94
Servo 63
Total 2968

Finally, to stabilize the Pi Camera and isolate it from vibrations induced by the flying vehicle, the

camera case is mounted on top of vibration-damping sandwich mounts, made from rubber, seen in

Figure 4.3.

4.2 Flight Test Experiments

This section presents the remotely piloted aircraft (RPA) deployed for the flight test operations (Sec-

tion 4.2.1) and explains the three main experiments performed.

A simplified diagram of the experiments is presented in Figure 4.5. On it, the three main experiments

are highlighted: moving target, moving sensor and multi-target free-flight. Each of the first two is divided

into two different experiments related to the sensor system position and movement. For the moving

target experiments, the sensor is either position on the ground or in a hover position. In the moving

sensor experiments, the sensor performs two different manoeuvres: altitude and pitch angle variation.

4.2.1 RPA Deployed

Three different RPA flew on the flight tests. The main attributes of each aircraft is presented in Table

4.4. The aircraft carrying the sensor payload was the DJI Matrice 600 Pro, presented in Figure 4.6.

Primarily designed to fly heavy equipment for professional-level cinematography, it is the largest aircraft

of the three and provides an ideal platform to support the sensor system. With a maximum take-off

weight of 15.5 kg, the RPA has an endurance of 18 minutes while carrying a 5.5 kg payload.
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Figure 4.5: Diagram of the flight test experiments.

Figure 4.6: DJI Matrice 600 car-
rying the sensor system.

Figure 4.7: DJI Inspire being
flown as the primary target.

Figure 4.8: DJI Mavic being flown
as the secondary target.

The two remaining RPA were operated as flying targets, presented in Figure 4.7 and 4.8. The DJI

Inspire and DJI Mavic weight 2.8 kg and 0.7 kg, respectively, corresponding to the micro and mini UAS

categories explained in Section 1.2. They both are popular commercially available sUAS, becoming

ideal test vehicles for C-sUAS experiments. Between them, the DJI Inspire has the largest size, and

for that reason, it was considered the primary target, flown on all experiments. The DJI Mavic was only

used during the free-flight experiments, where all RPA were flown simultaneously.

Table 4.4: Properties of each flying vehicle used during the flight tests.

DJI Matrice 600 Pro DJI Inspire DJI Mavic
Dimensions [cm] 167x152x73 44x45x30 32x24x8 (unfolded)

Weight [g] 10,000 2,845 734
Nº of Motors 6 4 4

Autonomy [min] 18 (w/ 5.5 kg payload) 18 21
Battery LiPo, 2S, 6000 mAh LiPO, 6S, 4500 mAh LiPO, 3S, 3830 mAh
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4.2.2 Moving Target Experiments

The moving target experiments were performed while the sensor system is stationary relative to

the surrounding environment. Two different sensor locations were studied: on the ground level and in

hover. While in these positions, it would capture the RPA target performing a manoeuvre named cross

manoeuvre at different distances. Figure 4.9 presents a visual representation of this manoeuvre.

Figure 4.9: Cross manoeuvre diagram, with same frame of reference as in Figure 4.10. The target
begins by moving between A-B-A, followed by C-D-C.

A concerning limitation of the M8 LiDAR, as presented in Section 4.1.1, is its sparse vertical resolu-

tion. The manoeuvre was created to increase the probability of the target being detected by the LiDAR.

To do so, the RPA performs significant altitude variations to cross as many horizontal scanning lines as

possible. For this reason, it is named the cross manoeuvre. In its essence, the manoeuvre consists

of simple climb and descents, performed both vertically and diagonally. The objective of the diagonal

movement is to diversify the horizontal detection location. The cross manoeuvre can be split into four

different steps, presented in Figure 4.9. The target starts at point A and begins by performing a vertical

descent (A−B) and climb (B −A). It then transitions into the diagonal section, once again descending

(C − D) and climbing (D − C). The RPA must move along the X − axis to keep itself at a constant

horizontal distance from the sensors, as seen in Figure 4.10. The cross manoeuvre is then performed

at different range intervals to evaluate the relationship between LiDAR detections and target distance.

The cross manoeuvre has two parameters: the maximum height hmax and the horizontal distance

∆xDC between point D and C. To allow the drone a chance to pass over every possible horizontal

scanning line, the maximum height hmax was different at each distance d, taken from the equation

hmax = hs + d · tan(αmax) (4.1)

where hs is the height of the sensor system and αmax is the highest elevation angle the LiDAR is able

to scan.

The RPA target performs the cross manoeuvres between 10m and 60m from the sensor system.
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Figure 4.10: Visual representation of the moving target experiments. The DJI Inspire performs the cross
manoeuvre along the light blue lines, staying parallel to the X − axis. The dark blue lines represent the
FOV limits of the camera. The sensor system has the same X and Y values in every manoeuvre.

Ideally, ∆xDC should be set as always to keep the RPA within the camera FOV. As seen in Figure 4.10,

markers were physically placed on the field to help the pilot-in-command visualize these boundaries.

During the experiments, the sensor system was kept at the same X and Y positions. Its altitude was

hs = 1m while on the ground, and at hs = 10m while in hover.

4.2.3 Moving Sensor Experiments

The added mobility generated by attaching the sensor system onboard an aircraft provides new

sensing opportunities, possibly detecting stationary targets that otherwise would not be visible in the

LiDAR sensor, i.e. between horizontal scans. In the moving sensor experiments, the RPA target is

positioned in such regions in the hover state. The benefits of sensor mobility are evaluated by exploring

two different techniques: altitude and pitch angle variation.

The first manoeuvre explores the sensor’s altitude variation. As the LiDAR altitude changes, the

horizontal scanned regions can overlap each other by moving high enough, guaranteeing the sensor

performs a complete search of the airspace. Thus, the height ∆h between two consecutive scans at a

certain range represents the same vertical displacement the LiDAR needs to achieve and is given by:

∆h = d · (tan(αi+1)− tan(αi)) (4.2)

where d is the horizontal distance between the target and the sensor, αi is the angle between the horizon

and the ith horizontal scan. One obvious concern with this approach is that as αi and αi+1 increase, so

does the height ∆h. For the M8 LiDAR, the separation between horizontal scans is ∆α = αi+1−αi = 3◦ ,

and the elevation of the two highest horizontal arrays is α8 = 18.25◦ and α7 = 15.25◦ . So, for a d = 60m,

an altitude variation of ∆h = 3.42m would be necessary to guarantee an overlap between scanned

regions. Experimentally, the sensor system performs ∆h = 5m, theoretically achieving no blind regions

up to d = 87.8m.

The second technique examines how the pitch angle movement of the LiDAR can be used to detect

other RPA. Tilting the sensor system pitch angle θ more than the angle ∆α between the LiDAR horizontal
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scans allows the horizontal scans to overlap, creating a thorough inspection of the airspace for targets.

Experimentally, precise pitch angle motion of the sensor system is performed by a servo-controlled

mechanism, as discussed in Section 4.1.6. This solution preserves the aircraft’s position and stability.

The experiments perform a pitch variation of ∆θ = 5◦ , guaranteeing an overlap between LiDAR scans,

since ∆α = 3◦ .

The target is positioned at the centre line position in both experiments, along the Y-axis, as demon-

strated in Figure 4.11. Like the moving target experiments, the vehicle moves between 10m and 60m

from the sensor system. At each segment, the target sustains a hover manoeuvre at different altitudes

to keep it at a constant 10◦ elevation angle relative to the payload. The sensor system preserves the

same X and Y values for the entire moving sensor experiments, with the altitude varying between

10m ≤ hs ≤ 15m on the altitude variation experiment. On the pitch angle experiment, the system hovers

at hs = 10m.

Figure 4.11: Visual representation of the moving sensor experiments. The sensor system has the same
X and Y values while performing the altitude and pitch angle experiments. The DJI Inspire stays on top
of the Y − axis, at different distances from the sensor system, in a hover position.

4.2.4 Multi-target Free-Flight

The objective of the free-flight experiments is to capture realistic flight test data. Each agent should

have no predefined trajectories or manoeuvres. Nonetheless, the hazard of operating multiple RPA

within share airspace raises safety concerns. As such, each RPA has a specific airspace region assigned

to itself, with ’no-fly’ zones in-between, as represented in Figure 4.12. The DJI Mavic, being the aircraft

with the smallest dimensions, is placed in the airspace closest to the sensor system. Additionally, RPA

pilots are placed inside the ’no-fly’ regions to prevent the RPA from crossing to unwanted regions.

4.3 Flight Test Operations

The flight test operations were performed by a team of specialists from the Centre for Aerospace

Research (CfAR) of the University of Victoria, Canada. A total of eight crew members contributed to the

flight test experiments, from which six had a drone pilot licence and an extensive experience in flight

operations.
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Figure 4.12: Unique airspace regions assigned to each RPA for the free-flight experiments. The DJI
Matrice 600 carries the sensor system payload, while the DJI Mavic and DJI Inspire act as flying targets.

4.3.1 Regulations and Test Crew Roles

The testing field for this research was conducted within restricted airspace, which required the CfAR

test pilots to follow the procedures for an RPA Advanced Operation. This included prior registration of

each aircraft, Advanced Operators certificates issued for each pilot, authorization for the operation from

NAV Canada, and permission from the local air traffic management.

During the flight tests, the following roles were assigned to flight test crew members:

• Pilot-in-command: main body responsible for the control and safety of the RPA. In total, three

licenced pilots were responsible for the RPA operations (Section 4.2.1).

• Visual Observer: assists the pilot in ensuring the safe conduct of a flight under visual line-of-sight.

• Range and Safety Officer: monitors any external threats that may come into the airspace, which

might include incoming aircraft or pedestrians.

• Flight Director: responsible for the coordination of flight test procedures between crew members.

• Ground Control: manages and controls the sensor system payload.

4.3.2 Data Collected

The flight manoeuvres performed were not as extensive as initially planned due to operational time

constrains and shorter than expected drone battery life. Nonetheless, valuable data was captured,

resulting in a successful flight test, performed between 2 pm and 6 pm on September 30, 2020. A photo

taken during the flight test operations is presented in Figure 4.13.

Every target manoeuvre was performed between the 10m and 60m range in increments of 10m. The

free-flight experiments were recorded for 4 minutes and 20 seconds, resulting in 5, 179 captured frames.

In total, 23, 425 frames, distributed across 29 manoeuvres, were captured and manually labelled for their

ground truth. This process was done on a Matlab video labeller application [62].
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Figure 4.13: Photo taken during the flight test operations. It presents the test van on the left, followed
by the flight test crew on the bottom centre. Finally, two RPA are represented on the top right, the DJI
Matrice 600 and DJI Mavic.
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Chapter 5

Results

This chapter presents the results obtained during the flight test experiments explained in Section 4.2.

It starts by presenting the results relative to the LiDAR detection performance (Section 5.1), followed by

the accuracy of the extrinsic calibration (Section 5.2). The chapter then approaches the results from the

visual detection methods (Section 5.3), as well as a comparison with the sensor fusion methods (Section

5.4). The chapter finishes by discussing the results (Section 5.5).

All the metrics presented in this chapter are explained in detailed in Section 2.3.

5.1 LiDAR Detection Performance

This section presents the LiDAR detection results on a sUAS, specifically, the DJI Inspire. It is divided

into two subsection: moving target and moving sensor experiments.

Additionally, all the data presented reflects the point cloud after the filtering step, seen in Section

3.3.1. The filtering method showed to be extremely effective for the flight test scenario presented. So,

the following results reflect a point cloud without false positives.

5.1.1 Moving Target Experiments

As explained in Section 4.2.2, the moving target experiments had the sensor system stationary

relative to the surrounding environment, either on the ground or in a hover position. The target performed

the cross manoeuvre at different distances.

Figure 5.1a shows comparable recall results between the LiDAR on the ground or in a hover position.

Both scenarios show a drastic decrease in target recall throughout the 60m range. The LiDAR presents

almost no detections at this last distance, except for a single point captured in the ground position.

Although comparable, there are discrepancies between both scenarios, more predominant at closer

ranges.

Figure 5.2b represents multiple LiDAR returns being generated for a single target for distances less

than 30m. However, for distances beyond 40m, the RPA is mainly captured by a single LiDAR point. A
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cluster formed by a single point can be problematic to confidently evaluate as a real target. Nevertheless,

it might be plausible if there is enough confidence in the filtering step to remove false positives.

These results display the LiDAR sensor’s inability to continuously capture the target location and

act as a single sensing solution on a static platform. The discrepancies observed between the ground

and hover experiments are not very significant. They seem to indicate no meaningful performance

deterioration induced by the LiDAR sensor’s presence onboard an aircraft, compared to having it on the

ground position.
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tance.

Figure 5.1: LiDAR recall and number of points per detection on the moving target experiments.

5.1.2 Moving Sensor Experiments

The LiDAR detection performance on the moving sensor experiments (Section 4.2.3) is analyzed

similarly to the methods applied in the previous Section 5.1.1. Once again, the LiDAR’s recall and

average number of points per detection is evaluated, as shown in Figure 5.2.
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(b) Points per detection on altitude variation and pitch vari-
ation experiments with target distance.

Figure 5.2: LiDAR recall and number of points per detection on the moving sensor experiments.
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The moving sensor experiments proved to be more consistent than the moving target. For example,

the sensor’s pitch movement is controlled by the onboard computer, granting a consistent and precise

5◦ pitch variation. Additionally, the sensor system’s altitude varied only between 10m and 15m while

maintaining the same X and Y positions. These techniques produced fewer uncertainties than the

more complex cross manoeuvre of the previous experiments.

Analysing the altitude variation experiment in Figure 5.2a, it is observed a 27.6% target recall at 10m,

which is inferior to both moving target experiments. However, recall consistency is improved, as it only

drops below 3% over the 50m range, while previous results show a drop below 3% at 40m. Additionally,

target recall values on the pitch variation experiment show the highest recall rates of all approaches,

achieving 38% recall at distances up to 20m, only dropping below 10% at ranges greater than 40m.

Observing Figure 5.2b, both manoeuvres present similar trends in the number of points per detection

and are on par with the moving target experiments. Multiple points per detection are presented until the

30m range, dropping only to a single point per detection above this threshold. The exception is the

altitude variation experiment, which presents two points instead of one at 40m.

These results reinforce the evidence of the LiDAR’s drastic performance degradation with the in-

crease in target distance. They also demonstrate the LiDAR’s potential to detect hovering sUAS through

both dynamic movements.

5.2 Extrinsic Calibration Accuracy

This section evaluates the pose estimation accuracy. The calibration accuracy is related to its ability

to project 3D LiDAR target points inside the 2D ground-truth label. The projected point can either land

’inside’ or ’outside’ the ground truth bounding box. Additionally, a ’near’ label is adopted to specify if a

point lands in the proximity of the ground truth. This classification is reserved for points that land in an

area with twice the ground truth’s height and length.

As explained in Section 3.4.2, two different techniques to capture 3D-2D point correspondences were

explored. The first was by extracting the corner points of a calibration board. The second extracted point

correspondences by visually estimating where each LiDAR point would correspond on the target’s pixel

location.

Table 5.1 presents a comparison between PnP solutions obtained with both solutions on the moving

target experiments, with the additional scenario of combining every captured point to solve the PnP

problem. The moving sensor experiments are not analyzed in this section, as the target is positioned

consistently at the centre line, as explained in Section 4.2.3. Thus, using the data from this experiment

would not be representative of the calibration accuracy across the entire image.
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Table 5.1: Extrinsic calibration accuracy on the moving target experiments. Three point extraction meth-
ods are used to solve the PnP problem: calibration board, visual inspection and both combined. Each
solution presents three labels for a LiDAR point projection: ’inside’, ’near’ or ’outside’ the target’s ground
truth. These results are shown for the two moving target experiments: on the ground and in hover.

As a side note, more points at close ranges are not synonymous with a higher number of ground truth

boxes. It is just the effect of a higher number of points per detection, discussed in the LiDAR detection

analysis of Section 5.1.

The PnP solution obtained with the calibration board shows admissible accuracy results at close

ranges. They also present an inability to transform any target points over 40m correctly. This accuracy

drop with distance was expected, considering the distance between the sensor and point correspon-

dences varied between four and nine meters. Thus, slight errors between 3D-2D point correspondences

at these distances would become meaningful deviations at longer ranges.

The PnP solution obtained with the visual inspection method shows higher accuracy results across

all ranges. Still, multiple projected points between 10m and 20m are classified as ’near’ the ground truth.

Accuracy at close ranges improved by combining all point correspondences to solve the PnP problem.

Multiple points previously labelled as ’near’ the ground truth improve to become labelled as ’inside’.

However, it came at the cost of a slight loss in accuracy for the hover experiment at 50m. Also, no PnP

solution could show accurate results at the 60m range.

It is observed that the number of points ’outside’ the ground truth does not vary between the visual

inspection and both methods combined. These are points transformed out of the image frame bounds

when the target is manoeuvring near the image’s edge. Additionally, they appear to be much more

significant in the hover rather than in the ground experiment.

Finally, the calibration accuracy for the free-flight experiment is presented in Table 5.2. Similar con-

clusions are taken regarding the three PnP solutions. The best accuracy is presented when a combina-

tion of all point correspondences is used.
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Table 5.2: Extrinsic calibration accuracy on the free-flight experiment. Three point extraction methods
are used to solve the PnP problem: calibration board, visual inspection and both combined. Each
solution presents three labels for point projections: inside, near or outside the target’s ground truth.

5.3 Visual Methods Results

This section presents the visual detection and tracking results obtained on the moving target and

free-flight experiments. It starts by presenting the performance of the YOLOv3 detector (Section 5.3.1),

followed by the results of the YOLO-based tracker (Section 5.3.2), where its ability to follow sUAS is

evaluated. The results from the moving sensor experiments are excluded from this section as the target

is in hover on the central part of the image. Therefore, it is not considered to be an interesting target to

track.

5.3.1 YOLOv3 Detector

The YOLOv3, discussed in Section 3.2.1, is the algorithm responsible for detecting sUAS targets. A

precision-recall (P-R) curve evaluates its ability to detect and locate targets captured during flight testing.

Section 2.3 describes the concept of a P-R curve in further detail. The non-maximum-suppression

parameters of the YOLOv3 algorithm were set with an IOU threshold of 50% and a minimum confidence

threshold of 0.01. Lower confidence values proved to be problematic for the algorithm, hence its value.

The P-R curve obtained is presented in Figure 5.3, showing an average precision (AP ) of 32.0%. The

AP serves as an overall metric to describe the detector’s performance. However, the value obtained is

low, and a close inspection of the P-R curve indicates the probable causes.

Figure 5.3: Precision-recall curve for the YOLOv3 detector. The presented results are based on the
entire flight test data collected. The red point represents the highest F1score achieved of 0.44.
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An ideal P-R curve would present a constant precision value of 100% as the target recall increases,

presenting a horizontal line for all confidence threshold values. The negative slope in Figure 5.3 indicates

an increasing proportion of false positives with a decrease of the confidence threshold. On examining

detection samples presented in Figure 5.4, the various types of false targets collected become apparent.

Obvious wrong detections, like the treetop, expose flaws in the training process. Other false positives

present background clutter that is difficult to distinguish between a true and a false positive, even for the

human eye. This is because the target and clutter can appear very similar. The bottom right sample in

Figure 5.4 represents a safety cone, which is fairly similar to the true positive above. However, when

the target is above the horizon, its features contrast more with the simple background, leading to more

consistent detections.

Figure 5.4: YOLOv3 detection examples. The top row presents true positives, and the bottom row false
positives.

Additionally, with a minimum confidence threshold of 0.01, the detection algorithm could only achieve

a recall of around 80%, contributing to the low AP number. A closer inspection reveals that the vast

majority of the non-detected targets happen on occasions where the RPA is far and in locations with

complex backgrounds, seen in Figure 5.4.

Furthermore, the camera frames are captured in the compressed JPEG format, as explained in

Section 4.1.2. This diminishes image quality and makes it more challenging for the detector to extract

small target features. In addition, the dataset used to train YOLOv3 was captured by a ground-based

system. Thus, the vehicles are predominantly observed above the horizon. This would not prepare the

network for scenarios with sUAS against textured backgrounds.

Finally, to determine with which confidence threshold the algorithm would perform best, the P-R

curve’s point is chosen based on the F1score. This metric, described in Section 2.3, provides a balanced

representation of the algorithm’s precision and recall. The best F1score is 44%, obtained with a confi-

dence threshold of 0.26. This point, represented by a red dot in Figure 5.3, has a precision of 42% and

a recall of 46%. The following results present the YOLOv3 detector set on this confidence threshold.
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5.3.2 YOLO-Based Tracker

This section evaluates YOLO-based tracker’s performance based on the moving target and free-flight

experiments. This algorithm is explained in Section 3.2.

The moving target experiments provide a valuable platform to analyze the tracking capabilities across

multiple target distances. Additionally, the comparison between the ground and hover manoeuvres al-

lows evaluating the effects of mounting the sensor system on a flying platform. Figure 5.5 presents

obvious contrasts between ground and hover experiments. The YOLO-Based tracker presents a supe-

rior performance when the system is on the ground, having average higher recall and precision values

across multiple target distances.
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(b) Precision of YOLO-based tracker.

Figure 5.5: YOLO-Based tracker on the moving target experiments.

Both manoeuvres in Figure 5.5a present a recall decline with an increase in the target distance. It

can mainly be attributed to the target small features the further its distance is. Figure 5.5b presents

similar decline in precision, although not as sharp. Also, there are stark discrepancies between the

precision on the hover and ground manoeuvres. These disparities are indicative of a large number of

false positives on the hover experiments. There are two main phenomena at play that may be the root

cause: disparities between the time the target is under the horizon and extra ground clutter captured

while the system is in hover.

First, between the ground and hover experiments, the target spends a disproportional amount of

time above or under the horizon. On the ground, most of the target trajectories happen above the

sensor system, where the target spends about 84.4% of its trajectories above the horizon. In contrast, in

the hover experiments this value drops to an average of 62.8%. These discrepancies may relate to the

lower overall recall on the hover experiment, as the complex background under the horizon makes the

detection task more difficult.

A second plausible explanation for the experiment discrepancies is that the sensors’ higher altitude

provides a more detailed top-down view on ground clutter. This clutter, in turn, gets misdetected as a

drone. An example of such occurrences is the safety cones positioned on the test field, which are more
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visible in the hover manoeuvres. They contribute to the lower precision, as the YOLOv3 can incorrectly

misrepresent them as drones, as exemplified in Figure 5.4.

Table 5.3: Results of the YOLO-based tracker on the free-flight experiments.

Table 5.3 presents the YOLO-Based tracker results on the free-flight experiments, which show 48.4%

target recall and a 17.0% precision on target capture. This experiment has, on average, 47.0% of the

target trajectories spent under the horizon. Compared to 84.4% and 62.8% of frames spent above the

horizon in the previous experiments, a relationship between recall values and the percentage of target

frames spent above the horizon appears to exist. The analysis of each free-flight trajectory, presented

in Figure 5.6, indicates a connection between the percentage of a successfully tracked trajectory and

the amount of time that vehicle spends above the horizon. These results show that the tracking results

depend on the object location, which is an important factor.

Figure 5.6: Analysis of trajectories from the free-flight experiment. There are in total 11 trajectories,
being classified as follows: mostly tracker (MT) - 3; partially tracked (PT) - 8; mostly lost (ML) - 1.

5.4 Sensor Fusion Results

This section presents and compares the results of the sensor fusion algorithm. The YOLO-based

tracker is kept with the same confidence and IOU threshold values as chosen in Section 5.3.1.

Figure 5.7 shows that the sensor fusion recall on both ground and hover experiments is comparable

to the YOLO-based tracker on distances up to 30m, with the sensor fusion presenting the lower values.

One cause for this effect is the sensor fusion’s idleness while waiting for the LiDAR sensor to capture

a target, which leaves initial frames without detections. The increase of target distance amplifies this
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effect, as a significant decline in recall values can be observed on distances over 40m. Even with a

LiDAR recall of 0.6% for the 50m range, the sensor fusion solution can still achieve a recall of 32.0%

for the ground experiment. For the hover experiment, sensor fusion solution presents a recall of 40.5%

despite the LiDAR sensor only capturing the target 1.2% of the time. The 60m distance did not have any

detections in the sensor fusion method. It is understandable, as there was only a single LiDAR detection

at this distance, and the calibration procedure did not project it correctly.
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Figure 5.7: Recall comparison between sensor fusion and YOLO-based tracker on the moving target
experiments.

Precision results are shown is in Figure 5.8. The sensor fusion solution shows a tremendous increase

in precision, either on the ground or in the hover experiments. This effect is related to the region of

interest (ROI) being focused on the target location, leading to the algorithm being less susceptible to

false positives. Ground experiments show a consistent precision above 96%, except for the 10m range,

which presents an 84.7% precision. In the hover experiments, there is a decrease in precision between

30m and 40m, which rises to 94.5% at 50m. This anomaly might be influenced by the presence of

ground clutter on the hover experiments. Despite the sensor fusion solution presenting lower values of

precision in the hover experiments, it is there that the most significant disparities with the YOLO-based

tracker happen, having the sensor fusion almost ten times higher precision across target distances.
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Figure 5.8: Precision comparison between sensor fusion and YOLO-based tracker.

Similar trends are shown for the free-flight experiments, seen in Table 5.4. The sensor fusion and

the YOLO-based tracker present similar recall values, of 48.4% and 41.9%, respectively. Once again, the

sensor fusion solution shows a drastic increase in target precision, from 17.0% to 91.2%. Both solutions

present similar MOTP , which means the average IOU overlap between detections and ground truth is

above 70% for both. Sensor fusion presents an increase from −1.88 to 0.38 in the MOTA metric, which

accounts for the overall tracking ability. Although not referenced in Table 5.4, no identity switch (IDSW )

were observed during the tracking process.

However, the sensor fusion solution presents a lower ability to reconstruct the ground truth track,

dropping by one the number of trajectories mostly tracked (MT ) and increasing by four the number

of trajectories mostly lost (ML). A reason for this effect can be linked to some tracks being made of

a lower number of frames, giving a smaller change for the LiDAR to detect the vehicle and begin the

tracking procedure. Each time a RPA enters and leaves the camera field of view, a new trajectory is

created, leading to a high variability in the length of each one. Nonetheless, the sensor fusion method

presents half of the trajectory fragments, 50 instead of 99, showing better tracking consistency than the

YOLO-based tracker.

Additionally, both solutions show the ability to process sensor data in real-time, presenting a pro-

cessing speed higher than 20Hz, which is the framerate at which sensor data is recorded. Furthermore,

the sensor fusion methods can more than double the processing speed of the visual algorithm, to 57Hz.

However, these results are achieved on powerful computational resources, using an NVIDIA Tesla P100

GPU to improve the processing speed of the YOLOv3 detector. Real-time onboard capabilities is still a

topic left to be researched.
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Table 5.4: Tracking results of the YOLO-based tracker and sensor fusion on the free-flight experiments.

5.5 Discussion

The filtering methods explored were able to successfully removed non-target detections from the

LiDAR’s point cloud. The boundaries created were simple since the flight test environment was mostly

clutter-free. A more complex scenario, such as an urban environment, might require more elaborate

boundary formulations to remove such points.

The experimental tests indicate that LiDAR detections decay rapidly with the increase in target dis-

tance. These results are expected due to the sparse point cloud created by the M8 LiDAR, presenting

only eight vertical channels. These results demonstrate the sensor’s inability to detect a flying target

across multiple ranges continuously. Thus, a complementary sensor is required if a reliable system is to

be created. Additionally, a maximum LiDAR detection range of 60m was observed for the specific sUAS

tested, the DJI Inspire, and might differ for other aircraft models. A study on diversified agents might be

necessary to construct a reliable C-sUAS solution to deal with different threats.

When comparing the LiDAR performance between the ground and hover experiments, no large dif-

ferences are presented. In theory, the hover position would provide a better detection situation since

most of the horizontal scans would be looking for targets instead of pointing towards the ground. The

similarity of results can also be attributed to the cross manoeuvre’s adaptation to each, since the ma-

noeuvre’s maximum height, hmax, was dependant on the system’s altitude, hs, presenting larger altitude

deviations in the hover experiment. These results also indicate the perturbations caused by the flying

vehicle do not jeopardize the LiDAR detection ability.

Furthermore, the cross manoeuvre, in which the LiDAR detection performance was evaluated, rep-

resents an ideal scenario intending to increase LiDAR detections and might not reflect realistic flight

conditions. Nonetheless, the results obtained provided an excellent data source for evaluating the de-

tection and tracking performance across different target distances.

Regarding the moving sensor experiments, the pitch angle manoeuvre is more advantageous than

the altitude variation, as the manoeuvre presents a higher recall rate and requires less energy to operate,

as opposed to climbing various meters in the air. Also, with the pitch variation motion, the regions

covered by each horizontal scan overlap each other for all ranges.

The extrinsic calibration results show a much better performance on the visual inspection approach

than using a calibration board. The main reason for the calibration board’s failure was the distances at

which points were captured. A small error in calibration at close distances can translate into large devia-

tions at longer ranges. A different approach able to estimate the 3D corner points more accurately could
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improve results. Although more accurate, the visual inspection procedure is not an efficient methodology

to perform each time a LiDAR and a camera need to be calibrated.

Additionally, the results obtained by the YOLOv3 detector are highly dependent on the target’s po-

sition relative to the environment scene. These limitations are mainly caused by the training dataset,

which did not prepare the detector to deal with textured backgrounds. Apparent false positives, such as

the treetop, show noticeable flaws in the training process. However, this research constructed a labelled

dataset without this setback, which can train the YOLOv3 detector to improve under the horizon results.

Despite the lower recall values shown in the sensor fusion results, compared to the YOLO-based

tracker, it presented higher precision while tracking the target. This effect is observed across all ex-

periments. This indicates that the ROI creation successfully focused the searching area of the visual

detection algorithm, lowering the number of false positives acquired. The main reason for the lower

recall in the sensor fusion method if the algorithm’s idleness while waiting for a LiDAR detection since

it relies entirely on the sensor for target acquisition. This effect is felt more intensely at larger distances

where the point cloud is more sparse.
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Chapter 6

Conclusions and Future Work

This chapter presents the main conclusion of this thesis and discusses possible steps for future work.

6.1 Conclusions

This thesis provides a multi-sensor methodology to detect and track sUAS. The approach dealt with

non-cooperative targets through a combination of a LiDAR and an EO camera.

This research demonstrated two different methods to obtain calibration points to perform the extrinsic

calibration procedure between a LiDAR and a camera. It showed that the combination of both methods

would lead to the best accuracy results.

It also implemented a visual detection and tracking system by using a YOLOv3 detector and a mod-

ified DeepSORT tracker. This thesis presented an approach to deal with the computational setback

associated with the visual target search and the subsequent capture of false positives. It successfully

minimized these problems by using LiDAR detections to acquire the target location and creating a region

of interest (ROI) around it.

This thesis has designed and constructed a sensor system payload, which was experimentally tested

onboard an aircraft. Multiple flight test experiments were planned and executed by a team of specialists

from the Centre for Aerospace Research (CfAR) of the University of Victoria. From these experiments,

this research produced a multi-drone dataset with targets located in complex backgrounds.

6.2 Future Work

Potential future work includes the improvement of the YOLOv3’s detection performance. The solu-

tion would include the use of a more appropriate dataset to train the algorithm. Ideally, it would involve

various aircraft types to allow the algorithm to identify specific sUAS models and be located on textured

backgrounds to make the detector more resilient to vehicles under the horizon. Additionally, the devel-

opment of a dynamic ROI creation that adjusts according to the vehicle’s appearance and location could

present improvements in the approach’s runtime and precision. Moreover, incorporating a visual search
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on random image locations when the LiDAR does not return any targets and when no target is being

visually tracked could also improve recall results.

Further future work could include creating an algorithm capable of locating a vehicle in a 3D envi-

ronment, taking advantage of LiDAR measurements. This information would be precious for a C-sUAS

system. Furthermore, algorithm optimization and subsequent evaluation on an onboard computer would

be needed to prove its real-time onboard capabilities. Finally, creating a simulated environment to cap-

ture additional data and perform extra manoeuvres would be extremely valuable, considering flight tests

are expensive and take a lot of time to prepare and execute.
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