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Abstract

The recent growth in numbers of small unmanned aerial systems (sUAS) has raised concerns
among civilian and military organizations, as they can jeopardize critical infrastructure and threaten
manned aircraft. Detecting and tracking intrusive drones is essential to construct reliable counter sUAS
(C-sUAS) solutions. Onboard payload sensors typically include electro-optical (EO) cameras, which can
be lightweight and provide high-resolution information of the surrounding scene. However, continually
searching for targets across high-resolution images is computationally expensive and susceptible to an
increase in false positives. Furthermore, EO cameras cannot measure distances directly, which light
detection and ranging (LiDAR) sensors can, generating point clouds at a frequency up to 20Hz with
ranges over 100m. However, these are usually sparse and cannot recognize small targets. The present
thesis studies each sensor’s capabilities and develops a sensor fusion solution. It develops a YOLO-based
tracker for visual detection and tracking and studies the ability of a LiDAR to detect sUAS onboard
an aircraft. Additionally, it demonstrates an extrinsic calibration procedure to project 3D LiDAR
points into the camera frame accurately. The proposed sensor fusion solution aims to create regions
of interest (ROI) from these LiDAR projections to narrow the YOLO-based tracker’s search window.
Finally, experiments with multiple flying targets were performed onboard an aircraft, demonstrating
that the sensor fusion solution improves the YOLO-based tracker baseline results, increasing precision
from 17.0% to 91.2%, and framerate, from 24Hz to 57Hz, keeping a similar recall of 41.9%, compared
to 48.4%.
Keywords: YOLO-based tracker, regions of interest, extrinsic calibration, aerial systems, small UAS

1. Introduction

In the present world, it has become easier than ever
to acquire and operate small unmanned aerial sys-
tem (sUAS). The absence of a human pilot has en-
abled them to become a robust solution for many in-
dustries, such as infrastructure inspection or precise
agriculture. Even so, consumer-grade sUAS domi-
nate the commercial sector in the US with a 94%
share, according to the Federal Aviation Adminis-
tration (FAA) [1].

Their indiscriminate use can jeopardize critical
infrastructure or even interfere with manned air-
craft. A coordinated drone attack halted opera-
tions in the Gatwick Airport for three days, leading
to millions in losses [2]. These ’off-the-shelf’ sUAS
platforms could be transformed into rudimentary
weapons with relative simplicity, becoming an ap-
pealing tool to individuals with nefarious intentions.
Recently, NATO has identified the urgent need to
improve existing counter sUAS (C-sUAS) solutions
[3]. Furthermore, a C-sUAS system is only as effec-
tive as its capability to detect possible threats.

This paper presents a sensor fusion methodology
for detecting and tracking non-cooperative sUAS.
The proposed approach aims to use a LiDAR point
cloud to perform the acquisition of possible targets
and then use a visual system to detect and track
each vehicle. The objective is for the LiDAR to
alleviate the visual detector’s search task by pro-
viding it with regions of interest (ROI). Based on
a YOLOv3 detector [4], and a DeepSORT tracker
[5], the visual system keeps track of the vehicle lo-
cation once it is acquired. The sensor system is
experimentally tested onboard an aircraft and the
sensor fusion methodology is evaluated on the cap-
tured data.

2. Related Works

Sensor fusion between LiDAR and camera for C-
sUAS purposes was previously researched by Ham-
mer et al. [6]. A pan-tilt camera would align itself
towards a flying object detected by the LiDAR, us-
ing a deep learning algorithm to classify it. How-
ever, the presented solution is based on heavy sensor
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equipment, unfeasible for an aerial detection solu-
tion, which this research aims to achieve.

A similar concept to the ROI is proposed by
Opromolla et al. [7] to visually detect and track
UAS while airborne. Knowing the GNSS position of
a cooperative UAS and projecting it into the image
frame created a search window to be processed by
a YOLO-based detector. However, this cooperative
assumption is not suitable for a C-UAS solution.

Localization of non-cooperative sUAS onboard an
aircraft has been attempted by Vrba et al. [8][9]
which combined a stereo camera and a YOLO-based
detection method. The proposed approach reports
reliable object tracking up to 32m. Nevertheless,
these techniques are not able to directly measure
target distances.

The usage of onboard active sensors for sUAS de-
tection was researched by Dogru and Marques [10],
demonstrating that an airborne millimetre wave
RADAR could measure a drone’s bearing and range
up to 25m. De Haag et al. [11] performed a study
on the capabilities of an airborne LiDAR to detect
drones weighing less than 250g, reporting a high de-
tection probability for ranges smaller than 15m, but
leaving heavier vehicles still out of its scope. The
main limitation of both these approaches is the in-
ability to identify the flying vehicle.

This paper aims to fill the literature gap for an
onboard sensor system that employs a LiDAR and
camera sensors to achieve real-time detection and
tracking of non-cooperative sUAS.

3. Sensor Fusion Methodology

As previously mentioned, electro-optical (EO)
cameras can capture the environment in high-
resolution. Based on such rich information, it is
possible to identify and classify targets based on ex-
tracted features. When looking for aerial vehicles,
targets are most often only small objects within a
larger context. For example, a target measuring
45cm × 45cm, captured by an EO camera at 50m,
only occupies a 20×8 pixel area inside a 1280×720
image. Actively searching in the entire image is not
only computationally expensive but can also lead
to the acquisition of a substantial amount of false
positives. Thus, refining the area of search would
prove extremely valuable.

LiDAR sensors can provide direct target mea-
surements. The point clouds generated are fast to
create (i.e. up to 20Hz) and to process. Addi-
tionally, if employed in an aerial scenario, only a
portion of the laser beams emitted will generate re-
turns, as most will point towards the sky. So, there
is a substantial likelihood that the observed returns
correspond to an aerial target.

Nevertheless, point clouds usually contain non-
desired points, which must be filtered. Also, since

multiple points can represent a single target, a clus-
tering method is also important to identify objects
of interest among the cloud.

Developing a 3D-2D point projection method is
fundamental to correlate information between the
camera and the LiDAR. This enables LiDAR ac-
quisitions to be projected into the camera frame for
further inspection. Additionally, creating regions of
interest (ROI) around projected clusters provides
the visual detection algorithm with a refined search
area to process.

The use of a visual tracker can establish tempo-
ral consistency between visual observations. Fur-
thermore, by using an internal estimator, such as a
Kalman filter, the visual tracker can predict future
target locations and feed that information back into
the ROI creation, enabling the formation of a closed
tracking loop.

On the approach taken, the YOLOv3 [4] is chosen
as the visual detector, complemented by a modified
DeepSORT tracker [5]. The combination of both
solutions creates the visual detection and tracking
system nicknamed YOLO-based tracker.

Figure 1 presents a simplified diagram of the sen-
sor fusion solution, which aims to detect and track
sUAS.

Figure 1: Diagram of the sensor fusion algorithm.
The dashed line represents a link between consecu-
tive iterations.

3.1. YOLO-Based Tracker
The YOLO-based tracker is the backbone of the sen-
sor fusion algorithm and comprises a YOLOv3 de-
tector [4] and a modified DeepSORT tracker [5].

The YOLOv31 algorithm is chosen as the detec-
tion framework since it presents a good compro-
mise between accuracy and speed. It is trained on a
dataset made available by Svanström [12], which in-
cludes 114 videos of a flying drone with a 640× 512

1https://github.com/ultralytics/yolov3
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resolution, totalling 15,133 labelled image frames.
The videos were randomly divided into training and
validation sets in an 80/20 proportion. The train-
ing process finished after 20 epochs presenting an
overall AP = 87.3% and F1score = 83.1%.

Regarding the DeepSORT tracker, some key
modifications are made to adapt the algorithm for
sUAS tracking. Specifically, the CNN appearance
descriptors are discarded, are they are not particu-
larly useful when dealing with sUAS, as their small
features against complex backgrounds are difficult
to compare. Additionally, the proposed scenario
deals with a small number of flying targets, making
the distance metric ideal for the assignment prob-
lem between observations and tracked states.

3.2. Point Cloud Pre-Processing Methods
There are two pre-processing steps applied to the
point cloud to obtain objects of interest from the
LiDAR: filtering and clustering.

The filtering algorithm assumes that airspace
boundaries representing admissible target locations
are given relative to the sensor’s X and Y position.
Each point is transformed to compensate for the
sensor system’s angular movement, and removed if
located outside the boundary conditions.

This clustering task is performed by the DB-
SCAN algorithm [13]. The algorithm requires two
parameters: the maximum distance between two
points for one to be considered in the neighbour-
hood of the other, and the minimum number of
points to form a cluster. The first parameter is
set to the largest dimension of the tested targets,
which is 0.5m. The minimum number of points is
set to one, which assumes the filtering step removes
every point not of interest to the algorithm.

3.3. LiDAR-Camera Pose Estimation
The pose between the camera and the LiDAR must
be estimated before LiDAR points can be projected
into a pixel frame. This estimation problem, known
as perspective-n-point (PnP), is solved with the
EPnP algorithm [14].

To find a solution, the EPnP algorithm requires
the intrinsic camera matrix K, the radial and tan-
gential distortion coefficients (k1, k2, k3, p1, p2), and
several 3D-2D point correspondences.

The approach taken gathers calibration points by
estimating the location of a calibration board’s cor-
ners captured by the camera and LiDAR sensors. A
rectangular board is rotated 45◦, as seen in Figure
2, so the LiDAR horizontal scans can intersect its
four edges. However, LiDAR point clouds can not
directly provide the location of its corners, so their
3D coordinates have to be estimated.

The algorithm achieves this by computing the
point cloud’s convex hull and obtaining the mini-
mum bounding box able to enclose it. The bound-

ing box’s corners provide an estimate for the cal-
ibration points in 3D. However, this approach ap-
plied to a single board does not offer much depth
distinction between points. To diversify calibration
point locations, a total of four different board posi-
tions are captured, as shown in Figure 2. In total,
the procedure extracted 16 pairs of 3D-2D point
correspondences at a maximum range of 9m.

Figure 2: Reprojection of the calibration board’s
point cloud into the camera frame at four different
locations. The distance of each location is: 1 - 4m;
2 - 9m; 3 / 4 - 7m.

Additional calibration points are obtained at fur-
ther distances using a different approach. From the
flight test data, 3D-2D point correspondences are
extracted by visual inspection, as presented in Fig-
ure 3. After a preliminary calibration procedure ob-
tained from the previous method, 3D target points
are visually examined for corresponding location in
the pixel context. In total, 22 point-pairs are ex-
tracted, ranging between 10m and 50m.

Figure 3: Example of the visual inspection used to
extract calibration points at further distances. A
LiDAR point P = (Xi;Yi;Zi) is visually associated
with the pixel point p = (xi; yi) for the ith point
correspondence.

3.4. ROI Creation
The objective of creating a region on interest (ROI)
is to narrow the search area of the detection algo-
rithm.

3



Each ROI has fixed dimensions to simplify its
creation process. They are chosen based on the
maximum pixel size that the target presents dur-
ing the flight tests. The primary target measures
45cm × 45cm. When captured by the camera at
10m, it occupies an 80 × 50 pixel area inside a
1280 × 720 image. Since the YOLOv3 detector re-
quires an input size multiple of 32, the ROI size is
set to 128 × 128 pixels. This restriction is related
with its convolutional network architecture.

When creating a ROI around a target, its location
can come from two sources: LiDAR detections and
tracker predictions. After the LiDAR point cloud
is transformed into 2D clusters, a bounding box en-
closing every point is created, being representative
of the captured target. However, LiDAR clusters
may only capture a small portion of the target, lead-
ing to uncertainty regarding its outer limits. On the
other hand, bounding boxes from tracker predic-
tions contain information on the target’s pixel size,
allowing a more informed decision on ROI place-
ment. Suppose the centre of the bounding box cre-
ated from the LiDAR data is inside an already exist-
ing bounding box in the tracker prediction list. In
that case, the LiDAR detection is discarded since
the target is already being visually tracked. Al-
though LiDAR clusters do not consistently provide
target detections, they are a crucial mechanism for
target acquisition.

A ROI is created around each target if the ob-
ject is not already entirely enclosed by an existing
ROI. This simple solution presents some downsides,
as one object in the borderline of another ROI will
produce its own search region, resulting in overlap-
ping ROI, leading to redundant computations. Ad-
ditionally, overlapping ROI can cause the same tar-
get to be detected multiple times. As a solution, a
non-maximum-suppression algorithm is applied to
remove duplicate YOLOv3 detections. Given the
present sUAS scenario has low vehicle density, the
problem of overlapping ROI is not substantial.

Figure 4 represents a frame processed by the sen-
sor fusion algorithm using the described approach.
A LiDAR detection, the red dots, create the ROI,
yellow bounding box, which is processed by the vi-
sual detector, obtaining the detection in dark blue.

4. Experiments

There are three main experiments performed dur-
ing the flight tests: moving target, moving sensor
and multi-target free-flight. A simplified diagram
of these is presented in Figure 5. The moving tar-
get and moving sensor experiments are divided into
two sub-experiments related to the sensor system
position and movement. For the moving target, the
sensor is either positioned on the ground or in a
hovering aircraft. In the moving sensor, two differ-

Figure 4: Example of a ROI creation. The LiDAR
detection is the red dots, the ROI is the yellow
bounding box, the ground truth is the light blue
and a detection is a dark blue bounding box.

ent manoeuvres are performed: altitude and pitch
angle variation. A detailed description of each ex-
periment and of the remotly piloted aircraft (RPA)
is made in the following subsections.

Figure 5: Diagram of the flight test experiments.

4.1. RPA Deployed
Three different RPA flew on the flight tests, as rep-
resented in Figure 8. The aircraft carrying the sen-
sor payload was the DJI Matrice 600. It is the
largest aircraft of the three and provides an ideal
platform to support the sensor system. With a
maximum take-off weight of 15.5kg, the RPA has
an endurance of 18 minutes while carrying a 5.5kg
payload.

The two remaining RPA were operated as flying
targets. The DJI Inspire and DJI Mavic weight
2.8kg and 0.7kg, respectively. They both are pop-
ular commercially available sUAS, becoming ideal
test vehicles for C-sUAS experiments. Between
them, the DJI Inspire has the largest size, and for
that reason, it was considered the primary target,
flown on all experiments. The DJI Mavic was only
used during the free-flight experiments, where all
three RPA were flown simultaneously.

4.2. Moving Target Experiments
The moving target experiments were performed
while the sensor system is stationary relative to the
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Table 1: Specification sheet of the M8 LiDAR [15].
For sUAS detection, the LiDAR is turned upside-
down. Thus, experimentally the vertical FOV is
inverted (+18◦/− 3◦).

surrounding environment. Two different sensor lo-
cations were studied: on the ground and in hover.
While in these positions, it would capture the RPA
target performing a manoeuvre named cross ma-
noeuvre at different distances. Figure 7 presents a
visual representation of the manoeuvres performed.
The airspace assigned to the DJI Matrice 600 and
DJI Inspire is represented by the blue and yellow
rectangles, respectively. The red region is a ’no-
fly’ zone to guarantee that no contact could occur
between aircraft.

Figure 6: Cross manoeuvre diagram, with same
frame of reference as in Figure 7. The target begins
by moving between A-B-A, followed by C-D-C.

A concerning limitation of the M8 LiDAR, as pre-
sented in Table 1, is the sparse vertical resolution
it provides, having only 8 vertical channels. A ma-
noeuvre was created to increase the probability of
the target being detected by the LiDAR. To do so,
the RPA performs significant altitude variations to
cross as many horizontal scanning lines as possible.
For simplicity reasons, it is named the cross ma-
noeuvre. In its essence, the manoeuvre consists of
simple climb and descents, performed both verti-
cally and diagonally. The objective of the diago-
nal movement is to diversify the detection location.
The cross manoeuvre can be split into four different

steps, presented in Figure 6. The RPA must move
parallel to the X-axis, as seen in Figure7. The cross
manoeuvre is then performed at different range in-
tervals to evaluate the relationship between LiDAR
detections and target distance. The cross manoeu-
vre has two parameters: the maximum height hmax

and the horizontal distance ∆xDC between point D
and C. To allow the drone a chance to pass over ev-
ery possible horizontal scanning line, the maximum
height hmax was different at each distance d, taken
from the equation

hmax = hs + d · tan(αmax) (1)

where hs is the height of the sensor system and
αmax is the maximum LiDAR vertical scanning an-
gle.

Figure 7: Visual representation of the moving tar-
get experiments. The DJI Inspire performs the
cross manoeuvre along the light blue lines, staying
parallel to the X-axis. The dark blue lines represent
the FOV limits of the camera. The sensor system
has the same X and Y values in every manoeuvre.

The RPA target performs the cross manoeuvres
between 10m and 60m from the sensor system. Ide-
ally, ∆xDC should be set as always to keep the RPA
within the camera FOV. Markers were physically
placed on the field to help the pilot-in-command
visualize these boundaries, as seen in Figure 7.

During the experiments, the sensor system was
kept at the same X and Y positions. The altitude
varied, staying at hs = 1m while on the ground,
and at hs = 10m while in hover.

4.3. Moving Sensor Experiments
The benefits of sensor mobility are evaluated by ex-
ploring two different techniques: altitude and pitch
angle variation.

The first experiment explores the sensor’s alti-
tude variation. By varying the altitude it is pos-
sible to ensure that the LiDAR horizontal scans
search the airspace completely, up to a certain
range. Thus, the height ∆h between two consec-
utive scans at a certain range represents the same
vertical displacement the LiDAR needs to achieve
and is given by:

∆h = d · (tan(αi+1) − tan(αi)) (2)
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where d is the horizontal distance between the tar-
get and the sensor, αi is the angle between the
horizon and the ith horizontal scan. One obvi-
ous concern with this approach is that as αi and
αi+1 increase, so does the height ∆h. For the M8
LiDAR, the separation between horizontal scans
is ∆α = αi+1 − αi = 3◦, as shown in Table 1,
and the elevation of the two highest horizontal ar-
rays is α8 = 18.25◦ and α7 = 15.25◦. So, for
d = 60m, an altitude variation of ∆h = 3.42m
would be necessary to guarantee an overlap between
scanned regions. Experimentally, the sensor sys-
tem performs ∆h = 5m with an initial altitude of
h0 = 10m, theoretically achieving no blind regions
up to d = 87.8m.

The second technique examines how the pitch an-
gle movement of the LiDAR can be used to de-
tect other RPA. If the sensor system pitch angle
θ is tilted more than the angle ∆α between the
LiDAR horizontal scans, it allows the horizontal
scans to overlap, allowing a thoroughly inspection
of the airspace for targets. Experimentally, pre-
cise pitch angle motions of the sensor system is
performed by a servo-controlled mechanism. This
solution preserves the aircraft’s position and stabil-
ity. The experiments perform a pitch variation of
∆θ = 5◦, guaranteeing an overlap between LiDAR
scans, since ∆α = 3◦. Additionally, the sensor sys-
tem hovers at hs = 10m.

The target is positioned at the centre line position
in both experiments, along the Y-axis represented
in Figure 7. Like the moving target experiments,
the vehicle moves between 10m and 60m from the
sensor system. At each segment, the target sustains
a hover manoeuvre at different altitudes to keep it
at a constant 10◦ elevation angle relative to the pay-
load. The sensor system preserves the same X and
Y values for the entire moving sensor experiments.

4.4. Free Flight

The objective of the free-flight experiments is to
capture realistic flight test data. Each agent
should have no predefined trajectories or manoeu-
vres. Nonetheless, the hazard of operating multiple
RPA within share airspace raises safety concerns.
As such, each RPA has a specific airspace region
assigned to itself, with ’no-fly’ zones in-between, as
represented in Figure 8. The DJI Mavic, being the
aircraft with the smallest dimensions, is placed in
the airspace closest to the sensor system. Addition-
ally, RPA pilots are placed inside the ’no-fly’ regions
to prevent the RPA from crossing to unwanted re-
gions.

5. Results

This Section presents the results obtained during
the flight test experiments explained in Section 4.

Figure 8: Unique airspace regions assigned to each
RPA for the free-flight experiments. The DJI Ma-
trice 600 carries the sensor system payload, while
the DJI Mavic and DJI Inspire act as flying tar-
gets.

5.1. LiDAR Detection Performance
Figure 9 presents the LiDAR recall on the moving
target experiments. The LiDAR recall is the per-
centage of total targets the LiDAR was able to de-
tect. It shows comparable recall results between the
LiDAR on the ground or in a hover position. Both
scenarios show a drastic decrease in target recall
throughout the 60m range. The LiDAR presents
almost no detections at this last distance, except
for a single point captured in the ground position.
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Figure 9: LiDAR recall with target distance on
moving target experiments.

These results display the LiDAR sensor’s inabil-
ity to continuously capture the target location or
act as a single sensor solution on a static platform.
The discrepancies observed between the ground and
hover experiments are not very significant. They
seem to indicate no meaningful performance dete-
rioration induced by the LiDAR sensor’s presence
onboard an aircraft compared to having it on the
ground position.

The moving sensor experiments proved to be
more consistent than the moving target. For ex-
ample, the sensor’s pitch movement is controlled by
the onboard computer, granting a consistent and
precise 5◦ pitch variation. In addition, the sen-
sor system’s altitude varied only between 10m and
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15m while maintaining the same X and Y positions.
These techniques can remove some of the uncer-
tainty associated with the target movement in the
previous experiments.

Analysing the altitude variation experiment in
Figure 10, it is observed a 27.6% target recall at
10m, which is inferior to both moving target exper-
iments. However, recall consistency is improved, as
it only drops below 3% over the 50m range, while
previous results show a drop below 3% at 40m. Ad-
ditionally, target recall values on the pitch variation
experiment show the highest recall rates of all ap-
proaches, achieving 38% recall at distances up to
20m, only dropping below 10% at ranges greater
than 40m.
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Figure 10: LiDAR recall on altitude variation and
pitch variation experiments with target distance.

Observing Figure 11, both manoeuvres present
similar trends in the number of points per detection
and are on par with the moving target experiments.
Multiple points per detection are presented until
the 30m range, dropping only to a single point per
detection above this threshold. The exception is
the altitude variation experiment, which presents
two points instead of one at 40m.

These results reinforce the evidence of the Li-
DAR’s drastic performance degradation with the
increase in target distance. They also demonstrate
the LiDAR’s potential to detect hovering sUAS
through both dynamic movements.

5.2. Pose Estimation Accuracy

The calibration results for the free-flight experiment
are shown in Table 2. It presents the two different
techniques explored to capture 3D-2D point corre-
spondences, plus the scenario of both methods com-
bined.

Points projected from the 3D point cloud into
the 2D image frame are classified based on their
overlap with the ground truth bounding box. A
projected point can either land ’inside’ or ’outside’
this area. A ’near’ label is adopted to specify if a
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Figure 11: Points per detection on altitude vari-
ation and pitch variation experiments with target
distance.

point lands in the proximity of the ground truth.
This classification is reserved for points that land
in an area with twice the ground truth’s height and
length.

The PnP solution obtained with the calibration
board showed poor accuracy results with only 8.4%
of the LiDAR points landing in the ’near’ label,
and none ’inside’ the ground truth. This effect was
mainly caused by the close distances at which the
calibration board was captured. In free-flight ex-
periment targets flew over this threshold, as seen in
Figure 8. The PnP solution obtained with the vi-
sual inspection method shows higher accuracy, with
only 2.6% of the points landing in the ’near’ label
and none ’outside’ the ground truth. However, the
best calibrations results observed happened when
the PnP solution was obtained with the combina-
tion of both methods, leading to 99.0% of the points
landing ’inside’ and 1.0% landing ’near’ the ground
truth.

Table 2: Extrinsic calibration accuracy on the free-
flight experiment. Three point extraction meth-
ods are used to solve the PnP problem: calibra-
tion board, visual inspection and both combined.
Each solution presents three labels for a LiDAR
point projection: inside, near or outside the tar-
get’s ground truth.

5.3. YOLOv3 Detector

The YOLOv3 is the algorithm responsible for de-
tecting sUAS targets. Metrics for this section are
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based on [16]. A precision-recall (P-R) curve was
created to evaluate the algorithm’s ability to detect
targets captured during flight testing. The non-
maximum-suppression parameters of the YOLOv3
algorithm were set with an intersection over union
(IOU) threshold of 50% and a minimum confidence
threshold of 0.01. The P-R curve obtained is pre-
sented in Figure 12, showing an average precision
(AP) of 32.0%. The AP serves as an overall metric
to describe the detector’s performance. However,
the value obtained is low, and a close inspection of
the P-R curve indicates the probable causes.

Figure 12: Precision-recall curve for the YOLOv3
detector. The presented results are based on flight
test data collected. The red point represents the
highest F1score achieved of 0.44.

The negative slope in Figure 12 indicates an in-
creasing proportion of false positives with a decrease
of confidence threshold. On examining detection
samples presented in Figure 13, the various types
of false targets collected become apparent. Obvi-
ous wrong detections, like the treetop, expose some
flaws in the training process. Other false positives
present background clutter that is difficult to dis-
tinguish between a true and a false positive, even
for the human eye, since the target and background
clutter can appear very similar. The bottom right
sample in Figure 13 represents a safety cone. How-
ever, when the target is above the horizon, its fea-
tures contrast more with the simple background,
leading to more consistent detections.

Additionally, with a minimum confidence thresh-
old of 0.01, the detection algorithm could only
achieve a recall of around 80%, contributing to the
low AP number. A closer inspection reveals that the
vast majority of the non-detected targets happen on
occasions where the RPA is far and in locations with
complex backgrounds, as shown in Figure 13.

Furthermore, the dataset used to train YOLOv3
is predominantly composed of vehicles above the
horizon, as a ground-based system captured it. This
would not prepare the neural network for scenarios

Figure 13: YOLOv3 detection examples. The top
row presents true positives, and the bottom row
false positives.

with sUAS against a textured background.

Finally, to determine with which confidence
threshold the algorithm performs best, the P-R
curve’s point is chosen based on the highest F1score,
which represents an harmonic mean between preci-
sion and recall. It provides a balanced representa-
tion of the algorithm’s precision and recall. The
best F1score is 44%, obtained with a confidence
threshold of 0.26. This point, represented by a red
dot in Figure 12, has a precision of 42% and a recall
of 46%. The following results present the YOLOv3
detector set on this confidence threshold.

5.4. Sensor Fusion and YOLO-based tracker

A comparison between the sensor fusion methods
and the YOLO-based tracker follows. Metrics for
multiple object tracking were based on [17].

Figure 14 shows that the sensor fusion recall on
the hover experiment is comparable to the YOLO-
based tracker on distances up to 30m, with the sen-
sor fusion presenting the lower values. One cause
for this effect is the sensor fusion’s idleness while
waiting for the LiDAR sensor to capture a target,
which leaves initial frames without detections. The
increase of target distance amplifies this effect, as a
significant decline in recall values can be observed
on distances over 40m. Even with a LiDAR recall
of 1.2% for the 50m range, the sensor fusion solu-
tion can still achieve a recall of 39.6% for the hover
experiment.

Precision results are shown is in Figure 15.
The sensor fusion solution shows a tremendous in-
crease in precision with respect to the YOLO-based
tracker. This effect is related to the search region
being focused on the target location, leading to
the algorithm being less susceptible to false posi-
tives. There is a decrease in precision between 30m
and 40m to 75.6%, which rises to 93.8% at 50m.
This anomaly might be influenced by the presence
of ground clutter on the hover experiments. How-
ever, the differences in precision between the sensor
fusion and the YOLO-based tracker are very sig-
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Figure 14: Recall comparison on the hover experi-
ments.

nificant, having the sensor fusion almost ten times
higher precision across all distances.

The YOLO-based tracker’s low precision value is
related to a large amount of ground clutter being
miss detected as a drone. Such an example is the
bottom right image in Figure 13, where safety cones
placed in the flight test field can have a similar ap-
pearance to an aircraft in the distance.
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Figure 15: Precision comparison on the hover ex-
periments.

Similar trends are shown for the free-flight exper-
iment, seen in Table 3. The sensor fusion and the
YOLO-based tracker present similar recall values,
of 48.4% and 41.9%, with the sensor fusion present-
ing the lowest one. Once again, the sensor fusion
solution shows a drastic increase in target preci-
sion, from 17.0% to 91.2%. Both solutions present
similar MOTP, which means the average IOU over-
lap between detections and ground truths is above
70%. Sensor fusion presents an increase from −1.88
to 0.38 in the MOTA metric, which accounts for the
overall tracking ability by combining the number of
misses, false positives and ID switches. The closer it
is to 1.0 the better. However, the sensor fusion solu-
tion presents a lower ability to track the targets for

more extended periods, dropping by one the number
of trajectories mostly tracked (MT) and increasing
by four the number of trajectories mostly lost (ML).
A reason for this effect can be linked to some tracks
being made of a lower number of frames, giving a
smaller change for the LiDAR to detect the vehicle
and begin the tracking procedure. Each time a RPA
enters and leaves the camera field of view, a new
trajectory is created, leading to a high variability
in the length of each one. Nonetheless, the sensor
fusion method presents half of the trajectory frag-
ments FM , 50 instead of 99, showing it has more
tracking consistency than the YOLO-based tracker.

Additionally, both solutions present the ability to
process sensor data in real-time, presenting a pro-
cessing speed higher than 20Hz, which is the fram-
erate at which sensor data is recorded. Further-
more, the sensor fusion methods can more than dou-
ble the processing speed of the visual algorithm, to
57Hz. However, these results are achieved on pow-
erful computational resources, using an NVIDIA
Tesla P100 GPU to improve the processing speed
of the YOLOv3 detector. Real-time onboard capa-
bilities are still a topic left to be researched.

Table 3: Tracking results of the YOLO-based
tracker and sensor fusion methods on the free-flight
experiment.

6. Conclusions

In this paper, a multi-sensor methodology was in-
vestigated to visually detect and track multiple
sUAS onboard an aircraft.

Experiments have revealed that the LiDAR sen-
sor presents a drastic decline in performance with
an increase in target distance. Furthermore, they
have shown that attaching the sensor onto an air-
borne platform can lead to the detection of targets
that otherwise would be unobservable. Also, by us-
ing a combination of two calibration methods to
estimate the camera pose with respect to the Li-
DAR sensor it was possible to project LiDAR de-
tections inside their respective ground truth labels
accurately.

The YOLOv3 detector proved to have its limita-
tions when detecting sUAS against textured back-
grounds. It also acquired a large number of false
positives by miss detecting ground clutter. Results
could be improved by training the algorithm on a
more appropriate dataset.
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It was shown that the sensor fusion approach
could drastically increase the overall precision of the
YOLO-based tracker while maintaining similar re-
call values and doubling its framerate.

Proposed future work includes incorporating a vi-
sual search on random image locations when the
LiDAR does not return any targets and when no
target is being visually tracked to improve recall
results. Additionally, future work could include cre-
ating an algorithm capable of locating a vehicle in a
3D environment, taking advantage of LiDAR mea-
surements. This information would be precious for
a C-sUAS system.
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