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The work presented in this paper is within the area of the assessment of the structural integrity 

of an aircraft, namely through the study of the “Simulation of the Propagation of a Crack in the 

Fuselage of an Aircraft” under different loading conditions. The work carried out aims to: 

evaluate the mechanical resistance of a component in the presence of a crack under a in plane 

biaxial loading; evaluate the growth of a crack for different loading types (phase variation; 

frequency variation); evaluate which criteria are more suitable to predict the behavior of a crack 

for a certain load; validate a numerical analysis algorithm for crack propagation in the context of 

the mechanical behavior of materials.  Predicting crack behavior can have a huge impact on 

both the aircraft's life span and economic conditions. The simulation of the crack propagation 

under different conditions of initial loading is done with the modeling and design of a cruciform 

specimen.  Biaxial loadings are analyzed with MTS and MSS criteria with the variation of biaxial 

ratio, phase and frequency, through the evaluation of the stress field in the crack front. 

Keywords: Crack Propagation, Cruciform Specimen, Biaxial Loads, Numerical 

Analysis, Fracture of Mechanics, Stress Intensity Factor  

 

1 Introduction 

 The study and analysis of the structural 

integrity of mechanical components are 

areas of great importance in engineering 

due to the faults in the materials. In recent 

decades, these have been widely developed 

due to the evolution of knowledge and 

studies related to numerical methods, as 

well as fracture mechanics and fatigue [1]. 

In order to ensure that these components 

are viable and efficient throughout their 

useful life, it is essential to guarantee that 

failures do not occur. For this, it must be 

taken into account that the durability of the 

components plays a fundamental role in an 

initial phase of an engineering project. One 

of the main problems in these projects 

concerns the fatigue fracture of the structural 



components. It is estimated that the majority 

of component failures are related to the 

phenomenon of fatigue [2], as a result of the 

accumulation of damage associated with the 

types of loads to which they are subjected. 

Aerospace metallic components are 

subjected to complex multiaxial loads, such 

as proportional, non-proportional, in-phase 

and out-of-phase biaxial loads [2]. Although 

numerous efforts have been made to 

understand in detail the crack propagation 

under uniaxial loads, few studies have been 

carried out under biaxial and multiaxial 

loading conditions. Therefore, it is pertinent 

to develop a numerical algorithm that allows 

the simulation of crack propagation in biaxial 

conditions, which may represent the loading 

conditions of an aircraft's fuselage. In this 

context, in the case of this study, a cruciform 

specimen is used for the in-depth study of 

crack growth. Throughout this article, 

different theories of Fracture Mechanics are 

addressed to understand the influence of 

different parameters and loads on crack 

propagation, with special emphasis on the 

criteria of maximum tangential stress and 

maximum shear stress, MTS and MSS, 

respectively. 

2 Theoretical Concepts 

2.1 Structural Failure Modes 

The occurrence of component failures or 

rupture in aerospace engineering is an 

extremely important phenomenon and 

requires some study, which led to the 

development of this work. To comply with 

airworthiness requirements, aircraft must be 

designed to ensure either that any failure is 

repaired or the component is taken out of 

service before failure. The aircraft must be 

designed to be damage tolerant. In this way, 

it is essential to know the different modes of 

structural failure to which the various 

components are subject, such as creep, 

buckling, fatigue and corrosion [8]. 

2.2 General Fatigue Review 

Considering the possibility that the 

structures contain small cracks and the risk 

that these cracks may continue to propagate 

through fatigue until the final rupture, it is 

easy to see the importance of studying the 

phenomenon of crack propagation. For this, 

the comprehension of Fracture Mechanics 

should be understood in detail, as well as 

the design methodologies that were 

developed in the scope of the study of 

fatigue crack growth (FCG).  In this way, the 

concept of crack and how the stress fields 

vary in the crack front area must be taken 

into account, specially the stress intensity 

factors and its influence in the crack 

propagation [2]. 

Knowing that a large part of the structural 

failures of mechanical components is 

caused by FCG, we can perceive the 

importance of the phenomenon of fatigue 

presented. Consequently, the structural 

integrity of the components during their 

service life is guaranteed.  

2.3 Fracture Mechanics 

As previously mentioned, it is important to 

understand the distribution of the stress field 

in a crack, especially in the area of the crack 

front. The singularity presented in this place 

leads to the formation of a plastic zone. 

However, in the theory of the MFLE used, 

this behavior is not taken into account and 

the tension is given by an ideal crack 



according to the linear elastic model. 

Consequently, this theory reveals some 

limitations because it does not include the 

influence of this zone, which may be in the 

plastic domain. In Fracture Mechanics, the 

rupture of the components is associated with 

the growth of cracks. So, it is important to 

have a thorough knowledge of this 

phenomenon. Furthermore, it is essential to 

know the steps related to the fatigue 

phenomenon. This process begins with 

nucleation, followed by microscopic growth 

of the crack(s) and subsequent propagation 

(perpendicularly to the applied stresses) until 

its final rupture. Depending on the type and 

direction of the load applied on a crack, 

there are three different ways to propagate 

the crack[1]: 

• Mode I – Opening mode: the propagation 

of the crack surfaces proceeds in a 

perpendicular direction to the loading plane 

and is caused by the normal applied tensile 

stresses. 

• Mode II – Sliding mode: the propagation of 

the crack surfaces occurs in a parallel 

direction to the loading plane and originates 

shear stresses in the plane. 

• Mode III – Tearing mode: it is 

characterized by tangent loads outside the 

crack plane, in the direction of the thickness 

of the body, and is caused by shear stresses 

outside the plane. 

The stress intensity factors associated to 

this load modes studied in this work, 𝐾𝐼 𝑒 𝐾𝐼𝐼 

allows to predict the direction of the crack 

propagation 

 

Figure 1 – Crack growth VS Stress Intensity 

Factor [1] 

In the first region (figure 1), the propagation 

rate is extremely dependent on the variation 

of the SIFs. In this zone, propagation may 

not occur, or it could be much reduced. This 

happens when the critical value is not 

reached. This region is fundamentally 

characterized by the influence of the 

material's microstructure, medium tension 

and the (environmental) conditions in which 

it is found. In the second region, there is 

continuous growth and certain combinations 

of medium voltage, frequency and 

(environmental) conditions tend to have a 

great influence on the propagation. The 

propagation speed reveals a linear 

relationship between the SIFs and the crack 

growth. This relationship is described by the 

Paris Law, 

𝑑𝑎/𝑑𝑁 = 𝐶𝛥𝐾𝑚                    (1) 

since C and m are constant in the material 

and 𝛥𝐾 is described by the following 

expression: 

𝛥𝐾 = 𝑌𝛥𝜎√𝜋𝛥𝑎                      (2) 

 



Δ𝜎 represents the variation of applied 

stresses, Y is the form factor and 𝛥𝑎 the 

change in the crack size. 

In the third region, the propagation speed 

continues to increase unsteadily until it 

reaches a critical value of stress Kc, 

depending on the material under study. 

This study is focused on the second region 

of the crack propagation, which follows the 

Paris Law. The applied criteria and the 

equations for the crack growth and direction 

of propagation calculations are briefly 

explained in the chapter of fatigue crack 

propagation. 

3 Material and Methods 

3.1 Cruciform Specimen and Initial Crack 

Geometry 

A symmetrical cruciform specimen is used 

for the biaxial study, as shown in figure 2.

 

Figure 2 – Cruciform Specimen [4]. 

The specimen geometry is in accordance to 

the international program NESC and it was 

adapted to have a radius of curvature of 

10mm between the arms of the specimen. A 

centered initial crack either aligned or 

inclined to the load directions is located at 

the center of the specimen. The inclination 

angle values of the initial crack examined 

are β=0°, 15°, 30° and 45°, and the 

corresponding crack length is 2a=36 mm. 

3.2 Applied Loading 

Prescribed loads 𝜎𝑥 and 𝜎𝑦 were applied to 

the arms of the specimen. In all loading 

cases studied, the nominal load applied is 

100MPa. In equations 3 and 4 the equations 

of the loads applied are presented:  

     𝜎𝑥(𝑡) =  𝜎𝑚𝑒𝑑 + 𝜎𝑎 ∙ 𝑠𝑖𝑛(𝜔𝑡 + 𝜙)      (3) 

𝜎𝑦(𝑡) =  𝜎𝑚𝑒𝑑 + 𝜎𝑎 ∙ 𝑠𝑖𝑛(𝜔𝑡 + 𝜙)       (4) 

 
Where, 𝜎𝑚 is the mean stress, 𝜎𝑎 nominal 

stress, ϕ the phase angle and 𝜔 the 

frequency. All load conditions were applied 

with an 0.1 stress ratio ( 𝑅 = 𝑆𝑚í𝑛/𝑆𝑚á𝑥) 

The numerical crack paths are obtained with 

different biaxial ratios, phase angle of 0°, 

90°, 180°, and also with 45º in the case of 

the study of influence of the frequency. 

3.3 Numerical Model 

Throughout a Matlab numerical algorithm 

developed by R. Baptista [7], combined with 

Abaqus, the implementation of the finite 

element method is employed to model crack 

propagation. It enables the crack growth 

simulation without the necessity of creating a 

new mesh. Inertial effects are not 

considered, and a small yielding condition is 

assumed at the crack tip. The material 

behavior is taken as elastic, with E=72 GPa 

and v=0.3, in plane strain conditions. The 

crack is successively propagated in the 



following manner: First, stress intensity 

factors (SIFs) are calculated using the 

domain independent integral interaction for 

each crack tip. Then, a fatigue crack 

propagation criterion is applied (MTS/MSS), 

and the crack is extended in the predicted 

direction. The mesh and crack extension 

sizes and other information about this 

algorithm that have been analyzed could be 

consulted in detail in the dissertation.  

3.4 Fatigue Crack Propagation 

In two-dimensional linear-elastic fracture 

mechanics and under mixed loading 

conditions that are variable with time, the 

stress state is given by 𝐾𝐼 and 𝐾𝐼𝐼 in 

equation 5 and 6. 
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Virtual or equivalent SIF may be calculated 

(eq 7,8) along a virtual crack extension 

direction. It allows to predict the crack 

propagation angle ɵ: 

𝐾𝐼
∗(𝑡, ɵ) = 𝜎ɵɵ(𝑡, ɵ)√2𝜋𝑟 = 𝐾𝐼(𝑡) [
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It should be mentioned that negative values 

of kI* have no physical meaning (crack face 

overlap) and are set to 0. 

The factors in eq. 7 and eq. 8 are known 

as virtual stress intensity factors 𝐾𝐼
∗ 𝑒 𝐾𝐼𝐼

∗  

and they allow to predict the angle for 

crack propagation through the aplication 

of the different criteria. That can be based 

on 𝐾𝐼
∗

𝑚á𝑥
, 𝛥𝐾𝐼

∗
𝑚á𝑥

or 𝛥𝐾𝐼𝐼
∗

𝑚á𝑥
 criteria and 

calculated for different values of t and θ. The 

maximum tangential stress criteria is given 

by 𝐾𝐼𝑚á𝑥
 and the maximum shear stress is in 

agreement with 𝐾𝐼𝐼𝑚á𝑥
. 

 

4 Results Analysis 

In general, under proportional loading, a 

crack kinks in a direction where the tensile 

normal stress field (mode I stress intensity 

factor 𝐾𝐼
∗) is maximum. Besides that, this 

direction is coincident with the direction of 

𝐾𝐼𝐼
∗  is equal to zero, in accordance with the 

direction of maximum 𝛥𝐾𝐼
∗. [4,8] 

Under non-proportional loading, the ratio of 

the SIF 𝐾𝐼/𝐾𝐼𝐼 is not kept constant during the 

cycle. There are three potential directions of 

crack orientation: the directions 

corresponding to 𝐾𝐼
∗

𝑚á𝑥
 and 𝛥𝐾𝐼

∗
𝑚á𝑥

, or in a 

direction that usually falls between this 

values. In some cases of propagation, the 

criteria of 𝛥𝐾𝐼𝐼𝑚á𝑥
 shows good results for the 

crack angle, where the crack orientation is 

the direction for which the shear stress 

range is maximum. [3] 

4.1 In phase Proportional 

When the loads applied are proportional and 

in phase, the propagation curves under the 

different load ratios applied are different and 

their propagation paths for the three studied 

load ratios can be seen in Figure 3. 



 

Figure 3 – Propagation curve: biaxial ratio 

In figure 4 and 5, the graphs correspond to 

biaxial ratio of 𝜆 = 0,5. These graphics show 

the variation of the SIF for the first and the 

second mode of loading, respectively. The 

maximum and minimum values of 𝐾𝐼
∗ and 

𝛥𝐾𝐼𝐼
∗   show that the angle of propagation in 

this graphics is on agreement with the angle 

of the figure 3, which was obtained in the 

numerical algorithm. 

In the loads studied in this section, the value 

of the expected propagation angle when the 

value of 𝐾𝐼𝐼
∗  is null and coincides with the 

value of maximum 𝐾𝐼
∗ means that the crack 

will grow in the load plane.

 

Figure 4 – Stress Intensity Factor 𝐾𝐼
∗: 𝜆 = 0,5 

It was also studied the initial crack aligned 

with the horizontal with a propagation curve 

corresponding to the three loading ratios 

applied: λ = 0.5; λ = 1; λ = 1.5. In this case, 

changing the applied load ratios does not 

change the crack's propagation path. In this 

way, according to the MTS criterion used, 

the graphs of variation of the stress intensity 

factors presented are also the same. In this 

study, the crack growth values are variable 

and pre-defined in the program as a function 

of the number of cycles. The figure 6 shows 

how the horizontal gap grows along the 

applied loading cycles. It is evident in this 

figure that as the gap spreads, its growth 

rate increases. This is calculated through the 

Paris Law. 

The importance of carrying out non-

destructive inspections and the existence of 

a damage-tolerant design (suitable for the 

various components of the aircraft) should 

be highlighted, to avoid the occurrence of 

crack propagations and to minimize failures 

within its period of operation. 

 

Figure 6 – Crack growth VS Number of 

Cycles 

The propagation curves presented were 

obtained in the numerical algorithm used, 

according to the MTS criterion. The different 

propagation paths can be observed, 

Figure 5 - Stress Intensity Factor 𝐾𝐼𝐼
∗ : 𝜆 = 0,5 



Figure 7 - Propagation curve: 𝜙 = 90º,MTS 

depending on the different initial conditions 

of the crack we are analyzing. 

 

4.2 Out of Phase 

In order to analyze the influence of the 

loading phase and also the different criteria 

used two simulations for each loading / initial 

crack angle combination were performed. In 

one of them, we use the MTS criterion. In 

the other, we use the MSS criterion. 

In figure 7 and 8, the blue line corresponds 

to the load applied when the initial angle is 

15º. The orange and green lines correspond 

to the loads where the crack is inclined at 

30º and 15º, respectively. MTS and MSS 

criteria were applied with and ou-of phase 

90º loading. 

 

 

 

 

Figure 8 – Propagation curve: 𝜙 = 90º,MSS 

After presenting the propagation curves 

obtained in the algorithm for the different 

initial crack angles, it is essential to show the 

graphs of variation of the stress intensity 

factors obtained for each case. In figure 9 

and 10 show the variation of the stress 

intensity factor 𝐾𝐼
∗ and 𝐾𝐼𝐼

∗  maximum and 

minimum, respectively, with out of phase 

180º loading. 

 

Figure 9 - Stress Intensity Factor: 𝐾𝐼∗

 

Figure 10 – Stress Intensity Factor: 𝐾𝐼𝐼
∗  

The results for the propagation angle 

obtained by the application of criteria MTS 

and MSS are different. 

To understand the influence of the 

difference of phase there are presented the 

next graphics obtained in the algorithm, in 

accordance with MTS and MSS, 

respectively. 



 

Figure 11- Propagation curve 𝜙 = 180º,MTS 

 

Figure 12-Propagation curve 𝜙 = 180º,MSS 

The angles obtained for the phase of 180º 

are bigger than the results for the phase of 

90º. The angles are different accordingly to 

which criteria (MTS/MSS) is applied. 

In these graphs, the magnitude of the 

propagation angle value increases as long 

as the value of the initial angle of the crack 

increases too and the angles obtained in the 

algorithm are the same than in the graphics 

of the variation of SIF. Regarding the graphs 

of variation of the stress intensity factor 𝐾𝐼𝐼
∗  , 

it is possible to observe that the value 

corresponds to the maximum value of 𝛥𝐾𝐼𝐼
∗ . 

This allows to predict the crack propagation 

angle, according to the MTS criterion, which 

decreases as the initial slope of the crack is 

increased. Thus, to validate these results, 

the graphs of the variation of the stress 

intensity factors are compared with the 

numerical results developed by Garcia et al 

[8]. When comparing these graphs with 

those presented for the same loading 

conditions, it can be seen that they are very 

similar to the ones presented in this study. 

Also, the values of the propagation angles 

obtained by these authors coincide with the 

results. In the three simulations carried out 

in the numerical algorithm for each criterion, 

when applying out of phase loads, as the 

gap grows it is possible to verify that the gap 

tends to align with horizontal direction, 

according to the MTS, where the values for 

the crack propagation angle are the same 

accordingly with the criteria 𝐾𝐼
∗

𝑚á𝑥
 𝑒 𝛥𝐾𝐼𝑚á𝑥

. 

However, according to the MSS criterion 

(𝐾𝐼𝐼𝑚á𝑥
∗ ) the slots are aligned with the 45º 

direction. In both cases the propagation 

angle decreases with growth of the crack. 

The propagation angles according to 

maximum 𝛥𝐾𝐼𝐼
∗  decrease with the increase of 

the initial crack inclination. In the loads 180º 

out of phase, for a slope of the initial crack of 

45º, the crack propagation simulations were 

also performed for a load ratio of λ = 0.5 and 

λ = 1.5. It is easy to see that there is a 

symmetrical change in the angle of 

propagation obtained for these load ratios. 

This makes us understand that the load ratio 

and the phase are one of the most important 

factors to consider in the study direction of 

propagation angle. 

4.3 Frequency Varying 

In order to analyze the influence of the 

different initial loading conditions and the 

different propagation criteria used with 

frequency variation, two simulations are 

performed for each case. One of them uses 

the MTS criterion and the other the MSS 

criterion. Graphs of the stress variation 

intensity factors 𝐾𝐼
∗ and 𝐾𝐼𝐼

∗  for each of the 

cases under study were not presented here. 



4.3.1 Double Frequency 

In general, the results obtained from the 

curves and the propagation graphs with 

double frequency and in phase were 

identical to those obtained in the previous 

case. In figure 13 and 14, MTS and MSS 

criteria are applied, respectively, for these 

conditions. When the angle of the initial 

crack is 45º, the crack bifurcates and that’s 

why the curve is in another direction. 

 

Figure 13 - Propagation curve 𝜙 = 0º,MTS 

 

Figure 14 - Propagation curve 𝜙 = 0º,MSS 

 

Figure 15 -Propagation curve 𝜙 = 45º,MTS 

 

Figure 16 - Propagation curve 𝜙 = 45º,MSS 

As it can be seen, in this case with a 45º 

offset, the magnitude of the propagation 

angle is slightly higher according to the 

maximum 𝛥𝐾𝐼
∗ criterion than the maximum 

𝐾𝐼
∗. In this context, several authors [4,5]  

carried out studies aiming to understand 

which would be the most adequate criterion 

to predict the direction of propagation of the 

crack. The conclusion was that the angle of 

propagation is included among these 

criteria. In this way, the modulus of the 

propagation angle of a crack under loading 

conditions with double frequency on the 

horizontal axis and a phase difference of 45º 

is slightly higher than the case without offset 

and with the same frequencies, according to 

the MTS criterion. As for the MSS criterion, 

or parameter that maximizes 𝛥𝐾𝐼𝐼
∗ , in this 

case of loading, the propagation angles 

obtained were higher than those of loading 

without lag and with the same frequency.  

 

4.3.2 Static Load 

For loads with zero frequency on the 

horizontal axis (static load), the same crack 

inclinations (15º, 30º, 45º) were studied, 

through the propagation results of the 

numerical algorithm and the graphs of the 

SIFs were obtained under these loading 

conditions (figure 17 and 18).   



 

Figure 17 - Propagation curves, 𝑀𝑇𝑆 

 

Figure 18 - Propagation curves, MSS 

In this case, where static load is applied to 

the horizontal axis has zero frequency, the 

maximum 𝛥𝐾𝐼
∗  criterion coincides with the 

maximum 𝐾𝐼
∗ criterion, which is the reason 

why the angles obtained are lower than the 

double frequency case. 

As for loads with zero frequency on the 

horizontal axis (static load), the solutions of 

the propagation angle module in this case 

were lower, in relation to cases where the 

frequency is doubled, according to the MTS 

and MSS criteria. 

5. Conclusions 

The study was carried out with conditions of 

biaxial loadings in the plane. It is important 

to have knowledge about the fracture 

mechanics and the stress intensity factors, 

in order to calculate the angle of propagation 

of a crack. Also, damage-tolerant design and 

nondestructive inspections are the keys to 

ensure the airworthiness. The numerical 

results agree with the results found in the 

literature. It can be concluded that crack 

paths predicted using different orientation 

criteria, such as 𝛥𝐾𝐼𝑚á𝑥
, 𝐾𝐼𝑚á𝑥

 and 𝛥𝐾𝐼𝐼𝑚í𝑛
, 

can be different from each other. Further, 

experimental tests should be carried out in 

order to confirm these result. 
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