
Implementing a New Graphical User Interface For
GameCourse - GameUI

Patrı́cia Isabel Dias da Silva
patricia.i.d.silva@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

Education is taking a step forward into the new technologies. A Learning Management System
(LMS) is a system that handles all the process related to learning, through which a teacher can create
a course and manage the activities related to it. Like any other system, its User Interface (UI) impacts
its acceptance, which means that although it may have well implemented features, it can be rejected
if the user is not able to understand what he/she can do with the system and how. GameCourse is a
web-based LMS used at the Multimedia Content Production course at Instituto Superior Técnico, that
uses a basic and minimalist UI where users get confused and lost while performing simple tasks since
they feel like there is nothing there to help them. The purpose of GameUI is to create a user-friendly UI
for this system, making it clear, consistent, easy to use for either experts or beginners, so the user can
take full advantage of the features of the system.
Keywords: Learning Management System; Graphical User Interface; Usability; User Experience.

1. Introduction
Throughout the years teachers and researchers
have been trying to find an efficient way to improve
student’s performance and engagement in classes.
New technologies have been incorporated in and
out of the classroom on the past years including
the use of Learning Management Systems (LMS).

A LMS [1] is a framework that handles all the pro-
cess related to learning, through which a teacher
can create a course, manage its activities, as-
sign different learning paths to his/her students and
gather results and statistics. Moreover, a LMS can
even integrate game elements (gamification) and
make the learning process more fun and exciting
for the students [5, 4]. Applying a LMS in a course
can bring a lot of benefits [1]: each student can
go at his/her own pace; and the teacher knows ex-
actly where each student needs help to give pre-
cise feedback and support.

However, the efficiency of LMS is not only based
on the its features, it also relies on the user inter-
face (UI), as it is through it that the user can inter-
act with the system. We can have a perfect system
with the perfect features and still have it fail outside
the lab if the user does not understand how to use
it, like the case of the Opensource LMS Illias [6].

For the past ten years, GameCourse has been
used on the Multimedia Content Production course
from the Msc. of Information Systems and Com-

puter Engineering at IST. It is a web-based LMS
that allows anyone who wants to teach to cre-
ate and manage their courses. Besides creating
a course and adding the corresponding Students
and Teachers, we can define different roles and
associate them with a user. We can also create
personalized pages, restrict their access depend-
ing on the viewer’s role, and have dynamic informa-
tion also depending on the viewer. Furthermore, it
is possible to enable gamification related modules,
making the course more fun and interesting.

Although a lot of changes have been done
through the years to improve GameCourse [3, 2],
its UI has only had two version and is seen as
”old”. It gets users confused while performing ba-
sic tasks, which may lead them to loose interest
on the system. The objective of this thesis is to de-
velop a new and more user-friendly Graphical User
Interface (GUI) for the GameCourse system, that
respect the principles of UI, Usability, User Experi-
ence (UX) and make it easier for teachers to create
and manage their courses.

2. Related Work
There are more and more LMSs every day and it
is hard for a teacher to choose which system is the
best. That’s why studies, that bring up special fea-
tures and compare their usability are so important.

Back in 2007 Machado and Toa [7] made a

1



study where they compared the UX of Moodle and
Blackboard through questionnaires using the Likert
scale. From the four teachers questioned, 3/4 said
that they would rather use Moodle. From a group
of students that tried both systems, 71% reported
that Moodle was easier to use and 75% would pre-
fer to use Moodle instead of BlackBoard. The neu-
tral level on the Likert scale is still very populated,
which means that both Moodle and Blackboard still
have some usability flaws.

Later in the year 2008 a group of six researchers
did an Heuristic evaluation about Moodle, Sakain
and dotLRN [8] with 200 checkpoints. Their results
showed that the LMS with highest compliance for
the total of checkpoints was dotLRN with 78%, fol-
lowed by Sakai with 77%, and Moodle being far
behind with 68%. The heuristic where all the sys-
tems had worst results was H8 - ”Flexibility and
efficiency of use”, with values below 45%. The
heuristics where they had better scores were H5 -
”Help users recognize, diagnose and recover from
errors” and H9 - ”Aesthetic and minimalist design”,
with all the systems getting above 75%.

In 2016 [9], Sahid and Santosa analyzed the UX
of Moodle and Schoology, using the User Experi-
ence Questionnaire. On a scale of -3 to 3, Moo-
dle’s highest score was 1.5, regarding whether the
system was understandable or not, and School-
ogy’s was 2.0 on whether the system was good
or bad. Regarding each category: Moodle’s high-
est points were Perspicuity and Efficiency with val-
ues just above 1.0; Schoology highest points were
Attractiveness and Efficiency with more than 1.5
points. It is noteworthy that on Schoology, only one
category scored below the 1.0, Novelty, which puts
Schoology in front of Moodle in terms of UX.

As no information was found regarding the visual
elements of these LMSs, we conducted our analy-
sis to identify GUI patterns among eight systems.
Regarding the structure of the systems: 6/8 used
breadcrumbs to describe the menu path, the other
two used no elements as they not have enough
depth of pages to require a path; 7/8 used a navbar
to show the possible tasks/pages of the system,
whereas the other used a dropdown menu and the
main page to display them; for the main page 2/8
used a news feed, 6/8 showed the course listing,
from these six, three of them have a special main
page for the admin user where 2/3 show statistics
and the other allows a custom page.

When adding new information to the system, two
options were presented a modal and a new page.
For 3 to 5 inputs, most of the systems opted for
a modal, while with more than ten inputs, they
opened a new page. To show information regard-
ing the users, courses, and extra features, the most
used elements were tables and cards. Nonethe-

less, simple lists were also found. In some cases,
there was a need to encapsulate information, and
the accordion was the chosen option. 2/8 systems
showed an interesting additional element to show
information, the slider, which on one of them ended
up creating visual noise.

New pages, on the majority of the systems,
could only be done with text, html and css, mak-
ing it impossible to create dynamic pages like in
GameCourse. Only 1/8 systems allowed extra cus-
tomization by giving the option to select the layout
and the correspondent content of the admin dash-
board, but within limited options.

3. The GameCourse system
On the GameCourse system we had several con-
cepts that defined the system’s structure. The
Course, to save all the base information of a course
and to serve as reference to add additional infor-
mation and functionality. The User, which kept
the base information of a user and defined if it
had admin privileges. Then we had the Course
User, the connection between the last two con-
cepts, saving all the user’s information exclusive
to a course. On these we could attribute Roles,
to organize the users within groups. Finally, the
Modules that could be activated within a course
and extend its functionalities. One of the exist-
ing modules was called Views, which allowed the
creation of HTML structure that could be used on
Templates or Pages. On these views we could
use the Expression Language, which fetched in-
formation from the system to be displayed or it-
erated, to create multiple elements with the same
structure. The information correspondent to these
concepts was saved and managed on a MySQL
database populated through API requests and ex-
ternal scripts that would fetch information from ex-
ternal data sources, like user’s information and
module’s specifications.

The initial UI was simple and minimalistic, used a
monochromatic color scheme, but made no distinc-
tion between sections, and the system and course
domains.

Figure 1: Users page old system.

3.1. User Tests
To collect more information about the UI problems
of the current system, we conducted User tests

2



with a group of ten users, where they were asked
to think-a-loud while performing a set of tasks.

On the tests 30% of the users reported problems
with the labeling and look of the navbar as ”it was
not obvious to me that the same button, settings,
would lead to different pages”. When trying to cre-
ate a new course all of them went first to the course
listing page and just then to the settings, where it
was possible to finish the task.

Although 100% of the users were able to add a
new user to a course: 30% had trouble finding the
correct page; 100% got confused with the button
”Replace all”, as they were looking for an ”Add” but-
ton instead; and 50% showed frustration towards
the way of inserting data (Figure 1).

3.2. Requirements
With all the information collected during the user
tests, we were able to create the list of require-
ments for this project:

• Full restyle, so it stops looking ”old” and ”out-
dated” as users reported;

• Page reorganization, to put together all the re-
lated information, divide non related informa-
tion and make sure the flow of the system is
correct. New subsections will also be created
to complement and complete this requirement;

• Settings retouch, so all the information related
to the system and course settings is easy to
see and to access, using more clear and fa-
miliar menus with self-explanatory labels;

• Documentation rebuild, to make it easier for
both beginners and experts users to find spe-
cific information;

• Creation of modules configuration pages, to
remove the external script that gathers infor-
mation about the modules and make them
easier to configure;

• View editor fix, to make it less painful to use
and provide extra help for the most confusing
sections.

4. GUI Design
The next step on this project was designing the
new GUI of the system. We started by creating
the new page organization (Table 1), where all the
information and actions related to a concept are
together on the same section of the system. To
create a new course the user no longer needs to
access the settings, because all the actions related
to courses are on the courses page.

To make the drafts of the GUI we used an on-
line design workspace called Whimsical1, which al-
lows us to build wireframes, where we created the
pages’ structure while having a real notion of sizes
and proportions of elements and white space.

1Last version of the wireframes on whimsical:
https://whimsical.com/tese-Tv7J6qNoKvSuyuPwY5ZME9

Inspired by the analyzed LMSs, we decided
to use modal dialogue boxes to require user in-
put. There we placed simple outlined input boxes
with only a placeholder to define them, a caption
aligned at the left with the inputs, a close icon on
the top corner, and a save button aligned at the
bottom right with the inputs while leaving a sig-
nificant margin at the sides of the modal. To fin-
ish the general look of modals, we added a semi-
transparent background layer behind them. We
also use modals to confirm destructive actions on
the system. However, all the information here was
centered, and two buttons were put available to ei-
ther cancel or proceed with the action.

Scope Pages Actions
System Main Page

System Courses add, duplicate, edit, delete, ac-
cess, import, export

System Users
add, edit, delete, give/remove
admin permissions, import, ex-
port

System
Settings

Installed
Modules import, export

Course Users
add (new and existing), edit,
remove, add/remove roles, im-
port, export

Course
Settings Roles create, move, delete, define

landing page
Course
Settings Modules enable/disable, configure

Course
Settings Views

edit, create page/template, cre-
ate/change specialization, glob-
alize template, use global tem-
plate

Table 1: Page organization on the new GUI.

We decided to keep the navbar on the top of the
page but removed the icons of each page. All the
titles were then centered, the system’s logo was
placed at the left side, and the username and lo-
gout icon at the right.

On the listing pages: Users and Courses, we de-
cided to use a table to display all the information
needed and allow item manipulations. We used
a border separating each item, leaving a clear line
that informs which information belongs to which ob-
ject. To visually separate information display from
actions, we used standard icons for each action, in-
cluding a pencil icon to edit and a bucket to delete.
For Boolean type information, we chose on/off but-
tons as they allow instance interaction while giving
the value status. To make it easier to find a partic-
ular item on these pages we added a search, filter
and order section fixed at the left side (Figure 2).

For the Modules and Views pages, we used
cards to display each item, as they have visual ele-
ments that represent each one. To the items where
status information was needed, we added a status
bar with the colors green and red at the card’s bot-
tom. To keep the consistency among these two
pages and the ones before, all the action buttons

3



Figure 2: Courses page - wireframe.

for add, export, and import were placed at the top
right corner of the page.

On the documentation pages, we added a side-
bar to guide the user between available sections
on the ”How to” page and available libraries on the
”Functions” page. We went for a tab style for the
sidebar due to the documentation page’s resem-
blance to a physical folder of documents. Inside
each section, the text content was kept the same.
However, the functions list was replaced by an ac-
cordion with all the function’s names that opens to
show the correspondent descriptions. To match the
tables’ look, each item is only divided by a top bor-
der, and at the end of each line, we placed arrow
buttons to open and close the accordion.

Over the view editor we restyled each view ele-
ment to match the system current style, added a
slider at the side as a shortcut for the documenta-
tion pages and for a tutorial. These tutorial would
be available to explain each section and step of the
view editor through highlighted boxes with ”next”
and ”previous” options to navigate it. Also, to let
the user know he/she is on tutorial mode we added
a bar at the top of the page to remind him/her. To
add a new element to the view we created a modal
mainly visual where we select the options through
icons instead of a dropdown.

4.1. Low Fidelity Prototype (LFP)
With all the page’s wire-frames and a set of extra
intermediate screens, we created an LFP over the
platform called marvel2 with a set of tasks to sim-
ulate the system behavior. This was later used to
perform a Heuristic evaluation with seven UI & UX
experts, where 57 problems were reported. From
those, 70% were declared as level 2 or 1 on the
severity scale, and only four were declared as level
4, the hights scale. The most affected heuristic
was H4-”Consistency and Standards” with 15 prob-
lems mentioned, followed by H2-”Match between
system and real-world” with 14 problems reported.
These included things like missing attributes of the
objects and wrong labels. This evaluation allowed
us to correct most of the problems before the de-
veloping stage.

2LFP: https://marvelapp.com/prototype/6ifjeg5

5. Development
To complete the development phase, we imple-
mented one page after another with concern for
the correspondent concept. We started by prepar-
ing the PHP class and database in case of missing
attributes. Then prepared the API by altering the
existing functions and adding new ones to collect
all the needed data and submit all the user’s ac-
tions. After defining the pages’ structure, we were
able to implement all the functionalities of the GUI
and make the system work. In this section, we will
highlight some of the work done during this phase.

5.1. Navbar resize
When creating a new page on a course, a new op-
tion is also added to that course’s navbar. This
ability can lead to a scalability problem. To fix it,
we created an algorithm that will check the size of
the navbar, and if it is bigger than expected, it will
move some of the options into an ”Other Pages”
dropdown menu. This algorithm is run every time
the page is resized, reloaded, and when we enter
or exit a course. On the resize case, to consider
the possibility of having more space after the ac-
tion, we first reset the navbar, placing the options
that were already on the ”Other Pages” dropdown
back to the main menu and just then run the algo-
rithm. This change on the navbar is made consid-
ering that we added a dropdown at the end of the
menu for the settings and that this has to be the
last option on the navbar.

5.2. Courses page for admin and non-admin users
The Courses page is the only listing page that can
also be accessed by non-admin users. Because
of that, we created two versions of it. For admin
users, we displayed all the system courses and
made available all the actions. We created the
new and edit modals with inputs for all class at-
tributes and included a color-picket to make it eas-
ier to select the course color. We also added the
delete modal to confirm the destructive action and
added quick edit requests, for the active and admin
attributes, by making an immediate submission of
the change on the on/off buttons. To improve the
usability of the table, we highlight each line when
hovering it.

Figure 3: Courses page for non-admin users.

4



For the non-admin users, we only display the vis-
ible courses where the user is registered. However,
instead of using a table, we used cards and sepa-
rated the active and not active courses for quick
access for currently lectured courses. The short
name and the year of the course are placed on the
card label, and the name of the course appears on
hover on the colorful top part of the card (Figure 3).

5.3. Search, filter and order algorithm

Finding a particular item among a big list of items
can be difficult and time-consuming. To make it
easier, we created a sidebar to search, filter, and
order by a particular attribute on the Courses and
Users pages (Figure 4). For this mechanism to
work, we started by duplicating the array that keeps
the items, the original is used to display, and it is
where we apply the filter and search. The second
is used to restore the original array before any new
filter or search. To keep the consistency of data
displayed, every time one of them is triggered, both
will be run, first search then filter.

The search will be triggered each time the user
types on the search box. After validating the input,
it will search for items where at least one of the at-
tributes contains the input. Whereas on the filter,
the trigger occurs once any of the checkboxes are
clicked. After checking if the combination of op-
tions is possible, it checks if any item matches the
selected conditions. The results of each step are
placed on a temporary array and then copied into
the original one. If no match is found, an alert mes-
sage is presented on the screen where the items
would be.

On order by, as only one option can be selected
at a time, the system keeps track of the last se-
lected attribute and direction of order. Once some-
thing changes, it starts by checking what caused
the change. If it was the direction, it will simply re-
verse both our arrays. If it was the attribute, it starts
by applying a sort on both arrays. This sort is done
on ascending order, arrow down, so then it checks
the selected arrow, and if it is up, descending order,
it reverses the arrays.

Figure 4: Users page on the system domain.

5.4. Add existing user to a course
On the Users page inside a course, when imple-
menting the add modal with all the necessary in-
puts, we realised there was a very important action
missing: add existing users of the system. So we
quickly created two more versions of this modal:

• Select state, to chose between creating new or
add existing user;

• Add existing state, to display all the users that
are not in the course, allowing the user to se-
lect as many as he/she wants and give a spe-
cific role to all of them.

The ”select” state is composed of two buttons to
chose the add method and the ”add existing” of a
search box, a listing box, and a dropdown (Fig-
ure 5). The search box has two purposes: filter-
ing the list below and showing the already selected
users, allowing a quick verification and deselec-
tion if needed. The tags are clickable and remove
the correspondent item from the selected list. The
dropdown shows the roles that can be attributed
to the selected users, and only by selecting one of
them will the save button be available.

Figure 5: Add existing state of the add modal.

5.5. Undo/Redo functionality on the Roles page
On the roles page, we incorporated the previous
separated actions to define each role’s landing
pages. With an extra task and much responsibil-
ity in one page, as roles might affect user’s au-
thorizations and landing pages the usage of the
course, we felt the need to create an undo/redo
functionality. We started by creating the State Man-
ager (SM), which keeps three arrays: one for past
states, one for current state, and the third for fu-
ture states, and created the functions needed for
the undo/redo functionality:

• New State: the SM will move the current state
to the end of the past states, replace the cur-
rent state for the submitted one and clean the
future states.

• Undo: the SM will move the current state to the
end of the future states and the last state of
the past states into the current state.

5



• Redo: the SM will move the current state to the
end of the past states and the last state of the
future states into the current state.

Every time the roles hierarchy was altered, a new
role was added or deleted, and a landing page re-
defined, we created a new state with all the page
information. Only after the first action does the SM
allows to undo, and only after a previous undo does
it allow redo. After either actions, a state is re-
ceived from the SM, and the page is re-rendered
to match the now current information.

5.6. New Configuration System for Modules
Before this project, the only way to configure a
module was through the use of external scripts
that would collect external data and populate the
GameCourse database. To reduce the amount of
effort and time spent on this task, we created a
configuration system available to all current and fu-
ture modules of the system. This system gener-
ates a page based on blocks and not only saves
time to the Teacher or Admin that is going to use it
to configure their course, but also to the developers
of modules who don’t need to create a whole new
page for their module configuration. The generated
configuration page has three possible sections:

• General inputs: to display all the variables that
define and change the behavior of the module.

• Listing items: for modules like Badges, that
have inner objects that can be created, edited
and deleted. This section works and looks
very much like the other listing pages, with a
table and options to manipulate the items.

• Personalized section: sometimes neither of the
previous sections are enough or a variable
is too complex to a single input field, so we
added a personalized section where the de-
veloper can create what he/she wants.

To build each section of the configuration page
we have a ”has”, ”get” and ”save” function that
will tell if the correspondent section is going to be
needed, what information is needed and to save in-
formation coming from the user inputs. The ”has”
functions work as verification, only returning true
or false values, and the other ones have specific
rules in what they must return (”get” function) and
in what they receive. If the developer intends to
use any of the sections he must redefine the corre-
spondent functions on the module’s class.

On the General inputs section, the get function
must return a list with all the inputs needed, includ-
ing: their name to be displayed as label; the id to
later be able to collect the information; the type of
the input; the options in case the type is ”select”;
and the current val to set an initial value on the

input. The system will then create each input to-
gether with a save button, that will call the save
function where we can access the user’s input by
using the ids defined earlier. The developer can
next use this value as needed.

On the Listing items section, the get function
must return an array containing: listName, to give a
name to the section; itemName, to be used as the
header of the modals; header, to select the labels
of the columns of the table; displayAtributes with
the item’s attributes to display on the table on the
same order as the header; the list of items; and
allAtributes, to define the inputs on the add/edit
modal (follows the same syntax as the inputs of
the previous section). The save function will be
called once an add, edit or delete is requested
on the page, where the developer has access to
the type of action and the content associated, so
he/she can save the information.

On the Personalized section, the developer is
free to create his/her own code and generate a
page as he/she desires using all the AngularJS 1
advantages. He/she needs to create a Javascript
function for that, save it on the module’s folder, and
return the function’s name on the personalized sec-
tion get function. Here the is no save function as
the developer is in charge of creating that part.

To prove and demonstrate this system’s value,
we defined the Badges configuration page (Figure
6), using the first two sections to define the max
reward value and the list of badges available on
the course.

Figure 6: Badges configuration page.

5.7. View editor changes on the toolbar
Inside the View Editor, we started by removing the
sidebar and recreating the breadcrumb so the user
can click on it to go back to the listing page. Then
we changed the behavior of the toolbar of each el-
ement. Instead of using the hover, with mousein
and mouseout events to show the correspondent
toolbar, we changed it to be a click event with se-
lected and not selected sates. This allowed us to
move the toolbar to the bottom of the page (Figure
7) since we can access it outside the visual space
of the selected element and make its options big-
ger, which was not possible before because it could
cover other elements.

6



Previously, there were two options on the toolbar
for saving purposes, one to do it keeping the refer-
ence to the original piece of view and other copying
by value. We decided to incorporate both actions
on one single option and distinguished them on the
modal by using an on/off button, that would then
determine the functionality chosen.

Figure 7: View Editor while selecting a block.

6. Results & discussion
To validate this project’s success and the impact of
the new GameCouse, we did User Tests, which in-
cluded the performance of tasks on the old version
and the new version of GameCourse.

6.1. User Tests
We performed summative user tests, where po-
tential users were asked to perform the same 12
tasks on both systems (plus five more on the new
version). To evaluate these tasks regarding ef-
fectiveness and efficiency, we collected the time
a user needed to perform a task and if he/she
succeeded. After performing the tasks on each
version, the users answered a questionnaire with
questions from the NASA Task Load Index (NASA
TLX)3, the System Usability Scale (SUS)4, and the
User Experience Questionnaire (UEQ)5.

Theses tests were performed through the soft-
ware Zoom6, that allowed us to create a video call
for the experiment, share our screen, and receive
interaction from the other side of the call. The new
version of GameCourse was installed on a Virtual
machine7, and the old version was installed on the
computer from where the interviewer was making
the video call.

We conducted these experiments with 20 users,
two women and 18 men. 11 of them already had
used the Gamecourse system on the MCP course
but had no contact with the back-office part, only
visible for admin users. All users reported previous
experience with other LMSs, except for one, and
were connected to the Computer Science field.

Each experiment started with the project’s pre-
sentation, followed by a questionnaire to obtain in-

3https://humansystems.arc.nasa.gov/groups/TLX/
4https://www.usabilitest.com/system-usability-scale
5https://www.ueq-online.org/
6https://zoom.us/
7https://pcm.rnl.tecnico.ulisboa.pt/gamecourse/

formation about the user. The users were then
asked to continue the experiment either to the new
or the old version of the system (the users with odd
id used first the old system then the new, and even
ids the opposite). In each system, the users were
given 5 minutes to navigate it and ask questions.
After this time or the user approval to begin the
test, we gave the user a list of tasks to perform,
in random order, so there is no direct influence of
the learning curve of the system:

1. Create a new course8.
2. Delete a course.
3. Make a user admin of the system.
4. On a course show the list of users that have

the role Teacher.
5. On a course change the role of a user.
6. On a course add a user8.
7. On a course create a new role.
8. On a course activate a module.
9. On a course create a new Page.

10. On a course edit a page on the default Spe-
cializations and add new parts.

11. On a course edit a page on the default Spe-
cializations and change the content.

12. Access the documentation and search for a
specific function.

13. Edit a user9.
14. Check the information about the user logged

in9.
15. Verify if a module is installed on the system9.
16. Logout of the system and try to login with a

Likedin account9.
17. On a course access the configuration page of

a module and add a new item9.

6.2. Results
Regarding the tasks performance, we started by
calculating the Success rate of each task. From
the results, we learned that the success rate on
the new version of the system is 100% in almost
all tasks and higher than the old version, except
for task 10, where the old version got 10% more
success.

Then we calculated the mean and standard de-
viation values of each task on both systems (Table
2 and 3). By looking at the mean value, we can see
that the time spent on each task is lower on the new
version for tasks 2, 5, 6, 8, and 12, but on the re-
maining tasks, the values are close. To have an ex-
act result that tells us if the change of the GUI had
an impact on the time spent to complete the tasks,
we tested the null hypothesis (H0) of ”both versions
have the same impact on the performance of each
task”. First, we did a Shapiro-Wilk Normality Test to
verify if the data of each task follows a normal dis-
tribution on both versions. In Table 2, we have the

8This task is slightly different on the old system
9This task was only performed on the new version

7



results for the tasks which had normally distributed
data, and in Table 3, the ones which did not. Then
for the tasks on the first table, we did a Student’s
T-test and on the second table a Wilcoxon Signed-
Rank Test.

T V Mean Std. T-test H0 FV
1 old 00:23 00:06 0,000 R Old

new 00:44 00:11
2 old 01:15 01:00 0,000 R New

new 00:09 00:03
3 old 00:17 00:10 0,055 NR -

new 00:12 00:06
4 old 00:17 00:10 0,602 NR -

new 00:19 00:20
5 old 01:03 00:47 0,005 R New

new 00:26 00:07
7 old 00:44 00:25 0,910 NR -

new 00:43 00:31
9 old 00:24 00:12 0,847 NR -

new 00:24 00:08
10 old 02:48 01:10 0,876 NR -

new 02:51 01:04
Table 2: Results for the tasks 1 to 5, 7, 9 and 10. (R - Re-
jected; NR - Not Rejected; T - Task; V - Version; Std - Standard
deviation; FV - Fastest version)

T V Mean Std. W SR H0 FV
6 old 01:46 00:32 0,000 R New

new 00:31 00:11
8 old 00:25 00:09 0,001 R New

new 00:20 00:05
10 old 02:34 01:07 0,004 R New

new 01:16 00:49
Table 3: Results for the tasks 6, 8 and 12. (R - Rejected; V -
Version; T - Task; Std - Standard deviation; FV - Fastest version;
W SR - Wilcoxon Signed-Rank)

In order to reject H0, both tests needed to return
a significance p < 0.05. For tasks 2, 5, 6, 8, and
12, we were able to reject it and confidently say
that the new version of the system allows a quicker
performance on these tasks. On task 1, we were
also able to reject the null hypothesis, however the
mean value indicates the quicker system is the old
one. This happens because the new version re-
quires more input fields than the old one.

Even though the View editor’s look was changed,
on task 11 the user needed to use the Expression
Language, which was not altered. Thus, the re-
sults of the second version tested suffered a direct
impact, especially if the user was able to complete
the task on the first encounter. In table 4, we can
see this exact influence as the user takes a lot less
time performing the task the second time he/she
encounters it, and the success rate increases sig-
nificantly. To test the null hypotheses of ”both ver-
sions have the same impact on the performance of
task 11” we considered use the first encounter of
each version. However, this analysis was impos-
sible to make, due to the low success rate of this
task. We then performed a Shapiro-Wilk Normality

Test to verify if the data follows a normal distribu-
tion on both versions. As it does we applied a T-
test, from which we got a p = 0.318 > 0.05. not
rejecting our null hypothesis.

1st V V SR Mean Std.
old old 30% 03:40 00:59

new 80% 02:07 00:22
new new 60% 03:35 01:17

old 80% 01:17 00:43
- old 55% 02:12 01:19
- new 70% 03:21 01:19

Table 4: Results of task 11 separated by the first tested version.
(1st V - First version tested; V - Version; SR - Success rate)

For the last tasks, 13 to 17, we started by cal-
culating each task’s success rate. All of them re-
ported 100% success, except for 14 with 95%,
where one of the users did not understand what
he/she was asked to do. Then we calculated the
mean, standard deviation, and the 95% confidence
interval values. Table 5 demonstrates that for task
13, the users took less than 40 seconds to com-
plete it, for tasks 14 to 16 less than 20 second, and
for task 17 less than 2 minutes, as it requires filling
in data.

T Mean Std. 95% Confidence Int.
13 00:29 00:10 [00:24-00:35]
14 00:08 00:09 [00:03-00:12]
15 00:09 00:03 [00:08-00:11]
16 00:13 00:03 [00:12-00:15]
17 01:38 00:33 [01:29-01:56]

Table 5: Results of tasks 13 to 17 on the new version (T - Task).

6.2.1 NasaTLX

For the NasaTLX we used a variant called Raw
TLX which includes only the sum of the results of
the questions. We started by performing a Shapiro-
Wilk Normality Test to verify if the data follows a
normal distribution on both versions. The results
show that there was indeed a normal distribution,
which allow us to move to the Student’s t-test.
From this test we got a p = 0.01 < 0.05 reject-
ing the null hypothesis of ”both systems having the
same impact on the workload of the student” (Ta-
ble 6). Therefore, we can conclude that the new
version of the GameCourse has less impact on the
workload of the user.

Version Mean Std. Student’s t-test
old 49,800 26,824 0,010
new 29,800 19,352

Table 6: Results of the NasaTLX questionnaire.

6.2.2 System Usability Scale

From the data collected on the System Usability
Scale (SUS) questionnaire we started by calculat-

8



ing the SUS score:

• For each of the odd numbered questions, sub-
tracted 1 from the score.

• For each of the even numbered questions,
subtracted their value from 5.

• Added the previous results for the total score.
Then multiplied it by 2.5.

We can immediately see by the final results (Table
7) for both versions that the new one has a much
higher score with more the double the points. To
prove the impact we first did a Shapiro-Wilk Nor-
mality Test, which indicated that the data did not
follow a normal distribution on both versions. Then
we performed a Wilcoxon Signed-Rank Test from
which we got a p = 0.00 < 0.05. This rejected
the null hypothesis of ”both systems having the
same level of usability” (Table 7) and proved that
the new system has a greater level of Usability.

Version Mean Std. Wilcoxon S-R
old 35,8 15,046 0,000
new 77,1 18,051

Table 7: Results of the SUS questionnaire.

6.2.3 User Experience Questionnaire

To analyse the results from the User Experience
Questionnaire we started by transforming the data
so the values were between -3 and 3 instead of
1 and 7. Then calculated the mean ans standard
deviation for each scale (Attractiveness, Perspicu-
ity, Efficiency, Dependability, Stimulation and Nov-
elty). From these values we can see that there
is a clear distinction on the results of both ver-
sions (Table 8). We have the old version’s mean
on the negative side and the new version one on
the positive side. To reveal the true impact of the
change regarding UX, we did a Shapiro-Wilk Nor-
mality Test that showed that not all the scales fol-
low a normal distribution. Therefore we performed
a Wilcoxon Signed-Rank Test that rejected the null
hypothesis of ”both systems provide the same level
of User Experience” (Table 8) with all scales having
a p = 0.00 < 0.05. This analysis proves that the
new version has a better UX.

6.3. Discussion
The user tests showed us that the tasks can be
done quickly and without much effort. In addic-
tion: finding some information on the documenta-
tion takes half of the time it used to take; deleting
a course takes one minute less to be completed;
and that changing user’s roles also takes half of
the time it used to take.

Even though the visual change did not affect the
time spent to complete some of the tasks, it im-
proved the way a user sees and interacts with the

Scale V Mean Std. Wilcoxon

Attractiveness old -1,38 0,96 0,000
new 1,83 0,86

Perspicuity old -1,24 1,08 0,000
new 1,54 1,05

Efficiency old -0,21 1,13 0,000
new 2,05 0,59

Dependability old -0,09 1,11 0,000
new 1,93 0,65

Stimulation old -0,70 1,20 0,000
new 1,61 0,78

Novelty old -1,25 1,17 0,000
new 1,46 1,04

Table 8: Analysis per system of the results of the UEQ ques-
tionnaire.

system. All three questionnaires had a significantly
better score on the new version of GameCourse,
with almost half of the previous workload, twice the
usability, and permanent positive results on UX.

7. Conclusion
For this thesis, we designed and implemented a
new GUI for the GameCourse system that is clear,
simple, minimalistic, and respects UI & UX princi-
ples. Besides restructuring the system so all the
concepts are encapsulated on their correspondent
pages, this thesis added new functionalities includ-
ing: modules configuration pages; user configura-
tion on the system level; search, filter and order
capabilities on the listing pages; and undo/redo be-
havior on the roles management. These changes
guaranty that all the use cases established for the
system are available whilst improving the system’s
usability, making each task more accessible to the
user.

The GameCourse now provides two versions of
the Courses page: one where an admin user can
find the courses registered on the system, man-
age their information, and access a course; other
where the non-admin user can see and access all
the courses in which he/she is enrolled. It also
provides a new Users page on the system domain
where all the user’s information can be edited. This
page on the course domain allows adding existing
users and manage all course user’s roles. There
is also a search, filter, and order mechanism that
allows quick access to a particular object, on these
pages.

We have also implemented a new state manager
that allows the user to undo and redo actions made
while managing the list of roles, their hierarchy, and
correspondent landing pages. The state manager
was implemented independently, meaning that it
can also be used on future pages.

On the View editor, the toolbar of each item will
now appear fixed at the bottom of the page with
bigger icons, after the correspondent part is se-
lected by click. The pages triggered by each op-

9



tion on the toolbar were replaced by modals, that
are used throughout the system to receive user’s
input. To take advantage of the visual aspect of
this GameCourse’s section and the user’s ability
to associate icons with tasks, some of the options
on the modals were created with a visual selec-
tion instead of dropdown menus. To help under-
stand this section and the expression language,
the GameCourse now provides an always visible
slider with shortcuts to the documentation pages.
These pages were also changed to allow easy ac-
cess to information.

We created a modular system that generates a
configuration page for every module that requires
it. This allowed us to remove the external scripts
that fetch data for the module’s configuration. This
system allows the creation of configuration pages
for both existing and future modules, which means
that developers working on future modules only
have to define the requirements in the module
class instead of learning how to create a page
on the system. This feature was essential since
it guarantees consistency throughout the system
whilst decreasing the developing effort.

The work of this thesis improved the system’s us-
ability, which now scores a 77 out of 100 compared
with a previous 36. It also reduced the system’s
workload by almost half, leaving the users more
satisfied and less stressed with the experience. Fi-
nally it brought all the user experience scale points
to the positive side with mean values around 1 in a
scale of -3 to 3.

This system and its GUI have not yet reached
its final state as some improvements can still be
made. As proved by the final User tests, the
View editor is still very painful to use and time-
consuming. The whole system needs additional
code for a mobile version. Even though we had
into consideration the resize of the window, mak-
ing it flexible and dynamic, it is not enough to cope
with very small screens.

With the current work, it is finally possible to im-
plement the courses’ themes to add a particular vi-
sual and take the gamification experience to a new
level.

References
[1] An Argument for Clarity: What are Learning

Management Systems, What are They Not,
and What Should They Become? TechTrends,
51(2):28–34, mar 2007.

[2] A. M. Baltazar. Smartboards. Master’s thesis,
Instituto Superior Técnico, Lisbon, 2016.

[3] A. H. Dourado. Gamecoursenext. Master’s the-
sis, Instituto Superior Técnico, Lisbon, 2019.

[4] K. Erenli. The impact of gamification-
recommending education scenarios. Interna-
tional Journal of Emerging Technologies in
Learning (iJET), 8(2013):15–21, 2013.

[5] F. Grivokostopoulou, K. Kovas, and I. Perikos.
Examining the impact of a gamified en-
trepreneurship education framework in higher
education. Sustainability, 11(20):5623, 2019.

[6] S. Y. Hock, R. Omar, and M. Mahmud. Com-
paring the usability and users acceptance of
open sources learning management system
(lms). International Journal of Scientific and
Research Publications, 5(4):1–5, 2015.

[7] M. Machado and E. Tao. Blackboard vs. moo-
dle: Comparing user experience of learning
management systems. In 2007 37th annual
frontiers in education conference-global engi-
neering: Knowledge without borders, opportu-
nities without passports, pages S4J–7. IEEE,
2007.

[8] L. Martin, D. R. Martı́nez, O. Revilla, M. J.
Aguilar, O. C. Santos, and J. G. Boticario. Us-
ability in e-learning platforms: heuristics com-
parison between moodle, sakai and dotlrn. In
Sixth International Conference on Community
based environments. Guatemala, pages 12–
16. Citeseer, 2008.

[9] D. S. S. Sahid, P. I. Santosa, R. Ferdiana, and
E. N. Lukito. Evaluation and measurement of
learning management system based on user
experience. In 2016 6th International Annual
Engineering Seminar (InAES), pages 72–77.
IEEE, 2016.

10


